[go: nahoru, domu]

1/*
2 * Intel & MS High Precision Event Timer Implementation.
3 *
4 * Copyright (C) 2003 Intel Corporation
5 *	Venki Pallipadi
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 *	Bob Picco <robert.picco@hp.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/interrupt.h>
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/miscdevice.h>
19#include <linux/major.h>
20#include <linux/ioport.h>
21#include <linux/fcntl.h>
22#include <linux/init.h>
23#include <linux/poll.h>
24#include <linux/mm.h>
25#include <linux/proc_fs.h>
26#include <linux/spinlock.h>
27#include <linux/sysctl.h>
28#include <linux/wait.h>
29#include <linux/bcd.h>
30#include <linux/seq_file.h>
31#include <linux/bitops.h>
32#include <linux/compat.h>
33#include <linux/clocksource.h>
34#include <linux/uaccess.h>
35#include <linux/slab.h>
36#include <linux/io.h>
37#include <linux/acpi.h>
38#include <linux/hpet.h>
39#include <asm/current.h>
40#include <asm/irq.h>
41#include <asm/div64.h>
42
43/*
44 * The High Precision Event Timer driver.
45 * This driver is closely modelled after the rtc.c driver.
46 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
47 */
48#define	HPET_USER_FREQ	(64)
49#define	HPET_DRIFT	(500)
50
51#define HPET_RANGE_SIZE		1024	/* from HPET spec */
52
53
54/* WARNING -- don't get confused.  These macros are never used
55 * to write the (single) counter, and rarely to read it.
56 * They're badly named; to fix, someday.
57 */
58#if BITS_PER_LONG == 64
59#define	write_counter(V, MC)	writeq(V, MC)
60#define	read_counter(MC)	readq(MC)
61#else
62#define	write_counter(V, MC)	writel(V, MC)
63#define	read_counter(MC)	readl(MC)
64#endif
65
66static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
67static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
68
69/* This clocksource driver currently only works on ia64 */
70#ifdef CONFIG_IA64
71static void __iomem *hpet_mctr;
72
73static cycle_t read_hpet(struct clocksource *cs)
74{
75	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
76}
77
78static struct clocksource clocksource_hpet = {
79	.name		= "hpet",
80	.rating		= 250,
81	.read		= read_hpet,
82	.mask		= CLOCKSOURCE_MASK(64),
83	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
84};
85static struct clocksource *hpet_clocksource;
86#endif
87
88/* A lock for concurrent access by app and isr hpet activity. */
89static DEFINE_SPINLOCK(hpet_lock);
90
91#define	HPET_DEV_NAME	(7)
92
93struct hpet_dev {
94	struct hpets *hd_hpets;
95	struct hpet __iomem *hd_hpet;
96	struct hpet_timer __iomem *hd_timer;
97	unsigned long hd_ireqfreq;
98	unsigned long hd_irqdata;
99	wait_queue_head_t hd_waitqueue;
100	struct fasync_struct *hd_async_queue;
101	unsigned int hd_flags;
102	unsigned int hd_irq;
103	unsigned int hd_hdwirq;
104	char hd_name[HPET_DEV_NAME];
105};
106
107struct hpets {
108	struct hpets *hp_next;
109	struct hpet __iomem *hp_hpet;
110	unsigned long hp_hpet_phys;
111	struct clocksource *hp_clocksource;
112	unsigned long long hp_tick_freq;
113	unsigned long hp_delta;
114	unsigned int hp_ntimer;
115	unsigned int hp_which;
116	struct hpet_dev hp_dev[1];
117};
118
119static struct hpets *hpets;
120
121#define	HPET_OPEN		0x0001
122#define	HPET_IE			0x0002	/* interrupt enabled */
123#define	HPET_PERIODIC		0x0004
124#define	HPET_SHARED_IRQ		0x0008
125
126
127#ifndef readq
128static inline unsigned long long readq(void __iomem *addr)
129{
130	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
131}
132#endif
133
134#ifndef writeq
135static inline void writeq(unsigned long long v, void __iomem *addr)
136{
137	writel(v & 0xffffffff, addr);
138	writel(v >> 32, addr + 4);
139}
140#endif
141
142static irqreturn_t hpet_interrupt(int irq, void *data)
143{
144	struct hpet_dev *devp;
145	unsigned long isr;
146
147	devp = data;
148	isr = 1 << (devp - devp->hd_hpets->hp_dev);
149
150	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
151	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
152		return IRQ_NONE;
153
154	spin_lock(&hpet_lock);
155	devp->hd_irqdata++;
156
157	/*
158	 * For non-periodic timers, increment the accumulator.
