[go: nahoru, domu]

1/*
2   drbd.c
3
4   This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6   Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7   Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8   Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10   Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11   from Logicworks, Inc. for making SDP replication support possible.
12
13   drbd is free software; you can redistribute it and/or modify
14   it under the terms of the GNU General Public License as published by
15   the Free Software Foundation; either version 2, or (at your option)
16   any later version.
17
18   drbd is distributed in the hope that it will be useful,
19   but WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21   GNU General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with drbd; see the file COPYING.  If not, write to
25   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
30
31#include <linux/module.h>
32#include <linux/jiffies.h>
33#include <linux/drbd.h>
34#include <asm/uaccess.h>
35#include <asm/types.h>
36#include <net/sock.h>
37#include <linux/ctype.h>
38#include <linux/mutex.h>
39#include <linux/fs.h>
40#include <linux/file.h>
41#include <linux/proc_fs.h>
42#include <linux/init.h>
43#include <linux/mm.h>
44#include <linux/memcontrol.h>
45#include <linux/mm_inline.h>
46#include <linux/slab.h>
47#include <linux/random.h>
48#include <linux/reboot.h>
49#include <linux/notifier.h>
50#include <linux/kthread.h>
51#include <linux/workqueue.h>
52#define __KERNEL_SYSCALLS__
53#include <linux/unistd.h>
54#include <linux/vmalloc.h>
55
56#include <linux/drbd_limits.h>
57#include "drbd_int.h"
58#include "drbd_protocol.h"
59#include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
60#include "drbd_vli.h"
61#include "drbd_debugfs.h"
62
63static DEFINE_MUTEX(drbd_main_mutex);
64static int drbd_open(struct block_device *bdev, fmode_t mode);
65static void drbd_release(struct gendisk *gd, fmode_t mode);
66static void md_sync_timer_fn(unsigned long data);
67static int w_bitmap_io(struct drbd_work *w, int unused);
68
69MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
70	      "Lars Ellenberg <lars@linbit.com>");
71MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
72MODULE_VERSION(REL_VERSION);
73MODULE_LICENSE("GPL");
74MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
75		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
76MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
77
78#include <linux/moduleparam.h>
79/* allow_open_on_secondary */
80MODULE_PARM_DESC(allow_oos, "DONT USE!");
81/* thanks to these macros, if compiled into the kernel (not-module),
82 * this becomes the boot parameter drbd.minor_count */
83module_param(minor_count, uint, 0444);
84module_param(disable_sendpage, bool, 0644);
85module_param(allow_oos, bool, 0);
86module_param(proc_details, int, 0644);
87
88#ifdef CONFIG_DRBD_FAULT_INJECTION
89int enable_faults;
90int fault_rate;
91static int fault_count;
92int fault_devs;
93/* bitmap of enabled faults */
94module_param(enable_faults, int, 0664);
95/* fault rate % value - applies to all enabled faults */
96module_param(fault_rate, int, 0664);
97/* count of faults inserted */
98module_param(fault_count, int, 0664);
99/* bitmap of devices to insert faults on */
100module_param(fault_devs, int, 0644);
101#endif
102
103/* module parameter, defined */
104unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
105bool disable_sendpage;
106bool allow_oos;
107int proc_details;       /* Detail level in proc drbd*/
108
109/* Module parameter for setting the user mode helper program
110 * to run. Default is /sbin/drbdadm */
111char usermode_helper[80] = "/sbin/drbdadm";
112
113module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
114
115/* in 2.6.x, our device mapping and config info contains our virtual gendisks
116 * as member "struct gendisk *vdisk;"
117 */
118struct idr drbd_devices;
119struct list_head drbd_resources;
120
121struct kmem_cache *drbd_request_cache;
122struct kmem_cache *drbd_ee_cache;	/* peer requests */
123struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
124struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
125mempool_t *drbd_request_mempool;
126mempool_t *drbd_ee_mempool;
127mempool_t *drbd_md_io_page_pool;
128struct bio_set *drbd_md_io_bio_set;
129
130/* I do not use a standard mempool, because:
131   1) I want to hand out the pre-allocated objects first.
