[go: nahoru, domu]

EffectReverb.c revision 2c8e5cab3faa6d360e222b7a6c40a80083d021ac
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "EffectReverb"
18//#define LOG_NDEBUG 0
19#include <cutils/log.h>
20#include <stdlib.h>
21#include <string.h>
22#include <stdbool.h>
23#include "EffectReverb.h"
24#include "EffectsMath.h"
25
26// effect_interface_t interface implementation for reverb effect
27const struct effect_interface_s gReverbInterface = {
28        Reverb_Process,
29        Reverb_Command
30};
31
32// Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
33static const effect_descriptor_t gAuxEnvReverbDescriptor = {
34        {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
35        {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
36        EFFECT_API_VERSION,
37        // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
38        EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
39        0, // TODO
40        33,
41        "Aux Environmental Reverb",
42        "Google Inc."
43};
44
45// Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
46static const effect_descriptor_t gInsertEnvReverbDescriptor = {
47        {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
48        {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
49        EFFECT_API_VERSION,
50        EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
51        0, // TODO
52        33,
53        "Insert Environmental reverb",
54        "Google Inc."
55};
56
57// Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
58static const effect_descriptor_t gAuxPresetReverbDescriptor = {
59        {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
60        {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
61        EFFECT_API_VERSION,
62        EFFECT_FLAG_TYPE_AUXILIARY,
63        0, // TODO
64        33,
65        "Aux Preset Reverb",
66        "Google Inc."
67};
68
69// Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
70static const effect_descriptor_t gInsertPresetReverbDescriptor = {
71        {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
72        {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
73        EFFECT_API_VERSION,
74        EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
75        0, // TODO
76        33,
77        "Insert Preset Reverb",
78        "Google Inc."
79};
80
81// gDescriptors contains pointers to all defined effect descriptor in this library
82static const effect_descriptor_t * const gDescriptors[] = {
83        &gAuxEnvReverbDescriptor,
84        &gInsertEnvReverbDescriptor,
85        &gAuxPresetReverbDescriptor,
86        &gInsertPresetReverbDescriptor
87};
88
89/*----------------------------------------------------------------------------
90 * Effect API implementation
91 *--------------------------------------------------------------------------*/
92
93/*--- Effect Library Interface Implementation ---*/
94
95int EffectQueryNumberEffects(uint32_t *pNumEffects) {
96    *pNumEffects = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
97    return 0;
98}
99
100int EffectQueryEffect(uint32_t index, effect_descriptor_t *pDescriptor) {
101    if (pDescriptor == NULL) {
102        return -EINVAL;
103    }
104    if (index >= sizeof(gDescriptors) / sizeof(const effect_descriptor_t *)) {
105        return -EINVAL;
106    }
107    memcpy(pDescriptor, gDescriptors[index],
108            sizeof(effect_descriptor_t));
109    return 0;
110}
111
112int EffectCreate(effect_uuid_t *uuid,
113        int32_t sessionId,
114        int32_t ioId,
115        effect_interface_t *pInterface) {
116    int ret;
117    int i;
118    reverb_module_t *module;
119    const effect_descriptor_t *desc;
120    int aux = 0;
121    int preset = 0;
122
123    LOGV("EffectLibCreateEffect start");
124
125    if (pInterface == NULL || uuid == NULL) {
126        return -EINVAL;
127    }
128
129    for (i = 0; gDescriptors[i] != NULL; i++) {
130        desc = gDescriptors[i];
131        if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
132                == 0) {
133            break;
134        }
135    }
136
137    if (gDescriptors[i] == NULL) {
138        return -ENOENT;
139    }
140
141    module = malloc(sizeof(reverb_module_t));
142
143    module->itfe = &gReverbInterface;
144
145    module->context.mState = REVERB_STATE_UNINITIALIZED;
146
147    if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
148        preset = 1;
149    }
150    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
151        aux = 1;
152    }
153    ret = Reverb_Init(module, aux, preset);
154    if (ret < 0) {
155        LOGW("EffectLibCreateEffect() init failed");
156        free(module);
157        return ret;
158    }
159
160    *pInterface = (effect_interface_t) module;
161
162    module->context.mState = REVERB_STATE_INITIALIZED;
163
164    LOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
165
166    return 0;
167}
168
169int EffectRelease(effect_interface_t interface) {
170    reverb_module_t *pRvbModule = (reverb_module_t *)interface;
171
172    LOGV("EffectLibReleaseEffect %p", interface);
173    if (interface == NULL) {
174        return -EINVAL;
175    }
176
177    pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
178
179    free(pRvbModule);
180    return 0;
181}
182
183
184/*--- Effect Control Interface Implementation ---*/
185
186static int Reverb_Process(effect_interface_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
187    reverb_object_t *pReverb;
188    int16_t *pSrc, *pDst;
189    reverb_module_t *pRvbModule = (reverb_module_t *)self;
190
191    if (pRvbModule == NULL) {
192        return -EINVAL;
193    }
194
195    if (inBuffer == NULL || inBuffer->raw == NULL ||
196        outBuffer == NULL || outBuffer->raw == NULL ||
197        inBuffer->frameCount != outBuffer->frameCount) {
198        return -EINVAL;
199    }
200
201    pReverb = (reverb_object_t*) &pRvbModule->context;
202
203    if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
204        return -EINVAL;
205    }
206    if (pReverb->mState == REVERB_STATE_INITIALIZED) {
207        return -ENODATA;
208    }
209
210    //if bypassed or the preset forces the signal to be completely dry
211    if (pReverb->m_bBypass != 0) {
212        if (inBuffer->raw != outBuffer->raw) {
213            int16_t smp;
214            pSrc = inBuffer->s16;
215            pDst = outBuffer->s16;
216            size_t count = inBuffer->frameCount;
217            if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
218                count *= 2;
219                while (count--) {
220                    *pDst++ = *pSrc++;
221                }
222            } else {
223                while (count--) {
224                    smp = *pSrc++;
225                    *pDst++ = smp;
226                    *pDst++ = smp;
227                }
228            }
229        }
230        return 0;
231    }
232
233    if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
234        ReverbUpdateRoom(pReverb, true);
235    }
236
237    pSrc = inBuffer->s16;
238    pDst = outBuffer->s16;
239    size_t numSamples = outBuffer->frameCount;
240    while (numSamples) {
241        uint32_t processedSamples;
242        if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
243            processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
244        } else {
245            processedSamples = numSamples;
246        }
247
248        /* increment update counter */
249        pReverb->m_nUpdateCounter += (int16_t) processedSamples;
250        /* check if update counter needs to be reset */
251        if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
252            /* update interval has elapsed, so reset counter */
253            pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
254            ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
255
256        } /* end if m_nUpdateCounter >= update interval */
257
258        Reverb(pReverb, processedSamples, pDst, pSrc);
259
260        numSamples -= processedSamples;
261        if (pReverb->m_Aux) {
262            pSrc += processedSamples;
263        } else {
264            pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
265        }
266        pDst += processedSamples * NUM_OUTPUT_CHANNELS;
267    }
268
269    return 0;
270}
271
272
273static int Reverb_Command(effect_interface_t self, int cmdCode, int cmdSize,
274        void *pCmdData, int *replySize, void *pReplyData) {
275    reverb_module_t *pRvbModule = (reverb_module_t *) self;
276    reverb_object_t *pReverb;
277    int retsize;
278
279    if (pRvbModule == NULL ||
280            pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
281        return -EINVAL;
282    }
283
284    pReverb = (reverb_object_t*) &pRvbModule->context;
285
286    LOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
287
288    switch (cmdCode) {
289    case EFFECT_CMD_INIT:
290        if (pReplyData == NULL || *replySize != sizeof(int)) {
291            return -EINVAL;
292        }
293        *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
294        if (*(int *) pReplyData == 0) {
295            pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
296        }
297        break;
298    case EFFECT_CMD_CONFIGURE:
299        if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
300                || pReplyData == NULL || *replySize != sizeof(int)) {
301            return -EINVAL;
302        }
303        *(int *) pReplyData = Reverb_Configure(pRvbModule,
304                (effect_config_t *)pCmdData, false);
305        break;
306    case EFFECT_CMD_RESET:
307        Reverb_Reset(pReverb, false);
308        break;
309    case EFFECT_CMD_GET_PARAM:
310        LOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
311
312        if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
