[go: nahoru, domu]

1/*
2  Madge Horizon ATM Adapter driver.
3  Copyright (C) 1995-1999  Madge Networks Ltd.
4
5  This program is free software; you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation; either version 2 of the License, or
8  (at your option) any later version.
9
10  This program is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  GNU General Public License for more details.
14
15  You should have received a copy of the GNU General Public License
16  along with this program; if not, write to the Free Software
17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20  system and in the file COPYING in the Linux kernel source.
21*/
22
23/*
24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
25  supported by this driver and makes no commitment to maintain it.
26*/
27
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/pci.h>
32#include <linux/errno.h>
33#include <linux/atm.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/skbuff.h>
37#include <linux/time.h>
38#include <linux/delay.h>
39#include <linux/uio.h>
40#include <linux/init.h>
41#include <linux/interrupt.h>
42#include <linux/ioport.h>
43#include <linux/wait.h>
44#include <linux/slab.h>
45
46#include <asm/io.h>
47#include <linux/atomic.h>
48#include <asm/uaccess.h>
49#include <asm/string.h>
50#include <asm/byteorder.h>
51
52#include "horizon.h"
53
54#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
55#define description_string "Madge ATM Horizon [Ultra] driver"
56#define version_string "1.2.1"
57
58static inline void __init show_version (void) {
59  printk ("%s version %s\n", description_string, version_string);
60}
61
62/*
63
64  CREDITS
65
66  Driver and documentation by:
67
68  Chris Aston        Madge Networks
69  Giuliano Procida   Madge Networks
70  Simon Benham       Madge Networks
71  Simon Johnson      Madge Networks
72  Various Others     Madge Networks
73
74  Some inspiration taken from other drivers by:
75
76  Alexandru Cucos    UTBv
77  Kari Mettinen      University of Helsinki
78  Werner Almesberger EPFL LRC
79
80  Theory of Operation
81
82  I Hardware, detection, initialisation and shutdown.
83
84  1. Supported Hardware
85
86  This driver should handle all variants of the PCI Madge ATM adapters
87  with the Horizon chipset. These are all PCI cards supporting PIO, BM
88  DMA and a form of MMIO (registers only, not internal RAM).
89
90  The driver is only known to work with SONET and UTP Horizon Ultra
91  cards at 155Mb/s. However, code is in place to deal with both the
92  original Horizon and 25Mb/s operation.
93
94  There are two revisions of the Horizon ASIC: the original and the
95  Ultra. Details of hardware bugs are in section III.
96
97  The ASIC version can be distinguished by chip markings but is NOT
98  indicated by the PCI revision (all adapters seem to have PCI rev 1).
99
100  I believe that:
101
102  Horizon       => Collage  25 PCI Adapter (UTP and STP)
103  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104  Ambassador x  => Collage 155 PCI Server (completely different)
105
106  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107  have a Madge B154 plus glue logic serializer. I have also found a
108  really ancient version of this with slightly different glue. It
109  comes with the revision 0 (140-025-01) ASIC.
110
111  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112  output (UTP) or an HP HFBR 5205 output (SONET). It has either
113  Madge's SAMBA framer or a SUNI-lite device (early versions). It
114  comes with the revision 1 (140-027-01) ASIC.
115
116  2. Detection
117
118  All Horizon-based cards present with the same PCI Vendor and Device
119  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120  to enable bus-mastering (with appropriate latency).
121
122  ATM_LAYER_STATUS in the control register distinguishes between the
123  two possible physical layers (25 and 155). It is not clear whether
124  the 155 cards can also operate at 25Mbps. We rely on the fact that a
125  card operates at 155 if and only if it has the newer Horizon Ultra
126  ASIC.
127
128  For 155 cards the two possible framers are probed for and then set
129  up for loop-timing.
130
131  3. Initialisation
132
133  The card is reset and then put into a known state. The physical
134  layer is configured for normal operation at the appropriate speed;
135  in the case of the 155 cards, the framer is initialised with
136  line-based timing; the internal RAM is zeroed and the allocation of
137  buffers for RX and TX is made; the Burnt In Address is read and
138  copied to the ATM ESI; various policy settings for RX (VPI bits,
139  unknown VCs, oam cells) are made. Ideally all policy items should be
140  configurable at module load (if not actually on-demand), however,
141  only the vpi vs vci bit allocation can be specified at insmod.
142
143  4. Shutdown
144
145  This is in response to module_cleaup. No VCs are in use and the card
146  should be idle; it is reset.
147
148  II Driver software (as it should be)
149
150  0. Traffic Parameters
151
152  The traffic classes (not an enumeration) are currently: ATM_NONE (no
153  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154  (compatible with everything). Together with (perhaps only some of)
155  the following items they make up the traffic specification.
156
157  struct atm_trafprm {
158    unsigned char traffic_class; traffic class (ATM_UBR, ...)
159    int           max_pcr;       maximum PCR in cells per second
160    int           pcr;           desired PCR in cells per second
161    int           min_pcr;       minimum PCR in cells per second
162    int           max_cdv;       maximum CDV in microseconds
163    int           max_sdu;       maximum SDU in bytes
164  };
165
166  Note that these denote bandwidth available not bandwidth used; the
167  possibilities according to ATMF are:
168
169  Real Time (cdv and max CDT given)
170
171  CBR(pcr)             pcr bandwidth always available
172  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
173
174  Non Real Time
175
176  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
177  UBR()
178  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
179
180  mbs is max burst size (bucket)
181  pcr and scr have associated cdvt values
182  mcr is like scr but has no cdtv
183  cdtv may differ at each hop
184
185  Some of the above items are qos items (as opposed to traffic
186  parameters). We have nothing to do with qos. All except ABR can have
187  their traffic parameters converted to GCRA parameters. The GCRA may
188  be implemented as a (real-number) leaky bucket. The GCRA can be used
189  in complicated ways by switches and in simpler ways by end-stations.
190  It can be used both to filter incoming cells and shape out-going
191  cells.
192
193  ATM Linux actually supports:
194
195  ATM_NONE() (no traffic in this direction)
196  ATM_UBR(max_frame_size)
197  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
198
199  0 or ATM_MAX_PCR are used to indicate maximum available PCR
200
201  A traffic specification consists of the AAL type and separate
202  traffic specifications for either direction. In ATM Linux it is:
203
204  struct atm_qos {
205  struct atm_trafprm txtp;
206  struct atm_trafprm rxtp;
207  unsigned char aal;
208  };
209
210  AAL types are:
211
212  ATM_NO_AAL    AAL not specified
213  ATM_AAL0      "raw" ATM cells
214  ATM_AAL1      AAL1 (CBR)
215  ATM_AAL2      AAL2 (VBR)
216  ATM_AAL34     AAL3/4 (data)
217  ATM_AAL5      AAL5 (data)
218  ATM_SAAL      signaling AAL
219
220  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221  it does not implement AAL 3/4 SAR and it has a different notion of
222  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223  supported by this driver.
224
225  The Horizon has limited support for ABR (including UBR), VBR and
226  CBR. Each TX channel has a bucket (containing up to 31 cell units)
227  and two timers (PCR and SCR) associated with it that can be used to
228  govern cell emissions and host notification (in the case of ABR this
229  is presumably so that RM cells may be emitted at appropriate times).
230  The timers may either be disabled or may be set to any of 240 values
231  (determined by the clock crystal, a fixed (?) per-device divider, a
232  configurable divider and a configurable timer preload value).
233
234  At the moment only UBR and CBR are supported by the driver. VBR will
235  be supported as soon as ATM for Linux supports it. ABR support is
236  very unlikely as RM cell handling is completely up to the driver.
237
238  1. TX (TX channel setup and TX transfer)
239
240  The TX half of the driver owns the TX Horizon registers. The TX
241  component in the IRQ handler is the BM completion handler. This can
242  only be entered when tx_busy is true (enforced by hardware). The
243  other TX component can only be entered when tx_busy is false
244  (enforced by driver). So TX is single-threaded.
245
246  Apart from a minor optimisation to not re-select the last channel,
247  the TX send component works as follows:
248
249  Atomic test and set tx_busy until we succeed; we should implement
250  some sort of timeout so that tx_busy will never be stuck at true.
251
252  If no TX channel is set up for this VC we wait for an idle one (if
253  necessary) and set it up.
254
255  At this point we have a TX channel ready for use. We wait for enough
256  buffers to become available then start a TX transmit (set the TX
257  descriptor, schedule transfer, exit).
258
259  The IRQ component handles TX completion (stats, free buffer, tx_busy
260  unset, exit). We also re-schedule further transfers for the same
261  frame if needed.
262
263  TX setup in more detail:
264
265  TX open is a nop, the relevant information is held in the hrz_vcc
266  (vcc->dev_data) structure and is "cached" on the card.
267
268  TX close gets the TX lock and clears the channel from the "cache".
269
270  2. RX (Data Available and RX transfer)
271
272  The RX half of the driver owns the RX registers. There are two RX
273  components in the IRQ handler: the data available handler deals with
274  fresh data that has arrived on the card, the BM completion handler
275  is very similar to the TX completion handler. The data available
276  handler grabs the rx_lock and it is only released once the data has
277  been discarded or completely transferred to the host. The BM
278  completion handler only runs when the lock is held; the data
279  available handler is locked out over the same period.
280
281  Data available on the card triggers an interrupt. If the data is not
282  suitable for our existing RX channels or we cannot allocate a buffer
283  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284  transfers may be scheduled for the same frame.
285
286  RX setup in more detail:
287
288  RX open...
289  RX close...
290
291  III Hardware Bugs
292
293  0. Byte vs Word addressing of adapter RAM.
294
295  A design feature; see the .h file (especially the memory map).
296
297  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
298
299  The host must not start a transmit direction transfer at a
300  non-four-byte boundary in host memory. Instead the host should
301  perform a byte, or a two byte, or one byte followed by two byte
302  transfer in order to start the rest of the transfer on a four byte
303  boundary. RX is OK.
304
305  Simultaneous transmit and receive direction bus master transfers are
306  not allowed.
307
308  The simplest solution to these two is to always do PIO (never DMA)
309  in the TX direction on the original Horizon. More complicated
310  solutions are likely to hurt my brain.
311
312  2. Loss of buffer on close VC
313
314  When a VC is being closed, the buffer associated with it is not
315  returned to the pool. The host must store the reference to this
316  buffer and when opening a new VC then give it to that new VC.
