[go: nahoru, domu]

1/*
2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 */
14
15#include "clk-kona.h"
16
17#include <linux/delay.h>
18
19/*
20 * "Policies" affect the frequencies of bus clocks provided by a
21 * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
22 * "Normal", and "Turbo".)  A lower policy number has lower power
23 * consumption, and policy 2 is the default.
24 */
25#define CCU_POLICY_COUNT	4
26
27#define CCU_ACCESS_PASSWORD      0xA5A500
28#define CLK_GATE_DELAY_LOOP      2000
29
30/* Bitfield operations */
31
32/* Produces a mask of set bits covering a range of a 32-bit value */
33static inline u32 bitfield_mask(u32 shift, u32 width)
34{
35	return ((1 << width) - 1) << shift;
36}
37
38/* Extract the value of a bitfield found within a given register value */
39static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
40{
41	return (reg_val & bitfield_mask(shift, width)) >> shift;
42}
43
44/* Replace the value of a bitfield found within a given register value */
45static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
46{
47	u32 mask = bitfield_mask(shift, width);
48
49	return (reg_val & ~mask) | (val << shift);
50}
51
52/* Divider and scaling helpers */
53
54/*
55 * Implement DIV_ROUND_CLOSEST() for 64-bit dividend and both values
56 * unsigned.  Note that unlike do_div(), the remainder is discarded
57 * and the return value is the quotient (not the remainder).
58 */
59u64 do_div_round_closest(u64 dividend, unsigned long divisor)
60{
61	u64 result;
62
63	result = dividend + ((u64)divisor >> 1);
64	(void)do_div(result, divisor);
65
66	return result;
67}
68
69/* Convert a divider into the scaled divisor value it represents. */
70static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
71{
72	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
73}
74
75/*
76 * Build a scaled divider value as close as possible to the
77 * given whole part (div_value) and fractional part (expressed
78 * in billionths).
79 */
80u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
81{
82	u64 combined;
83
84	BUG_ON(!div_value);
85	BUG_ON(billionths >= BILLION);
86
87	combined = (u64)div_value * BILLION + billionths;
88	combined <<= div->u.s.frac_width;
89
90	return do_div_round_closest(combined, BILLION);
91}
92
93/* The scaled minimum divisor representable by a divider */
94static inline u64
95scaled_div_min(struct bcm_clk_div *div)
96{
97	if (divider_is_fixed(div))
98		return (u64)div->u.fixed;
99
100	return scaled_div_value(div, 0);
101}
102
103/* The scaled maximum divisor representable by a divider */
104u64 scaled_div_max(struct bcm_clk_div *div)
105{
106	u32 reg_div;
107
108	if (divider_is_fixed(div))
109		return (u64)div->u.fixed;
110
111	reg_div = ((u32)1 << div->u.s.width) - 1;
112
113	return scaled_div_value(div, reg_div);
114}
115
116/*
117 * Convert a scaled divisor into its divider representation as
118 * stored in a divider register field.
119 */
120static inline u32
121divider(struct bcm_clk_div *div, u64 scaled_div)
122{
123	BUG_ON(scaled_div < scaled_div_min(div));
124	BUG_ON(scaled_div > scaled_div_max(div));
125
126	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
127}
128
129/* Return a rate scaled for use when dividing by a scaled divisor. */
130static inline u64
131scale_rate(struct bcm_clk_div *div, u32 rate)
132{
133	if (divider_is_fixed(div))
134		return (u64)rate;
135
136	return (u64)rate << div->u.s.frac_width;
137}
138
139/* CCU access */
140
141/* Read a 32-bit register value from a CCU's address space. */
142static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
143{
144	return readl(ccu->base + reg_offset);
145}
146
147/* Write a 32-bit register value into a CCU's address space. */
148static inline void
149__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
150{
151	writel(reg_val, ccu->base + reg_offset);
152}
153
154static inline unsigned long ccu_lock(struct ccu_data *ccu)
155{
156	unsigned long flags;
157
158	spin_lock_irqsave(&ccu->lock, flags);
159
160	return flags;
161}
162static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
163{
164	spin_unlock_irqrestore(&ccu->lock, flags);
165}
166
167/*
168 * Enable/disable write access to CCU protected registers.  The
169 * WR_ACCESS register for all CCUs is at offset 0.
170 */
171static inline void __ccu_write_enable(struct ccu_data *ccu)
172{
173	if (ccu->write_enabled) {
174		pr_err("%s: access already enabled for %s\n", __func__,
175			ccu->name);
176		return;
177	}
178	ccu->write_enabled = true;
179	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
180}
181
182static inline void __ccu_write_disable(struct ccu_data *ccu)
183{
184	if (!ccu->write_enabled) {
185		pr_err("%s: access wasn't enabled for %s\n", __func__,
186			ccu->name);
187		return;
188	}
189
190	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
191	ccu->write_enabled = false;
192}
193
194/*
195 * Poll a register in a CCU's address space, returning when the
196 * specified bit in that register's value is set (or clear).  Delay
197 * a microsecond after each read of the register.  Returns true if
198 * successful, or false if we gave up trying.