313            pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
314            return -EINVAL;
315        }
316        effect_param_t *rep = (effect_param_t *) pReplyData;
317        memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
318        LOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
319        rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
320                rep->data + sizeof(int32_t));
321        *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
322        break;
323    case EFFECT_CMD_SET_PARAM:
324        LOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
325                cmdSize, pCmdData, *replySize, pReplyData);
326        if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
327                || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
328            return -EINVAL;
329        }
330        effect_param_t *cmd = (effect_param_t *) pCmdData;
331        *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
332                cmd->vsize, cmd->data + sizeof(int32_t));
333        break;
334    case EFFECT_CMD_ENABLE:
335        if (pReplyData == NULL || *replySize != sizeof(int)) {
336            return -EINVAL;
337        }
338        if (pReverb->mState != REVERB_STATE_INITIALIZED) {
339            return -ENOSYS;
340        }
341        pReverb->mState = REVERB_STATE_ACTIVE;
342        LOGV("EFFECT_CMD_ENABLE() OK");
343        *(int *)pReplyData = 0;
344        break;
345    case EFFECT_CMD_DISABLE:
346        if (pReplyData == NULL || *replySize != sizeof(int)) {
347            return -EINVAL;
348        }
349        if (pReverb->mState != REVERB_STATE_ACTIVE) {
350            return -ENOSYS;
351        }
352        pReverb->mState = REVERB_STATE_INITIALIZED;
353        LOGV("EFFECT_CMD_DISABLE() OK");
354        *(int *)pReplyData = 0;
355        break;
356    case EFFECT_CMD_SET_DEVICE:
357        if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
358            return -EINVAL;
359        }
360        LOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
361        break;
362    case EFFECT_CMD_SET_VOLUME: {
363        // audio output is always stereo => 2 channel volumes
364        if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
365            return -EINVAL;
366        }
367        float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
368        float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
369        LOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
370        break;
371        }
372    case EFFECT_CMD_SET_AUDIO_MODE:
373        if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
374            return -EINVAL;
375        }
376        LOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
377        break;
378    default:
379        LOGW("Reverb_Command invalid command %d",cmdCode);
380        return -EINVAL;
381    }
382
383    return 0;
384}
385
386
387/*----------------------------------------------------------------------------
388 * Reverb internal functions
389 *--------------------------------------------------------------------------*/
390
391/*----------------------------------------------------------------------------
392 * Reverb_Init()
393 *----------------------------------------------------------------------------
394 * Purpose:
395 * Initialize reverb context and apply default parameters
396 *
397 * Inputs:
398 *  pRvbModule    - pointer to reverb effect module
399 *  aux           - indicates if the reverb is used as auxiliary (1) or insert (0)
400 *  preset        - indicates if the reverb is used in preset (1) or environmental (0) mode
401 *
402 * Outputs:
403 *
404 * Side Effects:
405 *
406 *----------------------------------------------------------------------------
407 */
408
409int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
410    int ret;
411
412    LOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
413
414    memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
415
416    pRvbModule->context.m_Aux = (uint16_t)aux;
417    pRvbModule->context.m_Preset = (uint16_t)preset;
418
419    pRvbModule->config.inputCfg.samplingRate = 44100;
420    if (aux) {
421        pRvbModule->config.inputCfg.channels = CHANNEL_MONO;
422    } else {
423        pRvbModule->config.inputCfg.channels = CHANNEL_STEREO;
424    }
425    pRvbModule->config.inputCfg.format = SAMPLE_FORMAT_PCM_S15;
426    pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
427    pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
428    pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
429    pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
430    pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
431    pRvbModule->config.outputCfg.samplingRate = 44100;
432    pRvbModule->config.outputCfg.channels = CHANNEL_STEREO;
433    pRvbModule->config.outputCfg.format = SAMPLE_FORMAT_PCM_S15;
434    pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
435    pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
436    pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
437    pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
438    pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
439
440    ret = Reverb_Configure(pRvbModule, &pRvbModule->config, true);
441    if (ret < 0) {
442        LOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
443    }
444
445    return ret;
446}
447
448/*----------------------------------------------------------------------------
449 * Reverb_Init()
450 *----------------------------------------------------------------------------
451 * Purpose:
452 *  Set input and output audio configuration.
453 *
454 * Inputs:
455 *  pRvbModule    - pointer to reverb effect module
456 *  pConfig       - pointer to effect_config_t structure containing input
457 *              and output audio parameters configuration
458 *  init          - true if called from init function
459 * Outputs:
460 *
461 * Side Effects:
462 *
463 *----------------------------------------------------------------------------
464 */
465
466int Reverb_Configure(reverb_module_t *pRvbModule, effect_config_t *pConfig,
467        bool init) {
468    reverb_object_t *pReverb = &pRvbModule->context;
469    int bufferSizeInSamples;
470    int updatePeriodInSamples;
471    int xfadePeriodInSamples;
472
473    // Check configuration compatibility with build options
474    if (pConfig->inputCfg.samplingRate
475        != pConfig->outputCfg.samplingRate
476        || pConfig->outputCfg.channels != OUTPUT_CHANNELS
477        || pConfig->inputCfg.format != SAMPLE_FORMAT_PCM_S15
478        || pConfig->outputCfg.format != SAMPLE_FORMAT_PCM_S15) {
479        LOGV("Reverb_Configure invalid config");
480        return -EINVAL;
481    }
482    if ((pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_MONO)) ||
483        (!pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_STEREO))) {
484        LOGV("Reverb_Configure invalid config");
485        return -EINVAL;
486    }
487
488    memcpy(&pRvbModule->config, pConfig, sizeof(effect_config_t));
489
490    pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
491
492    switch (pReverb->m_nSamplingRate) {
493    case 8000:
494        pReverb->m_nUpdatePeriodInBits = 5;
495        bufferSizeInSamples = 4096;
496        pReverb->m_nCosWT_5KHz = -23170;
497        break;
498    case 16000:
499        pReverb->m_nUpdatePeriodInBits = 6;
500        bufferSizeInSamples = 8192;
501        pReverb->m_nCosWT_5KHz = -12540;
502        break;
503    case 22050:
504        pReverb->m_nUpdatePeriodInBits = 7;
505        bufferSizeInSamples = 8192;
506        pReverb->m_nCosWT_5KHz = 4768;
507        break;
508    case 32000:
509        pReverb->m_nUpdatePeriodInBits = 7;
510        bufferSizeInSamples = 16384;
511        pReverb->m_nCosWT_5KHz = 18205;
512        break;
513    case 44100:
514        pReverb->m_nUpdatePeriodInBits = 8;
515        bufferSizeInSamples = 16384;
516        pReverb->m_nCosWT_5KHz = 24799;
517        break;
518    case 48000:
519        pReverb->m_nUpdatePeriodInBits = 8;
520        bufferSizeInSamples = 16384;
521        pReverb->m_nCosWT_5KHz = 25997;
522        break;
523    default:
524        LOGV("Reverb_Configure invalid sampling rate %d", pReverb->m_nSamplingRate);
525        return -EINVAL;
526    }
527
528    // Define a mask for circular addressing, so that array index
529    // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
530    // The buffer size MUST be a power of two
531    pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
532    /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
533    updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
534    /*
535     calculate the update counter by bitwise ANDING with this value to
536     generate a 2^n modulo value
537     */
538    pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
539
540    xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
541            * (double) pReverb->m_nSamplingRate);
542
543    // set xfade parameters
544    pReverb->m_nPhaseIncrement
545            = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
546                    / (int16_t) updatePeriodInSamples));
547
548    if (init) {
549        ReverbReadInPresets(pReverb);
550
551        // for debugging purposes, allow noise generator
552        pReverb->m_bUseNoise = true;
553
554        // for debugging purposes, allow bypass
555        pReverb->m_bBypass = 0;
556
557        pReverb->m_nNextRoom = 1;
558
559        pReverb->m_nNoise = (int16_t) 0xABCD;
560    }
561
562    Reverb_Reset(pReverb, init);
563
564    return 0;
565}
566
567/*----------------------------------------------------------------------------
568 * Reverb_Reset()
569 *----------------------------------------------------------------------------
570 * Purpose:
571 *  Reset internal states and clear delay lines.