159	 * This has the effect of treating non-periodic like periodic.
160	 */
161	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
162		unsigned long m, t, mc, base, k;
163		struct hpet __iomem *hpet = devp->hd_hpet;
164		struct hpets *hpetp = devp->hd_hpets;
165
166		t = devp->hd_ireqfreq;
167		m = read_counter(&devp->hd_timer->hpet_compare);
168		mc = read_counter(&hpet->hpet_mc);
169		/* The time for the next interrupt would logically be t + m,
170		 * however, if we are very unlucky and the interrupt is delayed
171		 * for longer than t then we will completely miss the next
172		 * interrupt if we set t + m and an application will hang.
173		 * Therefore we need to make a more complex computation assuming
174		 * that there exists a k for which the following is true:
175		 * k * t + base < mc + delta
176		 * (k + 1) * t + base > mc + delta
177		 * where t is the interval in hpet ticks for the given freq,
178		 * base is the theoretical start value 0 < base < t,
179		 * mc is the main counter value at the time of the interrupt,
180		 * delta is the time it takes to write the a value to the
181		 * comparator.
182		 * k may then be computed as (mc - base + delta) / t .
183		 */
184		base = mc % t;
185		k = (mc - base + hpetp->hp_delta) / t;
186		write_counter(t * (k + 1) + base,
187			      &devp->hd_timer->hpet_compare);
188	}
189
190	if (devp->hd_flags & HPET_SHARED_IRQ)
191		writel(isr, &devp->hd_hpet->hpet_isr);
192	spin_unlock(&hpet_lock);
193
194	wake_up_interruptible(&devp->hd_waitqueue);
195
196	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
197
198	return IRQ_HANDLED;
199}
200
201static void hpet_timer_set_irq(struct hpet_dev *devp)
202{
203	unsigned long v;
204	int irq, gsi;
205	struct hpet_timer __iomem *timer;
206
207	spin_lock_irq(&hpet_lock);
208	if (devp->hd_hdwirq) {
209		spin_unlock_irq(&hpet_lock);
210		return;
211	}
212
213	timer = devp->hd_timer;
214
215	/* we prefer level triggered mode */
216	v = readl(&timer->hpet_config);
217	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
218		v |= Tn_INT_TYPE_CNF_MASK;
219		writel(v, &timer->hpet_config);
220	}
221	spin_unlock_irq(&hpet_lock);
222
223	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
224				 Tn_INT_ROUTE_CAP_SHIFT;
225
226	/*
227	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
228	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
229	 */
230	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
231		v &= ~0xf3df;
232	else
233		v &= ~0xffff;
234
235	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
236		if (irq >= nr_irqs) {
237			irq = HPET_MAX_IRQ;
238			break;
239		}
240
241		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
242					ACPI_ACTIVE_LOW);
243		if (gsi > 0)
244			break;
245
246		/* FIXME: Setup interrupt source table */
247	}
248
249	if (irq < HPET_MAX_IRQ) {
250		spin_lock_irq(&hpet_lock);
251		v = readl(&timer->hpet_config);
252		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
253		writel(v, &timer->hpet_config);
254		devp->hd_hdwirq = gsi;
255		spin_unlock_irq(&hpet_lock);
256	}
257	return;
258}
259
260static int hpet_open(struct inode *inode, struct file *file)
261{
262	struct hpet_dev *devp;
263	struct hpets *hpetp;
264	int i;
265
266	if (file->f_mode & FMODE_WRITE)
267		return -EINVAL;
268
269	mutex_lock(&hpet_mutex);