199 *
200 * Caller must ensure the CCU lock is held.
201 */
202static inline bool
203__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
204{
205	unsigned int tries;
206	u32 bit_mask = 1 << bit;
207
208	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
209		u32 val;
210		bool bit_val;
211
212		val = __ccu_read(ccu, reg_offset);
213		bit_val = (val & bit_mask) != 0;
214		if (bit_val == want)
215			return true;
216		udelay(1);
217	}
218	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
219		ccu->name, reg_offset, bit, want ? "set" : "clear");
220
221	return false;
222}
223
224/* Policy operations */
225
226static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
227{
228	struct bcm_policy_ctl *control = &ccu->policy.control;
229	u32 offset;
230	u32 go_bit;
231	u32 mask;
232	bool ret;
233
234	/* If we don't need to control policy for this CCU, we're done. */
235	if (!policy_ctl_exists(control))
236		return true;
237
238	offset = control->offset;
239	go_bit = control->go_bit;
240
241	/* Ensure we're not busy before we start */
242	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
243	if (!ret) {
244		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
245			__func__, ccu->name);
246		return false;
247	}
248
249	/*
250	 * If it's a synchronous request, we'll wait for the voltage
251	 * and frequency of the active load to stabilize before
252	 * returning.  To do this we select the active load by
253	 * setting the ATL bit.
254	 *
255	 * An asynchronous request instead ramps the voltage in the
256	 * background, and when that process stabilizes, the target
257	 * load is copied to the active load and the CCU frequency
258	 * is switched.  We do this by selecting the target load
259	 * (ATL bit clear) and setting the request auto-copy (AC bit
260	 * set).
261	 *
262	 * Note, we do NOT read-modify-write this register.
263	 */
264	mask = (u32)1 << go_bit;
265	if (sync)
266		mask |= 1 << control->atl_bit;
267	else
268		mask |= 1 << control->ac_bit;
269	__ccu_write(ccu, offset, mask);
270
271	/* Wait for indication that operation is complete. */
272	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
273	if (!ret)
274		pr_err("%s: ccu %s policy engine never started\n",
275			__func__, ccu->name);
276
277	return ret;
278}
279
280static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
281{
282	struct bcm_lvm_en *enable = &ccu->policy.enable;
283	u32 offset;
284	u32 enable_bit;
285	bool ret;
286
287	/* If we don't need to control policy for this CCU, we're done. */
288	if (!policy_lvm_en_exists(enable))
289		return true;
290
291	/* Ensure we're not busy before we start */
292	offset = enable->offset;
293	enable_bit = enable->bit;
294	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
295	if (!ret) {
296		pr_err("%s: ccu %s policy engine already stopped\n",
297			__func__, ccu->name);
298		return false;
299	}
300
301	/* Now set the bit to stop the engine (NO read-modify-write) */
302	__ccu_write(ccu, offset, (u32)1 << enable_bit);
303
304	/* Wait for indication that it has stopped. */
305	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
306	if (!ret)
307		pr_err("%s: ccu %s policy engine never stopped\n",
308			__func__, ccu->name);
309
310	return ret;
311}
312
313/*
314 * A CCU has four operating conditions ("policies"), and some clocks
315 * can be disabled or enabled based on which policy is currently in
316 * effect.  Such clocks have a bit in a "policy mask" register for
317 * each policy indicating whether the clock is enabled for that
318 * policy or not.  The bit position for a clock is the same for all
319 * four registers, and the 32-bit registers are at consecutive
320 * addresses.
321 */
322static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
323{
324	u32 offset;
325	u32 mask;
326	int i;
327	bool ret;
328
329	if (!policy_exists(policy))
330		return true;
331
332	/*
333	 * We need to stop the CCU policy engine to allow update
334	 * of our policy bits.
335	 */
336	if (!__ccu_policy_engine_stop(ccu)) {
337		pr_err("%s: unable to stop CCU %s policy engine\n",
338			__func__, ccu->name);
339		return false;
340	}
341
342	/*
343	 * For now, if a clock defines its policy bit we just mark
344	 * it "enabled" for all four policies.
