[go: nahoru, domu]

1/*
2  A FORE Systems 200E-series driver for ATM on Linux.
3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7  This driver simultaneously supports PCA-200E and SBA-200E adapters
8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10  This program is free software; you can redistribute it and/or modify
11  it under the terms of the GNU General Public License as published by
12  the Free Software Foundation; either version 2 of the License, or
13  (at your option) any later version.
14
15  This program is distributed in the hope that it will be useful,
16  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  GNU General Public License for more details.
19
20  You should have received a copy of the GNU General Public License
21  along with this program; if not, write to the Free Software
22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23*/
24
25
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
39#include <linux/firmware.h>
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <asm/uaccess.h>
47#include <linux/atomic.h>
48
49#ifdef CONFIG_SBUS
50#include <linux/of.h>
51#include <linux/of_device.h>
52#include <asm/idprom.h>
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E         "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                  printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...)  do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97#if 1
98#define ASSERT(expr)     if (!(expr)) { \
99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100				    __func__, __LINE__, #expr); \
101			     panic(FORE200E "%s", __func__); \
102			 }
103#else
104#define ASSERT(expr)     do {} while (0)
105#endif
106
107
108static const struct atmdev_ops   fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139    switch(aal) {
140    case FORE200E_AAL0:  return ATM_AAL0;
141    case FORE200E_AAL34: return ATM_AAL34;
142    case FORE200E_AAL5:  return ATM_AAL5;
143    }
144
145    return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153    switch(aal) {
154    case ATM_AAL0:  return FORE200E_AAL0;
155    case ATM_AAL34: return FORE200E_AAL34;
156    case ATM_AAL1:
157    case ATM_AAL2:
158    case ATM_AAL5:  return FORE200E_AAL5;
159    }
160
161    return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
168    static char str[8];
169    sprintf(str, "%d", irq);
170    return str;
171}
172
173
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175   between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180    unsigned long offset = 0;
181
182    if (alignment <= sizeof(int))
183	alignment = 0;
184
185    chunk->alloc_size = size + alignment;
186    chunk->align_size = size;
187    chunk->direction  = direction;
188
189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190    if (chunk->alloc_addr == NULL)
191	return -ENOMEM;
192
193    if (alignment > 0)
194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196    chunk->align_addr = chunk->alloc_addr + offset;
197
198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200    return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211    kfree(chunk->alloc_addr);
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219    while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227    int           ok;
228
229    mb();
230    do {
231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232	    break;
233
234    } while (time_before(jiffies, timeout));
235
236#if 1
237    if (!ok) {
238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239	       *addr, val);
240    }
241#endif
242
243    return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251    int           ok;
252
253    do {
254	if ((ok = (fore200e->bus->read(addr) == val)))
255	    break;
256
257    } while (time_before(jiffies, timeout));
258
259#if 1
260    if (!ok) {
261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262	       fore200e->bus->read(addr), val);
263    }
264#endif
265
266    return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273    int scheme, magn, nbr;
274    struct buffer* buffer;
275
276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283		    struct chunk* data = &buffer[ nbr ].data;
284
285		    if (data->alloc_addr != NULL)
286			fore200e_chunk_free(fore200e, data);
287		}
288	    }
289	}
290    }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297    int scheme, magn;
298
299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305	    if (status->alloc_addr)
306		fore200e->bus->dma_chunk_free(fore200e, status);
307
308	    if (rbd_block->alloc_addr)
309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310	}
311    }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318    int ok;
319
320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324    fore200e->bus->reset(fore200e);
325
326    if (diag) {
327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328	if (ok == 0) {
329
330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
331	    return -ENODEV;
332	}
333
334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336	fore200e->state = FORE200E_STATE_RESET;
337    }
338
339    return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347	   fore200e->name, fore200e->phys_base,
348	   fore200e_irq_itoa(fore200e->irq));
349
350    if (fore200e->state > FORE200E_STATE_RESET) {
351	/* first, reset the board to prevent further interrupts or data transfers */
352	fore200e_reset(fore200e, 0);
353    }
354
355    /* then, release all allocated resources */
356    switch(fore200e->state) {
357
358    case FORE200E_STATE_COMPLETE:
359	kfree(fore200e->stats);
360
361    case FORE200E_STATE_IRQ:
362	free_irq(fore200e->irq, fore200e->atm_dev);
363
364    case FORE200E_STATE_ALLOC_BUF:
365	fore200e_free_rx_buf(fore200e);
366
367    case FORE200E_STATE_INIT_BSQ:
368	fore200e_uninit_bs_queue(fore200e);
369
370    case FORE200E_STATE_INIT_RXQ:
371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374    case FORE200E_STATE_INIT_TXQ:
375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378    case FORE200E_STATE_INIT_CMDQ:
379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381    case FORE200E_STATE_INITIALIZE:
382	/* nothing to do for that state */
383
384    case FORE200E_STATE_START_FW:
385	/* nothing to do for that state */
386
387    case FORE200E_STATE_RESET:
388	/* nothing to do for that state */
389
390    case FORE200E_STATE_MAP:
391	fore200e->bus->unmap(fore200e);
392
393    case FORE200E_STATE_CONFIGURE:
394	/* nothing to do for that state */
395
396    case FORE200E_STATE_REGISTER:
397	/* XXX shouldn't we *start* by deregistering the device? */
398	atm_dev_deregister(fore200e->atm_dev);
399
400    case FORE200E_STATE_BLANK:
401	/* nothing to do for that state */
402	break;
403    }
404}
405
406
407#ifdef CONFIG_PCI
408
409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410{
411    /* on big-endian hosts, the board is configured to convert
412       the endianess of slave RAM accesses  */
413    return le32_to_cpu(readl(addr));
414}
415
416
417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418{
419    /* on big-endian hosts, the board is configured to convert
420       the endianess of slave RAM accesses  */
421    writel(cpu_to_le32(val), addr);
422}
423
424
425static u32
426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427{
428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
429
430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431	    virt_addr, size, direction, dma_addr);
432
433    return dma_addr;
434}
435
436
437static void
438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439{
440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441	    dma_addr, size, direction);
442
443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
444}
445
446
447static void
448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449{
450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
453}
454
455static void
456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
461}
462
463
464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467static int
468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469			     int size, int nbr, int alignment)
470{
471    /* returned chunks are page-aligned */
472    chunk->alloc_size = size * nbr;
473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
474					     chunk->alloc_size,
475					     &chunk->dma_addr);
476
477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
478	return -ENOMEM;
479
480    chunk->align_addr = chunk->alloc_addr;
481
482    return 0;
483}
484
485
486/* free a DMA consistent chunk of memory */
487
488static void
489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
490{
491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
492			chunk->alloc_size,
493			chunk->alloc_addr,
494			chunk->dma_addr);
495}
496
497
498static int
499fore200e_pca_irq_check(struct fore200e* fore200e)
500{
501    /* this is a 1 bit register */
502    int irq_posted = readl(fore200e->regs.pca.psr);
503
504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
506	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
507    }
508#endif
509
510    return irq_posted;
511}
512
513
514static void
515fore200e_pca_irq_ack(struct fore200e* fore200e)
516{
517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
518}
519
520
521static void
522fore200e_pca_reset(struct fore200e* fore200e)
523{
524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
525    fore200e_spin(10);
526    writel(0, fore200e->regs.pca.hcr);
527}
528
529
530static int fore200e_pca_map(struct fore200e* fore200e)
531{
532    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
533
534    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
535
536    if (fore200e->virt_base == NULL) {
537	printk(FORE200E "can't map device %s\n", fore200e->name);
538	return -EFAULT;
539    }
540
541    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
542
543    /* gain access to the PCA specific registers  */
544    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
545    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
546    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
547
548    fore200e->state = FORE200E_STATE_MAP;
549    return 0;
550}
551
552
553static void
554fore200e_pca_unmap(struct fore200e* fore200e)
555{
556    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
557
558    if (fore200e->virt_base != NULL)