132   2) I want to be able to interrupt sleeping allocation with a signal.
133   Note: This is a single linked list, the next pointer is the private
134	 member of struct page.
135 */
136struct page *drbd_pp_pool;
137spinlock_t   drbd_pp_lock;
138int          drbd_pp_vacant;
139wait_queue_head_t drbd_pp_wait;
140
141DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
142
143static const struct block_device_operations drbd_ops = {
144	.owner =   THIS_MODULE,
145	.open =    drbd_open,
146	.release = drbd_release,
147};
148
149struct bio *bio_alloc_drbd(gfp_t gfp_mask)
150{
151	struct bio *bio;
152
153	if (!drbd_md_io_bio_set)
154		return bio_alloc(gfp_mask, 1);
155
156	bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
157	if (!bio)
158		return NULL;
159	return bio;
160}
161
162#ifdef __CHECKER__
163/* When checking with sparse, and this is an inline function, sparse will
164   give tons of false positives. When this is a real functions sparse works.
165 */
166int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
167{
168	int io_allowed;
169
170	atomic_inc(&device->local_cnt);
171	io_allowed = (device->state.disk >= mins);
172	if (!io_allowed) {
173		if (atomic_dec_and_test(&device->local_cnt))
174			wake_up(&device->misc_wait);
175	}
176	return io_allowed;
177}
178
179#endif
180
181/**
182 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
183 * @connection:	DRBD connection.
184 * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
185 * @set_size:	Expected number of requests before that barrier.
186 *
187 * In case the passed barrier_nr or set_size does not match the oldest
188 * epoch of not yet barrier-acked requests, this function will cause a
189 * termination of the connection.
190 */
191void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
192		unsigned int set_size)
193{
194	struct drbd_request *r;
195	struct drbd_request *req = NULL;
196	int expect_epoch = 0;
197	int expect_size = 0;
198
199	spin_lock_irq(&connection->resource->req_lock);
200
201	/* find oldest not yet barrier-acked write request,
202	 * count writes in its epoch. */
203	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
204		const unsigned s = r->rq_state;
205		if (!req) {
206			if (!(s & RQ_WRITE))
207				continue;
208			if (!(s & RQ_NET_MASK))
209				continue;
210			if (s & RQ_NET_DONE)
211				continue;
212			req = r;
213			expect_epoch = req->epoch;
214			expect_size ++;
215		} else {
216			if (r->epoch != expect_epoch)
217				break;
218			if (!(s & RQ_WRITE))
219				continue;
220			/* if (s & RQ_DONE): not expected */
221			/* if (!(s & RQ_NET_MASK)): not expected */
222			expect_size++;
223		}
224	}
225
226	/* first some paranoia code */
227	if (req == NULL) {
228		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
229			 barrier_nr);
230		goto bail;
231	}
232	if (expect_epoch != barrier_nr) {
233		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
234			 barrier_nr, expect_epoch);
235		goto bail;
236	}
237
238	if (expect_size != set_size) {
239		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
240			 barrier_nr, set_size, expect_size);
241		goto bail;
242	}
243
244	/* Clean up list of requests processed during current epoch. */
245	/* this extra list walk restart is paranoia,
246	 * to catch requests being barrier-acked "unexpectedly".
247	 * It usually should find the same req again, or some READ preceding it. */
248	list_for_each_entry(req, &connection->transfer_log, tl_requests)
249		if (req->epoch == expect_epoch)
250			break;
251	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
252		if (req->epoch != expect_epoch)
253			break;
254		_req_mod(req, BARRIER_ACKED);
255	}
256	spin_unlock_irq(&connection->resource->req_lock);
257
258	return;
259
260bail:
261	spin_unlock_irq(&connection->resource->req_lock);
262	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
263}
264
265
266/**
267 * _tl_restart() - Walks the transfer log, and applies an action to all requests
268 * @connection:	DRBD connection to operate on.