317
318  The host intervention currently consists of stacking such a buffer
319  pointer at VC close and checking the stack at VC open.
320
321  3. Failure to close a VC
322
323  If a VC is currently receiving a frame then closing the VC may fail
324  and the frame continues to be received.
325
326  The solution is to make sure any received frames are flushed when
327  ready. This is currently done just before the solution to 2.
328
329  4. PCI bus (original Horizon only, fixed in Ultra)
330
331  Reading from the data port prior to initialisation will hang the PCI
332  bus. Just don't do that then! We don't.
333
334  IV To Do List
335
336  . Timer code may be broken.
337
338  . Allow users to specify buffer allocation split for TX and RX.
339
340  . Deal once and for all with buggy VC close.
341
342  . Handle interrupted and/or non-blocking operations.
343
344  . Change some macros to functions and move from .h to .c.
345
346  . Try to limit the number of TX frames each VC may have queued, in
347    order to reduce the chances of TX buffer exhaustion.
348
349  . Implement VBR (bucket and timers not understood) and ABR (need to
350    do RM cells manually); also no Linux support for either.
351
352  . Implement QoS changes on open VCs (involves extracting parts of VC open
353    and close into separate functions and using them to make changes).
354
355*/
356
357/********** globals **********/
358
359static void do_housekeeping (unsigned long arg);
360
361static unsigned short debug = 0;
362static unsigned short vpi_bits = 0;
363static int max_tx_size = 9000;
364static int max_rx_size = 9000;
365static unsigned char pci_lat = 0;
366
367/********** access functions **********/
368
369/* Read / Write Horizon registers */
370static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371  outl (cpu_to_le32 (data), dev->iobase + reg);
372}
373
374static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375  return le32_to_cpu (inl (dev->iobase + reg));
376}
377
378static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379  outw (cpu_to_le16 (data), dev->iobase + reg);
380}
381
382static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383  return le16_to_cpu (inw (dev->iobase + reg));
384}
385
386static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387  outsb (dev->iobase + reg, addr, len);
388}
389
390static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391  insb (dev->iobase + reg, addr, len);
392}
393
394/* Read / Write to a given address in Horizon buffer memory.
395   Interrupts must be disabled between the address register and data
396   port accesses as these must form an atomic operation. */
397static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400  wr_regl (dev, MEMORY_PORT_OFF, data);
401}
402
403static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406  return rd_regl (dev, MEMORY_PORT_OFF);
407}
408
409static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411  wr_regl (dev, MEMORY_PORT_OFF, data);
412}
413
414static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416  return rd_regl (dev, MEMORY_PORT_OFF);
417}
418
419/********** specialised access functions **********/
420
421/* RX */
422
423static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425  return;
426}
427
428static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
430    ;
431  return;
432}
433
434static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436  return;
437}
438
439static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
441    ;
442  return;
443}
444
445/* TX */
446
447static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449  return;
450}
451
452/* Update or query one configuration parameter of a particular channel. */
453
454static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456	   chan * TX_CHANNEL_CONFIG_MULT | mode);
457    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458    return;
459}
460
461static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
462  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
463	   chan * TX_CHANNEL_CONFIG_MULT | mode);
464    return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
465}
466
467/********** dump functions **********/
468
469static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
470#ifdef DEBUG_HORIZON
471  unsigned int i;
472  unsigned char * data = skb->data;
473  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
474  for (i=0; i<skb->len && i < 256;i++)
475    PRINTDM (DBG_DATA, "%02x ", data[i]);
476  PRINTDE (DBG_DATA,"");
477#else
478  (void) prefix;
479  (void) vc;
480  (void) skb;
481#endif
482  return;
483}
484
485static inline void dump_regs (hrz_dev * dev) {
486#ifdef DEBUG_HORIZON
487  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493#else
494  (void) dev;
495#endif
496  return;
497}
498
499static inline void dump_framer (hrz_dev * dev) {
500#ifdef DEBUG_HORIZON
501  unsigned int i;
502  PRINTDB (DBG_REGS, "framer registers:");
503  for (i = 0; i < 0x10; ++i)
504    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
505  PRINTDE (DBG_REGS,"");
506#else
507  (void) dev;
508#endif
509  return;
510}
511
512/********** VPI/VCI <-> (RX) channel conversions **********/
513
514/* RX channels are 10 bit integers, these fns are quite paranoid */
515
516static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
517  unsigned short vci_bits = 10 - vpi_bits;
518  if ((channel & RX_CHANNEL_MASK) == channel) {
519    *vci = channel & ((~0)<<vci_bits);
520    *vpi = channel >> vci_bits;
521    return channel ? 0 : -EINVAL;
522  }
523  return -EINVAL;
524}
525
526static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
527  unsigned short vci_bits = 10 - vpi_bits;
528  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
529    *channel = vpi<<vci_bits | vci;
530    return *channel ? 0 : -EINVAL;
531  }
532  return -EINVAL;
533}
534
535/********** decode RX queue entries **********/
536
537static inline u16 rx_q_entry_to_length (u32 x) {
538  return x & RX_Q_ENTRY_LENGTH_MASK;
539}
540
541static inline u16 rx_q_entry_to_rx_channel (u32 x) {
542  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
543}
544
545/* Cell Transmit Rate Values
546 *
547 * the cell transmit rate (cells per sec) can be set to a variety of
548 * different values by specifying two parameters: a timer preload from
549 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
550 * an exponent from 0 to 14; the special value 15 disables the timer).
551 *
552 * cellrate = baserate / (preload * 2^divider)
553 *
554 * The maximum cell rate that can be specified is therefore just the
555 * base rate. Halving the preload is equivalent to adding 1 to the
556 * divider and so values 1 to 8 of the preload are redundant except
557 * in the case of a maximal divider (14).
558 *
559 * Given a desired cell rate, an algorithm to determine the preload
560 * and divider is:
561 *
562 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
563 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
564 *    if x <= 16 then set p = x, d = 0 (high rates), done
565 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
566 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
567 *    we find the range (n will be between 1 and 14), set d = n
568 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
569 *
570 * The algorithm used below is a minor variant of the above.
571 *
572 * The base rate is derived from the oscillator frequency (Hz) using a
573 * fixed divider:
574 *
575 * baserate = freq / 32 in the case of some Unknown Card
576 * baserate = freq / 8  in the case of the Horizon        25
577 * baserate = freq / 8  in the case of the Horizon Ultra 155
578 *
579 * The Horizon cards have oscillators and base rates as follows:
580 *
581 * Card               Oscillator  Base Rate
582 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
583 * Horizon        25  32 MHz      4       MHz
584 * Horizon Ultra 155  40 MHz      5       MHz
585 *
586 * The following defines give the base rates in Hz. These were
587 * previously a factor of 100 larger, no doubt someone was using
588 * cps*100.
589 */
590
591#define BR_UKN 1031250l
592#define BR_HRZ 4000000l
593#define BR_ULT 5000000l
594
595// d is an exponent
596#define CR_MIND 0
597#define CR_MAXD 14
598
599// p ranges from 1 to a power of 2
600#define CR_MAXPEXP 4
601
602static int make_rate (const hrz_dev * dev, u32 c, rounding r,
603		      u16 * bits, unsigned int * actual)
604{
605	// note: rounding the rate down means rounding 'p' up
606	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
607
608	u32 div = CR_MIND;
609	u32 pre;
610
611	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
612	// the tests below. We could think harder about exact possibilities
613	// of failure...
614
615	unsigned long br_man = br;
616	unsigned int br_exp = 0;
617
618	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
619		r == round_up ? "up" : r == round_down ? "down" : "nearest");
620
621	// avoid div by zero
622	if (!c) {
623		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
624		return -EINVAL;
625	}
626
627	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
628		br_man = br_man >> 1;
629		++br_exp;
630	}
631	// (br >>br_exp) <<br_exp == br and
632	// br_exp <= CR_MAXPEXP+CR_MIND
633
634	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
635		// Equivalent to: B <= (c << (MAXPEXP+MIND))
636		// take care of rounding
637		switch (r) {
638			case round_down:
639				pre = DIV_ROUND_UP(br, c<<div);
640				// but p must be non-zero
641				if (!pre)
642					pre = 1;
643				break;
644			case round_nearest:
645				pre = DIV_ROUND_CLOSEST(br, c<<div);
646				// but p must be non-zero
647				if (!pre)
648					pre = 1;
649				break;
650			default:	/* round_up */
651				pre = br/(c<<div);
652				// but p must be non-zero
653				if (!pre)
654					return -EINVAL;
655		}
656		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
657		goto got_it;
658	}
659
660	// at this point we have
661	// d == MIND and (c << (MAXPEXP+MIND)) < B
662	while (div < CR_MAXD) {
663		div++;
664		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
665			// Equivalent to: B <= (c << (MAXPEXP+d))
666			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
667			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
668			// MAXP/2 < B/c2^d <= MAXP
669			// take care of rounding
670			switch (r) {
671				case round_down:
672					pre = DIV_ROUND_UP(br, c<<div);
673					break;
674				case round_nearest:
675					pre = DIV_ROUND_CLOSEST(br, c<<div);
676					break;
677				default: /* round_up */
678					pre = br/(c<<div);
679			}
680			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
681			goto got_it;
682		}
683	}
684	// at this point we have
685	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
686	// but we cannot go any higher
687	// take care of rounding
688	if (r == round_down)
689		return -EINVAL;
690	pre = 1 << CR_MAXPEXP;
691	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
692got_it:
693	// paranoia
694	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
695		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
696			div, pre);
697		return -EINVAL;
698	} else {
699		if (bits)
700			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
701		if (actual) {
702			*actual = DIV_ROUND_UP(br, pre<<div);
703			PRINTD (DBG_QOS, "actual rate: %u", *actual);
704		}
705		return 0;
706	}
707}
708
709static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
710				     u16 * bit_pattern, unsigned int * actual) {
711  unsigned int my_actual;
712
713  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
714	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
715
716  if (!actual)
717    // actual rate is not returned
718    actual = &my_actual;
719
720  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
721    // should never happen as round_nearest always succeeds
722    return -1;
723
724  if (c - tol <= *actual && *actual <= c + tol)
725    // within tolerance
726    return 0;
727  else
728    // intolerant, try rounding instead
729    return make_rate (dev, c, r, bit_pattern, actual);
730}
731
732/********** Listen on a VC **********/
733
734static int hrz_open_rx (hrz_dev * dev, u16 channel) {
735  // is there any guarantee that we don't get two simulataneous
736  // identical calls of this function from different processes? yes
737  // rate_lock
738  unsigned long flags;
739  u32 channel_type; // u16?