345	 */
346	offset = policy->offset;
347	mask = (u32)1 << policy->bit;
348	for (i = 0; i < CCU_POLICY_COUNT; i++) {
349		u32 reg_val;
350
351		reg_val = __ccu_read(ccu, offset);
352		reg_val |= mask;
353		__ccu_write(ccu, offset, reg_val);
354		offset += sizeof(u32);
355	}
356
357	/* We're done updating; fire up the policy engine again. */
358	ret = __ccu_policy_engine_start(ccu, true);
359	if (!ret)
360		pr_err("%s: unable to restart CCU %s policy engine\n",
361			__func__, ccu->name);
362
363	return ret;
364}
365
366/* Gate operations */
367
368/* Determine whether a clock is gated.  CCU lock must be held.  */
369static bool
370__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
371{
372	u32 bit_mask;
373	u32 reg_val;
374
375	/* If there is no gate we can assume it's enabled. */
376	if (!gate_exists(gate))
377		return true;
378
379	bit_mask = 1 << gate->status_bit;
380	reg_val = __ccu_read(ccu, gate->offset);
381
382	return (reg_val & bit_mask) != 0;
383}
384
385/* Determine whether a clock is gated. */
386static bool
387is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
388{
389	long flags;
390	bool ret;
391
392	/* Avoid taking the lock if we can */
393	if (!gate_exists(gate))
394		return true;
395
396	flags = ccu_lock(ccu);
397	ret = __is_clk_gate_enabled(ccu, gate);
398	ccu_unlock(ccu, flags);
399
400	return ret;
401}
402
403/*
404 * Commit our desired gate state to the hardware.
405 * Returns true if successful, false otherwise.
406 */
407static bool
408__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
409{
410	u32 reg_val;
411	u32 mask;
412	bool enabled = false;
413
414	BUG_ON(!gate_exists(gate));
415	if (!gate_is_sw_controllable(gate))
416		return true;		/* Nothing we can change */
417
418	reg_val = __ccu_read(ccu, gate->offset);
419
420	/* For a hardware/software gate, set which is in control */
421	if (gate_is_hw_controllable(gate)) {
422		mask = (u32)1 << gate->hw_sw_sel_bit;
423		if (gate_is_sw_managed(gate))
424			reg_val |= mask;
425		else
426			reg_val &= ~mask;
427	}
428
429	/*
430	 * If software is in control, enable or disable the gate.
431	 * If hardware is, clear the enabled bit for good measure.
432	 * If a software controlled gate can't be disabled, we're
433	 * required to write a 0 into the enable bit (but the gate
434	 * will be enabled).
435	 */
436	mask = (u32)1 << gate->en_bit;
437	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
438			!gate_is_no_disable(gate))
439		reg_val |= mask;
440	else
441		reg_val &= ~mask;
442
443	__ccu_write(ccu, gate->offset, reg_val);
444
445	/* For a hardware controlled gate, we're done */
446	if (!gate_is_sw_managed(gate))
447		return true;
448
449	/* Otherwise wait for the gate to be in desired state */
450	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
451}
452
453/*
454 * Initialize a gate.  Our desired state (hardware/software select,
455 * and if software, its enable state) is committed to hardware
456 * without the usual checks to see if it's already set up that way.
457 * Returns true if successful, false otherwise.
458 */
459static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
460{
461	if (!gate_exists(gate))
462		return true;
463	return __gate_commit(ccu, gate);
464}
465
466/*
467 * Set a gate to enabled or disabled state.  Does nothing if the
468 * gate is not currently under software control, or if it is already
469 * in the requested state.  Returns true if successful, false
470 * otherwise.  CCU lock must be held.
471 */
472static bool
473__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
474{
475	bool ret;
476
477	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
478		return true;	/* Nothing to do */
479
480	if (!enable && gate_is_no_disable(gate)) {
481		pr_warn("%s: invalid gate disable request (ignoring)\n",
482			__func__);
483		return true;
484	}
485
486	if (enable == gate_is_enabled(gate))
487		return true;	/* No change */
488
489	gate_flip_enabled(gate);
490	ret = __gate_commit(ccu, gate);
491	if (!ret)
492		gate_flip_enabled(gate);	/* Revert the change */
493
494	return ret;
495}
496
497/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
498static int clk_gate(struct ccu_data *ccu, const char *name,
499			struct bcm_clk_gate *gate, bool enable)
500{
501	unsigned long flags;
502	bool success;
503
504	/*
505	 * Avoid taking the lock if we can.  We quietly ignore
506	 * requests to change state that don't make sense.