269 * @what:       The action/event to perform with all request objects
270 *
271 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
272 * RESTART_FROZEN_DISK_IO.
273 */
274/* must hold resource->req_lock */
275void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276{
277	struct drbd_request *req, *r;
278
279	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
280		_req_mod(req, what);
281}
282
283void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
284{
285	spin_lock_irq(&connection->resource->req_lock);
286	_tl_restart(connection, what);
287	spin_unlock_irq(&connection->resource->req_lock);
288}
289
290/**
291 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
292 * @device:	DRBD device.
293 *
294 * This is called after the connection to the peer was lost. The storage covered
295 * by the requests on the transfer gets marked as our of sync. Called from the
296 * receiver thread and the worker thread.
297 */
298void tl_clear(struct drbd_connection *connection)
299{
300	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
301}
302
303/**
304 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
305 * @device:	DRBD device.
306 */
307void tl_abort_disk_io(struct drbd_device *device)
308{
309	struct drbd_connection *connection = first_peer_device(device)->connection;
310	struct drbd_request *req, *r;
311
312	spin_lock_irq(&connection->resource->req_lock);
313	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
314		if (!(req->rq_state & RQ_LOCAL_PENDING))
315			continue;
316		if (req->device != device)
317			continue;
318		_req_mod(req, ABORT_DISK_IO);
319	}
320	spin_unlock_irq(&connection->resource->req_lock);
321}
322
323static int drbd_thread_setup(void *arg)
324{
325	struct drbd_thread *thi = (struct drbd_thread *) arg;
326	struct drbd_resource *resource = thi->resource;
327	unsigned long flags;
328	int retval;
329
330	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
331		 thi->name[0],
332		 resource->name);
333
334restart:
335	retval = thi->function(thi);
336
337	spin_lock_irqsave(&thi->t_lock, flags);
338
339	/* if the receiver has been "EXITING", the last thing it did
340	 * was set the conn state to "StandAlone",
341	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
342	 * and receiver thread will be "started".
343	 * drbd_thread_start needs to set "RESTARTING" in that case.
344	 * t_state check and assignment needs to be within the same spinlock,
345	 * so either thread_start sees EXITING, and can remap to RESTARTING,
346	 * or thread_start see NONE, and can proceed as normal.
347	 */
348
349	if (thi->t_state == RESTARTING) {
350		drbd_info(resource, "Restarting %s thread\n", thi->name);
351		thi->t_state = RUNNING;
352		spin_unlock_irqrestore(&thi->t_lock, flags);
353		goto restart;
354	}
355
356	thi->task = NULL;
357	thi->t_state = NONE;
358	smp_mb();
359	complete_all(&thi->stop);
360	spin_unlock_irqrestore(&thi->t_lock, flags);
361
362	drbd_info(resource, "Terminating %s\n", current->comm);
363
364	/* Release mod reference taken when thread was started */
365
366	if (thi->connection)
367		kref_put(&thi->connection->kref, drbd_destroy_connection);
368	kref_put(&resource->kref, drbd_destroy_resource);
369	module_put(THIS_MODULE);
370	return retval;
371}
372
373static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
374			     int (*func) (struct drbd_thread *), const char *name)
375{
376	spin_lock_init(&thi->t_lock);
377	thi->task    = NULL;
378	thi->t_state = NONE;
379	thi->function = func;
380	thi->resource = resource;
381	thi->connection = NULL;
382	thi->name = name;
383}
384
385int drbd_thread_start(struct drbd_thread *thi)
386{
387	struct drbd_resource *resource = thi->resource;
388	struct task_struct *nt;
389	unsigned long flags;
390
391	/* is used from state engine doing drbd_thread_stop_nowait,
392	 * while holding the req lock irqsave */
393	spin_lock_irqsave(&thi->t_lock, flags);
394
395	switch (thi->t_state) {
