/* * Copyright 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "driver.h" #include "stubhal.h" // #define ENABLE_ALLOC_CALLSTACKS 1 #if ENABLE_ALLOC_CALLSTACKS #include #define ALOGD_CALLSTACK(...) \ do { \ ALOGD(__VA_ARGS__); \ android::CallStack callstack; \ callstack.update(); \ callstack.log(LOG_TAG, ANDROID_LOG_DEBUG, " "); \ } while (false) #else #define ALOGD_CALLSTACK(...) \ do { \ } while (false) #endif namespace vulkan { namespace driver { namespace { class Hal { public: static bool Open(); static const Hal& Get() { return hal_; } static const hwvulkan_device_t& Device() { return *Get().dev_; } int GetDebugReportIndex() const { return debug_report_index_; } private: Hal() : dev_(nullptr), debug_report_index_(-1) {} Hal(const Hal&) = delete; Hal& operator=(const Hal&) = delete; bool InitDebugReportIndex(); static Hal hal_; const hwvulkan_device_t* dev_; int debug_report_index_; }; class CreateInfoWrapper { public: CreateInfoWrapper(const VkInstanceCreateInfo& create_info, const VkAllocationCallbacks& allocator); CreateInfoWrapper(VkPhysicalDevice physical_dev, const VkDeviceCreateInfo& create_info, const VkAllocationCallbacks& allocator); ~CreateInfoWrapper(); VkResult Validate(); const std::bitset& GetHookExtensions() const; const std::bitset& GetHalExtensions() const; explicit operator const VkInstanceCreateInfo*() const; explicit operator const VkDeviceCreateInfo*() const; private: struct ExtensionFilter { VkExtensionProperties* exts; uint32_t ext_count; const char** names; uint32_t name_count; }; VkResult SanitizePNext(); VkResult SanitizeLayers(); VkResult SanitizeExtensions(); VkResult QueryExtensionCount(uint32_t& count) const; VkResult EnumerateExtensions(uint32_t& count, VkExtensionProperties* props) const; VkResult InitExtensionFilter(); void FilterExtension(const char* name); const bool is_instance_; const VkAllocationCallbacks& allocator_; VkPhysicalDevice physical_dev_; union { VkInstanceCreateInfo instance_info_; VkDeviceCreateInfo dev_info_; }; ExtensionFilter extension_filter_; std::bitset hook_extensions_; std::bitset hal_extensions_; }; Hal Hal::hal_; bool Hal::Open() { ALOG_ASSERT(!hal_.dev_, "OpenHAL called more than once"); // Use a stub device unless we successfully open a real HAL device. hal_.dev_ = &stubhal::kDevice; const hwvulkan_module_t* module; int result = hw_get_module("vulkan", reinterpret_cast(&module)); if (result != 0) { ALOGI("no Vulkan HAL present, using stub HAL"); return true; } hwvulkan_device_t* device; result = module->common.methods->open(&module->common, HWVULKAN_DEVICE_0, reinterpret_cast(&device)); if (result != 0) { // Any device with a Vulkan HAL should be able to open the device. ALOGE("failed to open Vulkan HAL device: %s (%d)", strerror(-result), result); return false; } hal_.dev_ = device; hal_.InitDebugReportIndex(); return true; } bool Hal::InitDebugReportIndex() { uint32_t count; if (dev_->EnumerateInstanceExtensionProperties(nullptr, &count, nullptr) != VK_SUCCESS) { ALOGE("failed to get HAL instance extension count"); return false; } VkExtensionProperties* exts = reinterpret_cast( malloc(sizeof(VkExtensionProperties) * count)); if (!exts) { ALOGE("failed to allocate HAL instance extension array"); return false; } if (dev_->EnumerateInstanceExtensionProperties(nullptr, &count, exts) != VK_SUCCESS) { ALOGE("failed to enumerate HAL instance extensions"); free(exts); return false; } for (uint32_t i = 0; i < count; i++) { if (strcmp(exts[i].extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0) { debug_report_index_ = static_cast(i); break; } } free(exts); return true; } CreateInfoWrapper::CreateInfoWrapper(const VkInstanceCreateInfo& create_info, const VkAllocationCallbacks& allocator) : is_instance_(true), allocator_(allocator), physical_dev_(VK_NULL_HANDLE), instance_info_(create_info), extension_filter_() { hook_extensions_.set(ProcHook::EXTENSION_CORE); hal_extensions_.set(ProcHook::EXTENSION_CORE); } CreateInfoWrapper::CreateInfoWrapper(VkPhysicalDevice physical_dev, const VkDeviceCreateInfo& create_info, const