740
741  u16 buf_ptr = RX_CHANNEL_IDLE;
742
743  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
744
745  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
746
747  spin_lock_irqsave (&dev->mem_lock, flags);
748  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
749  spin_unlock_irqrestore (&dev->mem_lock, flags);
750
751  // very serious error, should never occur
752  if (channel_type != RX_CHANNEL_DISABLED) {
753    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
754    return -EBUSY; // clean up?
755  }
756
757  // Give back spare buffer
758  if (dev->noof_spare_buffers) {
759    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
760    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
761    // should never occur
762    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
763      // but easy to recover from
764      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
765      buf_ptr = RX_CHANNEL_IDLE;
766    }
767  } else {
768    PRINTD (DBG_VCC, "using IDLE buffer pointer");
769  }
770
771  // Channel is currently disabled so change its status to idle
772
773  // do we really need to save the flags again?
774  spin_lock_irqsave (&dev->mem_lock, flags);
775
776  wr_mem (dev, &rx_desc->wr_buf_type,
777	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
778  if (buf_ptr != RX_CHANNEL_IDLE)
779    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
780
781  spin_unlock_irqrestore (&dev->mem_lock, flags);
782
783  // rxer->rate = make_rate (qos->peak_cells);
784
785  PRINTD (DBG_FLOW, "hrz_open_rx ok");
786
787  return 0;
788}
789
790#if 0
791/********** change vc rate for a given vc **********/
792
793static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
794  rxer->rate = make_rate (qos->peak_cells);
795}
796#endif
797
798/********** free an skb (as per ATM device driver documentation) **********/
799
800static void hrz_kfree_skb (struct sk_buff * skb) {
801  if (ATM_SKB(skb)->vcc->pop) {
802    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
803  } else {
804    dev_kfree_skb_any (skb);
805  }
806}
807
808/********** cancel listen on a VC **********/
809
810static void hrz_close_rx (hrz_dev * dev, u16 vc) {
811  unsigned long flags;
812
813  u32 value;
814
815  u32 r1, r2;
816
817  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
818
819  int was_idle = 0;
820
821  spin_lock_irqsave (&dev->mem_lock, flags);
822  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
823  spin_unlock_irqrestore (&dev->mem_lock, flags);
824
825  if (value == RX_CHANNEL_DISABLED) {
826    // I suppose this could happen once we deal with _NONE traffic properly
827    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
828    return;
829  }
830  if (value == RX_CHANNEL_IDLE)
831    was_idle = 1;
832
833  spin_lock_irqsave (&dev->mem_lock, flags);
834
835  for (;;) {
836    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
837
838    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
839      break;
840
841    was_idle = 0;
842  }
843
844  if (was_idle) {
845    spin_unlock_irqrestore (&dev->mem_lock, flags);
846    return;
847  }
848
849  WAIT_FLUSH_RX_COMPLETE(dev);
850
851  // XXX Is this all really necessary? We can rely on the rx_data_av
852  // handler to discard frames that remain queued for delivery. If the
853  // worry is that immediately reopening the channel (perhaps by a
854  // different process) may cause some data to be mis-delivered then
855  // there may still be a simpler solution (such as busy-waiting on
856  // rx_busy once the channel is disabled or before a new one is
857  // opened - does this leave any holes?). Arguably setting up and
858  // tearing down the TX and RX halves of each virtual circuit could
859  // most safely be done within ?x_busy protected regions.
860
861  // OK, current changes are that Simon's marker is disabled and we DO
862  // look for NULL rxer elsewhere. The code here seems flush frames
863  // and then remember the last dead cell belonging to the channel
864  // just disabled - the cell gets relinked at the next vc_open.
865  // However, when all VCs are closed or only a few opened there are a
866  // handful of buffers that are unusable.
867
868  // Does anyone feel like documenting spare_buffers properly?
869  // Does anyone feel like fixing this in a nicer way?
870
871  // Flush any data which is left in the channel
872  for (;;) {
873    // Change the rx channel port to something different to the RX
874    // channel we are trying to close to force Horizon to flush the rx
875    // channel read and write pointers.
876
877    u16 other = vc^(RX_CHANS/2);
878
879    SELECT_RX_CHANNEL (dev, other);
880    WAIT_UPDATE_COMPLETE (dev);
881
882    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
883
884    // Select this RX channel. Flush doesn't seem to work unless we
885    // select an RX channel before hand
886
887    SELECT_RX_CHANNEL (dev, vc);
888    WAIT_UPDATE_COMPLETE (dev);
889
890    // Attempt to flush a frame on this RX channel
891
892    FLUSH_RX_CHANNEL (dev, vc);
893    WAIT_FLUSH_RX_COMPLETE (dev);
894
895    // Force Horizon to flush rx channel read and write pointers as before
896
897    SELECT_RX_CHANNEL (dev, other);
898    WAIT_UPDATE_COMPLETE (dev);
899
900    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
901
902    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
903
904    if (r1 == r2) {
905      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
906      break;
907    }
908  }
909
910#if 0
911  {
912    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
913    rx_q_entry * rd_ptr = dev->rx_q_entry;
914
915    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
916
917    while (rd_ptr != wr_ptr) {
918      u32 x = rd_mem (dev, (HDW *) rd_ptr);
919
920      if (vc == rx_q_entry_to_rx_channel (x)) {
921	x |= SIMONS_DODGEY_MARKER;
922
923	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
924
925	wr_mem (dev, (HDW *) rd_ptr, x);
926      }
927
928      if (rd_ptr == dev->rx_q_wrap)
929	rd_ptr = dev->rx_q_reset;
930      else
931	rd_ptr++;
932    }
933  }
934#endif
935
936  spin_unlock_irqrestore (&dev->mem_lock, flags);
937
938  return;
939}
940
941/********** schedule RX transfers **********/
942
943// Note on tail recursion: a GCC developer said that it is not likely
944// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
945// are sure it does as you may otherwise overflow the kernel stack.
946
947// giving this fn a return value would help GCC, allegedly
948
949static void rx_schedule (hrz_dev * dev, int irq) {
950  unsigned int rx_bytes;
951
952  int pio_instead = 0;
953#ifndef TAILRECURSIONWORKS
954  pio_instead = 1;
955  while (pio_instead) {
956#endif
957    // bytes waiting for RX transfer
958    rx_bytes = dev->rx_bytes;
959
960#if 0
961    spin_count = 0;
962    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
963      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
964      if (++spin_count > 10) {
965	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
966	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
967	clear_bit (rx_busy, &dev->flags);
968	hrz_kfree_skb (dev->rx_skb);
969	return;
970      }
971    }
972#endif
973
974    // this code follows the TX code but (at the moment) there is only
975    // one region - the skb itself. I don't know if this will change,
976    // but it doesn't hurt to have the code here, disabled.
977
978    if (rx_bytes) {
979      // start next transfer within same region
980      if (rx_bytes <= MAX_PIO_COUNT) {
981	PRINTD (DBG_RX|DBG_BUS, "(pio)");
982	pio_instead = 1;
983      }
984      if (rx_bytes <= MAX_TRANSFER_COUNT) {
985	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
986	dev->rx_bytes = 0;
987      } else {
988	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
989	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
990	rx_bytes = MAX_TRANSFER_COUNT;
991      }
992    } else {
993      // rx_bytes == 0 -- we're between regions
994      // regions remaining to transfer
995#if 0
996      unsigned int rx_regions = dev->rx_regions;
997#else
998      unsigned int rx_regions = 0;
999#endif
1000
1001      if (rx_regions) {
1002#if 0
1003	// start a new region
1004	dev->rx_addr = dev->rx_iovec->iov_base;
1005	rx_bytes = dev->rx_iovec->iov_len;
1006	++dev->rx_iovec;
1007	dev->rx_regions = rx_regions - 1;
1008
1009	if (rx_bytes <= MAX_PIO_COUNT) {
1010	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
1011	  pio_instead = 1;
1012	}
1013	if (rx_bytes <= MAX_TRANSFER_COUNT) {
1014	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1015	  dev->rx_bytes = 0;
1016	} else {
1017	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1018	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1019	  rx_bytes = MAX_TRANSFER_COUNT;
1020	}
1021#endif
1022      } else {
1023	// rx_regions == 0
1024	// that's all folks - end of frame
1025	struct sk_buff * skb = dev->rx_skb;
1026	// dev->rx_iovec = 0;
1027
1028	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1029
1030	dump_skb ("<<<", dev->rx_channel, skb);
1031
1032	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1033
1034	{
1035	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1036	  // VC layer stats
1037	  atomic_inc(&vcc->stats->rx);
1038	  __net_timestamp(skb);
1039	  // end of our responsibility
1040	  vcc->push (vcc, skb);
1041	}
1042      }
1043    }
1044
1045    // note: writing RX_COUNT clears any interrupt condition
1046    if (rx_bytes) {
1047      if (pio_instead) {
1048	if (irq)
1049	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1050	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1051      } else {
1052	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1053	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1054      }
1055      dev->rx_addr += rx_bytes;
1056    } else {
1057      if (irq)
1058	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1059      // allow another RX thread to start
1060      YELLOW_LED_ON(dev);
1061      clear_bit (rx_busy, &dev->flags);
1062      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1063    }
1064
1065#ifdef TAILRECURSIONWORKS
1066    // and we all bless optimised tail calls
1067    if (pio_instead)
1068      return rx_schedule (dev, 0);
1069    return;
1070#else
1071    // grrrrrrr!