396	case NONE:
397		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
398			 thi->name, current->comm, current->pid);
399
400		/* Get ref on module for thread - this is released when thread exits */
401		if (!try_module_get(THIS_MODULE)) {
402			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
403			spin_unlock_irqrestore(&thi->t_lock, flags);
404			return false;
405		}
406
407		kref_get(&resource->kref);
408		if (thi->connection)
409			kref_get(&thi->connection->kref);
410
411		init_completion(&thi->stop);
412		thi->reset_cpu_mask = 1;
413		thi->t_state = RUNNING;
414		spin_unlock_irqrestore(&thi->t_lock, flags);
415		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
416
417		nt = kthread_create(drbd_thread_setup, (void *) thi,
418				    "drbd_%c_%s", thi->name[0], thi->resource->name);
419
420		if (IS_ERR(nt)) {
421			drbd_err(resource, "Couldn't start thread\n");
422
423			if (thi->connection)
424				kref_put(&thi->connection->kref, drbd_destroy_connection);
425			kref_put(&resource->kref, drbd_destroy_resource);
426			module_put(THIS_MODULE);
427			return false;
428		}
429		spin_lock_irqsave(&thi->t_lock, flags);
430		thi->task = nt;
431		thi->t_state = RUNNING;
432		spin_unlock_irqrestore(&thi->t_lock, flags);
433		wake_up_process(nt);
434		break;
435	case EXITING:
436		thi->t_state = RESTARTING;
437		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
438				thi->name, current->comm, current->pid);
439		/* fall through */
440	case RUNNING:
441	case RESTARTING:
442	default:
443		spin_unlock_irqrestore(&thi->t_lock, flags);
444		break;
445	}
446
447	return true;
448}
449
450
451void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
452{
453	unsigned long flags;
454
455	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
456
457	/* may be called from state engine, holding the req lock irqsave */
458	spin_lock_irqsave(&thi->t_lock, flags);
459
460	if (thi->t_state == NONE) {
461		spin_unlock_irqrestore(&thi->t_lock, flags);
462		if (restart)
463			drbd_thread_start(thi);
464		return;
465	}
466
467	if (thi->t_state != ns) {
468		if (thi->task == NULL) {
469			spin_unlock_irqrestore(&thi->t_lock, flags);
470			return;
471		}
472
473		thi->t_state = ns;
474		smp_mb();
475		init_completion(&thi->stop);
476		if (thi->task != current)
477			force_sig(DRBD_SIGKILL, thi->task);
478	}
479
480	spin_unlock_irqrestore(&thi->t_lock, flags);
481
482	if (wait)
483		wait_for_completion(&thi->stop);
484}
485
486int conn_lowest_minor(struct drbd_connection *connection)
487{
488	struct drbd_peer_device *peer_device;
489	int vnr = 0, minor = -1;
490
491	rcu_read_lock();
492	peer_device = idr_get_next(&connection->peer_devices, &vnr);
493	if (peer_device)
494		minor = device_to_minor(peer_device->device);
495	rcu_read_unlock();
496
497	return minor;
498}
499
500#ifdef CONFIG_SMP
501/**
502 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
503 *
504 * Forces all threads of a resource onto the same CPU. This is beneficial for
505 * DRBD's performance. May be overwritten by user's configuration.
506 */
507static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
508{
509	unsigned int *resources_per_cpu, min_index = ~0;
510
511	resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
512	if (resources_per_cpu) {
513		struct drbd_resource *resource;
514		unsigned int cpu, min = ~0;
515
516		rcu_read_lock();
517		for_each_resource_rcu(resource, &drbd_resources) {
518			for_each_cpu(cpu, resource->cpu_mask)
519				resources_per_cpu[cpu]++;
520		}
521		rcu_read_unlock();
522		for_each_online_cpu(cpu) {
523			if (resources_per_cpu[cpu] < min) {
524				min = resources_per_cpu[cpu];
525				min_index = cpu;
526			}
527		}
528		kfree(resources_per_cpu);
529	}
530	if (min_index == ~0) {
531		cpumask_setall(*cpu_mask);
532		return;
533	}
534	cpumask_set_cpu(min_index, *cpu_mask);
535}
536
537/**
538 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
539 * @device:	DRBD device.