559	iounmap(fore200e->virt_base);
560}
561
562
563static int fore200e_pca_configure(struct fore200e *fore200e)
564{
565    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
566    u8              master_ctrl, latency;
567
568    DPRINTK(2, "device %s being configured\n", fore200e->name);
569
570    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
571	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
572	return -EIO;
573    }
574
575    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
576
577    master_ctrl = master_ctrl
578#if defined(__BIG_ENDIAN)
579	/* request the PCA board to convert the endianess of slave RAM accesses */
580	| PCA200E_CTRL_CONVERT_ENDIAN
581#endif
582#if 0
583        | PCA200E_CTRL_DIS_CACHE_RD
584        | PCA200E_CTRL_DIS_WRT_INVAL
585        | PCA200E_CTRL_ENA_CONT_REQ_MODE
586        | PCA200E_CTRL_2_CACHE_WRT_INVAL
587#endif
588	| PCA200E_CTRL_LARGE_PCI_BURSTS;
589
590    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
591
592    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
593       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
594       this may impact the performances of other PCI devices on the same bus, though */
595    latency = 192;
596    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
597
598    fore200e->state = FORE200E_STATE_CONFIGURE;
599    return 0;
600}
601
602
603static int __init
604fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
605{
606    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
607    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
608    struct prom_opcode      opcode;
609    int                     ok;
610    u32                     prom_dma;
611
612    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
613
614    opcode.opcode = OPCODE_GET_PROM;
615    opcode.pad    = 0;
616
617    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
618
619    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
620
621    *entry->status = STATUS_PENDING;
622
623    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
624
625    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
626
627    *entry->status = STATUS_FREE;
628
629    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
630
631    if (ok == 0) {
632	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
633	return -EIO;
634    }
635
636#if defined(__BIG_ENDIAN)
637
638#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
639
640    /* MAC address is stored as little-endian */
641    swap_here(&prom->mac_addr[0]);
642    swap_here(&prom->mac_addr[4]);
643#endif
644
645    return 0;
646}
647
648
649static int
650fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
651{
652    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
653
654    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
655		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
656}
657
658#endif /* CONFIG_PCI */
659
660
661#ifdef CONFIG_SBUS
662
663static u32 fore200e_sba_read(volatile u32 __iomem *addr)
664{
665    return sbus_readl(addr);
666}
667
668static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
669{
670    sbus_writel(val, addr);
671}
672
673static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
674{
675	struct platform_device *op = fore200e->bus_dev;
676	u32 dma_addr;
677
678	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
679
680	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
681		virt_addr, size, direction, dma_addr);
682
683	return dma_addr;
684}
685
686static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
687{
688	struct platform_device *op = fore200e->bus_dev;
689
690	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
691		dma_addr, size, direction);
692
693	dma_unmap_single(&op->dev, dma_addr, size, direction);
694}
695
696static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
697{
698	struct platform_device *op = fore200e->bus_dev;
699
700	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
701
702	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
703}
704
705static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
706{
707	struct platform_device *op = fore200e->bus_dev;
708
709	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
710
711	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
712}
713
714/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
715 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
716 */
717static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
718					int size, int nbr, int alignment)
719{
720	struct platform_device *op = fore200e->bus_dev;
721
722	chunk->alloc_size = chunk->align_size = size * nbr;
723
724	/* returned chunks are page-aligned */
725	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
726					       &chunk->dma_addr, GFP_ATOMIC);
727
728	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
729		return -ENOMEM;
730
731	chunk->align_addr = chunk->alloc_addr;
732
733	return 0;
734}
735
736/* free a DVMA consistent chunk of memory */
737static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
738{
739	struct platform_device *op = fore200e->bus_dev;
740
741	dma_free_coherent(&op->dev, chunk->alloc_size,
742			  chunk->alloc_addr, chunk->dma_addr);
743}
744
745static void fore200e_sba_irq_enable(struct fore200e *fore200e)
746{
747	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
748	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
749}
750
751static int fore200e_sba_irq_check(struct fore200e *fore200e)
752{
753	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
754}
755
756static void fore200e_sba_irq_ack(struct fore200e *fore200e)
757{
758	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
759	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
760}
761
762static void fore200e_sba_reset(struct fore200e *fore200e)
763{
764	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
765	fore200e_spin(10);
766	fore200e->bus->write(0, fore200e->regs.sba.hcr);
767}
768
769static int __init fore200e_sba_map(struct fore200e *fore200e)
770{
771	struct platform_device *op = fore200e->bus_dev;
772	unsigned int bursts;
773
774	/* gain access to the SBA specific registers  */
775	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
776	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
777	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
778	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
779
780	if (!fore200e->virt_base) {
781		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
782		return -EFAULT;
783	}
784
785	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
786
787	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
788
789	/* get the supported DVMA burst sizes */
790	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
791
792	if (sbus_can_dma_64bit())
793		sbus_set_sbus64(&op->dev, bursts);
794
795	fore200e->state = FORE200E_STATE_MAP;
796	return 0;
797}
798
799static void fore200e_sba_unmap(struct fore200e *fore200e)
800{
801	struct platform_device *op = fore200e->bus_dev;
802
803	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
804	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
805	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
806	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
807}
808
809static int __init fore200e_sba_configure(struct fore200e *fore200e)
810{
811	fore200e->state = FORE200E_STATE_CONFIGURE;
812	return 0;
813}
814
815static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
816{
817	struct platform_device *op = fore200e->bus_dev;
818	const u8 *prop;
819	int len;
820
821	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
822	if (!prop)
823		return -ENODEV;
824	memcpy(&prom->mac_addr[4], prop, 4);
825
826	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
827	if (!prop)
828		return -ENODEV;
829	memcpy(&prom->mac_addr[2], prop, 4);
830
831	prom->serial_number = of_getintprop_default(op->dev.of_node,
832						    "serialnumber", 0);
833	prom->hw_revision = of_getintprop_default(op->dev.of_node,
834						  "promversion", 0);
835
836	return 0;
837}
838
839static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
840{
841	struct platform_device *op = fore200e->bus_dev;
842	const struct linux_prom_registers *regs;
843
844	regs = of_get_property(op->dev.of_node, "reg", NULL);
845
846	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
847		       (regs ? regs->which_io : 0), op->dev.of_node->name);
848}
849#endif /* CONFIG_SBUS */
850
851
852static void
853fore200e_tx_irq(struct fore200e* fore200e)
854{
855    struct host_txq*        txq = &fore200e->host_txq;
856    struct host_txq_entry*  entry;
857    struct atm_vcc*         vcc;
858    struct fore200e_vc_map* vc_map;
859
860    if (fore200e->host_txq.txing == 0)
861	return;
862
863    for (;;) {
864
865	entry = &txq->host_entry[ txq->tail ];
866
867        if ((*entry->status & STATUS_COMPLETE) == 0) {
868	    break;
869	}
870
871	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
872		entry, txq->tail, entry->vc_map, entry->skb);
873
874	/* free copy of misaligned data */
875	kfree(entry->data);
876
877	/* remove DMA mapping */
878	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
879				 DMA_TO_DEVICE);
880
881	vc_map = entry->vc_map;
882
883	/* vcc closed since the time the entry was submitted for tx? */
884	if ((vc_map->vcc == NULL) ||
885	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
886
887	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
888		    fore200e->atm_dev->number);
889
890	    dev_kfree_skb_any(entry->skb);
891	}
892	else {
893	    ASSERT(vc_map->vcc);
894
895	    /* vcc closed then immediately re-opened? */
896	    if (vc_map->incarn != entry->incarn) {
897
898		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
899		   if the same vcc is immediately re-opened, those pending PDUs must
900		   not be popped after the completion of their emission, as they refer
901		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
902		   would be decremented by the size of the (unrelated) skb, possibly
903		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
904		   we thus bind the tx entry to the current incarnation of the vcc
905		   when the entry is submitted for tx. When the tx later completes,
906		   if the incarnation number of the tx entry does not match the one
907		   of the vcc, then this implies that the vcc has been closed then re-opened.