1072    irq = 0;
1073  }
1074  return;
1075#endif
1076}
1077
1078/********** handle RX bus master complete events **********/
1079
1080static void rx_bus_master_complete_handler (hrz_dev * dev) {
1081  if (test_bit (rx_busy, &dev->flags)) {
1082    rx_schedule (dev, 1);
1083  } else {
1084    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1085    // clear interrupt condition on adapter
1086    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1087  }
1088  return;
1089}
1090
1091/********** (queue to) become the next TX thread **********/
1092
1093static int tx_hold (hrz_dev * dev) {
1094  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1095  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1096  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1097  if (signal_pending (current))
1098    return -1;
1099  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1100  return 0;
1101}
1102
1103/********** allow another TX thread to start **********/
1104
1105static inline void tx_release (hrz_dev * dev) {
1106  clear_bit (tx_busy, &dev->flags);
1107  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1108  wake_up_interruptible (&dev->tx_queue);
1109}
1110
1111/********** schedule TX transfers **********/
1112
1113static void tx_schedule (hrz_dev * const dev, int irq) {
1114  unsigned int tx_bytes;
1115
1116  int append_desc = 0;
1117
1118  int pio_instead = 0;
1119#ifndef TAILRECURSIONWORKS
1120  pio_instead = 1;
1121  while (pio_instead) {
1122#endif
1123    // bytes in current region waiting for TX transfer
1124    tx_bytes = dev->tx_bytes;
1125
1126#if 0
1127    spin_count = 0;
1128    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1129      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1130      if (++spin_count > 10) {
1131	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1132	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1133	tx_release (dev);
1134	hrz_kfree_skb (dev->tx_skb);
1135	return;
1136      }
1137    }
1138#endif
1139
1140    if (tx_bytes) {
1141      // start next transfer within same region
1142      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1143	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1144	pio_instead = 1;
1145      }
1146      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1147	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1148	if (!dev->tx_iovec) {
1149	  // end of last region
1150	  append_desc = 1;
1151	}
1152	dev->tx_bytes = 0;
1153      } else {
1154	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1155	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1156	tx_bytes = MAX_TRANSFER_COUNT;
1157      }
1158    } else {
1159      // tx_bytes == 0 -- we're between regions
1160      // regions remaining to transfer
1161      unsigned int tx_regions = dev->tx_regions;
1162
1163      if (tx_regions) {
1164	// start a new region
1165	dev->tx_addr = dev->tx_iovec->iov_base;
1166	tx_bytes = dev->tx_iovec->iov_len;
1167	++dev->tx_iovec;
1168	dev->tx_regions = tx_regions - 1;
1169
1170	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1171	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1172	  pio_instead = 1;
1173	}
1174	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1175	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1176	  dev->tx_bytes = 0;
1177	} else {
1178	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1179	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1180	  tx_bytes = MAX_TRANSFER_COUNT;
1181	}
1182      } else {
1183	// tx_regions == 0
1184	// that's all folks - end of frame
1185	struct sk_buff * skb = dev->tx_skb;
1186	dev->tx_iovec = NULL;
1187
1188	// VC layer stats
1189	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1190
1191	// free the skb
1192	hrz_kfree_skb (skb);
1193      }
1194    }
1195
1196    // note: writing TX_COUNT clears any interrupt condition
1197    if (tx_bytes) {
1198      if (pio_instead) {
1199	if (irq)
1200	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1202	if (append_desc)
1203	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1204      } else {
1205	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1206	if (append_desc)
1207	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1208	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1209		 append_desc
1210		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1211		 : tx_bytes);
1212      }
1213      dev->tx_addr += tx_bytes;
1214    } else {
1215      if (irq)
1216	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1217      YELLOW_LED_ON(dev);
1218      tx_release (dev);
1219    }
1220
1221#ifdef TAILRECURSIONWORKS
1222    // and we all bless optimised tail calls
1223    if (pio_instead)
1224      return tx_schedule (dev, 0);
1225    return;
1226#else
1227    // grrrrrrr!
1228    irq = 0;
1229  }
1230  return;
1231#endif
1232}
1233
1234/********** handle TX bus master complete events **********/
1235
1236static void tx_bus_master_complete_handler (hrz_dev * dev) {
1237  if (test_bit (tx_busy, &dev->flags)) {
1238    tx_schedule (dev, 1);
1239  } else {
1240    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1241    // clear interrupt condition on adapter
1242    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1243  }
1244  return;
1245}
1246
1247/********** move RX Q pointer to next item in circular buffer **********/
1248
1249// called only from IRQ sub-handler
1250static u32 rx_queue_entry_next (hrz_dev * dev) {
1251  u32 rx_queue_entry;
1252  spin_lock (&dev->mem_lock);
1253  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1254  if (dev->rx_q_entry == dev->rx_q_wrap)
1255    dev->rx_q_entry = dev->rx_q_reset;
1256  else
1257    dev->rx_q_entry++;
1258  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1259  spin_unlock (&dev->mem_lock);
1260  return rx_queue_entry;
1261}
1262
1263/********** handle RX disabled by device **********/
1264
1265static inline void rx_disabled_handler (hrz_dev * dev) {
1266  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1267  // count me please
1268  PRINTK (KERN_WARNING, "RX was disabled!");
1269}
1270
1271/********** handle RX data received by device **********/
1272
1273// called from IRQ handler
1274static void rx_data_av_handler (hrz_dev * dev) {
1275  u32 rx_queue_entry;
1276  u32 rx_queue_entry_flags;
1277  u16 rx_len;
1278  u16 rx_channel;
1279
1280  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1281
1282  // try to grab rx lock (not possible during RX bus mastering)
1283  if (test_and_set_bit (rx_busy, &dev->flags)) {
1284    PRINTD (DBG_RX, "locked out of rx lock");
1285    return;
1286  }
1287  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1288  // lock is cleared if we fail now, o/w after bus master completion
1289
1290  YELLOW_LED_OFF(dev);
1291
1292  rx_queue_entry = rx_queue_entry_next (dev);
1293
1294  rx_len = rx_q_entry_to_length (rx_queue_entry);
1295  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1296
1297  WAIT_FLUSH_RX_COMPLETE (dev);
1298
1299  SELECT_RX_CHANNEL (dev, rx_channel);
1300
1301  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1302  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1303
1304  if (!rx_len) {
1305    // (at least) bus-mastering breaks if we try to handle a
1306    // zero-length frame, besides AAL5 does not support them
1307    PRINTK (KERN_ERR, "zero-length frame!");
1308    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1309  }
1310
1311  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1312    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1313  }
1314  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1315    struct atm_vcc * atm_vcc;
1316
1317    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1318
1319    atm_vcc = dev->rxer[rx_channel];
1320    // if no vcc is assigned to this channel, we should drop the frame
1321    // (is this what SIMONS etc. was trying to achieve?)
1322
1323    if (atm_vcc) {
1324
1325      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1326
1327	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1328
1329	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1330	  if (skb) {
1331	    // remember this so we can push it later
1332	    dev->rx_skb = skb;
1333	    // remember this so we can flush it later
1334	    dev->rx_channel = rx_channel;
1335
1336	    // prepare socket buffer
1337	    skb_put (skb, rx_len);
1338	    ATM_SKB(skb)->vcc = atm_vcc;
1339
1340	    // simple transfer
1341	    // dev->rx_regions = 0;
1342	    // dev->rx_iovec = 0;
1343	    dev->rx_bytes = rx_len;
1344	    dev->rx_addr = skb->data;
1345	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1346		    skb->data, rx_len);
1347
1348	    // do the business
1349	    rx_schedule (dev, 0);
1350	    return;
1351
1352	  } else {
1353	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1354	  }
1355
1356	} else {
1357	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1358	  // do we count this?
1359	}
1360
1361      } else {
1362	PRINTK (KERN_WARNING, "dropped over-size frame");
1363	// do we count this?
1364      }
1365
1366    } else {
1367      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1368      // do we count this?
1369    }
1370
1371  } else {
1372    // Wait update complete ? SPONG
1373  }
1374
1375  // RX was aborted
1376  YELLOW_LED_ON(dev);
1377
1378  FLUSH_RX_CHANNEL (dev,rx_channel);
1379  clear_bit (rx_busy, &dev->flags);
1380
1381  return;
1382}
1383
1384/********** interrupt handler **********/
1385
1386static irqreturn_t interrupt_handler(int irq, void *dev_id)
1387{
1388  hrz_dev *dev = dev_id;
1389  u32 int_source;
1390  unsigned int irq_ok;
1391
1392  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1393
1394  // definitely for us
1395  irq_ok = 0;
1396  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1397	  & INTERESTING_INTERRUPTS)) {
1398    // In the interests of fairness, the handlers below are
1399    // called in sequence and without immediate return to the head of
1400    // the while loop. This is only of issue for slow hosts (or when
1401    // debugging messages are on). Really slow hosts may find a fast
1402    // sender keeps them permanently in the IRQ handler. :(
1403
1404    // (only an issue for slow hosts) RX completion goes before
1405    // rx_data_av as the former implies rx_busy and so the latter
1406    // would just abort. If it reschedules another transfer
1407    // (continuing the same frame) then it will not clear rx_busy.
1408
1409    // (only an issue for slow hosts) TX completion goes before RX
1410    // data available as it is a much shorter routine - there is the
1411    // chance that any further transfers it schedules will be complete
1412    // by the time of the return to the head of the while loop
1413
1414    if (int_source & RX_BUS_MASTER_COMPLETE) {
1415      ++irq_ok;
1416      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1417      rx_bus_master_complete_handler (dev);
1418    }
1419    if (int_source & TX_BUS_MASTER_COMPLETE) {
1420      ++irq_ok;
1421      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1422      tx_bus_master_complete_handler (dev);
1423    }
1424    if (int_source & RX_DATA_AV) {
1425      ++irq_ok;
1426      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1427      rx_data_av_handler (dev);
1428    }
1429  }
1430  if (irq_ok) {
1431    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1432  } else {
1433    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1434  }
1435
1436  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1437  if (irq_ok)
1438	return IRQ_HANDLED;
1439  return IRQ_NONE;
1440}
1441
1442/********** housekeeping **********/
1443
1444static void do_housekeeping (unsigned long arg) {
1445  // just stats at the moment
1446  hrz_dev * dev = (hrz_dev *) arg;
1447
1448  // collect device-specific (not driver/atm-linux) stats here
1449  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1450  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1451  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1452  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1453
1454  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1455
1456  return;
1457}
1458
1459/********** find an idle channel for TX and set it up **********/
1460
1461// called with tx_busy set
1462static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1463  unsigned short idle_channels;
1464  short tx_channel = -1;
1465  unsigned int spin_count;
1466  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1467
1468  // better would be to fail immediately, the caller can then decide whether
1469  // to wait or drop (depending on whether this is UBR etc.)