572 *
573 * Inputs:
574 *  pReverb    - pointer to reverb context
575 *  init       - true if called from init function
576 *
577 * Outputs:
578 *
579 * Side Effects:
580 *
581 *----------------------------------------------------------------------------
582 */
583
584void Reverb_Reset(reverb_object_t *pReverb, bool init) {
585    int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
586    int maxApSamples;
587    int maxDelaySamples;
588    int maxEarlySamples;
589    int ap1In;
590    int delay0In;
591    int delay1In;
592    int32_t i;
593    uint16_t nOffset;
594
595    maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
596    maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
597            >> 16);
598    maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
599            >> 16);
600
601    ap1In = (AP0_IN + maxApSamples + GUARD);
602    delay0In = (ap1In + maxApSamples + GUARD);
603    delay1In = (delay0In + maxDelaySamples + GUARD);
604    // Define the max offsets for the end points of each section
605    // i.e., we don't expect a given section's taps to go beyond
606    // the following limits
607
608    pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
609    pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
610
611    pReverb->m_sAp0.m_zApIn = AP0_IN;
612
613    pReverb->m_zD0In = delay0In;
614
615    pReverb->m_sAp1.m_zApIn = ap1In;
616
617    pReverb->m_zD1In = delay1In;
618
619    pReverb->m_zOutLpfL = 0;
620    pReverb->m_zOutLpfR = 0;
621
622    pReverb->m_nRevFbkR = 0;
623    pReverb->m_nRevFbkL = 0;
624
625    // set base index into circular buffer
626    pReverb->m_nBaseIndex = 0;
627
628    // clear the reverb delay line
629    for (i = 0; i < bufferSizeInSamples; i++) {
630        pReverb->m_nDelayLine[i] = 0;
631    }
632
633    ReverbUpdateRoom(pReverb, init);
634
635    pReverb->m_nUpdateCounter = 0;
636
637    pReverb->m_nPhase = -32768;
638
639    pReverb->m_nSin = 0;
640    pReverb->m_nCos = 0;
641    pReverb->m_nSinIncrement = 0;
642    pReverb->m_nCosIncrement = 0;
643
644    // set delay tap lengths
645    nOffset = ReverbCalculateNoise(pReverb);
646
647    pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
648            + nOffset;
649
650    nOffset = ReverbCalculateNoise(pReverb);
651
652    pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
653            - nOffset;
654
655    nOffset = ReverbCalculateNoise(pReverb);
656
657    pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
658            - nOffset;
659
660    nOffset = ReverbCalculateNoise(pReverb);
661
662    pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
663            + nOffset;
664}
665
666/*----------------------------------------------------------------------------
667 * Reverb_getParameter()
668 *----------------------------------------------------------------------------
669 * Purpose:
670 * Get a Reverb parameter
671 *
672 * Inputs:
673 *  pReverb       - handle to instance data
674 *  param         - parameter
675 *  pValue        - pointer to variable to hold retrieved value
676 *  pSize         - pointer to value size: maximum size as input
677 *
678 * Outputs:
679 *  *pValue updated with parameter value
680 *  *pSize updated with actual value size
681 *
682 *
683 * Side Effects:
684 *
685 *----------------------------------------------------------------------------
686 */
687int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
688        void *pValue) {
689    int32_t *pValue32;
690    int16_t *pValue16;
691    t_reverb_properties *pProperties;
692    int32_t i;
693    int32_t temp;
694    int32_t temp2;
695    size_t size;
696
697    if (pReverb->m_Preset) {
698        if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
699            return -EINVAL;
700        }
701        size = sizeof(int16_t);
702        pValue16 = (int16_t *)pValue;
703        // REVERB_PRESET_NONE is mapped to bypass
704        if (pReverb->m_bBypass != 0) {
705            *pValue16 = (int16_t)REVERB_PRESET_NONE;
706        } else {
707            *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
708        }
709        LOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
710    } else {
711        switch (param) {
712        case REVERB_PARAM_ROOM_LEVEL:
713        case REVERB_PARAM_ROOM_HF_LEVEL:
714        case REVERB_PARAM_DECAY_HF_RATIO:
715        case REVERB_PARAM_REFLECTIONS_LEVEL:
716        case REVERB_PARAM_REVERB_LEVEL:
717        case REVERB_PARAM_DIFFUSION:
718        case REVERB_PARAM_DENSITY:
719            size = sizeof(int16_t);
720            break;
721
722        case REVERB_PARAM_BYPASS:
723        case REVERB_PARAM_DECAY_TIME:
724        case REVERB_PARAM_REFLECTIONS_DELAY:
725        case REVERB_PARAM_REVERB_DELAY:
726            size = sizeof(int32_t);
727            break;
728
729        case REVERB_PARAM_PROPERTIES:
730            size = sizeof(t_reverb_properties);
731            break;
732
733        default:
734            return -EINVAL;
735        }
736
737        if (*pSize < size) {
738            return -EINVAL;
739        }
740
741        pValue32 = (int32_t *) pValue;
742        pValue16 = (int16_t *) pValue;
743        pProperties = (t_reverb_properties *) pValue;
744
745        switch (param) {
746        case REVERB_PARAM_BYPASS:
747            *pValue32 = (int32_t) pReverb->m_bBypass;
748            break;
749
750        case REVERB_PARAM_PROPERTIES:
751            pValue16 = &pProperties->roomLevel;
752            /* FALL THROUGH */
753
754        case REVERB_PARAM_ROOM_LEVEL:
755            // Convert m_nRoomLpfFwd to millibels
756            temp = (pReverb->m_nRoomLpfFwd << 15)
757                    / (32767 - pReverb->m_nRoomLpfFbk);
758            *pValue16 = Effects_Linear16ToMillibels(temp);
759
760            LOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
761
762            if (param == REVERB_PARAM_ROOM_LEVEL) {
763                break;
764            }
765            pValue16 = &pProperties->roomHFLevel;
766            /* FALL THROUGH */
767
768        case REVERB_PARAM_ROOM_HF_LEVEL:
769            // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
770            // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
771            // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
772            // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
773
774            temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
775            LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
776            temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
777                    << 1;
778            LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
779            temp = 32767 + temp - temp2;
780            LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
781            temp = Effects_Sqrt(temp) * 181;
782            LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
783            temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
784
785            LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
786
787            *pValue16 = Effects_Linear16ToMillibels(temp);
788
789            if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
790                break;
791            }
792            pValue32 = &pProperties->decayTime;
793            /* FALL THROUGH */
794
795        case REVERB_PARAM_DECAY_TIME:
796            // Calculate reverb feedback path gain
797            temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
798            temp = Effects_Linear16ToMillibels(temp);
799
800            // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
801            temp = (-6000 * pReverb->m_nLateDelay) / temp;
802
803            // Convert samples to ms
804            *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
805
806            LOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
807
808            if (param == REVERB_PARAM_DECAY_TIME) {
809                break;
810            }
811            pValue16 = &pProperties->decayHFRatio;
812            /* FALL THROUGH */
813
814        case REVERB_PARAM_DECAY_HF_RATIO:
815            // If r is the decay HF ratio  (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
816            //       DT_5000Hz = DT_0Hz * r
817            //  and  G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
818            // r = G_0Hz/G_5000Hz in millibels
819            // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
820            // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
821            // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
822            // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
823            if (pReverb->m_nRvbLpfFbk == 0) {
824                *pValue16 = 1000;
825                LOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
826            } else {
827                temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
828                temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
829                        << 1;
830                temp = 32767 + temp - temp2;
831                temp = Effects_Sqrt(temp) * 181;
832                temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
833                // The linear gain at 0Hz is b0 / (a1 + 1)
834                temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
835                        - pReverb->m_nRvbLpfFbk);
836
837                temp = Effects_Linear16ToMillibels(temp);
838                temp2 = Effects_Linear16ToMillibels(temp2);
839                LOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
840
841                if (temp == 0)
842                    temp = 1;
843                temp = (int16_t) ((1000 * temp2) / temp);
844                if (temp > 1000)
845                    temp = 1000;
846
847                *pValue16 = temp;
848                LOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
849            }
850
851            if (param == REVERB_PARAM_DECAY_HF_RATIO) {
852                break;
853            }
854            pValue16 = &pProperties->reflectionsLevel;
855            /* FALL THROUGH */
856
857        case REVERB_PARAM_REFLECTIONS_LEVEL:
858            *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
859
860            LOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
861            if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
862                break;
863            }
864            pValue32 = &pProperties->reflectionsDelay;
865            /* FALL THROUGH */
866
867        case REVERB_PARAM_REFLECTIONS_DELAY:
868            // convert samples to ms