270	spin_lock_irq(&hpet_lock);
271
272	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
273		for (i = 0; i < hpetp->hp_ntimer; i++)
274			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
275				continue;
276			else {
277				devp = &hpetp->hp_dev[i];
278				break;
279			}
280
281	if (!devp) {
282		spin_unlock_irq(&hpet_lock);
283		mutex_unlock(&hpet_mutex);
284		return -EBUSY;
285	}
286
287	file->private_data = devp;
288	devp->hd_irqdata = 0;
289	devp->hd_flags |= HPET_OPEN;
290	spin_unlock_irq(&hpet_lock);
291	mutex_unlock(&hpet_mutex);
292
293	hpet_timer_set_irq(devp);
294
295	return 0;
296}
297
298static ssize_t
299hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
300{
301	DECLARE_WAITQUEUE(wait, current);
302	unsigned long data;
303	ssize_t retval;
304	struct hpet_dev *devp;
305
306	devp = file->private_data;
307	if (!devp->hd_ireqfreq)
308		return -EIO;
309
310	if (count < sizeof(unsigned long))
311		return -EINVAL;
312
313	add_wait_queue(&devp->hd_waitqueue, &wait);
314
315	for ( ; ; ) {
316		set_current_state(TASK_INTERRUPTIBLE);
317
318		spin_lock_irq(&hpet_lock);
319		data = devp->hd_irqdata;
320		devp->hd_irqdata = 0;
321		spin_unlock_irq(&hpet_lock);
322
323		if (data)
324			break;
325		else if (file->f_flags & O_NONBLOCK) {
326			retval = -EAGAIN;
327			goto out;
328		} else if (signal_pending(current)) {
329			retval = -ERESTARTSYS;
330			goto out;
331		}
332		schedule();
333	}
334
335	retval = put_user(data, (unsigned long __user *)buf);
336	if (!retval)
337		retval = sizeof(unsigned long);
338out:
339	__set_current_state(TASK_RUNNING);
340	remove_wait_queue(&devp->hd_waitqueue, &wait);
341
342	return retval;
343}
344
345static unsigned int hpet_poll(struct file *file, poll_table * wait)
346{
347	unsigned long v;
348	struct hpet_dev *devp;
349
350	devp = file->private_data;
351
352	if (!devp->hd_ireqfreq)
353		return 0;
354
355	poll_wait(file, &devp->hd_waitqueue, wait);
356
357	spin_lock_irq(&hpet_lock);
358	v = devp->hd_irqdata;
359	spin_unlock_irq(&hpet_lock);
360
361	if (v != 0)
362		return POLLIN | POLLRDNORM;
363
364	return 0;
365}
366
367#ifdef CONFIG_HPET_MMAP
368#ifdef CONFIG_HPET_MMAP_DEFAULT
369static int hpet_mmap_enabled = 1;
370#else
371static int hpet_mmap_enabled = 0;
372#endif
373
374static __init int hpet_mmap_enable(char *str)
375{
376	get_option(&str, &hpet_mmap_enabled);
377	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
378	return 1;
379}
380__setup("hpet_mmap", hpet_mmap_enable);
381
382static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
383{
384	struct hpet_dev *devp;
385	unsigned long addr;
386
387	if (!hpet_mmap_enabled)
388		return -EACCES;
389
390	devp = file->private_data;
391	addr = devp->hd_hpets->hp_hpet_phys;
392
393	if (addr & (PAGE_SIZE - 1))
394		return -ENOSYS;
395
396	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
397	return vm_iomap_memory(vma, addr, PAGE_SIZE);
398}
399#else
400static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
401{
402	return -ENOSYS;
403}
404#endif
405
406static int hpet_fasync(int fd, struct file *file, int on)
407{
408	struct hpet_dev *devp;
409
410	devp = file->private_data;
411
412	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
413		return 0;
414	else
415		return -EIO;
416}
417
418static int hpet_release(struct inode *inode, struct file *file)
419{