507	 */
508	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
509		return 0;
510	if (!enable && gate_is_no_disable(gate))
511		return 0;
512
513	flags = ccu_lock(ccu);
514	__ccu_write_enable(ccu);
515
516	success = __clk_gate(ccu, gate, enable);
517
518	__ccu_write_disable(ccu);
519	ccu_unlock(ccu, flags);
520
521	if (success)
522		return 0;
523
524	pr_err("%s: failed to %s gate for %s\n", __func__,
525		enable ? "enable" : "disable", name);
526
527	return -EIO;
528}
529
530/* Hysteresis operations */
531
532/*
533 * If a clock gate requires a turn-off delay it will have
534 * "hysteresis" register bits defined.  The first, if set, enables
535 * the delay; and if enabled, the second bit determines whether the
536 * delay is "low" or "high" (1 means high).  For now, if it's
537 * defined for a clock, we set it.
538 */
539static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
540{
541	u32 offset;
542	u32 reg_val;
543	u32 mask;
544
545	if (!hyst_exists(hyst))
546		return true;
547
548	offset = hyst->offset;
549	mask = (u32)1 << hyst->en_bit;
550	mask |= (u32)1 << hyst->val_bit;
551
552	reg_val = __ccu_read(ccu, offset);
553	reg_val |= mask;
554	__ccu_write(ccu, offset, reg_val);
555
556	return true;
557}
558
559/* Trigger operations */
560
561/*
562 * Caller must ensure CCU lock is held and access is enabled.
563 * Returns true if successful, false otherwise.
564 */
565static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
566{
567	/* Trigger the clock and wait for it to finish */
568	__ccu_write(ccu, trig->offset, 1 << trig->bit);
569
570	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
571}
572
573/* Divider operations */
574
575/* Read a divider value and return the scaled divisor it represents. */
576static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
577{
578	unsigned long flags;
579	u32 reg_val;
580	u32 reg_div;
581
582	if (divider_is_fixed(div))
583		return (u64)div->u.fixed;
584
585	flags = ccu_lock(ccu);
586	reg_val = __ccu_read(ccu, div->u.s.offset);
587	ccu_unlock(ccu, flags);
588
589	/* Extract the full divider field from the register value */
590	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
591
592	/* Return the scaled divisor value it represents */
593	return scaled_div_value(div, reg_div);
594}
595
596/*
597 * Convert a divider's scaled divisor value into its recorded form
598 * and commit it into the hardware divider register.
599 *
600 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
601 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
602 */
603static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
604			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
605{
606	bool enabled;
607	u32 reg_div;
608	u32 reg_val;
609	int ret = 0;
610
611	BUG_ON(divider_is_fixed(div));
612
613	/*
614	 * If we're just initializing the divider, and no initial
615	 * state was defined in the device tree, we just find out
616	 * what its current value is rather than updating it.
617	 */
618	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
619		reg_val = __ccu_read(ccu, div->u.s.offset);
620		reg_div = bitfield_extract(reg_val, div->u.s.shift,
621						div->u.s.width);
622		div->u.s.scaled_div = scaled_div_value(div, reg_div);
623
624		return 0;
625	}
626
627	/* Convert the scaled divisor to the value we need to record */
628	reg_div = divider(div, div->u.s.scaled_div);
629
630	/* Clock needs to be enabled before changing the rate */
631	enabled = __is_clk_gate_enabled(ccu, gate);
632	if (!enabled && !__clk_gate(ccu, gate, true)) {
633		ret = -ENXIO;
634		goto out;
635	}
636
637	/* Replace the divider value and record the result */
638	reg_val = __ccu_read(ccu, div->u.s.offset);
639	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
640					reg_div);
641	__ccu_write(ccu, div->u.s.offset, reg_val);
642
643	/* If the trigger fails we still want to disable the gate */
644	if (!__clk_trigger(ccu, trig))
645		ret = -EIO;
646
647	/* Disable the clock again if it was disabled to begin with */
648	if (!enabled && !__clk_gate(ccu, gate, false))
649		ret = ret ? ret : -ENXIO;	/* return first error */
650out:
651	return ret;
652}
653
654/*
655 * Initialize a divider by committing our desired state to hardware
656 * without the usual checks to see if it's already set up that way.
657 * Returns true if successful, false otherwise.
658 */
659static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
660			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
661{
662	if (!divider_exists(div) || divider_is_fixed(div))
663		return true;
664	return !__div_commit(ccu, gate, div, trig);
665}
666
667static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
668			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
669			u64 scaled_div)
670{
671	unsigned long flags;
672	u64 previous;
673	int ret;
674
675	BUG_ON(divider_is_fixed(div));
676
677	previous = div->u.s.scaled_div;
678	if (previous == scaled_div)
679		return 0;	/* No change */
680
681	div->u.s.scaled_div = scaled_div;
682
683	flags = ccu_lock(ccu);
684	__ccu_write_enable(ccu);
685
686	ret = __div_commit(ccu, gate, div, trig);
687
688	__ccu_write_disable(ccu);
689	ccu_unlock(ccu, flags);
690
691	if (ret)
692		div->u.s.scaled_div = previous;		/* Revert the change */
693
694	return ret;
695
696}
697
698/* Common clock rate helpers */
699
700/*
701 * Implement the common clock framework recalc_rate method, taking
702 * into account a divider and an optional pre-divider.  The
703 * pre-divider register pointer may be NULL.