VkAllocationCallbacks& allocator) : is_instance_(false), allocator_(allocator), physical_dev_(physical_dev), dev_info_(create_info), extension_filter_() { hook_extensions_.set(ProcHook::EXTENSION_CORE); hal_extensions_.set(ProcHook::EXTENSION_CORE); } CreateInfoWrapper::~CreateInfoWrapper() { allocator_.pfnFree(allocator_.pUserData, extension_filter_.exts); allocator_.pfnFree(allocator_.pUserData, extension_filter_.names); } VkResult CreateInfoWrapper::Validate() { VkResult result = SanitizePNext(); if (result == VK_SUCCESS) result = SanitizeLayers(); if (result == VK_SUCCESS) result = SanitizeExtensions(); return result; } const std::bitset& CreateInfoWrapper::GetHookExtensions() const { return hook_extensions_; } const std::bitset& CreateInfoWrapper::GetHalExtensions() const { return hal_extensions_; } CreateInfoWrapper::operator const VkInstanceCreateInfo*() const { return &instance_info_; } CreateInfoWrapper::operator const VkDeviceCreateInfo*() const { return &dev_info_; } VkResult CreateInfoWrapper::SanitizePNext() { const struct StructHeader { VkStructureType type; const void* next; } * header; if (is_instance_) { header = reinterpret_cast(instance_info_.pNext); // skip leading VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFOs while (header && header->type == VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO) header = reinterpret_cast(header->next); instance_info_.pNext = header; } else { header = reinterpret_cast(dev_info_.pNext); // skip leading VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFOs while (header && header->type == VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO) header = reinterpret_cast(header->next); dev_info_.pNext = header; } return VK_SUCCESS; } VkResult CreateInfoWrapper::SanitizeLayers() { auto& layer_names = (is_instance_) ? instance_info_.ppEnabledLayerNames : dev_info_.ppEnabledLayerNames; auto& layer_count = (is_instance_) ? instance_info_.enabledLayerCount : dev_info_.enabledLayerCount; // remove all layers layer_names = nullptr; layer_count = 0; return VK_SUCCESS; } VkResult CreateInfoWrapper::SanitizeExtensions() { auto& ext_names = (is_instance_) ? instance_info_.ppEnabledExtensionNames : dev_info_.ppEnabledExtensionNames; auto& ext_count = (is_instance_) ? instance_info_.enabledExtensionCount : dev_info_.enabledExtensionCount; if (!ext_count) return VK_SUCCESS; VkResult result = InitExtensionFilter(); if (result != VK_SUCCESS) return result; for (uint32_t i = 0; i < ext_count; i++) FilterExtension(ext_names[i]); ext_names = extension_filter_.names; ext_count = extension_filter_.name_count; return VK_SUCCESS; } VkResult CreateInfoWrapper::QueryExtensionCount(uint32_t& count) const { if (is_instance_) { return Hal::Device().EnumerateInstanceExtensionProperties( nullptr, &count, nullptr); } else { const auto& driver = GetData(physical_dev_).driver; return driver.EnumerateDeviceExtensionProperties(physical_dev_, nullptr, &count, nullptr); } } VkResult CreateInfoWrapper::EnumerateExtensions( uint32_t& count, VkExtensionProperties* props) const { if (is_instance_) { return Hal::Device().EnumerateInstanceExtensionProperties( nullptr, &count, props); } else { const auto& driver = GetData(physical_dev_).driver; return driver.EnumerateDeviceExtensionProperties(physical_dev_, nullptr, &count, props); } } VkResult CreateInfoWrapper::InitExtensionFilter() { // query extension count uint32_t count; VkResult result = QueryExtensionCount(count); if (result != VK_SUCCESS || count == 0) return result; auto& filter = extension_filter_; filter.exts = reinterpret_cast(allocator_.pfnAllocation( allocator_.pUserData, sizeof(VkExtensionProperties) * count, alignof(VkExtensionProperties), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND)); if (!filter.exts) return VK_ERROR_OUT_OF_HOST_MEMORY; // enumerate extensions result = EnumerateExtensions(count, filter.exts); if (result != VK_SUCCESS && result != VK_INCOMPLETE) return result; if (!count) return VK_SUCCESS; filter.ext_count = count; // allocate name array uint32_t enabled_ext_count = (is_instance_) ? instance_info_.enabledExtensionCount : dev_info_.enabledExtensionCount; count = std::min(filter.ext_count, enabled_ext_count); filter.names = reinterpret_cast(allocator_.pfnAllocation( allocator_.pUserData, sizeof(const char*) * count, alignof(const char*), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND)); if (!filter.names) return VK_ERROR_OUT_OF_HOST_MEMORY; return VK_SUCCESS; } void CreateInfoWrapper::FilterExtension(const char* name) { auto& filter = extension_filter_; ProcHook::Extension ext_bit = GetProcHookExtension(name); if (is_instance_) { switch (ext_bit) { case ProcHook::KHR_android_surface: case ProcHook::KHR_surface: hook_extensions_.set(ext_bit); // return now as these extensions do not require HAL support return; case ProcHook::EXT_debug_report: // both we and HAL can take part in hook_extensions_.set(ext_bit); break; case ProcHook::EXTENSION_UNKNOWN: // HAL's extensions break; default: ALOGW("Ignored invalid instance extension %s", name); return; } } else { switch (ext_bit) { case ProcHook::KHR_swapchain: // map VK_KHR_swapchain to VK_ANDROID_native_buffer name = VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME; ext_bit = ProcHook::ANDROID_native_buffer; break; case ProcHook::EXTENSION_UNKNOWN: // HAL's extensions break; default: ALOGW("Ignored invalid device extension %s", name); return; } } for (uint32_t i = 0; i < filter.ext_count; i++) { const VkExtensionProperties& props = filter.exts[i]; // ignore unknown extensions if (strcmp(name, props.extensionName) != 0) continue; filter.names[filter.name_count++] = name; if (ext_bit != ProcHook::EXTENSION_UNKNOWN) { if (ext_bit == ProcHook::ANDROID_native_buffer) hook_extensions_.set(ProcHook::KHR_swapchain); hal_extensions_.set(ext_bit); } break; } } VKAPI_ATTR void* DefaultAllocate(void*, size_t size, size_t alignment, VkSystemAllocationScope) { void* ptr = nullptr; // Vulkan requires 'alignment' to be a power of two, but posix_memalign // additionally requires that it be at least sizeof(void*). int ret = posix_memalign(&ptr, std::max(alignment, sizeof(void*)), size); ALOGD_CALLSTACK("Allocate: size=%zu align=%zu => (%d) %p", size, alignment, ret, ptr); return ret == 0 ? ptr : nullptr; } VKAPI_ATTR void* DefaultReallocate(void*, void* ptr, size_t size, size_t alignment, VkSystemAllocationScope) { if (size == 0) { free(ptr); return nullptr; } // TODO(jessehall): Right now we never shrink allocations; if the new // request is smaller than the existing chunk, we just continue using it. // Right now the loader never reallocs, so this doesn't matter. If that // changes, or if this code is copied into some other project, this should // probably have a heuristic to allocate-copy-free when doing so will save // "enough" space. size_t old_size = ptr ? malloc_usable_size(ptr) : 0; if (size <= old_size) return ptr; void* new_ptr = nullptr; if (posix_memalign(&new_ptr, std::max(alignment, sizeof(void*)), size) != 0) return nullptr; if (ptr) { memcpy(new_ptr, ptr, std::min(old_size, size)); free(ptr); } return new_ptr; } VKAPI_ATTR void DefaultFree(void*, void* ptr) { ALOGD_CALLSTACK("Free: %p", ptr); free(ptr); } InstanceData* AllocateInstanceData(const VkAllocationCallbacks& allocator) { void* data_mem = allocator.pfnAllocation( allocator.pUserData, sizeof(InstanceData), alignof(InstanceData), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!data_mem) return nullptr; return new (data_mem) InstanceData(allocator); } void FreeInstanceData(InstanceData* data, const VkAllocationCallbacks& allocator) { data->~InstanceData(); allocator.pfnFree(allocator.pUserData, data); } DeviceData* AllocateDeviceData( const VkAllocationCallbacks& allocator, const DebugReportCallbackList& debug_report_callbacks) { void* data_mem = allocator.pfnAllocation( allocator.pUserData, sizeof(DeviceData), alignof(DeviceData), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!data_mem) return nullptr; return new (data_mem) DeviceData(allocator, debug_report_callbacks); } void FreeDeviceData(DeviceData* data, const VkAllocationCallbacks& allocator) { data->~DeviceData(); allocator.pfnFree(allocator.pUserData, data); } } // anonymous namespace bool Debuggable() { return (prctl(PR_GET_DUMPABLE, 0, 0, 0, 0) >= 0); } bool OpenHAL() { return Hal::Open(); } const VkAllocationCallbacks& GetDefaultAllocator() { static const