908		   we thus just drop the skb here. */
909
910		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
911			fore200e->atm_dev->number);
912
913		dev_kfree_skb_any(entry->skb);
914	    }
915	    else {
916		vcc = vc_map->vcc;
917		ASSERT(vcc);
918
919		/* notify tx completion */
920		if (vcc->pop) {
921		    vcc->pop(vcc, entry->skb);
922		}
923		else {
924		    dev_kfree_skb_any(entry->skb);
925		}
926#if 1
927		/* race fixed by the above incarnation mechanism, but... */
928		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
929		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
930		}
931#endif
932		/* check error condition */
933		if (*entry->status & STATUS_ERROR)
934		    atomic_inc(&vcc->stats->tx_err);
935		else
936		    atomic_inc(&vcc->stats->tx);
937	    }
938	}
939
940	*entry->status = STATUS_FREE;
941
942	fore200e->host_txq.txing--;
943
944	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
945    }
946}
947
948
949#ifdef FORE200E_BSQ_DEBUG
950int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
951{
952    struct buffer* buffer;
953    int count = 0;
954
955    buffer = bsq->freebuf;
956    while (buffer) {
957
958	if (buffer->supplied) {
959	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
960		   where, scheme, magn, buffer->index);
961	}
962
963	if (buffer->magn != magn) {
964	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
965		   where, scheme, magn, buffer->index, buffer->magn);
966	}
967
968	if (buffer->scheme != scheme) {
969	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
970		   where, scheme, magn, buffer->index, buffer->scheme);
971	}
972
973	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
974	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
975		   where, scheme, magn, buffer->index);
976	}
977
978	count++;
979	buffer = buffer->next;
980    }
981
982    if (count != bsq->freebuf_count) {
983	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
984	       where, scheme, magn, count, bsq->freebuf_count);
985    }
986    return 0;
987}
988#endif
989
990
991static void
992fore200e_supply(struct fore200e* fore200e)
993{
994    int  scheme, magn, i;
995
996    struct host_bsq*       bsq;
997    struct host_bsq_entry* entry;
998    struct buffer*         buffer;
999
1000    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1001	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1002
1003	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1004
1005#ifdef FORE200E_BSQ_DEBUG
1006	    bsq_audit(1, bsq, scheme, magn);
1007#endif
1008	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1009
1010		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1011			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1012
1013		entry = &bsq->host_entry[ bsq->head ];
1014
1015		for (i = 0; i < RBD_BLK_SIZE; i++) {
1016
1017		    /* take the first buffer in the free buffer list */
1018		    buffer = bsq->freebuf;
1019		    if (!buffer) {
1020			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1021			       scheme, magn, bsq->freebuf_count);
1022			return;
1023		    }
1024		    bsq->freebuf = buffer->next;
1025
1026#ifdef FORE200E_BSQ_DEBUG
1027		    if (buffer->supplied)
1028			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1029			       scheme, magn, buffer->index);
1030		    buffer->supplied = 1;
1031#endif
1032		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1033		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1034		}
1035
1036		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1037
1038 		/* decrease accordingly the number of free rx buffers */
1039		bsq->freebuf_count -= RBD_BLK_SIZE;
1040
1041		*entry->status = STATUS_PENDING;
1042		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1043	    }
1044	}
1045    }
1046}
1047
1048
1049static int
1050fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1051{
1052    struct sk_buff*      skb;
1053    struct buffer*       buffer;
1054    struct fore200e_vcc* fore200e_vcc;
1055    int                  i, pdu_len = 0;
1056#ifdef FORE200E_52BYTE_AAL0_SDU
1057    u32                  cell_header = 0;
1058#endif
1059
1060    ASSERT(vcc);
1061
1062    fore200e_vcc = FORE200E_VCC(vcc);
1063    ASSERT(fore200e_vcc);
1064
1065#ifdef FORE200E_52BYTE_AAL0_SDU
1066    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1067
1068	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1069	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1070                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1071                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1072                       rpd->atm_header.clp;
1073	pdu_len = 4;
1074    }
1075#endif
1076
1077    /* compute total PDU length */
1078    for (i = 0; i < rpd->nseg; i++)
1079	pdu_len += rpd->rsd[ i ].length;
1080
1081    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1082    if (skb == NULL) {
1083	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1084
1085	atomic_inc(&vcc->stats->rx_drop);
1086	return -ENOMEM;
1087    }
1088
1089    __net_timestamp(skb);
1090
1091#ifdef FORE200E_52BYTE_AAL0_SDU
1092    if (cell_header) {
1093	*((u32*)skb_put(skb, 4)) = cell_header;
1094    }
1095#endif
1096
1097    /* reassemble segments */
1098    for (i = 0; i < rpd->nseg; i++) {
1099
1100	/* rebuild rx buffer address from rsd handle */
1101	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1102
1103	/* Make device DMA transfer visible to CPU.  */
1104	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1105
1106	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1107
1108	/* Now let the device get at it again.  */
1109	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1110    }
1111
1112    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1113
1114    if (pdu_len < fore200e_vcc->rx_min_pdu)
1115	fore200e_vcc->rx_min_pdu = pdu_len;
1116    if (pdu_len > fore200e_vcc->rx_max_pdu)
1117	fore200e_vcc->rx_max_pdu = pdu_len;
1118    fore200e_vcc->rx_pdu++;
1119
1120    /* push PDU */
1121    if (atm_charge(vcc, skb->truesize) == 0) {
1122
1123	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1124		vcc->itf, vcc->vpi, vcc->vci);
1125
1126	dev_kfree_skb_any(skb);
1127
1128	atomic_inc(&vcc->stats->rx_drop);
1129	return -ENOMEM;
1130    }
1131
1132    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1133
1134    vcc->push(vcc, skb);
1135    atomic_inc(&vcc->stats->rx);
1136
1137    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1138
1139    return 0;
1140}
1141
1142
1143static void
1144fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145{
1146    struct host_bsq* bsq;
1147    struct buffer*   buffer;
1148    int              i;
1149
1150    for (i = 0; i < rpd->nseg; i++) {
1151
1152	/* rebuild rx buffer address from rsd handle */
1153	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157#ifdef FORE200E_BSQ_DEBUG
1158	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160	if (buffer->supplied == 0)
1161	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162		   buffer->scheme, buffer->magn, buffer->index);
1163	buffer->supplied = 0;
1164#endif
1165
1166	/* re-insert the buffer into the free buffer list */
1167	buffer->next = bsq->freebuf;
1168	bsq->freebuf = buffer;
1169
1170	/* then increment the number of free rx buffers */
1171	bsq->freebuf_count++;
1172    }
1173}
1174
1175
1176static void
1177fore200e_rx_irq(struct fore200e* fore200e)
1178{
1179    struct host_rxq*        rxq = &fore200e->host_rxq;
1180    struct host_rxq_entry*  entry;
1181    struct atm_vcc*         vcc;
1182    struct fore200e_vc_map* vc_map;
1183
1184    for (;;) {
1185
1186	entry = &rxq->host_entry[ rxq->head ];
1187
1188	/* no more received PDUs */
1189	if ((*entry->status & STATUS_COMPLETE) == 0)
1190	    break;
1191
1192	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194	if ((vc_map->vcc == NULL) ||
1195	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198		    fore200e->atm_dev->number,
1199		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200	}
1201	else {
1202	    vcc = vc_map->vcc;
1203	    ASSERT(vcc);
1204
1205	    if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208	    }
1209	    else {
1210		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211			fore200e->atm_dev->number,
1212			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213		atomic_inc(&vcc->stats->rx_err);
1214	    }
1215	}
1216
1217	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219	fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221	/* rewrite the rpd address to ack the received PDU */
1222	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223	*entry->status = STATUS_FREE;
1224
1225	fore200e_supply(fore200e);
1226    }
1227}
1228
1229
1230#ifndef FORE200E_USE_TASKLET
1231static void
1232fore200e_irq(struct fore200e* fore200e)
1233{
1234    unsigned long flags;
1235
1236    spin_lock_irqsave(&fore200e->q_lock, flags);
1237    fore200e_rx_irq(fore200e);
1238    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240    spin_lock_irqsave(&fore200e->q_lock, flags);
1241    fore200e_tx_irq(fore200e);
1242    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243}
1244#endif
1245
1246
1247static irqreturn_t
1248fore200e_interrupt(int irq, void* dev)
1249{
1250    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252    if (fore200e->bus->irq_check(fore200e) == 0) {
1253
1254	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255	return IRQ_NONE;
1256    }
1257    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259#ifdef FORE200E_USE_TASKLET
1260    tasklet_schedule(&fore200e->tx_tasklet);
1261    tasklet_schedule(&fore200e->rx_tasklet);
1262#else
1263    fore200e_irq(fore200e);
1264#endif
1265
1266    fore200e->bus->irq_ack(fore200e);
1267    return IRQ_HANDLED;
1268}
1269
1270
1271#ifdef FORE200E_USE_TASKLET
1272static void
1273fore200e_tx_tasklet(unsigned long data)
1274{
1275    struct fore200e* fore200e = (struct fore200e*) data;
1276    unsigned long flags;
1277
1278    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280    spin_lock_irqsave(&fore200e->q_lock, flags);
1281    fore200e_tx_irq(fore200e);
1282    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283}
1284
1285
1286static void
1287fore200e_rx_tasklet(unsigned long data)
1288{
1289    struct fore200e* fore200e = (struct fore200e*) data;
1290    unsigned long    flags;