869            *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
870
871            LOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
872
873            if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
874                break;
875            }
876            pValue16 = &pProperties->reverbLevel;
877            /* FALL THROUGH */
878
879        case REVERB_PARAM_REVERB_LEVEL:
880            // Convert linear gain to millibels
881            *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
882
883            LOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
884
885            if (param == REVERB_PARAM_REVERB_LEVEL) {
886                break;
887            }
888            pValue32 = &pProperties->reverbDelay;
889            /* FALL THROUGH */
890
891        case REVERB_PARAM_REVERB_DELAY:
892            // convert samples to ms
893            *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
894
895            LOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
896
897            if (param == REVERB_PARAM_REVERB_DELAY) {
898                break;
899            }
900            pValue16 = &pProperties->diffusion;
901            /* FALL THROUGH */
902
903        case REVERB_PARAM_DIFFUSION:
904            temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
905                    / AP0_GAIN_RANGE);
906
907            if (temp < 0)
908                temp = 0;
909            if (temp > 1000)
910                temp = 1000;
911
912            *pValue16 = temp;
913            LOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
914
915            if (param == REVERB_PARAM_DIFFUSION) {
916                break;
917            }
918            pValue16 = &pProperties->density;
919            /* FALL THROUGH */
920
921        case REVERB_PARAM_DENSITY:
922            // Calculate AP delay in time units
923            temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
924                    / pReverb->m_nSamplingRate;
925
926            temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
927
928            if (temp < 0)
929                temp = 0;
930            if (temp > 1000)
931                temp = 1000;
932
933            *pValue16 = temp;
934
935            LOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
936            break;
937
938        default:
939            break;
940        }
941    }
942
943    *pSize = size;
944
945    LOGV("Reverb_getParameter, context %p, param %d, value %d",
946            pReverb, param, *(int *)pValue);
947
948    return 0;
949} /* end Reverb_getParameter */
950
951/*----------------------------------------------------------------------------
952 * Reverb_setParameter()
953 *----------------------------------------------------------------------------
954 * Purpose:
955 * Set a Reverb parameter
956 *
957 * Inputs:
958 *  pReverb       - handle to instance data
959 *  param         - parameter
960 *  pValue        - pointer to parameter value
961 *  size          - value size
962 *
963 * Outputs:
964 *
965 *
966 * Side Effects:
967 *
968 *----------------------------------------------------------------------------
969 */
970int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
971        void *pValue) {
972    int32_t value32;
973    int16_t value16;
974    t_reverb_properties *pProperties;
975    int32_t i;
976    int32_t temp;
977    int32_t temp2;
978    reverb_preset_t *pPreset;
979    int maxSamples;
980    int32_t averageDelay;
981    size_t paramSize;
982
983    LOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
984            pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
985
986    if (pReverb->m_Preset) {
987        if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
988            return -EINVAL;
989        }
990        value16 = *(int16_t *)pValue;
991        LOGV("set REVERB_PARAM_PRESET, preset %d", value16);
992        if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
993            return -EINVAL;
994        }
995        // REVERB_PRESET_NONE is mapped to bypass
996        if (value16 == REVERB_PRESET_NONE) {
997            pReverb->m_bBypass = 1;
998        } else {
999            pReverb->m_bBypass = 0;
1000            pReverb->m_nNextRoom = value16 - 1;
1001        }
1002    } else {
1003        switch (param) {
1004        case REVERB_PARAM_ROOM_LEVEL:
1005        case REVERB_PARAM_ROOM_HF_LEVEL:
1006        case REVERB_PARAM_DECAY_HF_RATIO:
1007        case REVERB_PARAM_REFLECTIONS_LEVEL:
1008        case REVERB_PARAM_REVERB_LEVEL:
1009        case REVERB_PARAM_DIFFUSION:
1010        case REVERB_PARAM_DENSITY:
1011            paramSize = sizeof(int16_t);
1012            break;
1013
1014        case REVERB_PARAM_BYPASS:
1015        case REVERB_PARAM_DECAY_TIME:
1016        case REVERB_PARAM_REFLECTIONS_DELAY:
1017        case REVERB_PARAM_REVERB_DELAY:
1018            paramSize = sizeof(int32_t);
1019            break;
1020
1021        case REVERB_PARAM_PROPERTIES:
1022            paramSize = sizeof(t_reverb_properties);
1023            break;
1024
1025        default:
1026            return -EINVAL;
1027        }
1028
1029        if (size != paramSize) {
1030            return -EINVAL;
1031        }
1032
1033        if (paramSize == sizeof(int16_t)) {
1034            value16 = *(int16_t *) pValue;
1035        } else if (paramSize == sizeof(int32_t)) {
1036            value32 = *(int32_t *) pValue;
1037        } else {
1038            pProperties = (t_reverb_properties *) pValue;
1039        }
1040
1041        pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1042
1043        switch (param) {
1044        case REVERB_PARAM_BYPASS:
1045            pReverb->m_bBypass = (uint16_t)value32;
1046            break;
1047
1048        case REVERB_PARAM_PROPERTIES:
1049            value16 = pProperties->roomLevel;
1050            /* FALL THROUGH */
1051
1052        case REVERB_PARAM_ROOM_LEVEL:
1053            // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
1054            if (value16 > 0)
1055                return -EINVAL;
1056
1057            temp = Effects_MillibelsToLinear16(value16);
1058
1059            pReverb->m_nRoomLpfFwd
1060                    = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
1061
1062            LOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
1063            if (param == REVERB_PARAM_ROOM_LEVEL)
1064                break;
1065            value16 = pProperties->roomHFLevel;
1066            /* FALL THROUGH */
1067
1068        case REVERB_PARAM_ROOM_HF_LEVEL:
1069
1070            // Limit to 0 , -40dB range because of low pass implementation
1071            if (value16 > 0 || value16 < -4000)
1072                return -EINVAL;
1073            // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
1074            // m_nRoomLpfFbk is -a1 where a1 is the solution of:
1075            // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
1076            // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
1077            // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
1078
1079            // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1080            // while changing HF level
1081            temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
1082                    - pReverb->m_nRoomLpfFbk);
1083            if (value16 == 0) {
1084                pReverb->m_nRoomLpfFbk = 0;
1085            } else {
1086                int32_t dG2, b, delta;
1087
1088                // dG^2
1089                temp = Effects_MillibelsToLinear16(value16);
1090                LOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
1091                temp = (1 << 30) / temp;
1092                LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1093                dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1094                LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1095                // b = 2*(C-dG^2)/(1-dG^2)
1096                b = (int32_t) ((((int64_t) 1 << (15 + 1))
1097                        * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1098                        / ((int64_t) 32767 - (int64_t) dG2));
1099
1100                // delta = b^2 - 4
1101                delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1102                        + 2)));
1103
1104                LOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1105
1106                LOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1107                // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1108                pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1109            }
1110            LOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1111                    temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1112
1113            pReverb->m_nRoomLpfFwd
1114                    = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1115            LOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1116
1117            if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1118                break;
1119            value32 = pProperties->decayTime;
1120            /* FALL THROUGH */
1121
1122        case REVERB_PARAM_DECAY_TIME:
1123
1124            // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1125            // convert ms to samples
1126            value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1127
1128            // calculate valid decay time range as a function of current reverb delay and
1129            // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1130            // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1131            // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1132            averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1133            averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1134                    + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1135
1136            temp = (-6000 * averageDelay) / value32;
1137            LOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1138            if (temp < -4000 || temp > -100)
1139                return -EINVAL;
1140
1141            // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1142            // xfade and sum gain (max +9dB)
1143            temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1144            temp = Effects_MillibelsToLinear16(temp);
1145
1146            // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1147            pReverb->m_nRvbLpfFwd
1148                    = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1149