VkAllocationCallbacks kDefaultAllocCallbacks = { .pUserData = nullptr, .pfnAllocation = DefaultAllocate, .pfnReallocation = DefaultReallocate, .pfnFree = DefaultFree, }; return kDefaultAllocCallbacks; } PFN_vkVoidFunction GetInstanceProcAddr(VkInstance instance, const char* pName) { const ProcHook* hook = GetProcHook(pName); if (!hook) return Hal::Device().GetInstanceProcAddr(instance, pName); if (!instance) { if (hook->type == ProcHook::GLOBAL) return hook->proc; // v0 layers expect // // vkGetInstanceProcAddr(VK_NULL_HANDLE, "vkCreateDevice"); // // to work. if (strcmp(pName, "vkCreateDevice") == 0) return hook->proc; ALOGE( "internal vkGetInstanceProcAddr called for %s without an instance", pName); return nullptr; } PFN_vkVoidFunction proc; switch (hook->type) { case ProcHook::INSTANCE: proc = (GetData(instance).hook_extensions[hook->extension]) ? hook->proc : nullptr; break; case ProcHook::DEVICE: proc = (hook->extension == ProcHook::EXTENSION_CORE) ? hook->proc : hook->checked_proc; break; default: ALOGE( "internal vkGetInstanceProcAddr called for %s with an instance", pName); proc = nullptr; break; } return proc; } PFN_vkVoidFunction GetDeviceProcAddr(VkDevice device, const char* pName) { const ProcHook* hook = GetProcHook(pName); if (!hook) return GetData(device).driver.GetDeviceProcAddr(device, pName); if (hook->type != ProcHook::DEVICE) { ALOGE("internal vkGetDeviceProcAddr called for %s", pName); return nullptr; } return (GetData(device).hook_extensions[hook->extension]) ? hook->proc : nullptr; } VkResult EnumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { static const std::array loader_extensions = {{ // WSI extensions {VK_KHR_SURFACE_EXTENSION_NAME, VK_KHR_SURFACE_SPEC_VERSION}, {VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, VK_KHR_ANDROID_SURFACE_SPEC_VERSION}, }}; static const VkExtensionProperties loader_debug_report_extension = { VK_EXT_DEBUG_REPORT_EXTENSION_NAME, VK_EXT_DEBUG_REPORT_SPEC_VERSION, }; // enumerate our extensions first if (!pLayerName && pProperties) { uint32_t count = std::min( *pPropertyCount, static_cast(loader_extensions.size())); std::copy_n(loader_extensions.begin(), count, pProperties); if (count < loader_extensions.size()) { *pPropertyCount = count; return VK_INCOMPLETE; } pProperties += count; *pPropertyCount -= count; if (Hal::Get().GetDebugReportIndex() < 0) { if (!*pPropertyCount) { *pPropertyCount = count; return VK_INCOMPLETE; } pProperties[0] = loader_debug_report_extension; pProperties += 1; *pPropertyCount -= 1; } } VkResult result = Hal::Device().EnumerateInstanceExtensionProperties( pLayerName, pPropertyCount, pProperties); if (!pLayerName && (result == VK_SUCCESS || result == VK_INCOMPLETE)) { int idx = Hal::Get().GetDebugReportIndex(); if (idx < 0) { *pPropertyCount += 1; } else if (pProperties && static_cast(idx) < *pPropertyCount) { pProperties[idx].specVersion = std::min(pProperties[idx].specVersion, loader_debug_report_extension.specVersion); } *pPropertyCount += loader_extensions.size(); } return result; } VkResult EnumerateDeviceExtensionProperties( VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { const InstanceData& data = GetData(physicalDevice); VkResult result = data.driver.EnumerateDeviceExtensionProperties( physicalDevice, pLayerName, pPropertyCount, pProperties); if (result != VK_SUCCESS && result != VK_INCOMPLETE) return result; if (!pProperties) return result; // map VK_ANDROID_native_buffer to VK_KHR_swapchain for (uint32_t i = 0; i < *pPropertyCount; i++) { auto& prop = pProperties[i]; if (strcmp(prop.extensionName, VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME) != 0) continue; memcpy(prop.