420	struct hpet_dev *devp;
421	struct hpet_timer __iomem *timer;
422	int irq = 0;
423
424	devp = file->private_data;
425	timer = devp->hd_timer;
426
427	spin_lock_irq(&hpet_lock);
428
429	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
430	       &timer->hpet_config);
431
432	irq = devp->hd_irq;
433	devp->hd_irq = 0;
434
435	devp->hd_ireqfreq = 0;
436
437	if (devp->hd_flags & HPET_PERIODIC
438	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
439		unsigned long v;
440
441		v = readq(&timer->hpet_config);
442		v ^= Tn_TYPE_CNF_MASK;
443		writeq(v, &timer->hpet_config);
444	}
445
446	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
447	spin_unlock_irq(&hpet_lock);
448
449	if (irq)
450		free_irq(irq, devp);
451
452	file->private_data = NULL;
453	return 0;
454}
455
456static int hpet_ioctl_ieon(struct hpet_dev *devp)
457{
458	struct hpet_timer __iomem *timer;
459	struct hpet __iomem *hpet;
460	struct hpets *hpetp;
461	int irq;
462	unsigned long g, v, t, m;
463	unsigned long flags, isr;
464
465	timer = devp->hd_timer;
466	hpet = devp->hd_hpet;
467	hpetp = devp->hd_hpets;
468
469	if (!devp->hd_ireqfreq)
470		return -EIO;
471
472	spin_lock_irq(&hpet_lock);
473
474	if (devp->hd_flags & HPET_IE) {
475		spin_unlock_irq(&hpet_lock);
476		return -EBUSY;
477	}
478
479	devp->hd_flags |= HPET_IE;
480
481	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
482		devp->hd_flags |= HPET_SHARED_IRQ;
483	spin_unlock_irq(&hpet_lock);
484
485	irq = devp->hd_hdwirq;
486
487	if (irq) {
488		unsigned long irq_flags;
489
490		if (devp->hd_flags & HPET_SHARED_IRQ) {
491			/*
492			 * To prevent the interrupt handler from seeing an
493			 * unwanted interrupt status bit, program the timer
494			 * so that it will not fire in the near future ...
495			 */
496			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
497			       &timer->hpet_config);
498			write_counter(read_counter(&hpet->hpet_mc),
499				      &timer->hpet_compare);
500			/* ... and clear any left-over status. */
501			isr = 1 << (devp - devp->hd_hpets->hp_dev);
502			writel(isr, &hpet->hpet_isr);
503		}
504
505		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
506		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
507		if (request_irq(irq, hpet_interrupt, irq_flags,
508				devp->hd_name, (void *)devp)) {
509			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
510			irq = 0;
511		}
512	}
513
514	if (irq == 0) {
515		spin_lock_irq(&hpet_lock);
516		devp->hd_flags ^= HPET_IE;
517		spin_unlock_irq(&hpet_lock);
518		return -EIO;
519	}
520
521	devp->hd_irq = irq;
522	t = devp->hd_ireqfreq;
523	v = readq(&timer->hpet_config);
524
525	/* 64-bit comparators are not yet supported through the ioctls,
526	 * so force this into 32-bit mode if it supports both modes
527	 */
528	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
529
530	if (devp->hd_flags & HPET_PERIODIC) {
531		g |= Tn_TYPE_CNF_MASK;
532		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
533		writeq(v, &timer->hpet_config);
534		local_irq_save(flags);
535
536		/*
537		 * NOTE: First we modify the hidden accumulator
538		 * register supported by periodic-capable comparators.
539		 * We never want to modify the (single) counter; that
540		 * would affect all the comparators. The value written
541		 * is the counter value when the first interrupt is due.
