[go: nahoru, domu]

1/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ResourceTable.h"
18#include "ResourceValues.h"
19#include "ValueVisitor.h"
20
21#include "flatten/ChunkWriter.h"
22#include "flatten/ResourceTypeExtensions.h"
23#include "flatten/TableFlattener.h"
24#include "util/BigBuffer.h"
25
26#include <android-base/macros.h>
27#include <algorithm>
28#include <type_traits>
29#include <numeric>
30
31using namespace android;
32
33namespace aapt {
34
35namespace {
36
37template <typename T>
38static bool cmpIds(const T* a, const T* b) {
39    return a->id.value() < b->id.value();
40}
41
42static void strcpy16_htod(uint16_t* dst, size_t len, const StringPiece16& src) {
43    if (len == 0) {
44        return;
45    }
46
47    size_t i;
48    const char16_t* srcData = src.data();
49    for (i = 0; i < len - 1 && i < src.size(); i++) {
50        dst[i] = util::hostToDevice16((uint16_t) srcData[i]);
51    }
52    dst[i] = 0;
53}
54
55static bool cmpStyleEntries(const Style::Entry& a, const Style::Entry& b) {
56   if (a.key.id) {
57       if (b.key.id) {
58           return a.key.id.value() < b.key.id.value();
59       }
60       return true;
61   } else if (!b.key.id) {
62       return a.key.name.value() < b.key.name.value();
63   }
64   return false;
65}
66
67struct FlatEntry {
68    ResourceEntry* entry;
69    Value* value;
70
71    // The entry string pool index to the entry's name.
72    uint32_t entryKey;
73};
74
75class MapFlattenVisitor : public RawValueVisitor {
76public:
77    using RawValueVisitor::visit;
78
79    MapFlattenVisitor(ResTable_entry_ext* outEntry, BigBuffer* buffer) :
80            mOutEntry(outEntry), mBuffer(buffer) {
81    }
82
83    void visit(Attribute* attr) override {
84        {
85            Reference key = Reference(ResTable_map::ATTR_TYPE);
86            BinaryPrimitive val(Res_value::TYPE_INT_DEC, attr->typeMask);
87            flattenEntry(&key, &val);
88        }
89
90        if (attr->minInt != std::numeric_limits<int32_t>::min()) {
91            Reference key = Reference(ResTable_map::ATTR_MIN);
92            BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->minInt));
93            flattenEntry(&key, &val);
94        }
95
96        if (attr->maxInt != std::numeric_limits<int32_t>::max()) {
97            Reference key = Reference(ResTable_map::ATTR_MAX);
98            BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->maxInt));
99            flattenEntry(&key, &val);
100        }
101
102        for (Attribute::Symbol& s : attr->symbols) {
103            BinaryPrimitive val(Res_value::TYPE_INT_DEC, s.value);
104            flattenEntry(&s.symbol, &val);
105        }
106    }
107
108    void visit(Style* style) override {
109        if (style->parent) {
110            const Reference& parentRef = style->parent.value();
111            assert(parentRef.id && "parent has no ID");
112            mOutEntry->parent.ident = util::hostToDevice32(parentRef.id.value().id);
113        }
114
115        // Sort the style.
116        std::sort(style->entries.begin(), style->entries.end(), cmpStyleEntries);
117
118        for (Style::Entry& entry : style->entries) {
119            flattenEntry(&entry.key, entry.value.get());
120        }
121    }
122
123    void visit(Styleable* styleable) override {
124        for (auto& attrRef : styleable->entries) {
125            BinaryPrimitive val(Res_value{});
126            flattenEntry(&attrRef, &val);
127        }
128
129    }
130
131    void visit(Array* array) override {
132        for (auto& item : array->items) {
133            ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>();
134            flattenValue(item.get(), outEntry);
135            outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value));
136            mEntryCount++;
137        }
138    }
139
140    void visit(Plural* plural) override {
141        const size_t count = plural->values.size();
142        for (size_t i = 0; i < count; i++) {
143            if (!plural->values[i]) {
144                continue;
145            }
146
147            ResourceId q;
148            switch (i) {
149            case Plural::Zero:
150                q.id = android::ResTable_map::ATTR_ZERO;
151                break;
152
153            case Plural::One:
154                q.id = android::ResTable_map::ATTR_ONE;
155                break;
156
157            case Plural::Two:
158                q.id = android::ResTable_map::ATTR_TWO;
159                break;
160
161            case Plural::Few:
162                q.id = android::ResTable_map::ATTR_FEW;
163                break;
164
165            case Plural::Many:
166                q.id = android::ResTable_map::ATTR_MANY;
167                break;
168
169            case Plural::Other:
170                q.id = android::ResTable_map::ATTR_OTHER;
171                break;
172
173            default:
174                assert(false);
175                break;
176            }
177
178            Reference key(q);
179            flattenEntry(&key, plural->values[i].get());
180        }
181    }
182
183    /**
184     * Call this after visiting a Value. This will finish any work that
185     * needs to be done to prepare the entry.