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME, sizeof(VK_KHR_SWAPCHAIN_EXTENSION_NAME)); prop.specVersion = VK_KHR_SWAPCHAIN_SPEC_VERSION; } return result; } VkResult CreateInstance(const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { const VkAllocationCallbacks& data_allocator = (pAllocator) ? *pAllocator : GetDefaultAllocator(); CreateInfoWrapper wrapper(*pCreateInfo, data_allocator); VkResult result = wrapper.Validate(); if (result != VK_SUCCESS) return result; InstanceData* data = AllocateInstanceData(data_allocator); if (!data) return VK_ERROR_OUT_OF_HOST_MEMORY; data->hook_extensions |= wrapper.GetHookExtensions(); // call into the driver VkInstance instance; result = Hal::Device().CreateInstance( static_cast(wrapper), pAllocator, &instance); if (result != VK_SUCCESS) { FreeInstanceData(data, data_allocator); return result; } // initialize InstanceDriverTable if (!SetData(instance, *data) || !InitDriverTable(instance, Hal::Device().GetInstanceProcAddr, wrapper.GetHalExtensions())) { data->driver.DestroyInstance = reinterpret_cast( Hal::Device().GetInstanceProcAddr(instance, "vkDestroyInstance")); if (data->driver.DestroyInstance) data->driver.DestroyInstance(instance, pAllocator); FreeInstanceData(data, data_allocator); return VK_ERROR_INCOMPATIBLE_DRIVER; } data->get_device_proc_addr = reinterpret_cast( Hal::Device().GetInstanceProcAddr(instance, "vkGetDeviceProcAddr")); if (!data->get_device_proc_addr) { data->driver.DestroyInstance(instance, pAllocator); FreeInstanceData(data, data_allocator); return VK_ERROR_INCOMPATIBLE_DRIVER; } *pInstance = instance; return VK_SUCCESS; } void DestroyInstance(VkInstance instance, const VkAllocationCallbacks* pAllocator) { InstanceData& data = GetData(instance); data.driver.DestroyInstance(instance, pAllocator); VkAllocationCallbacks local_allocator; if (!pAllocator) { local_allocator = data.allocator; pAllocator = &local_allocator; } FreeInstanceData(&data, *pAllocator); } VkResult CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { const InstanceData& instance_data = GetData(physicalDevice); const VkAllocationCallbacks& data_allocator = (pAllocator) ? *pAllocator : instance_data.allocator; CreateInfoWrapper wrapper(physicalDevice, *pCreateInfo, data_allocator); VkResult result = wrapper.Validate(); if (result != VK_SUCCESS) return result; DeviceData* data = AllocateDeviceData(data_allocator, instance_data.debug_report_callbacks); if (!data) return VK_ERROR_OUT_OF_HOST_MEMORY; data->hook_extensions |= wrapper.GetHookExtensions(); // call into the driver VkDevice dev; result = instance_data.driver.CreateDevice( physicalDevice, static_cast(wrapper), pAllocator, &dev); if (result != VK_SUCCESS) { FreeDeviceData(data, data_allocator); return result; } // initialize DeviceDriverTable if (!SetData(dev, *data) || !InitDriverTable(dev, instance_data.get_device_proc_addr, wrapper.GetHalExtensions())) { data->driver.DestroyDevice = reinterpret_cast( instance_data.get_device_proc_addr(dev, "vkDestroyDevice")); if (data->driver.DestroyDevice) data->driver.DestroyDevice(dev, pAllocator); FreeDeviceData(data, data_allocator); return VK_ERROR_INCOMPATIBLE_DRIVER; } data->driver_device = dev; *pDevice = dev; return VK_SUCCESS; } void DestroyDevice(VkDevice device, const VkAllocationCallbacks* pAllocator) { DeviceData& data = GetData(device); data.driver.DestroyDevice(device, pAllocator); VkAllocationCallbacks local_allocator; if (!pAllocator) { local_allocator = data.allocator; pAllocator = &local_allocator; } FreeDeviceData(&data, *pAllocator); } VkResult EnumeratePhysicalDevices(VkInstance instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices) { const auto& data = GetData(instance); VkResult result = data.driver.EnumeratePhysicalDevices( instance, pPhysicalDeviceCount, pPhysicalDevices); if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pPhysicalDevices) { for (uint32_t i = 0; i < *pPhysicalDeviceCount; i++) SetData(pPhysicalDevices[i], data); } return result; } void GetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue* pQueue) { const auto& data = GetData(device); data.driver.GetDeviceQueue(device, queueFamilyIndex, queueIndex, pQueue); SetData(*pQueue, data); } VKAPI_ATTR VkResult AllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo* pAllocateInfo, VkCommandBuffer* pCommandBuffers) { const auto& data = GetData(device); VkResult result = data.driver.AllocateCommandBuffers(device, pAllocateInfo, pCommandBuffers); if (result == VK_SUCCESS) { for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++) SetData(pCommandBuffers[i], data); } return result; } } // namespace driver } // namespace vulkan