704 */
705static unsigned long clk_recalc_rate(struct ccu_data *ccu,
706			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
707			unsigned long parent_rate)
708{
709	u64 scaled_parent_rate;
710	u64 scaled_div;
711	u64 result;
712
713	if (!divider_exists(div))
714		return parent_rate;
715
716	if (parent_rate > (unsigned long)LONG_MAX)
717		return 0;	/* actually this would be a caller bug */
718
719	/*
720	 * If there is a pre-divider, divide the scaled parent rate
721	 * by the pre-divider value first.  In this case--to improve
722	 * accuracy--scale the parent rate by *both* the pre-divider
723	 * value and the divider before actually computing the
724	 * result of the pre-divider.
725	 *
726	 * If there's only one divider, just scale the parent rate.
727	 */
728	if (pre_div && divider_exists(pre_div)) {
729		u64 scaled_rate;
730
731		scaled_rate = scale_rate(pre_div, parent_rate);
732		scaled_rate = scale_rate(div, scaled_rate);
733		scaled_div = divider_read_scaled(ccu, pre_div);
734		scaled_parent_rate = do_div_round_closest(scaled_rate,
735							scaled_div);
736	} else  {
737		scaled_parent_rate = scale_rate(div, parent_rate);
738	}
739
740	/*
741	 * Get the scaled divisor value, and divide the scaled
742	 * parent rate by that to determine this clock's resulting
743	 * rate.
744	 */
745	scaled_div = divider_read_scaled(ccu, div);
746	result = do_div_round_closest(scaled_parent_rate, scaled_div);
747
748	return (unsigned long)result;
749}
750
751/*
752 * Compute the output rate produced when a given parent rate is fed
753 * into two dividers.  The pre-divider can be NULL, and even if it's
754 * non-null it may be nonexistent.  It's also OK for the divider to
755 * be nonexistent, and in that case the pre-divider is also ignored.
756 *
757 * If scaled_div is non-null, it is used to return the scaled divisor
758 * value used by the (downstream) divider to produce that rate.
759 */
760static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
761				struct bcm_clk_div *pre_div,
762				unsigned long rate, unsigned long parent_rate,
763				u64 *scaled_div)
764{
765	u64 scaled_parent_rate;
766	u64 min_scaled_div;
767	u64 max_scaled_div;
768	u64 best_scaled_div;
769	u64 result;
770
771	BUG_ON(!divider_exists(div));
772	BUG_ON(!rate);
773	BUG_ON(parent_rate > (u64)LONG_MAX);
774
775	/*
776	 * If there is a pre-divider, divide the scaled parent rate
777	 * by the pre-divider value first.  In this case--to improve
778	 * accuracy--scale the parent rate by *both* the pre-divider
779	 * value and the divider before actually computing the
780	 * result of the pre-divider.
781	 *
782	 * If there's only one divider, just scale the parent rate.
783	 *
784	 * For simplicity we treat the pre-divider as fixed (for now).
785	 */
786	if (divider_exists(pre_div)) {
787		u64 scaled_rate;
788		u64 scaled_pre_div;
789
790		scaled_rate = scale_rate(pre_div, parent_rate);
791		scaled_rate = scale_rate(div, scaled_rate);
792		scaled_pre_div = divider_read_scaled(ccu, pre_div);
793		scaled_parent_rate = do_div_round_closest(scaled_rate,
794							scaled_pre_div);
795	} else {
796		scaled_parent_rate = scale_rate(div, parent_rate);
797	}
798
799	/*
800	 * Compute the best possible divider and ensure it is in
801	 * range.  A fixed divider can't be changed, so just report
802	 * the best we can do.
803	 */
804	if (!divider_is_fixed(div)) {
805		best_scaled_div = do_div_round_closest(scaled_parent_rate,
806							rate);
807		min_scaled_div = scaled_div_min(div);
808		max_scaled_div = scaled_div_max(div);
809		if (best_scaled_div > max_scaled_div)
810			best_scaled_div = max_scaled_div;
811		else if (best_scaled_div < min_scaled_div)
812			best_scaled_div = min_scaled_div;
813	} else {
814		best_scaled_div = divider_read_scaled(ccu, div);
815	}
816
817	/* OK, figure out the resulting rate */
818	result = do_div_round_closest(scaled_parent_rate, best_scaled_div);
819
820	if (scaled_div)
821		*scaled_div = best_scaled_div;
822
823	return (long)result;
824}
825
826/* Common clock parent helpers */
827
828/*
829 * For a given parent selector (register field) value, find the
830 * index into a selector's parent_sel array that contains it.