1470  spin_count = 0;
1471  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1472    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1473    // delay a bit here
1474    if (++spin_count > 100) {
1475      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1476      return -EBUSY;
1477    }
1478  }
1479
1480  // got an idle channel
1481  {
1482    // tx_idle ensures we look for idle channels in RR order
1483    int chan = dev->tx_idle;
1484
1485    int keep_going = 1;
1486    while (keep_going) {
1487      if (idle_channels & (1<<chan)) {
1488	tx_channel = chan;
1489	keep_going = 0;
1490      }
1491      ++chan;
1492      if (chan == TX_CHANS)
1493	chan = 0;
1494    }
1495
1496    dev->tx_idle = chan;
1497  }
1498
1499  // set up the channel we found
1500  {
1501    // Initialise the cell header in the transmit channel descriptor
1502    // a.k.a. prepare the channel and remember that we have done so.
1503
1504    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1505    u32 rd_ptr;
1506    u32 wr_ptr;
1507    u16 channel = vcc->channel;
1508
1509    unsigned long flags;
1510    spin_lock_irqsave (&dev->mem_lock, flags);
1511
1512    // Update the transmit channel record.
1513    dev->tx_channel_record[tx_channel] = channel;
1514
1515    // xBR channel
1516    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1517			      vcc->tx_xbr_bits);
1518
1519    // Update the PCR counter preload value etc.
1520    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1521			      vcc->tx_pcr_bits);
1522
1523#if 0
1524    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1525      // SCR timer
1526      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1527				vcc->tx_scr_bits);
1528
1529      // Bucket size...
1530      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1531				vcc->tx_bucket_bits);
1532
1533      // ... and fullness
1534      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1535				vcc->tx_bucket_bits);
1536    }
1537#endif
1538
1539    // Initialise the read and write buffer pointers
1540    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1541    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1542
1543    // idle TX channels should have identical pointers
1544    if (rd_ptr != wr_ptr) {
1545      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1546      // spin_unlock... return -E...
1547      // I wonder if gcc would get rid of one of the pointer aliases
1548    }
1549    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1550	    rd_ptr, wr_ptr);
1551
1552    switch (vcc->aal) {
1553      case aal0:
1554	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1555	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1556	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557	break;
1558      case aal34:
1559	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1560	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1561	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1562	break;
1563      case aal5:
1564	rd_ptr |= CHANNEL_TYPE_AAL5;
1565	wr_ptr |= CHANNEL_TYPE_AAL5;
1566	// Initialise the CRC
1567	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1568	break;
1569    }
1570
1571    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1572    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1573
1574    // Write the Cell Header
1575    // Payload Type, CLP and GFC would go here if non-zero
1576    wr_mem (dev, &tx_desc->cell_header, channel);
1577
1578    spin_unlock_irqrestore (&dev->mem_lock, flags);
1579  }
1580
1581  return tx_channel;
1582}
1583
1584/********** send a frame **********/
1585
1586static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1587  unsigned int spin_count;
1588  int free_buffers;
1589  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1590  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1591  u16 channel = vcc->channel;
1592
1593  u32 buffers_required;
1594
1595  /* signed for error return */
1596  short tx_channel;
1597
1598  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1599	  channel, skb->data, skb->len);
1600
1601  dump_skb (">>>", channel, skb);
1602
1603  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1604    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1605    hrz_kfree_skb (skb);
1606    return -EIO;
1607  }
1608
1609  // don't understand this
1610  ATM_SKB(skb)->vcc = atm_vcc;
1611
1612  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1613    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1614    hrz_kfree_skb (skb);
1615    return -EIO;
1616  }
1617
1618  if (!channel) {
1619    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1620    hrz_kfree_skb (skb);
1621    return -EIO;
1622  }
1623
1624#if 0
1625  {
1626    // where would be a better place for this? housekeeping?
1627    u16 status;
1628    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1629    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1630      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1631      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1632      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1633      if (test_bit (tx_busy, &dev->flags)) {
1634	hrz_kfree_skb (dev->tx_skb);
1635	tx_release (dev);
1636      }
1637    }
1638  }
1639#endif
1640
1641#ifdef DEBUG_HORIZON
1642  /* wey-hey! */
1643  if (channel == 1023) {
1644    unsigned int i;
1645    unsigned short d = 0;
1646    char * s = skb->data;
1647    if (*s++ == 'D') {
1648	for (i = 0; i < 4; ++i)
1649		d = (d << 4) | hex_to_bin(*s++);
1650      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1651    }
1652  }
1653#endif
1654
1655  // wait until TX is free and grab lock
1656  if (tx_hold (dev)) {
1657    hrz_kfree_skb (skb);
1658    return -ERESTARTSYS;
1659  }
1660
1661  // Wait for enough space to be available in transmit buffer memory.
1662
1663  // should be number of cells needed + 2 (according to hardware docs)
1664  // = ((framelen+8)+47) / 48 + 2
1665  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1666  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1667
1668  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1669  spin_count = 0;
1670  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1671    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1672	    free_buffers, buffers_required);
1673    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1674    // mdelay (1);
1675    // what happens if we kill (current_pid, SIGKILL) ?
1676    schedule();
1677    if (++spin_count > 1000) {
1678      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1679	      free_buffers, buffers_required);
1680      tx_release (dev);
1681      hrz_kfree_skb (skb);
1682      return -ERESTARTSYS;
1683    }
1684  }
1685
1686  // Select a channel to transmit the frame on.
1687  if (channel == dev->last_vc) {
1688    PRINTD (DBG_TX, "last vc hack: hit");
1689    tx_channel = dev->tx_last;
1690  } else {
1691    PRINTD (DBG_TX, "last vc hack: miss");
1692    // Are we currently transmitting this VC on one of the channels?
1693    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1694      if (dev->tx_channel_record[tx_channel] == channel) {
1695	PRINTD (DBG_TX, "vc already on channel: hit");
1696	break;
1697      }
1698    if (tx_channel == TX_CHANS) {
1699      PRINTD (DBG_TX, "vc already on channel: miss");
1700      // Find and set up an idle channel.
1701      tx_channel = setup_idle_tx_channel (dev, vcc);
1702      if (tx_channel < 0) {
1703	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1704	tx_release (dev);
1705	return tx_channel;
1706      }
1707    }
1708
1709    PRINTD (DBG_TX, "got channel");
1710    SELECT_TX_CHANNEL(dev, tx_channel);
1711
1712    dev->last_vc = channel;
1713    dev->tx_last = tx_channel;
1714  }
1715
1716  PRINTD (DBG_TX, "using channel %u", tx_channel);
1717
1718  YELLOW_LED_OFF(dev);
1719
1720  // TX start transfer
1721
1722  {
1723    unsigned int tx_len = skb->len;
1724    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1725    // remember this so we can free it later
1726    dev->tx_skb = skb;
1727
1728    if (tx_iovcnt) {
1729      // scatter gather transfer
1730      dev->tx_regions = tx_iovcnt;
1731      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1732      dev->tx_bytes = 0;
1733      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1734	      skb->data, tx_len);
1735      tx_release (dev);
1736      hrz_kfree_skb (skb);
1737      return -EIO;
1738    } else {
1739      // simple transfer
1740      dev->tx_regions = 0;
1741      dev->tx_iovec = NULL;
1742      dev->tx_bytes = tx_len;
1743      dev->tx_addr = skb->data;
1744      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1745	      skb->data, tx_len);
1746    }
1747
1748    // and do the business
1749    tx_schedule (dev, 0);
1750
1751  }
1752
1753  return 0;
1754}
1755
1756/********** reset a card **********/
1757
1758static void hrz_reset (const hrz_dev * dev) {
1759  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1760
1761  // why not set RESET_HORIZON to one and wait for the card to
1762  // reassert that bit as zero? Like so:
1763  control_0_reg = control_0_reg & RESET_HORIZON;
1764  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1765  while (control_0_reg & RESET_HORIZON)
1766    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1767
1768  // old reset code retained:
1769  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1770	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1771  // just guessing here
1772  udelay (1000);
1773
1774  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1775}
1776
1777/********** read the burnt in address **********/
1778
1779static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1780{
1781	wr_regl (dev, CONTROL_0_REG, ctrl);
1782	udelay (5);
1783}
1784
1785static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1786{
1787	// DI must be valid around rising SK edge
1788	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1789	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1790}
1791
1792static u16 read_bia(const hrz_dev *dev, u16 addr)
1793{
1794  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1795
1796  const unsigned int addr_bits = 6;
1797  const unsigned int data_bits = 16;
1798
1799  unsigned int i;
1800
1801  u16 res;
1802
1803  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1804  WRITE_IT_WAIT(dev, ctrl);
1805
1806  // wake Serial EEPROM and send 110 (READ) command
1807  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1808  CLOCK_IT(dev, ctrl);
1809
1810  ctrl |= SEEPROM_DI;
1811  CLOCK_IT(dev, ctrl);
1812
1813  ctrl &= ~SEEPROM_DI;
1814  CLOCK_IT(dev, ctrl);
1815
1816  for (i=0; i<addr_bits; i++) {
1817    if (addr & (1 << (addr_bits-1)))
1818      ctrl |= SEEPROM_DI;
1819    else
1820      ctrl &= ~SEEPROM_DI;
1821
1822    CLOCK_IT(dev, ctrl);
1823
1824    addr = addr << 1;
1825  }
1826
1827  // we could check that we have DO = 0 here
1828  ctrl &= ~SEEPROM_DI;
1829
1830  res = 0;
1831  for (i=0;i<data_bits;i++) {
1832    res = res >> 1;
1833
1834    CLOCK_IT(dev, ctrl);
1835
1836    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1837      res |= (1 << (data_bits-1));
1838  }
1839
1840  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1841  WRITE_IT_WAIT(dev, ctrl);
1842
1843  return res;
1844}
1845
1846/********** initialise a card **********/
1847
1848static int hrz_init(hrz_dev *dev)
1849{
1850  int onefivefive;
1851
1852  u16 chan;
1853
1854  int buff_count;
1855
1856  HDW * mem;
1857
1858  cell_buf * tx_desc;
1859  cell_buf * rx_desc;
1860
1861  u32 ctrl;
1862
1863  ctrl = rd_regl (dev, CONTROL_0_REG);
1864  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1865  onefivefive = ctrl & ATM_LAYER_STATUS;
1866
1867  if (onefivefive)
1868    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1869  else
1870    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871
1872  printk (":");
1873  // Reset the card to get everything in a known state
1874
1875  printk (" reset");
1876  hrz_reset (dev);
1877
1878  // Clear all the buffer memory
1879
1880  printk (" clearing memory");
1881
1882  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1883    wr_mem (dev, mem, 0);
1884
1885  printk (" tx channels");
1886
1887  // All transmit eight channels are set up as AAL5 ABR channels with
1888  // a 16us cell spacing. Why?