1291
1292    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294    spin_lock_irqsave(&fore200e->q_lock, flags);
1295    fore200e_rx_irq((struct fore200e*) data);
1296    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297}
1298#endif
1299
1300
1301static int
1302fore200e_select_scheme(struct atm_vcc* vcc)
1303{
1304    /* fairly balance the VCs over (identical) buffer schemes */
1305    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310    return scheme;
1311}
1312
1313
1314static int
1315fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316{
1317    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319    struct activate_opcode   activ_opcode;
1320    struct deactivate_opcode deactiv_opcode;
1321    struct vpvc              vpvc;
1322    int                      ok;
1323    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326
1327    if (activate) {
1328	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329
1330	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331	activ_opcode.aal    = aal;
1332	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333	activ_opcode.pad    = 0;
1334    }
1335    else {
1336	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337	deactiv_opcode.pad    = 0;
1338    }
1339
1340    vpvc.vci = vcc->vci;
1341    vpvc.vpi = vcc->vpi;
1342
1343    *entry->status = STATUS_PENDING;
1344
1345    if (activate) {
1346
1347#ifdef FORE200E_52BYTE_AAL0_SDU
1348	mtu = 48;
1349#endif
1350	/* the MTU is not used by the cp, except in the case of AAL0 */
1351	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354    }
1355    else {
1356	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358    }
1359
1360    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362    *entry->status = STATUS_FREE;
1363
1364    if (ok == 0) {
1365	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367	return -EIO;
1368    }
1369
1370    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1371	    activate ? "open" : "clos");
1372
1373    return 0;
1374}
1375
1376
1377#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378
1379static void
1380fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381{
1382    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383
1384	/* compute the data cells to idle cells ratio from the tx PCR */
1385	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387    }
1388    else {
1389	/* disable rate control */
1390	rate->data_cells = rate->idle_cells = 0;
1391    }
1392}
1393
1394
1395static int
1396fore200e_open(struct atm_vcc *vcc)
1397{
1398    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399    struct fore200e_vcc*    fore200e_vcc;
1400    struct fore200e_vc_map* vc_map;
1401    unsigned long	    flags;
1402    int			    vci = vcc->vci;
1403    short		    vpi = vcc->vpi;
1404
1405    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408    spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411    if (vc_map->vcc) {
1412
1413	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415	printk(FORE200E "VC %d.%d.%d already in use\n",
1416	       fore200e->atm_dev->number, vpi, vci);
1417
1418	return -EINVAL;
1419    }
1420
1421    vc_map->vcc = vcc;
1422
1423    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1425    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426    if (fore200e_vcc == NULL) {
1427	vc_map->vcc = NULL;
1428	return -ENOMEM;
1429    }
1430
1431    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438
1439    /* pseudo-CBR bandwidth requested? */
1440    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441
1442	mutex_lock(&fore200e->rate_mtx);
1443	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444	    mutex_unlock(&fore200e->rate_mtx);
1445
1446	    kfree(fore200e_vcc);
1447	    vc_map->vcc = NULL;
1448	    return -EAGAIN;
1449	}
1450
1451	/* reserve bandwidth */
1452	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453	mutex_unlock(&fore200e->rate_mtx);
1454    }
1455
1456    vcc->itf = vcc->dev->number;
1457
1458    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459    set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461    vcc->dev_data = fore200e_vcc;
1462
1463    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465	vc_map->vcc = NULL;
1466
1467	clear_bit(ATM_VF_ADDR, &vcc->flags);
1468	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470	vcc->dev_data = NULL;
1471
1472	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1474	kfree(fore200e_vcc);
1475	return -EINVAL;
1476    }
1477
1478    /* compute rate control parameters */
1479    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480
1481	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482	set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1487		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488    }
1489
1490    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493
1494    /* new incarnation of the vcc */
1495    vc_map->incarn = ++fore200e->incarn_count;
1496
1497    /* VC unusable before this flag is set */
1498    set_bit(ATM_VF_READY, &vcc->flags);
1499
1500    return 0;
1501}
1502
1503
1504static void
1505fore200e_close(struct atm_vcc* vcc)
1506{
1507    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1508    struct fore200e_vcc*    fore200e_vcc;
1509    struct fore200e_vc_map* vc_map;
1510    unsigned long           flags;
1511
1512    ASSERT(vcc);
1513    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518    clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522    spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526    /* the vc is no longer considered as "in use" by fore200e_open() */
1527    vc_map->vcc = NULL;
1528
1529    vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531    fore200e_vcc = FORE200E_VCC(vcc);
1532    vcc->dev_data = NULL;
1533
1534    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536    /* release reserved bandwidth, if any */
1537    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
1539	mutex_lock(&fore200e->rate_mtx);
1540	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541	mutex_unlock(&fore200e->rate_mtx);
1542
1543	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544    }
1545
1546    clear_bit(ATM_VF_ADDR, &vcc->flags);
1547    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549    ASSERT(fore200e_vcc);
1550    kfree(fore200e_vcc);
1551}
1552
1553
1554static int
1555fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556{
1557    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1558    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1559    struct fore200e_vc_map* vc_map;
1560    struct host_txq*        txq          = &fore200e->host_txq;
1561    struct host_txq_entry*  entry;
1562    struct tpd*             tpd;
1563    struct tpd_haddr        tpd_haddr;
1564    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1565    int                     tx_copy      = 0;
1566    int                     tx_len       = skb->len;
1567    u32*                    cell_header  = NULL;
1568    unsigned char*          skb_data;
1569    int                     skb_len;
1570    unsigned char*          data;
1571    unsigned long           flags;
1572
1573    ASSERT(vcc);
1574    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1575    ASSERT(fore200e);
1576    ASSERT(fore200e_vcc);
1577
1578    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1579	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1580	dev_kfree_skb_any(skb);
1581	return -EINVAL;
1582    }
1583
1584#ifdef FORE200E_52BYTE_AAL0_SDU
1585    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1586	cell_header = (u32*) skb->data;
1587	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1588	skb_len     = tx_len = skb->len  - 4;
1589
1590	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1591    }
1592    else
1593#endif
1594    {
1595	skb_data = skb->data;
1596	skb_len  = skb->len;
1597    }
1598
1599    if (((unsigned long)skb_data) & 0x3) {
1600
1601	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1602	tx_copy = 1;
1603	tx_len  = skb_len;
1604    }
1605
1606    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1607
1608        /* this simply NUKES the PCA board */
1609	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1610	tx_copy = 1;
1611	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1612    }
1613
1614    if (tx_copy) {
1615	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1616	if (data == NULL) {
1617	    if (vcc->pop) {
1618		vcc->pop(vcc, skb);
1619	    }
1620	    else {
1621		dev_kfree_skb_any(skb);
1622	    }
1623	    return -ENOMEM;
1624	}
1625
1626	memcpy(data, skb_data, skb_len);
1627	if (skb_len < tx_len)
1628	    memset(data + skb_len, 0x00, tx_len - skb_len);
1629    }
1630    else {
1631	data = skb_data;
1632    }
1633
1634    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1635    ASSERT(vc_map->vcc == vcc);
1636
1637  retry_here:
1638
1639    spin_lock_irqsave(&fore200e->q_lock, flags);
1640
1641    entry = &txq->host_entry[ txq->head ];
1642
1643    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1644
1645	/* try to free completed tx queue entries */
1646	fore200e_tx_irq(fore200e);
1647
1648	if (*entry->status != STATUS_FREE) {
1649
1650	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1651
1652	    /* retry once again? */
1653	    if (--retry > 0) {
1654		udelay(50);
1655		goto retry_here;
1656	    }
1657
1658	    atomic_inc(&vcc->stats->tx_err);
1659
1660	    fore200e->tx_sat++;
1661	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1662		    fore200e->name, fore200e->cp_queues->heartbeat);
1663	    if (vcc->pop) {
1664		vcc->pop(vcc, skb);
1665	    }
1666	    else {
1667		dev_kfree_skb_any(skb);
1668	    }
1669
1670	    if (tx_copy)
1671		kfree(data);
1672
1673	    return -ENOBUFS;
1674	}
1675    }
1676
1677    entry->incarn = vc_map->incarn;
1678    entry->vc_map = vc_map;
1679    entry->skb    = skb;
1680    entry->data   = tx_copy ? data : NULL;
1681
1682    tpd = entry->tpd;
1683    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1684    tpd->tsd[ 0 ].length = tx_len;
1685
1686    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1687    txq->txing++;
1688
1689    /* The dma_map call above implies a dma_sync so the device can use it,
1690     * thus no explicit dma_sync call is necessary here.