542		 */
543		m = read_counter(&hpet->hpet_mc);
544		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
545		/*
546		 * Then we modify the comparator, indicating the period
547		 * for subsequent interrupt.
548		 */
549		write_counter(t, &timer->hpet_compare);
550	} else {
551		local_irq_save(flags);
552		m = read_counter(&hpet->hpet_mc);
553		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
554	}
555
556	if (devp->hd_flags & HPET_SHARED_IRQ) {
557		isr = 1 << (devp - devp->hd_hpets->hp_dev);
558		writel(isr, &hpet->hpet_isr);
559	}
560	writeq(g, &timer->hpet_config);
561	local_irq_restore(flags);
562
563	return 0;
564}
565
566/* converts Hz to number of timer ticks */
567static inline unsigned long hpet_time_div(struct hpets *hpets,
568					  unsigned long dis)
569{
570	unsigned long long m;
571
572	m = hpets->hp_tick_freq + (dis >> 1);
573	do_div(m, dis);
574	return (unsigned long)m;
575}
576
577static int
578hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
579		  struct hpet_info *info)
580{
581	struct hpet_timer __iomem *timer;
582	struct hpet __iomem *hpet;
583	struct hpets *hpetp;
584	int err;
585	unsigned long v;
586
587	switch (cmd) {
588	case HPET_IE_OFF:
589	case HPET_INFO:
590	case HPET_EPI:
591	case HPET_DPI:
592	case HPET_IRQFREQ:
593		timer = devp->hd_timer;
594		hpet = devp->hd_hpet;
595		hpetp = devp->hd_hpets;
596		break;
597	case HPET_IE_ON:
598		return hpet_ioctl_ieon(devp);
599	default:
600		return -EINVAL;
601	}
602
603	err = 0;
604
605	switch (cmd) {
606	case HPET_IE_OFF:
607		if ((devp->hd_flags & HPET_IE) == 0)
608			break;
609		v = readq(&timer->hpet_config);
610		v &= ~Tn_INT_ENB_CNF_MASK;
611		writeq(v, &timer->hpet_config);
612		if (devp->hd_irq) {
613			free_irq(devp->hd_irq, devp);
614			devp->hd_irq = 0;
615		}
616		devp->hd_flags ^= HPET_IE;
617		break;
618	case HPET_INFO:
619		{
620			memset(info, 0, sizeof(*info));
621			if (devp->hd_ireqfreq)
622				info->hi_ireqfreq =
623					hpet_time_div(hpetp, devp->hd_ireqfreq);
624			info->hi_flags =
625			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
626			info->hi_hpet = hpetp->hp_which;
627			info->hi_timer = devp - hpetp->hp_dev;
628			break;
629		}
630	case HPET_EPI:
631		v = readq(&timer->hpet_config);
632		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
633			err = -ENXIO;
634			break;
635		}
636		devp->hd_flags |= HPET_PERIODIC;
637		break;
638	case HPET_DPI:
639		v = readq(&timer->hpet_config);
640		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
641			err = -ENXIO;
642			break;
643		}
644		if (devp->hd_flags & HPET_PERIODIC &&
645		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
646			v = readq(&timer->hpet_config);
647			v ^= Tn_TYPE_CNF_MASK;
648			writeq(v, &timer->hpet_config);
649		}
650		devp->hd_flags &= ~HPET_PERIODIC;
651		break;
652	case HPET_IRQFREQ:
653		if ((arg > hpet_max_freq) &&
654		    !capable(CAP_SYS_RESOURCE)) {
655			err = -EACCES;
656			break;
657		}
658
659		if (!arg) {
660			err = -EINVAL;
661			break;
662		}
663
664		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
665	}
666
667	return err;
668}
669
670static long
671hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
672{
673	struct hpet_info info;
674	int err;
675
676	mutex_lock(&hpet_mutex);
677	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
678	mutex_unlock(&hpet_mutex);
679
680	if ((cmd == HPET_INFO) && !err &&