1889
1890  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1891  // buffer at 110h etc.
1892
1893  for (chan = 0; chan < TX_CHANS; ++chan) {
1894    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1895    cell_buf * buf = &memmap->inittxbufs[chan];
1896
1897    // initialise the read and write buffer pointers
1898    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1899    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900
1901    // set the status of the initial buffers to empty
1902    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1903  }
1904
1905  // Use space bufn3 at the moment for tx buffers
1906
1907  printk (" tx buffers");
1908
1909  tx_desc = memmap->bufn3;
1910
1911  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912
1913  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1914    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1915    tx_desc++;
1916  }
1917
1918  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919
1920  // Initialise the transmit free buffer count
1921  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922
1923  printk (" rx channels");
1924
1925  // Initialise all of the receive channels to be AAL5 disabled with
1926  // an interrupt threshold of 0
1927
1928  for (chan = 0; chan < RX_CHANS; ++chan) {
1929    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930
1931    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1932  }
1933
1934  printk (" rx buffers");
1935
1936  // Use space bufn4 at the moment for rx buffers
1937
1938  rx_desc = memmap->bufn4;
1939
1940  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941
1942  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1943    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944
1945    rx_desc++;
1946  }
1947
1948  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949
1950  // Initialise the receive free buffer count
1951  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952
1953  // Initialize Horizons registers
1954
1955  // TX config
1956  wr_regw (dev, TX_CONFIG_OFF,
1957	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958
1959  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1960  wr_regw (dev, RX_CONFIG_OFF,
1961	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962
1963  // RX line config
1964  wr_regw (dev, RX_LINE_CONFIG_OFF,
1965	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966
1967  // Set the max AAL5 cell count to be just enough to contain the
1968  // largest AAL5 frame that the user wants to receive
1969  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971
1972  // Enable receive
1973  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974
1975  printk (" control");
1976
1977  // Drive the OE of the LEDs then turn the green LED on
1978  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1979  wr_regl (dev, CONTROL_0_REG, ctrl);
1980
1981  // Test for a 155-capable card
1982
1983  if (onefivefive) {
1984    // Select 155 mode... make this a choice (or: how do we detect
1985    // external line speed and switch?)
1986    ctrl |= ATM_LAYER_SELECT;
1987    wr_regl (dev, CONTROL_0_REG, ctrl);
1988
1989    // test SUNI-lite vs SAMBA
1990
1991    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1992    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1993    // engineers.  It'll never work.
1994
1995    if (rd_framer (dev, 0) & 0x00f0) {
1996      // SUNI
1997      printk (" SUNI");
1998
1999      // Reset, just in case
2000      wr_framer (dev, 0x00, 0x0080);
2001      wr_framer (dev, 0x00, 0x0000);
2002
2003      // Configure transmit FIFO
2004      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005
2006      // Set line timed mode
2007      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2008    } else {
2009      // SAMBA
2010      printk (" SAMBA");
2011
2012      // Reset, just in case
2013      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2014      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015
2016      // Turn off diagnostic loopback and enable line-timed mode
2017      wr_framer (dev, 0, 0x0002);
2018
2019      // Turn on transmit outputs
2020      wr_framer (dev, 2, 0x0B80);
2021    }
2022  } else {
2023    // Select 25 mode
2024    ctrl &= ~ATM_LAYER_SELECT;
2025
2026    // Madge B154 setup
2027    // none required?
2028  }
2029
2030  printk (" LEDs");
2031
2032  GREEN_LED_ON(dev);
2033  YELLOW_LED_ON(dev);
2034
2035  printk (" ESI=");
2036
2037  {
2038    u16 b = 0;
2039    int i;
2040    u8 * esi = dev->atm_dev->esi;
2041
2042    // in the card I have, EEPROM
2043    // addresses 0, 1, 2 contain 0
2044    // addresess 5, 6 etc. contain ffff
2045    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2046    // the read_bia routine gets the BIA in Ethernet bit order
2047
2048    for (i=0; i < ESI_LEN; ++i) {
2049      if (i % 2 == 0)
2050	b = read_bia (dev, i/2 + 2);
2051      else
2052	b = b >> 8;
2053      esi[i] = b & 0xFF;
2054      printk ("%02x", esi[i]);
2055    }
2056  }
2057
2058  // Enable RX_Q and ?X_COMPLETE interrupts only
2059  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2060  printk (" IRQ on");
2061
2062  printk (".\n");
2063
2064  return onefivefive;
2065}
2066
2067/********** check max_sdu **********/
2068
2069static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2070  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071
2072  switch (aal) {
2073    case aal0:
2074      if (!(tp->max_sdu)) {
2075	PRINTD (DBG_QOS, "defaulting max_sdu");
2076	tp->max_sdu = ATM_AAL0_SDU;
2077      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2078	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2079	return -EINVAL;
2080      }
2081      break;
2082    case aal34:
2083      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2084	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2085	tp->max_sdu = ATM_MAX_AAL34_PDU;
2086      }
2087      break;
2088    case aal5:
2089      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2090	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2091	tp->max_sdu = max_frame_size;
2092      }
2093      break;
2094  }
2095  return 0;
2096}
2097
2098/********** check pcr **********/
2099
2100// something like this should be part of ATM Linux
2101static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2102  // we are assuming non-UBR, and non-special values of pcr
2103  if (tp->min_pcr == ATM_MAX_PCR)
2104    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2105  else if (tp->min_pcr < 0)
2106    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2107  else if (tp->min_pcr && tp->min_pcr > pcr)
2108    PRINTD (DBG_QOS, "pcr less than min_pcr");
2109  else
2110    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2111    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2112    // [this would get rid of next two conditionals]
2113    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2114      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2115    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2116      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2117    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2118      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2119    else {
2120      // each limit unspecified or not violated
2121      PRINTD (DBG_QOS, "xBR(pcr) OK");
2122      return 0;
2123    }
2124  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2125	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2126  return -EINVAL;
2127}
2128
2129/********** open VC **********/
2130
2131static int hrz_open (struct atm_vcc *atm_vcc)
2132{
2133  int error;
2134  u16 channel;
2135
2136  struct atm_qos * qos;
2137  struct atm_trafprm * txtp;
2138  struct atm_trafprm * rxtp;
2139
2140  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2141  hrz_vcc vcc;
2142  hrz_vcc * vccp; // allocated late
2143  short vpi = atm_vcc->vpi;
2144  int vci = atm_vcc->vci;
2145  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146
2147#ifdef ATM_VPI_UNSPEC
2148  // UNSPEC is deprecated, remove this code eventually
2149  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2150    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2151    return -EINVAL;
2152  }
2153#endif
2154
2155  error = vpivci_to_channel (&channel, vpi, vci);
2156  if (error) {
2157    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2158    return error;
2159  }
2160
2161  vcc.channel = channel;
2162  // max speed for the moment
2163  vcc.tx_rate = 0x0;
2164
2165  qos = &atm_vcc->qos;
2166
2167  // check AAL and remember it
2168  switch (qos->aal) {
2169    case ATM_AAL0:
2170      // we would if it were 48 bytes and not 52!
2171      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2172      vcc.aal = aal0;
2173      break;
2174    case ATM_AAL34:
2175      // we would if I knew how do the SAR!
2176      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2177      vcc.aal = aal34;
2178      break;
2179    case ATM_AAL5:
2180      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2181      vcc.aal = aal5;
2182      break;
2183    default:
2184      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2185      return -EINVAL;
2186  }
2187
2188  // TX traffic parameters
2189
2190  // there are two, interrelated problems here: 1. the reservation of
2191  // PCR is not a binary choice, we are given bounds and/or a
2192  // desirable value; 2. the device is only capable of certain values,
2193  // most of which are not integers. It is almost certainly acceptable
2194  // to be off by a maximum of 1 to 10 cps.
2195
2196  // Pragmatic choice: always store an integral PCR as that which has
2197  // been allocated, even if we allocate a little (or a lot) less,
2198  // after rounding. The actual allocation depends on what we can
2199  // manage with our rate selection algorithm. The rate selection
2200  // algorithm is given an integral PCR and a tolerance and told
2201  // whether it should round the value up or down if the tolerance is
2202  // exceeded; it returns: a) the actual rate selected (rounded up to
2203  // the nearest integer), b) a bit pattern to feed to the timer
2204  // register, and c) a failure value if no applicable rate exists.
2205
2206  // Part of the job is done by atm_pcr_goal which gives us a PCR
2207  // specification which says: EITHER grab the maximum available PCR
2208  // (and perhaps a lower bound which we musn't pass), OR grab this
2209  // amount, rounding down if you have to (and perhaps a lower bound
2210  // which we musn't pass) OR grab this amount, rounding up if you
2211  // have to (and perhaps an upper bound which we musn't pass). If any
2212  // bounds ARE passed we fail. Note that rounding is only rounding to
2213  // match device limitations, we do not round down to satisfy
2214  // bandwidth availability even if this would not violate any given
2215  // lower bound.
2216
2217  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2218  // (say) so this is not even a binary fixpoint cell rate (but this
2219  // device can do it). To avoid this sort of hassle we use a
2220  // tolerance parameter (currently fixed at 10 cps).
2221
2222  PRINTD (DBG_QOS, "TX:");
2223
2224  txtp = &qos->txtp;
2225
2226  // set up defaults for no traffic
2227  vcc.tx_rate = 0;
2228  // who knows what would actually happen if you try and send on this?
2229  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2230  vcc.tx_pcr_bits = CLOCK_DISABLE;
2231#if 0
2232  vcc.tx_scr_bits = CLOCK_DISABLE;
2233  vcc.tx_bucket_bits = 0;
2234#endif
2235
2236  if (txtp->traffic_class != ATM_NONE) {
2237    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2238    if (error) {
2239      PRINTD (DBG_QOS, "TX max_sdu check failed");
2240      return error;
2241    }
2242
2243    switch (txtp->traffic_class) {
2244      case ATM_UBR: {
2245	// we take "the PCR" as a rate-cap
2246	// not reserved
2247	vcc.tx_rate = 0;
2248	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2249	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2250	break;
2251      }
2252#if 0
2253      case ATM_ABR: {
2254	// reserve min, allow up to max
2255	vcc.tx_rate = 0; // ?