1691     */
1692
1693    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1694	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1695	    tpd->tsd[0].length, skb_len);
1696
1697    if (skb_len < fore200e_vcc->tx_min_pdu)
1698	fore200e_vcc->tx_min_pdu = skb_len;
1699    if (skb_len > fore200e_vcc->tx_max_pdu)
1700	fore200e_vcc->tx_max_pdu = skb_len;
1701    fore200e_vcc->tx_pdu++;
1702
1703    /* set tx rate control information */
1704    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1705    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1706
1707    if (cell_header) {
1708	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1709	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1710	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1711	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1712	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1713    }
1714    else {
1715	/* set the ATM header, common to all cells conveying the PDU */
1716	tpd->atm_header.clp = 0;
1717	tpd->atm_header.plt = 0;
1718	tpd->atm_header.vci = vcc->vci;
1719	tpd->atm_header.vpi = vcc->vpi;
1720	tpd->atm_header.gfc = 0;
1721    }
1722
1723    tpd->spec.length = tx_len;
1724    tpd->spec.nseg   = 1;
1725    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1726    tpd->spec.intr   = 1;
1727
1728    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1729    tpd_haddr.pad   = 0;
1730    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1731
1732    *entry->status = STATUS_PENDING;
1733    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1734
1735    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1736
1737    return 0;
1738}
1739
1740
1741static int
1742fore200e_getstats(struct fore200e* fore200e)
1743{
1744    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1745    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1746    struct stats_opcode     opcode;
1747    int                     ok;
1748    u32                     stats_dma_addr;
1749
1750    if (fore200e->stats == NULL) {
1751	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1752	if (fore200e->stats == NULL)
1753	    return -ENOMEM;
1754    }
1755
1756    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1757					    sizeof(struct stats), DMA_FROM_DEVICE);
1758
1759    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761    opcode.opcode = OPCODE_GET_STATS;
1762    opcode.pad    = 0;
1763
1764    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1765
1766    *entry->status = STATUS_PENDING;
1767
1768    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1769
1770    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1771
1772    *entry->status = STATUS_FREE;
1773
1774    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1775
1776    if (ok == 0) {
1777	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1778	return -EIO;
1779    }
1780
1781    return 0;
1782}
1783
1784
1785static int
1786fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1787{
1788    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1789
1790    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1791	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1792
1793    return -EINVAL;
1794}
1795
1796
1797static int
1798fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1799{
1800    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1801
1802    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1803	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1804
1805    return -EINVAL;
1806}
1807
1808
1809#if 0 /* currently unused */
1810static int
1811fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1812{
1813    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1814    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1815    struct oc3_opcode       opcode;
1816    int                     ok;
1817    u32                     oc3_regs_dma_addr;
1818
1819    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1820
1821    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1822
1823    opcode.opcode = OPCODE_GET_OC3;
1824    opcode.reg    = 0;
1825    opcode.value  = 0;
1826    opcode.mask   = 0;
1827
1828    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1829
1830    *entry->status = STATUS_PENDING;
1831
1832    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1833
1834    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1835
1836    *entry->status = STATUS_FREE;
1837
1838    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1839
1840    if (ok == 0) {
1841	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1842	return -EIO;
1843    }
1844
1845    return 0;
1846}
1847#endif
1848
1849
1850static int
1851fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1852{
1853    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1854    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1855    struct oc3_opcode       opcode;
1856    int                     ok;
1857
1858    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1859
1860    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1861
1862    opcode.opcode = OPCODE_SET_OC3;
1863    opcode.reg    = reg;
1864    opcode.value  = value;
1865    opcode.mask   = mask;
1866
1867    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1868
1869    *entry->status = STATUS_PENDING;
1870
1871    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1872
1873    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1874
1875    *entry->status = STATUS_FREE;
1876
1877    if (ok == 0) {
1878	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1879	return -EIO;
1880    }
1881
1882    return 0;
1883}
1884
1885
1886static int
1887fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1888{
1889    u32 mct_value, mct_mask;
1890    int error;
1891
1892    if (!capable(CAP_NET_ADMIN))
1893	return -EPERM;
1894
1895    switch (loop_mode) {
1896
1897    case ATM_LM_NONE:
1898	mct_value = 0;
1899	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1900	break;
1901
1902    case ATM_LM_LOC_PHY:
1903	mct_value = mct_mask = SUNI_MCT_DLE;
1904	break;
1905
1906    case ATM_LM_RMT_PHY:
1907	mct_value = mct_mask = SUNI_MCT_LLE;
1908	break;
1909
1910    default:
1911	return -EINVAL;
1912    }
1913
1914    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1915    if (error == 0)
1916	fore200e->loop_mode = loop_mode;
1917
1918    return error;
1919}
1920
1921
1922static int
1923fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1924{
1925    struct sonet_stats tmp;
1926
1927    if (fore200e_getstats(fore200e) < 0)
1928	return -EIO;
1929
1930    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1931    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1932    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1933    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1934    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1935    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1936    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1937    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1938	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1939	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1940    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1941	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1942	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1943
1944    if (arg)
1945	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1946
1947    return 0;
1948}
1949
1950
1951static int
1952fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1953{
1954    struct fore200e* fore200e = FORE200E_DEV(dev);
1955
1956    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1957
1958    switch (cmd) {
1959
1960    case SONET_GETSTAT:
1961	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1962
1963    case SONET_GETDIAG:
1964	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1965
1966    case ATM_SETLOOP:
1967	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1968
1969    case ATM_GETLOOP:
1970	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1971
1972    case ATM_QUERYLOOP:
1973	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1974    }
1975
1976    return -ENOSYS; /* not implemented */
1977}
1978
1979
1980static int
1981fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1982{
1983    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1984    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1985
1986    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1987	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1988	return -EINVAL;
1989    }
1990
1991    DPRINTK(2, "change_qos %d.%d.%d, "
1992	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1993	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1994	    "available_cell_rate = %u",
1995	    vcc->itf, vcc->vpi, vcc->vci,
1996	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1997	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1998	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1999	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2000	    flags, fore200e->available_cell_rate);
2001
2002    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2003
2004	mutex_lock(&fore200e->rate_mtx);
2005	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2006	    mutex_unlock(&fore200e->rate_mtx);
2007	    return -EAGAIN;
2008	}
2009
2010	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2011	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2012
2013	mutex_unlock(&fore200e->rate_mtx);
2014
2015	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2016
2017	/* update rate control parameters */
2018	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2019
2020	set_bit(ATM_VF_HASQOS, &vcc->flags);
2021
2022	return 0;
2023    }
2024
2025    return -EINVAL;
2026}
2027
2028
2029static int fore200e_irq_request(struct fore200e *fore200e)
2030{
2031    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2032
2033	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2034	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2035	return -EBUSY;
2036    }
2037
2038    printk(FORE200E "IRQ %s reserved for device %s\n",
2039	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2040
2041#ifdef FORE200E_USE_TASKLET
2042    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2043    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2044#endif
2045
2046    fore200e->state = FORE200E_STATE_IRQ;
2047    return 0;
2048}
2049
2050
2051static int fore200e_get_esi(struct fore200e *fore200e)
2052{
2053    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2054    int ok, i;
2055
2056    if (!prom)
2057	return -ENOMEM;
2058
2059    ok = fore200e->bus->prom_read(fore200e, prom);
2060    if (ok < 0) {
2061	kfree(prom);
2062	return -EBUSY;
2063    }
2064
2065    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2066	   fore200e->name,
2067	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2068	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2069
2070    for (i = 0; i < ESI_LEN; i++) {
2071	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2072    }
2073
2074    kfree(prom);
2075
2076    return 0;
2077}
2078
2079
2080static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2081{
2082    int scheme, magn, nbr, size, i;
2083
2084    struct host_bsq* bsq;
2085    struct buffer*   buffer;