681	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
682		err = -EFAULT;
683
684	return err;
685}
686
687#ifdef CONFIG_COMPAT
688struct compat_hpet_info {
689	compat_ulong_t hi_ireqfreq;	/* Hz */
690	compat_ulong_t hi_flags;	/* information */
691	unsigned short hi_hpet;
692	unsigned short hi_timer;
693};
694
695static long
696hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
697{
698	struct hpet_info info;
699	int err;
700
701	mutex_lock(&hpet_mutex);
702	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
703	mutex_unlock(&hpet_mutex);
704
705	if ((cmd == HPET_INFO) && !err) {
706		struct compat_hpet_info __user *u = compat_ptr(arg);
707		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
708		    put_user(info.hi_flags, &u->hi_flags) ||
709		    put_user(info.hi_hpet, &u->hi_hpet) ||
710		    put_user(info.hi_timer, &u->hi_timer))
711			err = -EFAULT;
712	}
713
714	return err;
715}
716#endif
717
718static const struct file_operations hpet_fops = {
719	.owner = THIS_MODULE,
720	.llseek = no_llseek,
721	.read = hpet_read,
722	.poll = hpet_poll,
723	.unlocked_ioctl = hpet_ioctl,
724#ifdef CONFIG_COMPAT
725	.compat_ioctl = hpet_compat_ioctl,
726#endif
727	.open = hpet_open,
728	.release = hpet_release,
729	.fasync = hpet_fasync,
730	.mmap = hpet_mmap,
731};
732
733static int hpet_is_known(struct hpet_data *hdp)
734{
735	struct hpets *hpetp;
736
737	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
738		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
739			return 1;
740
741	return 0;
742}
743
744static struct ctl_table hpet_table[] = {
745	{
746	 .procname = "max-user-freq",
747	 .data = &hpet_max_freq,
748	 .maxlen = sizeof(int),
749	 .mode = 0644,
750	 .proc_handler = proc_dointvec,
751	 },
752	{}
753};
754
755static struct ctl_table hpet_root[] = {
756	{
757	 .procname = "hpet",
758	 .maxlen = 0,
759	 .mode = 0555,
760	 .child = hpet_table,
761	 },
762	{}
763};
764
765static struct ctl_table dev_root[] = {
766	{
767	 .procname = "dev",
768	 .maxlen = 0,
769	 .mode = 0555,
770	 .child = hpet_root,
771	 },
772	{}
773};
774
775static struct ctl_table_header *sysctl_header;
776
777/*
778 * Adjustment for when arming the timer with
779 * initial conditions.  That is, main counter
780 * ticks expired before interrupts are enabled.
781 */
782#define	TICK_CALIBRATE	(1000UL)
783
784static unsigned long __hpet_calibrate(struct hpets *hpetp)
785{
786	struct hpet_timer __iomem *timer = NULL;
787	unsigned long t, m, count, i, flags, start;
788	struct hpet_dev *devp;
789	int j;
790	struct hpet __iomem *hpet;
791
792	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
793		if ((devp->hd_flags & HPET_OPEN) == 0) {
794			timer = devp->hd_timer;
795			break;
796		}
797
798	if (!timer)
799		return 0;
800
801	hpet = hpetp->hp_hpet;
802	t = read_counter(&timer->hpet_compare);
803
804	i = 0;
805	count = hpet_time_div(hpetp, TICK_CALIBRATE);
806
807	local_irq_save(flags);
808
809	start = read_counter(&hpet->hpet_mc);
810
811	do {
812		m = read_counter(&hpet->hpet_mc);
813		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
814	} while (i++, (m - start) < count);
815
816	local_irq_restore(flags);
817
818	return (m - start) / i;
819}
820
821static unsigned long hpet_calibrate(struct hpets *hpetp)
822{
823	unsigned long ret = ~0UL;
824	unsigned long tmp;
825
826	/*
827	 * Try to calibrate until return value becomes stable small value.