186     */
187    void finish() {
188        mOutEntry->count = util::hostToDevice32(mEntryCount);
189    }
190
191private:
192    void flattenKey(Reference* key, ResTable_map* outEntry) {
193        assert(key->id && "key has no ID");
194        outEntry->name.ident = util::hostToDevice32(key->id.value().id);
195    }
196
197    void flattenValue(Item* value, ResTable_map* outEntry) {
198        bool result = value->flatten(&outEntry->value);
199        assert(result && "flatten failed");
200    }
201
202    void flattenEntry(Reference* key, Item* value) {
203        ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>();
204        flattenKey(key, outEntry);
205        flattenValue(value, outEntry);
206        outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value));
207        mEntryCount++;
208    }
209
210    ResTable_entry_ext* mOutEntry;
211    BigBuffer* mBuffer;
212    size_t mEntryCount = 0;
213};
214
215class PackageFlattener {
216public:
217    PackageFlattener(IDiagnostics* diag, ResourceTablePackage* package) :
218            mDiag(diag), mPackage(package) {
219    }
220
221    bool flattenPackage(BigBuffer* buffer) {
222        ChunkWriter pkgWriter(buffer);
223        ResTable_package* pkgHeader = pkgWriter.startChunk<ResTable_package>(
224                RES_TABLE_PACKAGE_TYPE);
225        pkgHeader->id = util::hostToDevice32(mPackage->id.value());
226
227        if (mPackage->name.size() >= arraysize(pkgHeader->name)) {
228            mDiag->error(DiagMessage() <<
229                         "package name '" << mPackage->name << "' is too long");
230            return false;
231        }
232
233        // Copy the package name in device endianness.
234        strcpy16_htod(pkgHeader->name, arraysize(pkgHeader->name), mPackage->name);
235
236        // Serialize the types. We do this now so that our type and key strings
237        // are populated. We write those first.
238        BigBuffer typeBuffer(1024);
239        flattenTypes(&typeBuffer);
240
241        pkgHeader->typeStrings = util::hostToDevice32(pkgWriter.size());
242        StringPool::flattenUtf16(pkgWriter.getBuffer(), mTypePool);
243
244        pkgHeader->keyStrings = util::hostToDevice32(pkgWriter.size());
245        StringPool::flattenUtf16(pkgWriter.getBuffer(), mKeyPool);
246
247        // Append the types.
248        buffer->appendBuffer(std::move(typeBuffer));
249
250        pkgWriter.finish();
251        return true;
252    }
253
254private:
255    IDiagnostics* mDiag;
256    ResourceTablePackage* mPackage;
257    StringPool mTypePool;
258    StringPool mKeyPool;
259
260    template <typename T, bool IsItem>
261    T* writeEntry(FlatEntry* entry, BigBuffer* buffer) {
262        static_assert(std::is_same<ResTable_entry, T>::value ||
263                      std::is_same<ResTable_entry_ext, T>::value,
264                      "T must be ResTable_entry or ResTable_entry_ext");
265
266        T* result = buffer->nextBlock<T>();
267        ResTable_entry* outEntry = (ResTable_entry*)(result);
268        if (entry->entry->symbolStatus.state == SymbolState::kPublic) {
269            outEntry->flags |= ResTable_entry::FLAG_PUBLIC;
270        }
271
272        if (entry->value->isWeak()) {
273            outEntry->flags |= ResTable_entry::FLAG_WEAK;
274        }
275
276        if (!IsItem) {
277            outEntry->flags |= ResTable_entry::FLAG_COMPLEX;
278        }
279
280        outEntry->flags = util::hostToDevice16(outEntry->flags);
281        outEntry->key.index = util::hostToDevice32(entry->entryKey);
282        outEntry->size = util::hostToDevice16(sizeof(T));
283        return result;
284    }
285
286    bool flattenValue(FlatEntry* entry, BigBuffer* buffer) {
287        if (Item* item = valueCast<Item>(entry->value)) {
288            writeEntry<ResTable_entry, true>(entry, buffer);
289            Res_value* outValue = buffer->nextBlock<Res_value>();
290            bool result = item->flatten(outValue);
291            assert(result && "flatten failed");
292            outValue->size = util::hostToDevice16(sizeof(*outValue));
293        } else {
294            ResTable_entry_ext* outEntry = writeEntry<ResTable_entry_ext, false>(entry, buffer);
295            MapFlattenVisitor visitor(outEntry, buffer);
296            entry->value->accept(&visitor);
297            visitor.finish();
298        }
299        return true;
300    }
301
302    bool flattenConfig(const ResourceTableType* type, const ConfigDescription& config,
303                       std::vector<FlatEntry>* entries, BigBuffer* buffer) {
304        ChunkWriter typeWriter(buffer);
305        ResTable_type* typeHeader = typeWriter.startChunk<ResTable_type>(RES_TABLE_TYPE_TYPE);
306        typeHeader->id = type->id.value();
307        typeHeader->config = config;
308        typeHeader->config.swapHtoD();
309
310        auto maxAccum = [](uint32_t max, const std::unique_ptr<ResourceEntry>& a) -> uint32_t {
311            return std::max(max, (uint32_t) a->id.value());
312        };
313
314        // Find the largest entry ID. That is how many entries we will have.