2086
2087    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2088	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2089
2090	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2091
2092	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2093	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2094
2095	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2096
2097	    /* allocate the array of receive buffers */
2098	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2099
2100	    if (buffer == NULL)
2101		return -ENOMEM;
2102
2103	    bsq->freebuf = NULL;
2104
2105	    for (i = 0; i < nbr; i++) {
2106
2107		buffer[ i ].scheme = scheme;
2108		buffer[ i ].magn   = magn;
2109#ifdef FORE200E_BSQ_DEBUG
2110		buffer[ i ].index  = i;
2111		buffer[ i ].supplied = 0;
2112#endif
2113
2114		/* allocate the receive buffer body */
2115		if (fore200e_chunk_alloc(fore200e,
2116					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2117					 DMA_FROM_DEVICE) < 0) {
2118
2119		    while (i > 0)
2120			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2121		    kfree(buffer);
2122
2123		    return -ENOMEM;
2124		}
2125
2126		/* insert the buffer into the free buffer list */
2127		buffer[ i ].next = bsq->freebuf;
2128		bsq->freebuf = &buffer[ i ];
2129	    }
2130	    /* all the buffers are free, initially */
2131	    bsq->freebuf_count = nbr;
2132
2133#ifdef FORE200E_BSQ_DEBUG
2134	    bsq_audit(3, bsq, scheme, magn);
2135#endif
2136	}
2137    }
2138
2139    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2140    return 0;
2141}
2142
2143
2144static int fore200e_init_bs_queue(struct fore200e *fore200e)
2145{
2146    int scheme, magn, i;
2147
2148    struct host_bsq*     bsq;
2149    struct cp_bsq_entry __iomem * cp_entry;
2150
2151    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2152	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2153
2154	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2155
2156	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2157
2158	    /* allocate and align the array of status words */
2159	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2160					       &bsq->status,
2161					       sizeof(enum status),
2162					       QUEUE_SIZE_BS,
2163					       fore200e->bus->status_alignment) < 0) {
2164		return -ENOMEM;
2165	    }
2166
2167	    /* allocate and align the array of receive buffer descriptors */
2168	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2169					       &bsq->rbd_block,
2170					       sizeof(struct rbd_block),
2171					       QUEUE_SIZE_BS,
2172					       fore200e->bus->descr_alignment) < 0) {
2173
2174		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2175		return -ENOMEM;
2176	    }
2177
2178	    /* get the base address of the cp resident buffer supply queue entries */
2179	    cp_entry = fore200e->virt_base +
2180		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2181
2182	    /* fill the host resident and cp resident buffer supply queue entries */
2183	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2184
2185		bsq->host_entry[ i ].status =
2186		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2187	        bsq->host_entry[ i ].rbd_block =
2188		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2189		bsq->host_entry[ i ].rbd_block_dma =
2190		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2191		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2192
2193		*bsq->host_entry[ i ].status = STATUS_FREE;
2194
2195		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2196				     &cp_entry[ i ].status_haddr);
2197	    }
2198	}
2199    }
2200
2201    fore200e->state = FORE200E_STATE_INIT_BSQ;
2202    return 0;
2203}
2204
2205
2206static int fore200e_init_rx_queue(struct fore200e *fore200e)
2207{
2208    struct host_rxq*     rxq =  &fore200e->host_rxq;
2209    struct cp_rxq_entry __iomem * cp_entry;
2210    int i;
2211
2212    DPRINTK(2, "receive queue is being initialized\n");
2213
2214    /* allocate and align the array of status words */
2215    if (fore200e->bus->dma_chunk_alloc(fore200e,
2216				       &rxq->status,
2217				       sizeof(enum status),
2218				       QUEUE_SIZE_RX,
2219				       fore200e->bus->status_alignment) < 0) {
2220	return -ENOMEM;
2221    }
2222
2223    /* allocate and align the array of receive PDU descriptors */
2224    if (fore200e->bus->dma_chunk_alloc(fore200e,
2225				       &rxq->rpd,
2226				       sizeof(struct rpd),
2227				       QUEUE_SIZE_RX,
2228				       fore200e->bus->descr_alignment) < 0) {
2229
2230	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2231	return -ENOMEM;
2232    }
2233
2234    /* get the base address of the cp resident rx queue entries */
2235    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2236
2237    /* fill the host resident and cp resident rx entries */
2238    for (i=0; i < QUEUE_SIZE_RX; i++) {
2239
2240	rxq->host_entry[ i ].status =
2241	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2242	rxq->host_entry[ i ].rpd =
2243	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2244	rxq->host_entry[ i ].rpd_dma =
2245	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2246	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2247
2248	*rxq->host_entry[ i ].status = STATUS_FREE;
2249
2250	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2251			     &cp_entry[ i ].status_haddr);
2252
2253	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2254			     &cp_entry[ i ].rpd_haddr);
2255    }
2256
2257    /* set the head entry of the queue */
2258    rxq->head = 0;
2259
2260    fore200e->state = FORE200E_STATE_INIT_RXQ;
2261    return 0;
2262}
2263
2264
2265static int fore200e_init_tx_queue(struct fore200e *fore200e)
2266{
2267    struct host_txq*     txq =  &fore200e->host_txq;
2268    struct cp_txq_entry __iomem * cp_entry;
2269    int i;
2270
2271    DPRINTK(2, "transmit queue is being initialized\n");
2272
2273    /* allocate and align the array of status words */
2274    if (fore200e->bus->dma_chunk_alloc(fore200e,
2275				       &txq->status,
2276				       sizeof(enum status),
2277				       QUEUE_SIZE_TX,
2278				       fore200e->bus->status_alignment) < 0) {
2279	return -ENOMEM;
2280    }
2281
2282    /* allocate and align the array of transmit PDU descriptors */
2283    if (fore200e->bus->dma_chunk_alloc(fore200e,
2284				       &txq->tpd,
2285				       sizeof(struct tpd),
2286				       QUEUE_SIZE_TX,
2287				       fore200e->bus->descr_alignment) < 0) {
2288
2289	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2290	return -ENOMEM;
2291    }
2292
2293    /* get the base address of the cp resident tx queue entries */
2294    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2295
2296    /* fill the host resident and cp resident tx entries */
2297    for (i=0; i < QUEUE_SIZE_TX; i++) {
2298
2299	txq->host_entry[ i ].status =
2300	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2301	txq->host_entry[ i ].tpd =
2302	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2303	txq->host_entry[ i ].tpd_dma  =
2304                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2305	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2306
2307	*txq->host_entry[ i ].status = STATUS_FREE;
2308
2309	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2310			     &cp_entry[ i ].status_haddr);
2311
2312        /* although there is a one-to-one mapping of tx queue entries and tpds,
2313	   we do not write here the DMA (physical) base address of each tpd into
2314	   the related cp resident entry, because the cp relies on this write
2315	   operation to detect that a new pdu has been submitted for tx */
2316    }
2317
2318    /* set the head and tail entries of the queue */
2319    txq->head = 0;
2320    txq->tail = 0;
2321
2322    fore200e->state = FORE200E_STATE_INIT_TXQ;
2323    return 0;
2324}
2325
2326
2327static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2328{
2329    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2330    struct cp_cmdq_entry __iomem * cp_entry;
2331    int i;
2332
2333    DPRINTK(2, "command queue is being initialized\n");
2334
2335    /* allocate and align the array of status words */
2336    if (fore200e->bus->dma_chunk_alloc(fore200e,
2337				       &cmdq->status,
2338				       sizeof(enum status),
2339				       QUEUE_SIZE_CMD,
2340				       fore200e->bus->status_alignment) < 0) {
2341	return -ENOMEM;
2342    }
2343
2344    /* get the base address of the cp resident cmd queue entries */
2345    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2346
2347    /* fill the host resident and cp resident cmd entries */
2348    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2349
2350	cmdq->host_entry[ i ].status   =
2351                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2352	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2353
2354	*cmdq->host_entry[ i ].status = STATUS_FREE;
2355
2356	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2357                             &cp_entry[ i ].status_haddr);
2358    }
2359
2360    /* set the head entry of the queue */
2361    cmdq->head = 0;
2362
2363    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2364    return 0;
2365}
2366
2367
2368static void fore200e_param_bs_queue(struct fore200e *fore200e,
2369				    enum buffer_scheme scheme,
2370				    enum buffer_magn magn, int queue_length,
2371				    int pool_size, int supply_blksize)
2372{
2373    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2374
2375    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2376    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2377    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2378    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2379}
2380
2381
2382static int fore200e_initialize(struct fore200e *fore200e)
2383{
2384    struct cp_queues __iomem * cpq;
2385    int               ok, scheme, magn;
2386
2387    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2388
2389    mutex_init(&fore200e->rate_mtx);
2390    spin_lock_init(&fore200e->q_lock);
2391
2392    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2393
2394    /* enable cp to host interrupts */
2395    fore200e->bus->write(1, &cpq->imask);
2396
2397    if (fore200e->bus->irq_enable)
2398	fore200e->bus->irq_enable(fore200e);
2399
2400    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2401
2402    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2403    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2404    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2405
2406    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2407    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2408
2409    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2410	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2411	    fore200e_param_bs_queue(fore200e, scheme, magn,
2412				    QUEUE_SIZE_BS,
2413				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2414				    RBD_BLK_SIZE);
2415
2416    /* issue the initialize command */
2417    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2418    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2419
2420    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2421    if (ok == 0) {
2422	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2423	return -ENODEV;
2424    }
2425