828	 * If SMI interruption occurs in calibration loop, the return value
829	 * will be big. This avoids its impact.
830	 */
831	for ( ; ; ) {
832		tmp = __hpet_calibrate(hpetp);
833		if (ret <= tmp)
834			break;
835		ret = tmp;
836	}
837
838	return ret;
839}
840
841int hpet_alloc(struct hpet_data *hdp)
842{
843	u64 cap, mcfg;
844	struct hpet_dev *devp;
845	u32 i, ntimer;
846	struct hpets *hpetp;
847	size_t siz;
848	struct hpet __iomem *hpet;
849	static struct hpets *last;
850	unsigned long period;
851	unsigned long long temp;
852	u32 remainder;
853
854	/*
855	 * hpet_alloc can be called by platform dependent code.
856	 * If platform dependent code has allocated the hpet that
857	 * ACPI has also reported, then we catch it here.
858	 */
859	if (hpet_is_known(hdp)) {
860		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
861			__func__);
862		return 0;
863	}
864
865	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
866				      sizeof(struct hpet_dev));
867
868	hpetp = kzalloc(siz, GFP_KERNEL);
869
870	if (!hpetp)
871		return -ENOMEM;
872
873	hpetp->hp_which = hpet_nhpet++;
874	hpetp->hp_hpet = hdp->hd_address;
875	hpetp->hp_hpet_phys = hdp->hd_phys_address;
876
877	hpetp->hp_ntimer = hdp->hd_nirqs;
878
879	for (i = 0; i < hdp->hd_nirqs; i++)
880		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
881
882	hpet = hpetp->hp_hpet;
883
884	cap = readq(&hpet->hpet_cap);
885
886	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
887
888	if (hpetp->hp_ntimer != ntimer) {
889		printk(KERN_WARNING "hpet: number irqs doesn't agree"
890		       " with number of timers\n");
891		kfree(hpetp);
892		return -ENODEV;
893	}
894
895	if (last)
896		last->hp_next = hpetp;
897	else
898		hpets = hpetp;
899
900	last = hpetp;
901
902	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
903		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
904	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
905	temp += period >> 1; /* round */
906	do_div(temp, period);
907	hpetp->hp_tick_freq = temp; /* ticks per second */
908
909	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
910		hpetp->hp_which, hdp->hd_phys_address,
911		hpetp->hp_ntimer > 1 ? "s" : "");
912	for (i = 0; i < hpetp->hp_ntimer; i++)
913		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
914	printk(KERN_CONT "\n");
915
916	temp = hpetp->hp_tick_freq;
917	remainder = do_div(temp, 1000000);
918	printk(KERN_INFO
919		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
920		hpetp->hp_which, hpetp->hp_ntimer,
921		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
922		(unsigned) temp, remainder);
923
924	mcfg = readq(&hpet->hpet_config);
925	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
926		write_counter(0L, &hpet->hpet_mc);
927		mcfg |= HPET_ENABLE_CNF_MASK;
928		writeq(mcfg, &hpet->hpet_config);
929	}
930
931	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
932		struct hpet_timer __iomem *timer;
933
934		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
935
936		devp->hd_hpets = hpetp;
937		devp->hd_hpet = hpet;
938		devp->hd_timer = timer;
939
940		/*
941		 * If the timer was reserved by platform code,
942		 * then make timer unavailable for opens.