315        const uint32_t entryCount =
316                std::accumulate(type->entries.begin(), type->entries.end(), 0, maxAccum) + 1;
317
318        typeHeader->entryCount = util::hostToDevice32(entryCount);
319        uint32_t* indices = typeWriter.nextBlock<uint32_t>(entryCount);
320
321        assert((size_t) entryCount <= std::numeric_limits<uint16_t>::max() + 1);
322        memset(indices, 0xff, entryCount * sizeof(uint32_t));
323
324        typeHeader->entriesStart = util::hostToDevice32(typeWriter.size());
325
326        const size_t entryStart = typeWriter.getBuffer()->size();
327        for (FlatEntry& flatEntry : *entries) {
328            assert(flatEntry.entry->id.value() < entryCount);
329            indices[flatEntry.entry->id.value()] = util::hostToDevice32(
330                    typeWriter.getBuffer()->size() - entryStart);
331            if (!flattenValue(&flatEntry, typeWriter.getBuffer())) {
332                mDiag->error(DiagMessage()
333                             << "failed to flatten resource '"
334                             << ResourceNameRef(mPackage->name, type->type, flatEntry.entry->name)
335                             << "' for configuration '" << config << "'");
336                return false;
337            }
338        }
339        typeWriter.finish();
340        return true;
341    }
342
343    std::vector<ResourceTableType*> collectAndSortTypes() {
344        std::vector<ResourceTableType*> sortedTypes;
345        for (auto& type : mPackage->types) {
346            if (type->type == ResourceType::kStyleable) {
347                // Styleables aren't real Resource Types, they are represented in the R.java
348                // file.
349                continue;
350            }
351
352            assert(type->id && "type must have an ID set");
353
354            sortedTypes.push_back(type.get());
355        }
356        std::sort(sortedTypes.begin(), sortedTypes.end(), cmpIds<ResourceTableType>);
357        return sortedTypes;
358    }
359
360    std::vector<ResourceEntry*> collectAndSortEntries(ResourceTableType* type) {
361        // Sort the entries by entry ID.
362        std::vector<ResourceEntry*> sortedEntries;
363        for (auto& entry : type->entries) {
364            assert(entry->id && "entry must have an ID set");
365            sortedEntries.push_back(entry.get());
366        }
367        std::sort(sortedEntries.begin(), sortedEntries.end(), cmpIds<ResourceEntry>);
368        return sortedEntries;
369    }
370
371    bool flattenTypeSpec(ResourceTableType* type, std::vector<ResourceEntry*>* sortedEntries,
372                         BigBuffer* buffer) {
373        ChunkWriter typeSpecWriter(buffer);
374        ResTable_typeSpec* specHeader = typeSpecWriter.startChunk<ResTable_typeSpec>(
375                RES_TABLE_TYPE_SPEC_TYPE);
376        specHeader->id = type->id.value();
377
378        if (sortedEntries->empty()) {
379            typeSpecWriter.finish();
380            return true;
381        }
382
383        // We can't just take the size of the vector. There may be holes in the entry ID space.
384        // Since the entries are sorted by ID, the last one will be the biggest.
385        const size_t numEntries = sortedEntries->back()->id.value() + 1;
386
387        specHeader->entryCount = util::hostToDevice32(numEntries);
388
389        // Reserve space for the masks of each resource in this type. These
390        // show for which configuration axis the resource changes.