1150            LOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1151
1152            if (param == REVERB_PARAM_DECAY_TIME)
1153                break;
1154            value16 = pProperties->decayHFRatio;
1155            /* FALL THROUGH */
1156
1157        case REVERB_PARAM_DECAY_HF_RATIO:
1158
1159            // We limit max value to 1000 because reverb filter is lowpass only
1160            if (value16 < 100 || value16 > 1000)
1161                return -EINVAL;
1162            // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1163
1164            // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1165            // while changing HF level
1166            temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1167
1168            if (value16 == 1000) {
1169                pReverb->m_nRvbLpfFbk = 0;
1170            } else {
1171                int32_t dG2, b, delta;
1172
1173                temp = Effects_Linear16ToMillibels(temp2);
1174                // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1175
1176                value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1177                LOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1178
1179                temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1180
1181                if (temp < -4000) {
1182                    LOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1183                    temp = -4000;
1184                }
1185
1186                temp = Effects_MillibelsToLinear16(temp);
1187                LOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1188                // dG^2
1189                temp = (temp2 << 15) / temp;
1190                dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1191
1192                // b = 2*(C-dG^2)/(1-dG^2)
1193                b = (int32_t) ((((int64_t) 1 << (15 + 1))
1194                        * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1195                        / ((int64_t) 32767 - (int64_t) dG2));
1196
1197                // delta = b^2 - 4
1198                delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1199                        + 2)));
1200
1201                // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1202                pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1203
1204                LOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1205
1206            }
1207
1208            LOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1209
1210            pReverb->m_nRvbLpfFwd
1211                    = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1212
1213            if (param == REVERB_PARAM_DECAY_HF_RATIO)
1214                break;
1215            value16 = pProperties->reflectionsLevel;
1216            /* FALL THROUGH */
1217
1218        case REVERB_PARAM_REFLECTIONS_LEVEL:
1219            // We limit max value to 0 because gain is limited to 0dB
1220            if (value16 > 0 || value16 < -6000)
1221                return -EINVAL;
1222
1223            // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1224            value16 = Effects_MillibelsToLinear16(value16);
1225            for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1226                pReverb->m_sEarlyL.m_nGain[i]
1227                        = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1228                pReverb->m_sEarlyR.m_nGain[i]
1229                        = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1230            }
1231            pReverb->m_nEarlyGain = value16;
1232            LOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1233
1234            if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1235                break;
1236            value32 = pProperties->reflectionsDelay;
1237            /* FALL THROUGH */
1238
1239        case REVERB_PARAM_REFLECTIONS_DELAY:
1240            // We limit max value MAX_EARLY_TIME
1241            // convert ms to time units
1242            temp = (value32 * 65536) / 1000;
1243            if (temp < 0 || temp > MAX_EARLY_TIME)
1244                return -EINVAL;
1245
1246            maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1247                    >> 16;
1248            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1249            for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1250                temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1251                        * pReverb->m_nSamplingRate) >> 16);
1252                if (temp2 > maxSamples)
1253                    temp2 = maxSamples;
1254                pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1255                temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1256                        * pReverb->m_nSamplingRate) >> 16);
1257                if (temp2 > maxSamples)
1258                    temp2 = maxSamples;
1259                pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1260            }
1261            pReverb->m_nEarlyDelay = temp;
1262
1263            LOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1264
1265            // Convert milliseconds to sample count => m_nEarlyDelay
1266            if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1267                break;
1268            value16 = pProperties->reverbLevel;
1269            /* FALL THROUGH */
1270
1271        case REVERB_PARAM_REVERB_LEVEL:
1272            // We limit max value to 0 because gain is limited to 0dB
1273            if (value16 > 0 || value16 < -6000)
1274                return -EINVAL;
1275            // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1276            pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1277
1278            LOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1279
1280            if (param == REVERB_PARAM_REVERB_LEVEL)
1281                break;
1282            value32 = pProperties->reverbDelay;
1283            /* FALL THROUGH */
1284
1285        case REVERB_PARAM_REVERB_DELAY:
1286            // We limit max value to MAX_DELAY_TIME
1287            // convert ms to time units
1288            temp = (value32 * 65536) / 1000;
1289            if (temp < 0 || temp > MAX_DELAY_TIME)
1290                return -EINVAL;
1291
1292            maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1293                    >> 16;
1294            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1295            if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1296                temp = maxSamples - pReverb->m_nMaxExcursion;
1297            }
1298            if (temp < pReverb->m_nMaxExcursion) {
1299                temp = pReverb->m_nMaxExcursion;
1300            }
1301
1302            temp -= pReverb->m_nLateDelay;
1303            pReverb->m_nDelay0Out += temp;
1304            pReverb->m_nDelay1Out += temp;
1305            pReverb->m_nLateDelay += temp;
1306
1307            LOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1308
1309            // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1310            if (param == REVERB_PARAM_REVERB_DELAY)
1311                break;
1312
1313            value16 = pProperties->diffusion;
1314            /* FALL THROUGH */
1315
1316        case REVERB_PARAM_DIFFUSION:
1317            if (value16 < 0 || value16 > 1000)
1318                return -EINVAL;
1319
1320            // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1321            pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1322                    * AP0_GAIN_RANGE) / 1000;
1323            pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1324                    * AP1_GAIN_RANGE) / 1000;
1325
1326            LOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1327
1328            if (param == REVERB_PARAM_DIFFUSION)
1329                break;
1330
1331            value16 = pProperties->density;
1332            /* FALL THROUGH */
1333
1334        case REVERB_PARAM_DENSITY:
1335            if (value16 < 0 || value16 > 1000)
1336                return -EINVAL;
1337
1338            // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1339            maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1340
1341            temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1342            /*lint -e{702} shift for performance */
1343            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1344            if (temp > maxSamples)
1345                temp = maxSamples;
1346            pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1347
1348            LOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1349
1350            temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1351            /*lint -e{702} shift for performance */
1352            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1353            if (temp > maxSamples)
1354                temp = maxSamples;
1355            pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1356
1357            LOGV("Ap1 delay smps %d", temp);
1358
1359            break;
1360
1361        default:
1362            break;
1363        }
1364    }
1365
1366    return 0;
1367} /* end Reverb_setParameter */
1368
1369/*----------------------------------------------------------------------------
1370 * ReverbUpdateXfade
1371 *----------------------------------------------------------------------------
1372 * Purpose:
1373 * Update the xfade parameters as required
1374 *
1375 * Inputs:
1376 * nNumSamplesToAdd - number of samples to write to buffer
1377 *
1378 * Outputs:
1379 *
1380 *
1381 * Side Effects:
1382 * - xfade parameters will be changed
1383 *
1384 *----------------------------------------------------------------------------
1385 */
1386static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1387    uint16_t nOffset;
1388    int16_t tempCos;
1389    int16_t tempSin;
1390
1391    if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1392        /* update interval has elapsed, so reset counter */
1393        pReverb->m_nXfadeCounter = 0;
1394
1395        // Pin the sin,cos values to min / max values to ensure that the
1396        // modulated taps' coefs are zero (thus no clicks)
1397        if (pReverb->m_nPhaseIncrement > 0) {
1398            // if phase increment > 0, then sin -> 1, cos -> 0
1399            pReverb->m_nSin = 32767;
1400            pReverb->m_nCos = 0;
1401
1402            // reset the phase to match the sin, cos values
1403            pReverb->m_nPhase = 32767;
1404
1405            // modulate the cross taps because their tap coefs are zero
1406            nOffset = ReverbCalculateNoise(pReverb);
1407