831 * Returns the index, or BAD_CLK_INDEX if it's not found.
832 */
833static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
834{
835	u8 i;
836
837	BUG_ON(sel->parent_count > (u32)U8_MAX);
838	for (i = 0; i < sel->parent_count; i++)
839		if (sel->parent_sel[i] == parent_sel)
840			return i;
841	return BAD_CLK_INDEX;
842}
843
844/*
845 * Fetch the current value of the selector, and translate that into
846 * its corresponding index in the parent array we registered with
847 * the clock framework.
848 *
849 * Returns parent array index that corresponds with the value found,
850 * or BAD_CLK_INDEX if the found value is out of range.
851 */
852static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
853{
854	unsigned long flags;
855	u32 reg_val;
856	u32 parent_sel;
857	u8 index;
858
859	/* If there's no selector, there's only one parent */
860	if (!selector_exists(sel))
861		return 0;
862
863	/* Get the value in the selector register */
864	flags = ccu_lock(ccu);
865	reg_val = __ccu_read(ccu, sel->offset);
866	ccu_unlock(ccu, flags);
867
868	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
869
870	/* Look up that selector's parent array index and return it */
871	index = parent_index(sel, parent_sel);
872	if (index == BAD_CLK_INDEX)
873		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
874			__func__, parent_sel, ccu->name, sel->offset);
875
876	return index;
877}
878
879/*
880 * Commit our desired selector value to the hardware.
881 *
882 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
883 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
884 */
885static int
886__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
887			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
888{
889	u32 parent_sel;
890	u32 reg_val;
891	bool enabled;
892	int ret = 0;
893
894	BUG_ON(!selector_exists(sel));
895
896	/*
897	 * If we're just initializing the selector, and no initial
898	 * state was defined in the device tree, we just find out
899	 * what its current value is rather than updating it.
900	 */
901	if (sel->clk_index == BAD_CLK_INDEX) {
902		u8 index;
903
904		reg_val = __ccu_read(ccu, sel->offset);
905		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
906		index = parent_index(sel, parent_sel);
907		if (index == BAD_CLK_INDEX)
908			return -EINVAL;
909		sel->clk_index = index;
910
911		return 0;
912	}
913
914	BUG_ON((u32)sel->clk_index >= sel->parent_count);
915	parent_sel = sel->parent_sel[sel->clk_index];
916
917	/* Clock needs to be enabled before changing the parent */
918	enabled = __is_clk_gate_enabled(ccu, gate);
919	if (!enabled && !__clk_gate(ccu, gate, true))
920		return -ENXIO;
921
922	/* Replace the selector value and record the result */
923	reg_val = __ccu_read(ccu, sel->offset);
924	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
925	__ccu_write(ccu, sel->offset, reg_val);
926
927	/* If the trigger fails we still want to disable the gate */
928	if (!__clk_trigger(ccu, trig))
929		ret = -EIO;
930
931	/* Disable the clock again if it was disabled to begin with */
932	if (!enabled && !__clk_gate(ccu, gate, false))
933		ret = ret ? ret : -ENXIO;	/* return first error */
934
935	return ret;
936}
937
938/*
939 * Initialize a selector by committing our desired state to hardware
940 * without the usual checks to see if it's already set up that way.
941 * Returns true if successful, false otherwise.
942 */
943static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
944			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
945{
946	if (!selector_exists(sel))
947		return true;
948	return !__sel_commit(ccu, gate, sel, trig);
949}
950
951/*
952 * Write a new value into a selector register to switch to a
953 * different parent clock.  Returns 0 on success, or an error code
954 * (from __sel_commit()) otherwise.