391        uint32_t* configMasks = typeSpecWriter.nextBlock<uint32_t>(numEntries);
392
393        const size_t actualNumEntries = sortedEntries->size();
394        for (size_t entryIndex = 0; entryIndex < actualNumEntries; entryIndex++) {
395            ResourceEntry* entry = sortedEntries->at(entryIndex);
396
397            // Populate the config masks for this entry.
398
399            if (entry->symbolStatus.state == SymbolState::kPublic) {
400                configMasks[entry->id.value()] |=
401                        util::hostToDevice32(ResTable_typeSpec::SPEC_PUBLIC);
402            }
403
404            const size_t configCount = entry->values.size();
405            for (size_t i = 0; i < configCount; i++) {
406                const ConfigDescription& config = entry->values[i]->config;
407                for (size_t j = i + 1; j < configCount; j++) {
408                    configMasks[entry->id.value()] |= util::hostToDevice32(
409                            config.diff(entry->values[j]->config));
410                }
411            }
412        }
413        typeSpecWriter.finish();
414        return true;
415    }
416
417    bool flattenTypes(BigBuffer* buffer) {
418        // Sort the types by their IDs. They will be inserted into the StringPool in this order.
419        std::vector<ResourceTableType*> sortedTypes = collectAndSortTypes();
420
421        size_t expectedTypeId = 1;
422        for (ResourceTableType* type : sortedTypes) {
423            // If there is a gap in the type IDs, fill in the StringPool
424            // with empty values until we reach the ID we expect.
425            while (type->id.value() > expectedTypeId) {
426                std::u16string typeName(u"?");
427                typeName += expectedTypeId;
428                mTypePool.makeRef(typeName);
429                expectedTypeId++;
430            }
431            expectedTypeId++;
432            mTypePool.makeRef(toString(type->type));
433
434            std::vector<ResourceEntry*> sortedEntries = collectAndSortEntries(type);
435
436            if (!flattenTypeSpec(type, &sortedEntries, buffer)) {
437                return false;
438            }
439
440            // The binary resource table lists resource entries for each configuration.
441            // We store them inverted, where a resource entry lists the values for each
442            // configuration available. Here we reverse this to match the binary table.
443            std::map<ConfigDescription, std::vector<FlatEntry>> configToEntryListMap;
444            for (ResourceEntry* entry : sortedEntries) {
445                const uint32_t keyIndex = (uint32_t) mKeyPool.makeRef(entry->name).getIndex();
446
447                // Group values by configuration.
448                for (auto& configValue : entry->values) {
449                    configToEntryListMap[configValue->config].push_back(FlatEntry{
450                            entry, configValue->value.get(), keyIndex });
451                }
452            }
453
454            // Flatten a configuration value.
455            for (auto& entry : configToEntryListMap) {
456                if (!flattenConfig(type, entry.first, &entry.second, buffer)) {
457                    return false;
458                }
459            }
460        }
461        return true;
462    }
463};
464
465} // namespace
466
467bool TableFlattener::consume(IAaptContext* context, ResourceTable* table) {
468    // We must do this before writing the resources, since the string pool IDs may change.
469    table->stringPool.sort([](const StringPool::Entry& a, const StringPool::Entry& b) -> bool {
470        int diff = a.context.priority - b.context.priority;
471        if (diff < 0) return true;
472        if (diff > 0) return false;
473        diff = a.context.config.compare(b.context.config);
474        if (diff < 0) return true;
475        if (diff > 0) return false;
476        return a.value < b.value;
477    });
478    table->stringPool.prune();
479
480    // Write the ResTable header.
481    ChunkWriter tableWriter(mBuffer);
482    ResTable_header* tableHeader = tableWriter.startChunk<ResTable_header>(RES_TABLE_TYPE);
483    tableHeader->packageCount = util::hostToDevice32(table->packages.size());
484
485    // Flatten the values string pool.
486    StringPool::flattenUtf8(tableWriter.getBuffer(), table->stringPool);
487
488    BigBuffer packageBuffer(1024);
489
490    // Flatten each package.
491    for (auto& package : table->packages) {
492        PackageFlattener flattener(context->getDiagnostics(), package.get());
493        if (!flattener.flattenPackage(&packageBuffer)) {
494            return false;
495        }
496    }
497
498    // Finally merge all the packages into the main buffer.
499    tableWriter.getBuffer()->appendBuffer(std::move(packageBuffer));
500    tableWriter.finish();
501    return true;
502}
503
504} // namespace aapt
505