2426    printk(FORE200E "device %s initialized\n", fore200e->name);
2427
2428    fore200e->state = FORE200E_STATE_INITIALIZE;
2429    return 0;
2430}
2431
2432
2433static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2434{
2435    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2436
2437#if 0
2438    printk("%c", c);
2439#endif
2440    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2441}
2442
2443
2444static int fore200e_monitor_getc(struct fore200e *fore200e)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2448    int                c;
2449
2450    while (time_before(jiffies, timeout)) {
2451
2452	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2453
2454	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2455
2456	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2457#if 0
2458	    printk("%c", c & 0xFF);
2459#endif
2460	    return c & 0xFF;
2461	}
2462    }
2463
2464    return -1;
2465}
2466
2467
2468static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2469{
2470    while (*str) {
2471
2472	/* the i960 monitor doesn't accept any new character if it has something to say */
2473	while (fore200e_monitor_getc(fore200e) >= 0);
2474
2475	fore200e_monitor_putc(fore200e, *str++);
2476    }
2477
2478    while (fore200e_monitor_getc(fore200e) >= 0);
2479}
2480
2481#ifdef __LITTLE_ENDIAN
2482#define FW_EXT ".bin"
2483#else
2484#define FW_EXT "_ecd.bin2"
2485#endif
2486
2487static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2488{
2489    const struct firmware *firmware;
2490    struct device *device;
2491    struct fw_header *fw_header;
2492    const __le32 *fw_data;
2493    u32 fw_size;
2494    u32 __iomem *load_addr;
2495    char buf[48];
2496    int err = -ENODEV;
2497
2498    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2499	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2500#ifdef CONFIG_SBUS
2501    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2502	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2503#endif
2504    else
2505	return err;
2506
2507    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2508    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2509	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2510	return err;
2511    }
2512
2513    fw_data = (__le32 *) firmware->data;
2514    fw_size = firmware->size / sizeof(u32);
2515    fw_header = (struct fw_header *) firmware->data;
2516    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2517
2518    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2519	    fore200e->name, load_addr, fw_size);
2520
2521    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2522	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2523	goto release;
2524    }
2525
2526    for (; fw_size--; fw_data++, load_addr++)
2527	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2528
2529    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2530
2531#if defined(__sparc_v9__)
2532    /* reported to be required by SBA cards on some sparc64 hosts */
2533    fore200e_spin(100);
2534#endif
2535
2536    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2537    fore200e_monitor_puts(fore200e, buf);
2538
2539    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2540	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2541	goto release;
2542    }
2543
2544    printk(FORE200E "device %s firmware started\n", fore200e->name);
2545
2546    fore200e->state = FORE200E_STATE_START_FW;
2547    err = 0;
2548
2549release:
2550    release_firmware(firmware);
2551    return err;
2552}
2553
2554
2555static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2556{
2557    struct atm_dev* atm_dev;
2558
2559    DPRINTK(2, "device %s being registered\n", fore200e->name);
2560
2561    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2562                               -1, NULL);
2563    if (atm_dev == NULL) {
2564	printk(FORE200E "unable to register device %s\n", fore200e->name);
2565	return -ENODEV;
2566    }
2567
2568    atm_dev->dev_data = fore200e;
2569    fore200e->atm_dev = atm_dev;
2570
2571    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2572    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2573
2574    fore200e->available_cell_rate = ATM_OC3_PCR;
2575
2576    fore200e->state = FORE200E_STATE_REGISTER;
2577    return 0;
2578}
2579
2580
2581static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2582{
2583    if (fore200e_register(fore200e, parent) < 0)
2584	return -ENODEV;
2585
2586    if (fore200e->bus->configure(fore200e) < 0)
2587	return -ENODEV;
2588
2589    if (fore200e->bus->map(fore200e) < 0)
2590	return -ENODEV;
2591
2592    if (fore200e_reset(fore200e, 1) < 0)
2593	return -ENODEV;
2594
2595    if (fore200e_load_and_start_fw(fore200e) < 0)
2596	return -ENODEV;
2597
2598    if (fore200e_initialize(fore200e) < 0)
2599	return -ENODEV;
2600
2601    if (fore200e_init_cmd_queue(fore200e) < 0)
2602	return -ENOMEM;
2603
2604    if (fore200e_init_tx_queue(fore200e) < 0)
2605	return -ENOMEM;
2606
2607    if (fore200e_init_rx_queue(fore200e) < 0)
2608	return -ENOMEM;
2609
2610    if (fore200e_init_bs_queue(fore200e) < 0)
2611	return -ENOMEM;
2612
2613    if (fore200e_alloc_rx_buf(fore200e) < 0)
2614	return -ENOMEM;
2615
2616    if (fore200e_get_esi(fore200e) < 0)
2617	return -EIO;
2618
2619    if (fore200e_irq_request(fore200e) < 0)
2620	return -EBUSY;
2621
2622    fore200e_supply(fore200e);
2623
2624    /* all done, board initialization is now complete */
2625    fore200e->state = FORE200E_STATE_COMPLETE;
2626    return 0;
2627}
2628
2629#ifdef CONFIG_SBUS
2630static const struct of_device_id fore200e_sba_match[];
2631static int fore200e_sba_probe(struct platform_device *op)
2632{
2633	const struct of_device_id *match;
2634	const struct fore200e_bus *bus;
2635	struct fore200e *fore200e;
2636	static int index = 0;
2637	int err;
2638
2639	match = of_match_device(fore200e_sba_match, &op->dev);
2640	if (!match)
2641		return -EINVAL;
2642	bus = match->data;
2643
2644	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2645	if (!fore200e)
2646		return -ENOMEM;
2647
2648	fore200e->bus = bus;
2649	fore200e->bus_dev = op;
2650	fore200e->irq = op->archdata.irqs[0];
2651	fore200e->phys_base = op->resource[0].start;
2652
2653	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2654
2655	err = fore200e_init(fore200e, &op->dev);
2656	if (err < 0) {
2657		fore200e_shutdown(fore200e);
2658		kfree(fore200e);
2659		return err;
2660	}
2661
2662	index++;
2663	dev_set_drvdata(&op->dev, fore200e);
2664
2665	return 0;
2666}
2667
2668static int fore200e_sba_remove(struct platform_device *op)
2669{
2670	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2671
2672	fore200e_shutdown(fore200e);
2673	kfree(fore200e);
2674
2675	return 0;
2676}
2677
2678static const struct of_device_id fore200e_sba_match[] = {
2679	{
2680		.name = SBA200E_PROM_NAME,
2681		.data = (void *) &fore200e_bus[1],
2682	},
2683	{},
2684};
2685MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2686
2687static struct platform_driver fore200e_sba_driver = {
2688	.driver = {
2689		.name = "fore_200e",
2690		.owner = THIS_MODULE,
2691		.of_match_table = fore200e_sba_match,
2692	},
2693	.probe		= fore200e_sba_probe,
2694	.remove		= fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700			       const struct pci_device_id *pci_ent)
2701{
2702    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703    struct fore200e* fore200e;
2704    int err = 0;
2705    static int index = 0;
2706
2707    if (pci_enable_device(pci_dev)) {
2708	err = -EINVAL;
2709	goto out;
2710    }
2711
2712    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2713    if (fore200e == NULL) {
2714	err = -ENOMEM;
2715	goto out_disable;
2716    }
2717
2718    fore200e->bus       = bus;
2719    fore200e->bus_dev   = pci_dev;
2720    fore200e->irq       = pci_dev->irq;
2721    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2722
2723    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2724
2725    pci_set_master(pci_dev);
2726
2727    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2728	   fore200e->bus->model_name,
2729	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2730
2731    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2732
2733    err = fore200e_init(fore200e, &pci_dev->dev);
2734    if (err < 0) {
2735	fore200e_shutdown(fore200e);
2736	goto out_free;
2737    }
2738
2739    ++index;
2740    pci_set_drvdata(pci_dev, fore200e);
2741
2742out:
2743    return err;
2744
2745out_free:
2746    kfree(fore200e);
2747out_disable:
2748    pci_disable_device(pci_dev);
2749    goto out;
2750}
2751
2752
2753static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2754{
2755    struct fore200e *fore200e;
2756
2757    fore200e = pci_get_drvdata(pci_dev);
2758
2759    fore200e_shutdown(fore200e);
2760    kfree(fore200e);
2761    pci_disable_device(pci_dev);
2762}
2763
2764
2765static struct pci_device_id fore200e_pca_tbl[] = {
2766    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2767      0, 0, (unsigned long) &fore200e_bus[0] },
2768    { 0, }
2769};
2770
2771MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2772
2773static struct pci_driver fore200e_pca_driver = {
2774    .name =     "fore_200e",
2775    .probe =    fore200e_pca_detect,
2776    .remove =   fore200e_pca_remove_one,
2777    .id_table = fore200e_pca_tbl,
2778};
2779#endif
2780
2781static int __init fore200e_module_init(void)
2782{
2783	int err = 0;
2784
2785	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2786
2787#ifdef CONFIG_SBUS
2788	err = platform_driver_register(&fore200e_sba_driver);
2789	if (err)
2790		return err;
2791#endif
2792
2793#ifdef CONFIG_PCI
2794	err = pci_register_driver(&fore200e_pca_driver);
2795#endif
2796
2797#ifdef CONFIG_SBUS
2798	if (err)
2799		platform_driver_unregister(&fore200e_sba_driver);
2800#endif
2801
2802	return err;
2803}
2804
2805static void __exit fore200e_module_cleanup(void)
2806{
2807#ifdef CONFIG_PCI
2808	pci_unregister_driver(&fore200e_pca_driver);
2809#endif
2810#ifdef CONFIG_SBUS
2811	platform_driver_unregister(&fore200e_sba_driver);
2812#endif
2813}
2814
2815static int
2816fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2817{
2818    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2819    struct fore200e_vcc* fore200e_vcc;
2820    struct atm_vcc*      vcc;
2821    int                  i, len, left = *pos;
2822    unsigned long        flags;
2823
2824    if (!left--) {
2825
2826	if (fore200e_getstats(fore200e) < 0)
2827	    return -EIO;
2828
2829	len = sprintf(page,"\n"
2830		       " device:\n"
2831		       "   internal name:\t\t%s\n", fore200e->name);
2832
2833	/* print bus-specific information */
2834	if (fore200e->bus->proc_read)
2835	    len += fore200e->bus->proc_read(fore200e, page + len);
2836
2837	len += sprintf(page + len,
2838		"   interrupt line:\t\t%s\n"
2839		"   physical base address:\t0x%p\n"
2840		"   virtual base address:\t0x%p\n"
2841		"   factory address (ESI):\t%pM\n"
2842		"   board serial number:\t\t%d\n\n",
2843		fore200e_irq_itoa(fore200e->irq),
2844		(void*)fore200e->phys_base,
2845		fore200e->virt_base,
2846		fore200e->esi,
2847		fore200e->esi[4] * 256 + fore200e->esi[5]);
2848
2849	return len;
2850    }
2851
2852    if (!left--)
2853	return sprintf(page,
2854		       "   free small bufs, scheme 1:\t%d\n"