943		 */
944		if (hdp->hd_state & (1 << i)) {
945			devp->hd_flags = HPET_OPEN;
946			continue;
947		}
948
949		init_waitqueue_head(&devp->hd_waitqueue);
950	}
951
952	hpetp->hp_delta = hpet_calibrate(hpetp);
953
954/* This clocksource driver currently only works on ia64 */
955#ifdef CONFIG_IA64
956	if (!hpet_clocksource) {
957		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
958		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
959		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
960		hpetp->hp_clocksource = &clocksource_hpet;
961		hpet_clocksource = &clocksource_hpet;
962	}
963#endif
964
965	return 0;
966}
967
968static acpi_status hpet_resources(struct acpi_resource *res, void *data)
969{
970	struct hpet_data *hdp;
971	acpi_status status;
972	struct acpi_resource_address64 addr;
973
974	hdp = data;
975
976	status = acpi_resource_to_address64(res, &addr);
977
978	if (ACPI_SUCCESS(status)) {
979		hdp->hd_phys_address = addr.minimum;
980		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
981
982		if (hpet_is_known(hdp)) {
983			iounmap(hdp->hd_address);
984			return AE_ALREADY_EXISTS;
985		}
986	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
987		struct acpi_resource_fixed_memory32 *fixmem32;
988
989		fixmem32 = &res->data.fixed_memory32;
990
991		hdp->hd_phys_address = fixmem32->address;
992		hdp->hd_address = ioremap(fixmem32->address,
993						HPET_RANGE_SIZE);
994
995		if (hpet_is_known(hdp)) {
996			iounmap(hdp->hd_address);
997			return AE_ALREADY_EXISTS;
998		}
999	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
1000		struct acpi_resource_extended_irq *irqp;
1001		int i, irq;
1002
1003		irqp = &res->data.extended_irq;
1004
1005		for (i = 0; i < irqp->interrupt_count; i++) {
1006			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1007				break;
1008
1009			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1010				      irqp->triggering, irqp->polarity);
1011			if (irq < 0)
1012				return AE_ERROR;
1013
1014			hdp->hd_irq[hdp->hd_nirqs] = irq;
1015			hdp->hd_nirqs++;
1016		}
1017	}
1018
1019	return AE_OK;
1020}
1021
1022static int hpet_acpi_add(struct acpi_device *device)
1023{
1024	acpi_status result;
1025	struct hpet_data data;
1026
1027	memset(&data, 0, sizeof(data));
1028
1029	result =
1030	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1031				hpet_resources, &data);
1032
1033	if (ACPI_FAILURE(result))
1034		return -ENODEV;
1035
1036	if (!data.hd_address || !data.hd_nirqs) {
1037		if (data.hd_address)
1038			iounmap(data.hd_address);
1039		printk("%s: no address or irqs in _CRS\n", __func__);
1040		return -ENODEV;
1041	}
1042
1043	return hpet_alloc(&data);
1044}
1045
1046static int hpet_acpi_remove(struct acpi_device *device)
1047{
1048	/* XXX need to unregister clocksource, dealloc mem, etc */
1049	return -EINVAL;
1050}
1051
1052static const struct acpi_device_id hpet_device_ids[] = {
1053	{"PNP0103", 0},
1054	{"", 0},
1055};
1056MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1057
1058static struct acpi_driver hpet_acpi_driver = {
1059	.name = "hpet",
1060	.ids = hpet_device_ids,
1061	.ops = {
1062		.add = hpet_acpi_add,
1063		.remove = hpet_acpi_remove,
1064		},
1065};
1066
1067static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1068
1069static int __init hpet_init(void)
1070{
1071	int result;
1072
1073	result = misc_register(&hpet_misc);
1074	if (result < 0)
1075		return -ENODEV;
1076
1077	sysctl_header = register_sysctl_table(dev_root);
1078
1079	result = acpi_bus_register_driver(&hpet_acpi_driver);
1080	if (result < 0) {
1081		if (sysctl_header)
1082			unregister_sysctl_table(sysctl_header);
1083		misc_deregister(&hpet_misc);
1084		return result;
1085	}
1086
1087	return 0;
1088}
1089
1090static void __exit hpet_exit(void)
1091{
1092	acpi_bus_unregister_driver(&hpet_acpi_driver);
1093
1094	if (sysctl_header)
1095		unregister_sysctl_table(sysctl_header);
1096	misc_deregister(&hpet_misc);
1097
1098	return;
1099}
1100
1101module_init(hpet_init);
1102module_exit(hpet_exit);
1103MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1104MODULE_LICENSE("GPL");
1105