2256	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2257	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2258	break;
2259      }
2260#endif
2261      case ATM_CBR: {
2262	int pcr = atm_pcr_goal (txtp);
2263	rounding r;
2264	if (!pcr) {
2265	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2266	  // should really have: once someone gets unlimited bandwidth
2267	  // that no more non-UBR channels can be opened until the
2268	  // unlimited one closes?? For the moment, round_down means
2269	  // greedy people actually get something and not nothing
2270	  r = round_down;
2271	  // slight race (no locking) here so we may get -EAGAIN
2272	  // later; the greedy bastards would deserve it :)
2273	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2274	  pcr = dev->tx_avail;
2275	} else if (pcr < 0) {
2276	  r = round_down;
2277	  pcr = -pcr;
2278	} else {
2279	  r = round_up;
2280	}
2281	error = make_rate_with_tolerance (dev, pcr, r, 10,
2282					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2283	if (error) {
2284	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2285	  return error;
2286	}
2287	// not really clear what further checking is needed
2288	error = atm_pcr_check (txtp, vcc.tx_rate);
2289	if (error) {
2290	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2291	  return error;
2292	}
2293	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2294	break;
2295      }
2296#if 0
2297      case ATM_VBR: {
2298	int pcr = atm_pcr_goal (txtp);
2299	// int scr = atm_scr_goal (txtp);
2300	int scr = pcr/2; // just for fun
2301	unsigned int mbs = 60; // just for fun
2302	rounding pr;
2303	rounding sr;
2304	unsigned int bucket;
2305	if (!pcr) {
2306	  pr = round_nearest;
2307	  pcr = 1<<30;
2308	} else if (pcr < 0) {
2309	  pr = round_down;
2310	  pcr = -pcr;
2311	} else {
2312	  pr = round_up;
2313	}
2314	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2315					  &vcc.tx_pcr_bits, 0);
2316	if (!scr) {
2317	  // see comments for PCR with CBR above
2318	  sr = round_down;
2319	  // slight race (no locking) here so we may get -EAGAIN
2320	  // later; the greedy bastards would deserve it :)
2321	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2322	  scr = dev->tx_avail;
2323	} else if (scr < 0) {
2324	  sr = round_down;
2325	  scr = -scr;
2326	} else {
2327	  sr = round_up;
2328	}
2329	error = make_rate_with_tolerance (dev, scr, sr, 10,
2330					  &vcc.tx_scr_bits, &vcc.tx_rate);
2331	if (error) {
2332	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2333	  return error;
2334	}
2335	// not really clear what further checking is needed
2336	// error = atm_scr_check (txtp, vcc.tx_rate);
2337	if (error) {
2338	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2339	  return error;
2340	}
2341	// bucket calculations (from a piece of paper...) cell bucket
2342	// capacity must be largest integer smaller than m(p-s)/p + 1
2343	// where m = max burst size, p = pcr, s = scr
2344	bucket = mbs*(pcr-scr)/pcr;
2345	if (bucket*pcr != mbs*(pcr-scr))
2346	  bucket += 1;
2347	if (bucket > BUCKET_MAX_SIZE) {
2348	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2349		  bucket, BUCKET_MAX_SIZE);
2350	  bucket = BUCKET_MAX_SIZE;
2351	}
2352	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2353	vcc.tx_bucket_bits = bucket;
2354	break;
2355      }
2356#endif
2357      default: {
2358	PRINTD (DBG_QOS, "unsupported TX traffic class");
2359	return -EINVAL;
2360      }
2361    }
2362  }
2363
2364  // RX traffic parameters
2365
2366  PRINTD (DBG_QOS, "RX:");
2367
2368  rxtp = &qos->rxtp;
2369
2370  // set up defaults for no traffic
2371  vcc.rx_rate = 0;
2372
2373  if (rxtp->traffic_class != ATM_NONE) {
2374    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2375    if (error) {
2376      PRINTD (DBG_QOS, "RX max_sdu check failed");
2377      return error;
2378    }
2379    switch (rxtp->traffic_class) {
2380      case ATM_UBR: {
2381	// not reserved
2382	break;
2383      }
2384#if 0
2385      case ATM_ABR: {
2386	// reserve min
2387	vcc.rx_rate = 0; // ?
2388	break;
2389      }
2390#endif
2391      case ATM_CBR: {
2392	int pcr = atm_pcr_goal (rxtp);
2393	if (!pcr) {
2394	  // slight race (no locking) here so we may get -EAGAIN
2395	  // later; the greedy bastards would deserve it :)
2396	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2397	  pcr = dev->rx_avail;
2398	} else if (pcr < 0) {
2399	  pcr = -pcr;
2400	}
2401	vcc.rx_rate = pcr;
2402	// not really clear what further checking is needed
2403	error = atm_pcr_check (rxtp, vcc.rx_rate);
2404	if (error) {
2405	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2406	  return error;
2407	}
2408	break;
2409      }
2410#if 0
2411      case ATM_VBR: {
2412	// int scr = atm_scr_goal (rxtp);
2413	int scr = 1<<16; // just for fun
2414	if (!scr) {
2415	  // slight race (no locking) here so we may get -EAGAIN
2416	  // later; the greedy bastards would deserve it :)
2417	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2418	  scr = dev->rx_avail;
2419	} else if (scr < 0) {
2420	  scr = -scr;
2421	}
2422	vcc.rx_rate = scr;
2423	// not really clear what further checking is needed
2424	// error = atm_scr_check (rxtp, vcc.rx_rate);
2425	if (error) {
2426	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2427	  return error;
2428	}
2429	break;
2430      }
2431#endif
2432      default: {
2433	PRINTD (DBG_QOS, "unsupported RX traffic class");
2434	return -EINVAL;
2435      }
2436    }
2437  }
2438
2439
2440  // late abort useful for diagnostics
2441  if (vcc.aal != aal5) {
2442    PRINTD (DBG_QOS, "AAL not supported");
2443    return -EINVAL;
2444  }
2445
2446  // get space for our vcc stuff and copy parameters into it
2447  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2448  if (!vccp) {
2449    PRINTK (KERN_ERR, "out of memory!");
2450    return -ENOMEM;
2451  }
2452  *vccp = vcc;
2453
2454  // clear error and grab cell rate resource lock
2455  error = 0;
2456  spin_lock (&dev->rate_lock);
2457
2458  if (vcc.tx_rate > dev->tx_avail) {
2459    PRINTD (DBG_QOS, "not enough TX PCR left");
2460    error = -EAGAIN;
2461  }
2462
2463  if (vcc.rx_rate > dev->rx_avail) {
2464    PRINTD (DBG_QOS, "not enough RX PCR left");
2465    error = -EAGAIN;
2466  }
2467
2468  if (!error) {
2469    // really consume cell rates
2470    dev->tx_avail -= vcc.tx_rate;
2471    dev->rx_avail -= vcc.rx_rate;
2472    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2473	    vcc.tx_rate, vcc.rx_rate);
2474  }
2475
2476  // release lock and exit on error
2477  spin_unlock (&dev->rate_lock);
2478  if (error) {
2479    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2480    kfree (vccp);
2481    return error;
2482  }
2483
2484  // this is "immediately before allocating the connection identifier
2485  // in hardware" - so long as the next call does not fail :)
2486  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2487
2488  // any errors here are very serious and should never occur
2489
2490  if (rxtp->traffic_class != ATM_NONE) {
2491    if (dev->rxer[channel]) {
2492      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2493      error = -EBUSY;
2494    }
2495    if (!error)
2496      error = hrz_open_rx (dev, channel);
2497    if (error) {
2498      kfree (vccp);
2499      return error;
2500    }
2501    // this link allows RX frames through
2502    dev->rxer[channel] = atm_vcc;
2503  }
2504
2505  // success, set elements of atm_vcc
2506  atm_vcc->dev_data = (void *) vccp;
2507
2508  // indicate readiness
2509  set_bit(ATM_VF_READY,&atm_vcc->flags);
2510
2511  return 0;
2512}
2513
2514/********** close VC **********/
2515
2516static void hrz_close (struct atm_vcc * atm_vcc) {
2517  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2518  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2519  u16 channel = vcc->channel;
2520  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2521
2522  // indicate unreadiness
2523  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2524
2525  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2526    unsigned int i;
2527
2528    // let any TX on this channel that has started complete
2529    // no restart, just keep trying
2530    while (tx_hold (dev))
2531      ;
2532    // remove record of any tx_channel having been setup for this channel
2533    for (i = 0; i < TX_CHANS; ++i)
2534      if (dev->tx_channel_record[i] == channel) {
2535	dev->tx_channel_record[i] = -1;
2536	break;
2537      }
2538    if (dev->last_vc == channel)
2539      dev->tx_last = -1;
2540    tx_release (dev);
2541  }
2542
2543  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2544    // disable RXing - it tries quite hard
2545    hrz_close_rx (dev, channel);
2546    // forget the vcc - no more skbs will be pushed
2547    if (atm_vcc != dev->rxer[channel])
2548      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2549	      "arghhh! we're going to die!",
2550	      atm_vcc, dev->rxer[channel]);
2551    dev->rxer[channel] = NULL;
2552  }
2553
2554  // atomically release our rate reservation
2555  spin_lock (&dev->rate_lock);
2556  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2557	  vcc->tx_rate, vcc->rx_rate);
2558  dev->tx_avail += vcc->tx_rate;
2559  dev->rx_avail += vcc->rx_rate;
2560  spin_unlock (&dev->rate_lock);
2561
2562  // free our structure
2563  kfree (vcc);
2564  // say the VPI/VCI is free again
2565  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2566}
2567
2568#if 0
2569static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2570			   void *optval, int optlen) {
2571  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2572  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2573  switch (level) {
2574    case SOL_SOCKET:
2575      switch (optname) {
2576//	case SO_BCTXOPT:
2577//	  break;
2578//	case SO_BCRXOPT:
2579//	  break;
2580	default:
2581	  return -ENOPROTOOPT;
2582      };
2583      break;
2584  }
2585  return -EINVAL;
2586}
2587
2588static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2589			   void *optval, unsigned int optlen) {