955 */
956static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
957			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
958			u8 index)
959{
960	unsigned long flags;
961	u8 previous;
962	int ret;
963
964	previous = sel->clk_index;
965	if (previous == index)
966		return 0;	/* No change */
967
968	sel->clk_index = index;
969
970	flags = ccu_lock(ccu);
971	__ccu_write_enable(ccu);
972
973	ret = __sel_commit(ccu, gate, sel, trig);
974
975	__ccu_write_disable(ccu);
976	ccu_unlock(ccu, flags);
977
978	if (ret)
979		sel->clk_index = previous;	/* Revert the change */
980
981	return ret;
982}
983
984/* Clock operations */
985
986static int kona_peri_clk_enable(struct clk_hw *hw)
987{
988	struct kona_clk *bcm_clk = to_kona_clk(hw);
989	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
990
991	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
992}
993
994static void kona_peri_clk_disable(struct clk_hw *hw)
995{
996	struct kona_clk *bcm_clk = to_kona_clk(hw);
997	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
998
999	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
1000}
1001
1002static int kona_peri_clk_is_enabled(struct clk_hw *hw)
1003{
1004	struct kona_clk *bcm_clk = to_kona_clk(hw);
1005	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
1006
1007	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
1008}
1009
1010static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
1011			unsigned long parent_rate)
1012{
1013	struct kona_clk *bcm_clk = to_kona_clk(hw);
1014	struct peri_clk_data *data = bcm_clk->u.peri;
1015
1016	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1017				parent_rate);
1018}
1019
1020static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1021			unsigned long *parent_rate)
1022{
1023	struct kona_clk *bcm_clk = to_kona_clk(hw);
1024	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1025
1026	if (!divider_exists(div))
1027		return __clk_get_rate(hw->clk);
1028
1029	/* Quietly avoid a zero rate */
1030	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1031				rate ? rate : 1, *parent_rate, NULL);
1032}
1033
1034static long kona_peri_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
1035		unsigned long *best_parent_rate, struct clk **best_parent)
1036{
1037	struct kona_clk *bcm_clk = to_kona_clk(hw);
1038	struct clk *clk = hw->clk;
1039	struct clk *current_parent;
1040	unsigned long parent_rate;
1041	unsigned long best_delta;
1042	unsigned long best_rate;
1043	u32 parent_count;
1044	u32 which;
1045
1046	/*
1047	 * If there is no other parent to choose, use the current one.
1048	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1049	 */
1050	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1051	parent_count = (u32)bcm_clk->init_data.num_parents;
1052	if (parent_count < 2)
1053		return kona_peri_clk_round_rate(hw, rate, best_parent_rate);
1054
1055	/* Unless we can do better, stick with current parent */
1056	current_parent = clk_get_parent(clk);
1057	parent_rate = __clk_get_rate(current_parent);
1058	best_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1059	best_delta = abs(best_rate - rate);
1060
1061	/* Check whether any other parent clock can produce a better result */
1062	for (which = 0; which < parent_count; which++) {
1063		struct clk *parent = clk_get_parent_by_index(clk, which);
1064		unsigned long delta;
1065		unsigned long other_rate;
1066
1067		BUG_ON(!parent);
1068		if (parent == current_parent)
1069			continue;
1070
1071		/* We don't support CLK_SET_RATE_PARENT */
1072		parent_rate = __clk_get_rate(parent);
1073		other_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1074		delta = abs(other_rate - rate);
1075		if (delta < best_delta) {
1076			best_delta = delta;
1077			best_rate = other_rate;
1078			*best_parent = parent;
1079			*best_parent_rate = parent_rate;
1080		}
1081	}
1082
1083	return best_rate;
1084}
1085
1086static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1087{
1088	struct kona_clk *bcm_clk = to_kona_clk(hw);
1089	struct peri_clk_data *data = bcm_clk->u.peri;
1090	struct bcm_clk_sel *sel = &data->sel;
1091	struct bcm_clk_trig *trig;
1092	int ret;
1093
1094	BUG_ON(index >= sel->parent_count);
1095
1096	/* If there's only one parent we don't require a selector */
1097	if (!selector_exists(sel))
1098		return 0;
1099
1100	/*
1101	 * The regular trigger is used by default, but if there's a
1102	 * pre-trigger we want to use that instead.
1103	 */
1104	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1105					       : &data->trig;
1106
1107	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1108	if (ret == -ENXIO) {
1109		pr_err("%s: gating failure for %s\n", __func__,
1110			bcm_clk->init_data.name);
1111		ret = -EIO;	/* Don't proliferate weird errors */
1112	} else if (ret == -EIO) {
1113		pr_err("%s: %strigger failed for %s\n", __func__,
1114			trig == &data->pre_trig ? "pre-" : "",
1115			bcm_clk->init_data.name);
1116	}
1117
1118	return ret;
1119}
1120
1121static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1122{
1123	struct kona_clk *bcm_clk = to_kona_clk(hw);
1124	struct peri_clk_data *data = bcm_clk->u.peri;
1125	u8 index;
1126
1127	index = selector_read_index(bcm_clk->ccu, &data->sel);
1128
1129	/* Not all callers would handle an out-of-range value gracefully */
1130	return index == BAD_CLK_INDEX ? 0 : index;
1131}
1132
1133static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1134			unsigned long parent_rate)
1135{
1136	struct kona_clk *bcm_clk = to_kona_clk(hw);
1137	struct peri_clk_data *data = bcm_clk->u.peri;
1138	struct bcm_clk_div *div = &data->div;
1139	u64 scaled_div = 0;
1140	int ret;
1141
1142	if (parent_rate > (unsigned long)LONG_MAX)
1143		return -EINVAL;
1144
1145	if (rate == __clk_get_rate(hw->clk))
1146		return 0;
1147
1148	if (!divider_exists(div))
1149		return rate == parent_rate ? 0 : -EINVAL;
1150
1151	/*
1152	 * A fixed divider can't be changed.  (Nor can a fixed
1153	 * pre-divider be, but for now we never actually try to
1154	 * change that.)  Tolerate a request for a no-op change.