2855		       "   free large bufs, scheme 1:\t%d\n"
2856		       "   free small bufs, scheme 2:\t%d\n"
2857		       "   free large bufs, scheme 2:\t%d\n",
2858		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2859		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2860		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2861		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2862
2863    if (!left--) {
2864	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2865
2866	len = sprintf(page,"\n\n"
2867		      " cell processor:\n"
2868		      "   heartbeat state:\t\t");
2869
2870	if (hb >> 16 != 0xDEAD)
2871	    len += sprintf(page + len, "0x%08x\n", hb);
2872	else
2873	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2874
2875	return len;
2876    }
2877
2878    if (!left--) {
2879	static const char* media_name[] = {
2880	    "unshielded twisted pair",
2881	    "multimode optical fiber ST",
2882	    "multimode optical fiber SC",
2883	    "single-mode optical fiber ST",
2884	    "single-mode optical fiber SC",
2885	    "unknown"
2886	};
2887
2888	static const char* oc3_mode[] = {
2889	    "normal operation",
2890	    "diagnostic loopback",
2891	    "line loopback",
2892	    "unknown"
2893	};
2894
2895	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2896	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2897	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2898	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2899	u32 oc3_index;
2900
2901	if (media_index > 4)
2902		media_index = 5;
2903
2904	switch (fore200e->loop_mode) {
2905	    case ATM_LM_NONE:    oc3_index = 0;
2906		                 break;
2907	    case ATM_LM_LOC_PHY: oc3_index = 1;
2908		                 break;
2909	    case ATM_LM_RMT_PHY: oc3_index = 2;
2910		                 break;
2911	    default:             oc3_index = 3;
2912	}
2913
2914	return sprintf(page,
2915		       "   firmware release:\t\t%d.%d.%d\n"
2916		       "   monitor release:\t\t%d.%d\n"
2917		       "   media type:\t\t\t%s\n"
2918		       "   OC-3 revision:\t\t0x%x\n"
2919                       "   OC-3 mode:\t\t\t%s",
2920		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2921		       mon960_release >> 16, mon960_release << 16 >> 16,
2922		       media_name[ media_index ],
2923		       oc3_revision,
2924		       oc3_mode[ oc3_index ]);
2925    }
2926
2927    if (!left--) {
2928	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2929
2930	return sprintf(page,
2931		       "\n\n"
2932		       " monitor:\n"
2933		       "   version number:\t\t%d\n"
2934		       "   boot status word:\t\t0x%08x\n",
2935		       fore200e->bus->read(&cp_monitor->mon_version),
2936		       fore200e->bus->read(&cp_monitor->bstat));
2937    }
2938
2939    if (!left--)
2940	return sprintf(page,
2941		       "\n"
2942		       " device statistics:\n"
2943		       "  4b5b:\n"
2944		       "     crc_header_errors:\t\t%10u\n"
2945		       "     framing_errors:\t\t%10u\n",
2946		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2947		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2948
2949    if (!left--)
2950	return sprintf(page, "\n"
2951		       "  OC-3:\n"
2952		       "     section_bip8_errors:\t%10u\n"
2953		       "     path_bip8_errors:\t\t%10u\n"
2954		       "     line_bip24_errors:\t\t%10u\n"
2955		       "     line_febe_errors:\t\t%10u\n"
2956		       "     path_febe_errors:\t\t%10u\n"
2957		       "     corr_hcs_errors:\t\t%10u\n"
2958		       "     ucorr_hcs_errors:\t\t%10u\n",
2959		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2960		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2961		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2962		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2963		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2964		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2965		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2966
2967    if (!left--)
2968	return sprintf(page,"\n"
2969		       "   ATM:\t\t\t\t     cells\n"
2970		       "     TX:\t\t\t%10u\n"
2971		       "     RX:\t\t\t%10u\n"
2972		       "     vpi out of range:\t\t%10u\n"
2973		       "     vpi no conn:\t\t%10u\n"
2974		       "     vci out of range:\t\t%10u\n"
2975		       "     vci no conn:\t\t%10u\n",
2976		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2977		       be32_to_cpu(fore200e->stats->atm.cells_received),
2978		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2979		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2980		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2981		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2982
2983    if (!left--)
2984	return sprintf(page,"\n"
2985		       "   AAL0:\t\t\t     cells\n"
2986		       "     TX:\t\t\t%10u\n"
2987		       "     RX:\t\t\t%10u\n"
2988		       "     dropped:\t\t\t%10u\n",
2989		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2990		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2991		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2992
2993    if (!left--)
2994	return sprintf(page,"\n"
2995		       "   AAL3/4:\n"
2996		       "     SAR sublayer:\t\t     cells\n"
2997		       "       TX:\t\t\t%10u\n"
2998		       "       RX:\t\t\t%10u\n"
2999		       "       dropped:\t\t\t%10u\n"
3000		       "       CRC errors:\t\t%10u\n"
3001		       "       protocol errors:\t\t%10u\n\n"
3002		       "     CS  sublayer:\t\t      PDUs\n"
3003		       "       TX:\t\t\t%10u\n"
3004		       "       RX:\t\t\t%10u\n"
3005		       "       dropped:\t\t\t%10u\n"
3006		       "       protocol errors:\t\t%10u\n",
3007		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3008		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3009		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3010		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3011		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3012		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3013		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3014		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3015		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3016
3017    if (!left--)
3018	return sprintf(page,"\n"
3019		       "   AAL5:\n"
3020		       "     SAR sublayer:\t\t     cells\n"
3021		       "       TX:\t\t\t%10u\n"
3022		       "       RX:\t\t\t%10u\n"
3023		       "       dropped:\t\t\t%10u\n"
3024		       "       congestions:\t\t%10u\n\n"
3025		       "     CS  sublayer:\t\t      PDUs\n"
3026		       "       TX:\t\t\t%10u\n"
3027		       "       RX:\t\t\t%10u\n"
3028		       "       dropped:\t\t\t%10u\n"
3029		       "       CRC errors:\t\t%10u\n"
3030		       "       protocol errors:\t\t%10u\n",
3031		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3032		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3033		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3034		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3035		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3036		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3037		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3038		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3039		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3040
3041    if (!left--)
3042	return sprintf(page,"\n"
3043		       "   AUX:\t\t       allocation failures\n"
3044		       "     small b1:\t\t\t%10u\n"
3045		       "     large b1:\t\t\t%10u\n"
3046		       "     small b2:\t\t\t%10u\n"
3047		       "     large b2:\t\t\t%10u\n"
3048		       "     RX PDUs:\t\t\t%10u\n"
3049		       "     TX PDUs:\t\t\t%10lu\n",
3050		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3051		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3052		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3053		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3054		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3055		       fore200e->tx_sat);
3056
3057    if (!left--)
3058	return sprintf(page,"\n"
3059		       " receive carrier:\t\t\t%s\n",
3060		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3061
3062    if (!left--) {
3063        return sprintf(page,"\n"
3064		       " VCCs:\n  address   VPI VCI   AAL "
3065		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3066    }
3067
3068    for (i = 0; i < NBR_CONNECT; i++) {
3069
3070	vcc = fore200e->vc_map[i].vcc;
3071
3072	if (vcc == NULL)
3073	    continue;
3074
3075	spin_lock_irqsave(&fore200e->q_lock, flags);
3076
3077	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3078
3079	    fore200e_vcc = FORE200E_VCC(vcc);
3080	    ASSERT(fore200e_vcc);
3081
3082	    len = sprintf(page,
3083			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3084			  (u32)(unsigned long)vcc,
3085			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3086			  fore200e_vcc->tx_pdu,
3087			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3088			  fore200e_vcc->tx_max_pdu,
3089			  fore200e_vcc->rx_pdu,
3090			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3091			  fore200e_vcc->rx_max_pdu);
3092
3093	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3094	    return len;
3095	}
3096
3097	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3098    }
3099
3100    return 0;
3101}
3102
3103module_init(fore200e_module_init);
3104module_exit(fore200e_module_cleanup);
3105
3106
3107static const struct atmdev_ops fore200e_ops =
3108{
3109	.open       = fore200e_open,
3110	.close      = fore200e_close,
3111	.ioctl      = fore200e_ioctl,
3112	.getsockopt = fore200e_getsockopt,
3113	.setsockopt = fore200e_setsockopt,
3114	.send       = fore200e_send,
3115	.change_qos = fore200e_change_qos,
3116	.proc_read  = fore200e_proc_read,
3117	.owner      = THIS_MODULE
3118};
3119
3120
3121static const struct fore200e_bus fore200e_bus[] = {
3122#ifdef CONFIG_PCI
3123    { "PCA-200E", "pca200e", 32, 4, 32,
3124      fore200e_pca_read,
3125      fore200e_pca_write,
3126      fore200e_pca_dma_map,
3127      fore200e_pca_dma_unmap,
3128      fore200e_pca_dma_sync_for_cpu,
3129      fore200e_pca_dma_sync_for_device,
3130      fore200e_pca_dma_chunk_alloc,
3131      fore200e_pca_dma_chunk_free,
3132      fore200e_pca_configure,
3133      fore200e_pca_map,
3134      fore200e_pca_reset,
3135      fore200e_pca_prom_read,
3136      fore200e_pca_unmap,
3137      NULL,
3138      fore200e_pca_irq_check,
3139      fore200e_pca_irq_ack,
3140      fore200e_pca_proc_read,
3141    },
3142#endif
3143#ifdef CONFIG_SBUS
3144    { "SBA-200E", "sba200e", 32, 64, 32,
3145      fore200e_sba_read,
3146      fore200e_sba_write,
3147      fore200e_sba_dma_map,
3148      fore200e_sba_dma_unmap,
3149      fore200e_sba_dma_sync_for_cpu,
3150      fore200e_sba_dma_sync_for_device,
3151      fore200e_sba_dma_chunk_alloc,
3152      fore200e_sba_dma_chunk_free,
3153      fore200e_sba_configure,
3154      fore200e_sba_map,
3155      fore200e_sba_reset,
3156      fore200e_sba_prom_read,
3157      fore200e_sba_unmap,
3158      fore200e_sba_irq_enable,
3159      fore200e_sba_irq_check,
3160      fore200e_sba_irq_ack,
3161      fore200e_sba_proc_read,
3162    },
3163#endif
3164    {}
3165};
3166
3167MODULE_LICENSE("GPL");
3168#ifdef CONFIG_PCI
3169#ifdef __LITTLE_ENDIAN__
3170MODULE_FIRMWARE("pca200e.bin");
3171#else
3172MODULE_FIRMWARE("pca200e_ecd.bin2");
3173#endif
3174#endif /* CONFIG_PCI */
3175#ifdef CONFIG_SBUS
3176MODULE_FIRMWARE("sba200e_ecd.bin2");
3177#endif
3178