1408            pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1409                    - pReverb->m_nMaxExcursion + nOffset;
1410
1411            nOffset = ReverbCalculateNoise(pReverb);
1412
1413            pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1414                    - pReverb->m_nMaxExcursion - nOffset;
1415        } else {
1416            // if phase increment < 0, then sin -> 0, cos -> 1
1417            pReverb->m_nSin = 0;
1418            pReverb->m_nCos = 32767;
1419
1420            // reset the phase to match the sin, cos values
1421            pReverb->m_nPhase = -32768;
1422
1423            // modulate the self taps because their tap coefs are zero
1424            nOffset = ReverbCalculateNoise(pReverb);
1425
1426            pReverb->m_zD0Self = pReverb->m_nDelay0Out
1427                    - pReverb->m_nMaxExcursion - nOffset;
1428
1429            nOffset = ReverbCalculateNoise(pReverb);
1430
1431            pReverb->m_zD1Self = pReverb->m_nDelay1Out
1432                    - pReverb->m_nMaxExcursion + nOffset;
1433
1434        } // end if-else (pReverb->m_nPhaseIncrement > 0)
1435
1436        // Reverse the direction of the sin,cos so that the
1437        // tap whose coef was previously increasing now decreases
1438        // and vice versa
1439        pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1440
1441    } // end if counter >= update interval
1442
1443    //compute what phase will be next time
1444    pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1445
1446    //calculate what the new sin and cos need to reach by the next update
1447    ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1448
1449    //calculate the per-sample increment required to get there by the next update
1450    /*lint -e{702} shift for performance */
1451    pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1452            >> pReverb->m_nUpdatePeriodInBits;
1453
1454    /*lint -e{702} shift for performance */
1455    pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1456            >> pReverb->m_nUpdatePeriodInBits;
1457
1458    /* increment update counter */
1459    pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1460
1461    return 0;
1462
1463} /* end ReverbUpdateXfade */
1464
1465/*----------------------------------------------------------------------------
1466 * ReverbCalculateNoise
1467 *----------------------------------------------------------------------------
1468 * Purpose:
1469 * Calculate a noise sample and limit its value
1470 *
1471 * Inputs:
1472 * nMaxExcursion - noise value is limited to this value
1473 * pnNoise - return new noise sample in this (not limited)
1474 *
1475 * Outputs:
1476 * new limited noise value
1477 *
1478 * Side Effects:
1479 * - *pnNoise noise value is updated
1480 *
1481 *----------------------------------------------------------------------------
1482 */
1483static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1484    int16_t nNoise = pReverb->m_nNoise;
1485
1486    // calculate new noise value
1487    if (pReverb->m_bUseNoise) {
1488        nNoise = (int16_t) (nNoise * 5 + 1);
1489    } else {
1490        nNoise = 0;
1491    }
1492
1493    pReverb->m_nNoise = nNoise;
1494    // return the limited noise value
1495    return (pReverb->m_nMaxExcursion & nNoise);
1496
1497} /* end ReverbCalculateNoise */
1498
1499/*----------------------------------------------------------------------------
1500 * ReverbCalculateSinCos
1501 *----------------------------------------------------------------------------
1502 * Purpose:
1503 * Calculate a new sin and cosine value based on the given phase
1504 *
1505 * Inputs:
1506 * nPhase   - phase angle
1507 * pnSin    - input old value, output new value
1508 * pnCos    - input old value, output new value
1509 *
1510 * Outputs:
1511 *
1512 * Side Effects:
1513 * - *pnSin, *pnCos are updated
1514 *
1515 *----------------------------------------------------------------------------
1516 */
1517static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1518    int32_t nTemp;
1519    int32_t nNetAngle;
1520
1521    //  -1 <=  nPhase  < 1
1522    // However, for the calculation, we need a value
1523    // that ranges from -1/2 to +1/2, so divide the phase by 2
1524    /*lint -e{702} shift for performance */
1525    nNetAngle = nPhase >> 1;
1526
1527    /*
1528     Implement the following
1529     sin(x) = (2-4*c)*x^2 + c + x
1530     cos(x) = (2-4*c)*x^2 + c - x
1531
1532     where  c = 1/sqrt(2)
1533     using the a0 + x*(a1 + x*a2) approach
1534     */
1535
1536    /* limit the input "angle" to be between -0.5 and +0.5 */
1537    if (nNetAngle > EG1_HALF) {
1538        nNetAngle = EG1_HALF;
1539    } else if (nNetAngle < EG1_MINUS_HALF) {
1540        nNetAngle = EG1_MINUS_HALF;
1541    }
1542
1543    /* calculate sin */
1544    nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1545    nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1546    *pnSin = (int16_t) SATURATE_EG1(nTemp);
1547
1548    /* calculate cos */
1549    nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1550    nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1551    *pnCos = (int16_t) SATURATE_EG1(nTemp);
1552
1553    return 0;
1554} /* end ReverbCalculateSinCos */
1555
1556/*----------------------------------------------------------------------------
1557 * Reverb
1558 *----------------------------------------------------------------------------
1559 * Purpose:
1560 * apply reverb to the given signal
1561 *
1562 * Inputs:
1563 * nNu
1564 * pnSin    - input old value, output new value
1565 * pnCos    - input old value, output new value
1566 *
1567 * Outputs:
1568 * number of samples actually reverberated
1569 *
1570 * Side Effects:
1571 *
1572 *----------------------------------------------------------------------------
1573 */
1574static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1575        short *pOutputBuffer, short *pInputBuffer) {
1576    int32_t i;
1577    int32_t nDelayOut0;
1578    int32_t nDelayOut1;
1579    uint16_t nBase;
1580
1581    uint32_t nAddr;
1582    int32_t nTemp1;
1583    int32_t nTemp2;
1584    int32_t nApIn;
1585    int32_t nApOut;
1586
1587    int32_t j;
1588    int32_t nEarlyOut;
1589
1590    int32_t tempValue;
1591
1592    // get the base address
1593    nBase = pReverb->m_nBaseIndex;
1594
1595    for (i = 0; i < nNumSamplesToAdd; i++) {
1596        // ********** Left Allpass - start
1597        nApIn = *pInputBuffer;
1598        if (!pReverb->m_Aux) {
1599            pInputBuffer++;
1600        }
1601        // store to early delay line
1602        nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1603        pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1604
1605        // left input = (left dry * m_nLateGain) + right feedback from previous period
1606
1607        nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1608        nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1609
1610        // fetch allpass delay line out
1611        //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1612        nAddr
1613                = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1614        nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1615
1616        // calculate allpass feedforward; subtract the feedforward result
1617        nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1618        nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1619
1620        // calculate allpass feedback; add the feedback result
1621        nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1622        nTemp1 = SATURATE(nApIn + nTemp1);
1623
1624        // inject into allpass delay
1625        nAddr
1626                = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1627        pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1628
1629        // inject allpass output into delay line
1630        nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1631        pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1632
1633        // ********** Left Allpass - end
1634
1635        // ********** Right Allpass - start
1636        nApIn = (*pInputBuffer++);
1637        // store to early delay line
1638        nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1639        pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1640
1641        // right input = (right dry * m_nLateGain) + left feedback from previous period
1642        /*lint -e{702} use shift for performance */
1643        nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1644        nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1645
1646        // fetch allpass delay line out
1647        nAddr
1648                = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1649        nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1650
1651        // calculate allpass feedforward; subtract the feedforward result
1652        nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1653        nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1654
1655        // calculate allpass feedback; add the feedback result
1656        nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1657        nTemp1 = SATURATE(nApIn + nTemp1);
1658
1659        // inject into allpass delay
1660        nAddr
1661                = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1662        pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1663
1664        // inject allpass output into delay line
1665        nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1666        pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1667
1668        // ********** Right Allpass - end
1669
1670        // ********** D0 output - start
1671        // fetch delay line self out
1672        nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1673        nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1674
1675        // calculate delay line self out
1676        nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1677
1678        // fetch delay line cross out
1679        nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1680        nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1681
1682        // calculate delay line self out
1683        nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1684
1685        // calculate unfiltered delay out
1686        nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1687
1688        // ********** D0 output - end
1689
1690        // ********** D1 output - start
1691        // fetch delay line self out
1692        nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1693        nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1694