1155	 */
1156	if (divider_is_fixed(&data->div))
1157		return rate == parent_rate ? 0 : -EINVAL;
1158
1159	/*
1160	 * Get the scaled divisor value needed to achieve a clock
1161	 * rate as close as possible to what was requested, given
1162	 * the parent clock rate supplied.
1163	 */
1164	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1165				rate ? rate : 1, parent_rate, &scaled_div);
1166
1167	/*
1168	 * We aren't updating any pre-divider at this point, so
1169	 * we'll use the regular trigger.
1170	 */
1171	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1172				&data->trig, scaled_div);
1173	if (ret == -ENXIO) {
1174		pr_err("%s: gating failure for %s\n", __func__,
1175			bcm_clk->init_data.name);
1176		ret = -EIO;	/* Don't proliferate weird errors */
1177	} else if (ret == -EIO) {
1178		pr_err("%s: trigger failed for %s\n", __func__,
1179			bcm_clk->init_data.name);
1180	}
1181
1182	return ret;
1183}
1184
1185struct clk_ops kona_peri_clk_ops = {
1186	.enable = kona_peri_clk_enable,
1187	.disable = kona_peri_clk_disable,
1188	.is_enabled = kona_peri_clk_is_enabled,
1189	.recalc_rate = kona_peri_clk_recalc_rate,
1190	.determine_rate = kona_peri_clk_determine_rate,
1191	.set_parent = kona_peri_clk_set_parent,
1192	.get_parent = kona_peri_clk_get_parent,
1193	.set_rate = kona_peri_clk_set_rate,
1194};
1195
1196/* Put a peripheral clock into its initial state */
1197static bool __peri_clk_init(struct kona_clk *bcm_clk)
1198{
1199	struct ccu_data *ccu = bcm_clk->ccu;
1200	struct peri_clk_data *peri = bcm_clk->u.peri;
1201	const char *name = bcm_clk->init_data.name;
1202	struct bcm_clk_trig *trig;
1203
1204	BUG_ON(bcm_clk->type != bcm_clk_peri);
1205
1206	if (!policy_init(ccu, &peri->policy)) {
1207		pr_err("%s: error initializing policy for %s\n",
1208			__func__, name);
1209		return false;
1210	}
1211	if (!gate_init(ccu, &peri->gate)) {
1212		pr_err("%s: error initializing gate for %s\n", __func__, name);
1213		return false;
1214	}
1215	if (!hyst_init(ccu, &peri->hyst)) {
1216		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1217		return false;
1218	}
1219	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1220		pr_err("%s: error initializing divider for %s\n", __func__,
1221			name);
1222		return false;
1223	}
1224
1225	/*
1226	 * For the pre-divider and selector, the pre-trigger is used
1227	 * if it's present, otherwise we just use the regular trigger.
1228	 */
1229	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1230					       : &peri->trig;
1231
1232	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1233		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1234			name);
1235		return false;
1236	}
1237
1238	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1239		pr_err("%s: error initializing selector for %s\n", __func__,
1240			name);
1241		return false;
1242	}
1243
1244	return true;
1245}
1246
1247static bool __kona_clk_init(struct kona_clk *bcm_clk)
1248{
1249	switch (bcm_clk->type) {
1250	case bcm_clk_peri:
1251		return __peri_clk_init(bcm_clk);
1252	default:
1253		BUG();
1254	}
1255	return -EINVAL;
1256}
1257
1258/* Set a CCU and all its clocks into their desired initial state */
1259bool __init kona_ccu_init(struct ccu_data *ccu)
1260{
1261	unsigned long flags;
1262	unsigned int which;
1263	struct clk **clks = ccu->clk_data.clks;
1264	bool success = true;
1265
1266	flags = ccu_lock(ccu);
1267	__ccu_write_enable(ccu);
1268
1269	for (which = 0; which < ccu->clk_data.clk_num; which++) {
1270		struct kona_clk *bcm_clk;
1271
1272		if (!clks[which])
1273			continue;
1274		bcm_clk = to_kona_clk(__clk_get_hw(clks[which]));
1275		success &= __kona_clk_init(bcm_clk);
1276	}
1277
1278	__ccu_write_disable(ccu);
1279	ccu_unlock(ccu, flags);
1280	return success;
1281}
1282