2590  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2591  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2592  switch (level) {
2593    case SOL_SOCKET:
2594      switch (optname) {
2595//	case SO_BCTXOPT:
2596//	  break;
2597//	case SO_BCRXOPT:
2598//	  break;
2599	default:
2600	  return -ENOPROTOOPT;
2601      };
2602      break;
2603  }
2604  return -EINVAL;
2605}
2606#endif
2607
2608#if 0
2609static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2610  hrz_dev * dev = HRZ_DEV(atm_dev);
2611  PRINTD (DBG_FLOW, "hrz_ioctl");
2612  return -1;
2613}
2614
2615unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2616  hrz_dev * dev = HRZ_DEV(atm_dev);
2617  PRINTD (DBG_FLOW, "hrz_phy_get");
2618  return 0;
2619}
2620
2621static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2622			 unsigned long addr) {
2623  hrz_dev * dev = HRZ_DEV(atm_dev);
2624  PRINTD (DBG_FLOW, "hrz_phy_put");
2625}
2626
2627static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2628  hrz_dev * dev = HRZ_DEV(vcc->dev);
2629  PRINTD (DBG_FLOW, "hrz_change_qos");
2630  return -1;
2631}
2632#endif
2633
2634/********** proc file contents **********/
2635
2636static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2637  hrz_dev * dev = HRZ_DEV(atm_dev);
2638  int left = *pos;
2639  PRINTD (DBG_FLOW, "hrz_proc_read");
2640
2641  /* more diagnostics here? */
2642
2643#if 0
2644  if (!left--) {
2645    unsigned int count = sprintf (page, "vbr buckets:");
2646    unsigned int i;
2647    for (i = 0; i < TX_CHANS; ++i)
2648      count += sprintf (page, " %u/%u",
2649			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2650			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2651    count += sprintf (page+count, ".\n");
2652    return count;
2653  }
2654#endif
2655
2656  if (!left--)
2657    return sprintf (page,
2658		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2659		    dev->tx_cell_count, dev->rx_cell_count,
2660		    dev->hec_error_count, dev->unassigned_cell_count);
2661
2662  if (!left--)
2663    return sprintf (page,
2664		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2665		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2666		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2667		    dev->noof_spare_buffers);
2668
2669  if (!left--)
2670    return sprintf (page,
2671		    "cps remaining: TX %u, RX %u\n",
2672		    dev->tx_avail, dev->rx_avail);
2673
2674  return 0;
2675}
2676
2677static const struct atmdev_ops hrz_ops = {
2678  .open	= hrz_open,
2679  .close	= hrz_close,
2680  .send	= hrz_send,
2681  .proc_read	= hrz_proc_read,
2682  .owner	= THIS_MODULE,
2683};
2684
2685static int hrz_probe(struct pci_dev *pci_dev,
2686		     const struct pci_device_id *pci_ent)
2687{
2688	hrz_dev * dev;
2689	int err = 0;
2690
2691	// adapter slot free, read resources from PCI configuration space
2692	u32 iobase = pci_resource_start (pci_dev, 0);
2693	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2694	unsigned int irq;
2695	unsigned char lat;
2696
2697	PRINTD (DBG_FLOW, "hrz_probe");
2698
2699	if (pci_enable_device(pci_dev))
2700		return -EINVAL;
2701
2702	/* XXX DEV_LABEL is a guess */
2703	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2704		err = -EINVAL;
2705		goto out_disable;
2706	}
2707
2708	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2709	if (!dev) {
2710		// perhaps we should be nice: deregister all adapters and abort?
2711		PRINTD(DBG_ERR, "out of memory");
2712		err = -ENOMEM;
2713		goto out_release;
2714	}
2715
2716	pci_set_drvdata(pci_dev, dev);
2717
2718	// grab IRQ and install handler - move this someplace more sensible
2719	irq = pci_dev->irq;
2720	if (request_irq(irq,
2721			interrupt_handler,
2722			IRQF_SHARED, /* irqflags guess */
2723			DEV_LABEL, /* name guess */
2724			dev)) {
2725		PRINTD(DBG_WARN, "request IRQ failed!");
2726		err = -EINVAL;
2727		goto out_free;
2728	}
2729
2730	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2731	       iobase, irq, membase);
2732
2733	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2734					NULL);
2735	if (!(dev->atm_dev)) {
2736		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2737		err = -EINVAL;
2738		goto out_free_irq;
2739	}
2740
2741	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2742	       dev->atm_dev->number, dev, dev->atm_dev);
2743	dev->atm_dev->dev_data = (void *) dev;
2744	dev->pci_dev = pci_dev;
2745
2746	// enable bus master accesses
2747	pci_set_master(pci_dev);
2748
2749	// frobnicate latency (upwards, usually)
2750	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2751	if (pci_lat) {
2752		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2753		       "changing", lat, pci_lat);
2754		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2755	} else if (lat < MIN_PCI_LATENCY) {
2756		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2757		       "increasing", lat, MIN_PCI_LATENCY);
2758		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2759	}
2760
2761	dev->iobase = iobase;
2762	dev->irq = irq;
2763	dev->membase = membase;
2764
2765	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2766	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2767
2768	// these next three are performance hacks
2769	dev->last_vc = -1;
2770	dev->tx_last = -1;
2771	dev->tx_idle = 0;
2772
2773	dev->tx_regions = 0;
2774	dev->tx_bytes = 0;
2775	dev->tx_skb = NULL;
2776	dev->tx_iovec = NULL;
2777
2778	dev->tx_cell_count = 0;
2779	dev->rx_cell_count = 0;
2780	dev->hec_error_count = 0;
2781	dev->unassigned_cell_count = 0;
2782
2783	dev->noof_spare_buffers = 0;
2784
2785	{
2786		unsigned int i;
2787		for (i = 0; i < TX_CHANS; ++i)
2788			dev->tx_channel_record[i] = -1;
2789	}
2790
2791	dev->flags = 0;
2792
2793	// Allocate cell rates and remember ASIC version
2794	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2795	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2796	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2797
2798	if (hrz_init(dev)) {
2799		// to be really pedantic, this should be ATM_OC3c_PCR
2800		dev->tx_avail = ATM_OC3_PCR;
2801		dev->rx_avail = ATM_OC3_PCR;
2802		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2803	} else {
2804		dev->tx_avail = ((25600000/8)*26)/(27*53);
2805		dev->rx_avail = ((25600000/8)*26)/(27*53);
2806		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2807	}
2808
2809	// rate changes spinlock
2810	spin_lock_init(&dev->rate_lock);
2811
2812	// on-board memory access spinlock; we want atomic reads and
2813	// writes to adapter memory (handles IRQ and SMP)
2814	spin_lock_init(&dev->mem_lock);
2815
2816	init_waitqueue_head(&dev->tx_queue);
2817
2818	// vpi in 0..4, vci in 6..10
2819	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2820	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2821
2822	init_timer(&dev->housekeeping);
2823	dev->housekeeping.function = do_housekeeping;
2824	dev->housekeeping.data = (unsigned long) dev;
2825	mod_timer(&dev->housekeeping, jiffies);
2826
2827out:
2828	return err;
2829
2830out_free_irq:
2831	free_irq(dev->irq, dev);
2832out_free:
2833	kfree(dev);
2834out_release:
2835	release_region(iobase, HRZ_IO_EXTENT);
2836out_disable:
2837	pci_disable_device(pci_dev);
2838	goto out;
2839}
2840
2841static void hrz_remove_one(struct pci_dev *pci_dev)
2842{
2843	hrz_dev *dev;
2844
2845	dev = pci_get_drvdata(pci_dev);
2846
2847	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2848	del_timer_sync(&dev->housekeeping);
2849	hrz_reset(dev);
2850	atm_dev_deregister(dev->atm_dev);
2851	free_irq(dev->irq, dev);
2852	release_region(dev->iobase, HRZ_IO_EXTENT);
2853	kfree(dev);
2854
2855	pci_disable_device(pci_dev);
2856}
2857
2858static void __init hrz_check_args (void) {
2859#ifdef DEBUG_HORIZON
2860  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2861#else
2862  if (debug)
2863    PRINTK (KERN_NOTICE, "no debug support in this image");
2864#endif
2865
2866  if (vpi_bits > HRZ_MAX_VPI)
2867    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2868	    vpi_bits = HRZ_MAX_VPI);
2869
2870  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2871    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2872	    max_tx_size = TX_AAL5_LIMIT);
2873
2874  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2875    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2876	    max_rx_size = RX_AAL5_LIMIT);
2877
2878  return;
2879}
2880
2881MODULE_AUTHOR(maintainer_string);
2882MODULE_DESCRIPTION(description_string);
2883MODULE_LICENSE("GPL");
2884module_param(debug, ushort, 0644);
2885module_param(vpi_bits, ushort, 0);
2886module_param(max_tx_size, int, 0);
2887module_param(max_rx_size, int, 0);
2888module_param(pci_lat, byte, 0);
2889MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2890MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2891MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2892MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2893MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2894
2895static struct pci_device_id hrz_pci_tbl[] = {
2896	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2897	  0, 0, 0 },
2898	{ 0, }
2899};
2900
2901MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2902
2903static struct pci_driver hrz_driver = {
2904	.name =		"horizon",
2905	.probe =	hrz_probe,
2906	.remove =	hrz_remove_one,
2907	.id_table =	hrz_pci_tbl,
2908};
2909
2910/********** module entry **********/
2911
2912static int __init hrz_module_init (void) {
2913  // sanity check - cast is needed since printk does not support %Zu
2914  if (sizeof(struct MEMMAP) != 128*1024/4) {
2915    PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2916	    (unsigned long) sizeof(struct MEMMAP));
2917    return -ENOMEM;
2918  }
2919
2920  show_version();
2921
2922  // check arguments
2923  hrz_check_args();
2924
2925  // get the juice
2926  return pci_register_driver(&hrz_driver);
2927}
2928
2929/********** module exit **********/
2930
2931static void __exit hrz_module_exit (void) {
2932  PRINTD (DBG_FLOW, "cleanup_module");
2933
2934  pci_unregister_driver(&hrz_driver);
2935}
2936
2937module_init(hrz_module_init);
2938module_exit(hrz_module_exit);
2939