1695        // calculate delay line self out
1696        nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1697
1698        // fetch delay line cross out
1699        nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1700        nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1701
1702        // calculate delay line self out
1703        nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1704
1705        // calculate unfiltered delay out
1706        nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1707
1708        // ********** D1 output - end
1709
1710        // ********** mixer and feedback - start
1711        // sum is fedback to right input (R + L)
1712        nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1713
1714        // difference is feedback to left input (R - L)
1715        /*lint -e{685} lint complains that it can't saturate negative */
1716        nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1717
1718        // ********** mixer and feedback - end
1719
1720        // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1721        nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1722
1723        nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1724
1725        // calculate filtered delay out and simultaneously update LPF state variable
1726        // filtered delay output is stored in m_nRevFbkL
1727        pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1728
1729        // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1730        nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1731
1732        nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1733
1734        // calculate filtered delay out and simultaneously update LPF state variable
1735        // filtered delay output is stored in m_nRevFbkR
1736        pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1737
1738        // ********** start early reflection generator, left
1739        //psEarly = &(pReverb->m_sEarlyL);
1740
1741
1742        for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1743            // fetch delay line out
1744            //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1745            nAddr
1746                    = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1747
1748            nTemp1 = pReverb->m_nDelayLine[nAddr];
1749
1750            // calculate reflection
1751            //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1752            nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1753
1754            nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1755
1756        } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1757
1758        // apply lowpass to early reflections and reverb output
1759        //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1760        nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1761
1762        //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1763        nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1764
1765        // calculate filtered out and simultaneously update LPF state variable
1766        // filtered output is stored in m_zOutLpfL
1767        pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1768
1769        //sum with output buffer
1770        tempValue = *pOutputBuffer;
1771        *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1772
1773        // ********** end early reflection generator, left
1774
1775        // ********** start early reflection generator, right
1776        //psEarly = &(pReverb->m_sEarlyR);
1777
1778        for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1779            // fetch delay line out
1780            nAddr
1781                    = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1782            nTemp1 = pReverb->m_nDelayLine[nAddr];
1783
1784            // calculate reflection
1785            nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1786
1787            nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1788
1789        } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1790
1791        // apply lowpass to early reflections
1792        nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1793
1794        nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1795
1796        // calculate filtered out and simultaneously update LPF state variable
1797        // filtered output is stored in m_zOutLpfR
1798        pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1799
1800        //sum with output buffer
1801        tempValue = *pOutputBuffer;
1802        *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1803
1804        // ********** end early reflection generator, right
1805
1806        // decrement base addr for next sample period
1807        nBase--;
1808
1809        pReverb->m_nSin += pReverb->m_nSinIncrement;
1810        pReverb->m_nCos += pReverb->m_nCosIncrement;
1811
1812    } // end for (i=0; i < nNumSamplesToAdd; i++)
1813
1814    // store the most up to date version
1815    pReverb->m_nBaseIndex = nBase;
1816
1817    return 0;
1818} /* end Reverb */
1819
1820/*----------------------------------------------------------------------------
1821 * ReverbUpdateRoom
1822 *----------------------------------------------------------------------------
1823 * Purpose:
1824 * Update the room's preset parameters as required
1825 *
1826 * Inputs:
1827 *
1828 * Outputs:
1829 *
1830 *
1831 * Side Effects:
1832 * - reverb paramters (fbk, fwd, etc) will be changed
1833 * - m_nCurrentRoom := m_nNextRoom
1834 *----------------------------------------------------------------------------
1835 */
1836static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1837    int temp;
1838    int i;
1839    int maxSamples;
1840    int earlyDelay;
1841    int earlyGain;
1842
1843    reverb_preset_t *pPreset =
1844            &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1845
1846    if (fullUpdate) {
1847        pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1848        pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1849
1850        pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1851        //stored as time based, convert to sample based
1852        pReverb->m_nLateGain = pPreset->m_nLateGain;
1853        pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1854        pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1855
1856        // set the early reflections gains
1857        earlyGain = pPreset->m_nEarlyGain;
1858        for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1859            pReverb->m_sEarlyL.m_nGain[i]
1860                    = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1861            pReverb->m_sEarlyR.m_nGain[i]
1862                    = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1863        }
1864
1865        pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1866
1867        pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1868        pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1869
1870        // set the early reflections delay
1871        earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1872                >> 16;
1873        pReverb->m_nEarlyDelay = earlyDelay;
1874        maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1875                >> 16;
1876        for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1877            //stored as time based, convert to sample based
1878            temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1879                    * pReverb->m_nSamplingRate) >> 16);
1880            if (temp > maxSamples)
1881                temp = maxSamples;
1882            pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1883            //stored as time based, convert to sample based
1884            temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1885                    * pReverb->m_nSamplingRate) >> 16);
1886            if (temp > maxSamples)
1887                temp = maxSamples;
1888            pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1889        }
1890
1891        maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1892                >> 16;
1893        //stored as time based, convert to sample based
1894        /*lint -e{702} shift for performance */
1895        temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1896        if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1897            temp = maxSamples - pReverb->m_nMaxExcursion;
1898        }
1899        temp -= pReverb->m_nLateDelay;
1900        pReverb->m_nDelay0Out += temp;
1901        pReverb->m_nDelay1Out += temp;
1902        pReverb->m_nLateDelay += temp;
1903
1904        maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1905        //stored as time based, convert to absolute sample value
1906        temp = pPreset->m_nAp0_ApOut;
1907        /*lint -e{702} shift for performance */
1908        temp = (temp * pReverb->m_nSamplingRate) >> 16;
1909        if (temp > maxSamples)
1910            temp = maxSamples;
1911        pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1912
1913        //stored as time based, convert to absolute sample value
1914        temp = pPreset->m_nAp1_ApOut;
1915        /*lint -e{702} shift for performance */
1916        temp = (temp * pReverb->m_nSamplingRate) >> 16;
1917        if (temp > maxSamples)
1918            temp = maxSamples;
1919        pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1920        //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
1921    }
1922
1923    //stored as time based, convert to sample based
1924    temp = pPreset->m_nXfadeInterval;
1925    /*lint -e{702} shift for performance */
1926    temp = (temp * pReverb->m_nSamplingRate) >> 16;
1927    pReverb->m_nXfadeInterval = (uint16_t) temp;
1928    //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
1929    pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
1930
1931    pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
1932
1933    return 0;
1934
1935} /* end ReverbUpdateRoom */
1936
1937/*----------------------------------------------------------------------------
1938 * ReverbReadInPresets()
1939 *----------------------------------------------------------------------------
1940 * Purpose: sets global reverb preset bank to defaults
1941 *
1942 * Inputs:
1943 *
1944 * Outputs:
1945 *
1946 *----------------------------------------------------------------------------
1947 */
1948static int ReverbReadInPresets(reverb_object_t *pReverb) {
1949
1950    int preset;
1951
1952    // this is for test only. OpenSL ES presets are mapped to 4 presets.
1953    // REVERB_PRESET_NONE is mapped to bypass
1954    for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
1955        reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
1956        switch (preset + 1) {
1957        case REVERB_PRESET_PLATE:
1958        case REVERB_PRESET_SMALLROOM:
1959            pPreset->m_nRvbLpfFbk = 5077;
1960            pPreset->m_nRvbLpfFwd = 11076;
1961            pPreset->m_nEarlyGain = 27690;
1962            pPreset->m_nEarlyDelay = 1311;
1963            pPreset->m_nLateGain = 8191;
1964            pPreset->m_nLateDelay = 3932;
1965            pPreset->m_nRoomLpfFbk = 3692;
1966            pPreset->m_nRoomLpfFwd = 20474;
1967            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1968            pPreset->m_sEarlyL.m_nGain[0] = 22152;
1969            pPreset->m_sEarlyL.m_zDelay[1] = 1462;
1970            pPreset->m_sEarlyL.m_nGain[1] = 17537;
1971            pPreset->m_sEarlyL.m_zDelay[2] = 0;
1972            pPreset->m_sEarlyL.m_nGain[2] = 14768;
1973            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
1974            pPreset->m_sEarlyL.m_nGain[3] = 14307;
1975            pPreset->m_sEarlyL.m_zDelay[4] = 0;
1976            pPreset->m_sEarlyL.m_nGain[4] = 13384;
1977            pPreset->m_sEarlyR.m_zDelay[0] = 721;
1978            pPreset->m_sEarlyR.m_nGain[0] = 20306;
1979            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
1980            pPreset->m_sEarlyR.m_nGain[1] = 17537;
1981            pPreset->m_sEarlyR.m_zDelay[2] = 0;
1982            pPreset->m_sEarlyR.m_nGain[2] = 14768;
1983            pPreset->m_sEarlyR.m_zDelay[3] = 0;
1984            pPreset->m_sEarlyR.m_nGain[3] = 16153;
1985            pPreset->m_sEarlyR.m_zDelay[4] = 0;
1986            pPreset->m_sEarlyR.m_nGain[4] = 13384;
1987            pPreset->m_nMaxExcursion = 127;
1988            pPreset->m_nXfadeInterval = 6470; //6483;
1989            pPreset->m_nAp0_ApGain = 14768;
1990            pPreset->m_nAp0_ApOut = 792;
1991            pPreset->m_nAp1_ApGain = 14777;
1992            pPreset->m_nAp1_ApOut = 1191;
1993            pPreset->m_rfu4 = 0;
1994            pPreset->m_rfu5 = 0;
1995            pPreset->m_rfu6 = 0;
1996            pPreset->m_rfu7 = 0;
1997            pPreset->m_rfu8 = 0;
1998            pPreset->m_rfu9 = 0;
1999            pPreset->m_rfu10 = 0;
2000            break;
2001        case REVERB_PRESET_MEDIUMROOM:
2002        case REVERB_PRESET_LARGEROOM:
2003            pPreset->m_nRvbLpfFbk = 5077;
2004            pPreset->m_nRvbLpfFwd = 12922;
2005            pPreset->m_nEarlyGain = 27690;
2006            pPreset->m_nEarlyDelay = 1311;
2007            pPreset->m_nLateGain = 8191;
2008            pPreset->m_nLateDelay = 3932;
2009            pPreset->m_nRoomLpfFbk = 3692;
2010            pPreset->m_nRoomLpfFwd = 21703;
2011            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2012            pPreset->m_sEarlyL.m_nGain[0] = 22152;
2013            pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2014            pPreset->m_sEarlyL.m_nGain[1] = 17537;
2015            pPreset->m_sEarlyL.m_zDelay[2] = 0;
2016            pPreset->m_sEarlyL.m_nGain[2] = 14768;
2017            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2018            pPreset->m_sEarlyL.m_nGain[3] = 14307;
2019            pPreset->m_sEarlyL.m_zDelay[4] = 0;
2020            pPreset->m_sEarlyL.m_nGain[4] = 13384;
2021            pPreset->m_sEarlyR.m_zDelay[0] = 721;
2022            pPreset->m_sEarlyR.m_nGain[0] = 20306;
2023            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2024            pPreset->m_sEarlyR.m_nGain[1] = 17537;
2025            pPreset->m_sEarlyR.m_zDelay[2] = 0;
2026            pPreset->m_sEarlyR.m_nGain[2] = 14768;
2027            pPreset->m_sEarlyR.m_zDelay[3] = 0;
2028            pPreset->m_sEarlyR.m_nGain[3] = 16153;
2029            pPreset->m_sEarlyR.m_zDelay[4] = 0;
2030            pPreset->m_sEarlyR.m_nGain[4] = 13384;
2031            pPreset->m_nMaxExcursion = 127;
2032            pPreset->m_nXfadeInterval = 6449;
2033            pPreset->m_nAp0_ApGain = 15691;
2034            pPreset->m_nAp0_ApOut = 774;
2035            pPreset->m_nAp1_ApGain = 16317;
2036            pPreset->m_nAp1_ApOut = 1155;
2037            pPreset->m_rfu4 = 0;
2038            pPreset->m_rfu5 = 0;
2039            pPreset->m_rfu6 = 0;
2040            pPreset->m_rfu7 = 0;
2041            pPreset->m_rfu8 = 0;
2042            pPreset->m_rfu9 = 0;
2043            pPreset->m_rfu10 = 0;
2044            break;
2045        case REVERB_PRESET_MEDIUMHALL:
2046            pPreset->m_nRvbLpfFbk = 6461;
2047            pPreset->m_nRvbLpfFwd = 14307;
2048            pPreset->m_nEarlyGain = 27690;
2049            pPreset->m_nEarlyDelay = 1311;
2050            pPreset->m_nLateGain = 8191;
2051            pPreset->m_nLateDelay = 3932;
2052            pPreset->m_nRoomLpfFbk = 3692;
2053            pPreset->m_nRoomLpfFwd = 24569;
2054            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2055            pPreset->m_sEarlyL.m_nGain[0] = 22152;
2056            pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2057            pPreset->m_sEarlyL.m_nGain[1] = 17537;
2058            pPreset->m_sEarlyL.m_zDelay[2] = 0;
2059            pPreset->m_sEarlyL.m_nGain[2] = 14768;
2060            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2061            pPreset->m_sEarlyL.m_nGain[3] = 14307;
2062            pPreset->m_sEarlyL.m_zDelay[4] = 0;
2063            pPreset->m_sEarlyL.m_nGain[4] = 13384;
2064            pPreset->m_sEarlyR.m_zDelay[0] = 721;
2065            pPreset->m_sEarlyR.m_nGain[0] = 20306;
2066            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2067            pPreset->m_sEarlyR.m_nGain[1] = 17537;
2068            pPreset->m_sEarlyR.m_zDelay[2] = 0;
2069            pPreset->m_sEarlyR.m_nGain[2] = 14768;
2070            pPreset->m_sEarlyR.m_zDelay[3] = 0;
2071            pPreset->m_sEarlyR.m_nGain[3] = 16153;
2072            pPreset->m_sEarlyR.m_zDelay[4] = 0;
2073            pPreset->m_sEarlyR.m_nGain[4] = 13384;
2074            pPreset->m_nMaxExcursion = 127;
2075            pPreset->m_nXfadeInterval = 6391;
2076            pPreset->m_nAp0_ApGain = 15230;
2077            pPreset->m_nAp0_ApOut = 708;
2078            pPreset->m_nAp1_ApGain = 15547;
2079            pPreset->m_nAp1_ApOut = 1023;
2080            pPreset->m_rfu4 = 0;
2081            pPreset->m_rfu5 = 0;
2082            pPreset->m_rfu6 = 0;
2083            pPreset->m_rfu7 = 0;
2084            pPreset->m_rfu8 = 0;
2085            pPreset->m_rfu9 = 0;
2086            pPreset->m_rfu10 = 0;
2087            break;
2088        case REVERB_PRESET_LARGEHALL:
2089            pPreset->m_nRvbLpfFbk = 8307;
2090            pPreset->m_nRvbLpfFwd = 14768;
2091            pPreset->m_nEarlyGain = 27690;
2092            pPreset->m_nEarlyDelay = 1311;
2093            pPreset->m_nLateGain = 8191;
2094            pPreset->m_nLateDelay = 3932;
2095            pPreset->m_nRoomLpfFbk = 3692;
2096            pPreset->m_nRoomLpfFwd = 24569;
2097            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2098            pPreset->m_sEarlyL.m_nGain[0] = 22152;
2099            pPreset->m_sEarlyL.m_zDelay[1] = 2163;
2100            pPreset->m_sEarlyL.m_nGain[1] = 17537;
2101            pPreset->m_sEarlyL.m_zDelay[2] = 0;
2102            pPreset->m_sEarlyL.m_nGain[2] = 14768;
2103            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2104            pPreset->m_sEarlyL.m_nGain[3] = 14307;
2105            pPreset->m_sEarlyL.m_zDelay[4] = 0;
2106            pPreset->m_sEarlyL.m_nGain[4] = 13384;
2107            pPreset->m_sEarlyR.m_zDelay[0] = 721;
2108            pPreset->m_sEarlyR.m_nGain[0] = 20306;
2109            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2110            pPreset->m_sEarlyR.m_nGain[1] = 17537;
2111            pPreset->m_sEarlyR.m_zDelay[2] = 0;
2112            pPreset->m_sEarlyR.m_nGain[2] = 14768;
2113            pPreset->m_sEarlyR.m_zDelay[3] = 0;
2114            pPreset->m_sEarlyR.m_nGain[3] = 16153;
2115            pPreset->m_sEarlyR.m_zDelay[4] = 0;
2116            pPreset->m_sEarlyR.m_nGain[4] = 13384;
2117            pPreset->m_nMaxExcursion = 127;
2118            pPreset->m_nXfadeInterval = 6388;
2119            pPreset->m_nAp0_ApGain = 15691;
2120            pPreset->m_nAp0_ApOut = 711;
2121            pPreset->m_nAp1_ApGain = 16317;
2122            pPreset->m_nAp1_ApOut = 1029;
2123            pPreset->m_rfu4 = 0;
2124            pPreset->m_rfu5 = 0;
2125            pPreset->m_rfu6 = 0;
2126            pPreset->m_rfu7 = 0;
2127            pPreset->m_rfu8 = 0;
2128            pPreset->m_rfu9 = 0;
2129            pPreset->m_rfu10 = 0;
2130            break;
2131        }
2132    }
2133
2134    return 0;
2135}
2136