540 * @thi:	drbd_thread object
541 *
542 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
543 * prematurely.
544 */
545void drbd_thread_current_set_cpu(struct drbd_thread *thi)
546{
547	struct drbd_resource *resource = thi->resource;
548	struct task_struct *p = current;
549
550	if (!thi->reset_cpu_mask)
551		return;
552	thi->reset_cpu_mask = 0;
553	set_cpus_allowed_ptr(p, resource->cpu_mask);
554}
555#else
556#define drbd_calc_cpu_mask(A) ({})
557#endif
558
559/**
560 * drbd_header_size  -  size of a packet header
561 *
562 * The header size is a multiple of 8, so any payload following the header is
563 * word aligned on 64-bit architectures.  (The bitmap send and receive code
564 * relies on this.)
565 */
566unsigned int drbd_header_size(struct drbd_connection *connection)
567{
568	if (connection->agreed_pro_version >= 100) {
569		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
570		return sizeof(struct p_header100);
571	} else {
572		BUILD_BUG_ON(sizeof(struct p_header80) !=
573			     sizeof(struct p_header95));
574		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
575		return sizeof(struct p_header80);
576	}
577}
578
579static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
580{
581	h->magic   = cpu_to_be32(DRBD_MAGIC);
582	h->command = cpu_to_be16(cmd);
583	h->length  = cpu_to_be16(size);
584	return sizeof(struct p_header80);
585}
586
587static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
588{
589	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
590	h->command = cpu_to_be16(cmd);
591	h->length = cpu_to_be32(size);
592	return sizeof(struct p_header95);
593}
594
595static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
596				      int size, int vnr)
597{
598	h->magic = cpu_to_be32(DRBD_MAGIC_100);
599	h->volume = cpu_to_be16(vnr);
600	h->command = cpu_to_be16(cmd);
601	h->length = cpu_to_be32(size);
602	h->pad = 0;
603	return sizeof(struct p_header100);
604}
605
606static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
607				   void *buffer, enum drbd_packet cmd, int size)
608{
609	if (connection->agreed_pro_version >= 100)
610		return prepare_header100(buffer, cmd, size, vnr);
611	else if (connection->agreed_pro_version >= 95 &&
612		 size > DRBD_MAX_SIZE_H80_PACKET)
613		return prepare_header95(buffer, cmd, size);
614	else
615		return prepare_header80(buffer, cmd, size);
616}
617
618static void *__conn_prepare_command(struct drbd_connection *connection,
619				    struct drbd_socket *sock)
620{
621	if (!sock->socket)
622		return NULL;
623	return sock->sbuf + drbd_header_size(connection);
624}
625
626void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
627{
628	void *p;
629
630	mutex_lock(&sock->mutex);
631	p = __conn_prepare_command(connection, sock);
632	if (!p)
633		mutex_unlock(&sock->mutex);
634
635	return p;
636}
637
638void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
639{
640	return conn_prepare_command(peer_device->connection, sock);
641}
642
643static int __send_command(struct drbd_connection *connection, int vnr,
644			  struct drbd_socket *sock, enum drbd_packet cmd,
645			  unsigned int header_size, void *data,
646			  unsigned int size)
647{
648	int msg_flags;
649	int err;
650
651	/*
652	 * Called with @data == NULL and the size of the data blocks in @size
653	 * for commands that send data blocks.  For those commands, omit the
654	 * MSG_MORE flag: this will increase the likelihood that data blocks
655	 * which are page aligned on the sender will end up page aligned on the
656	 * receiver.
657	 */
658	msg_flags = data ? MSG_MORE : 0;
659
660	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
661				      header_size + size);
662	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
663			    msg_flags);
664	if (data && !err)
665		err = drbd_send_all(connection, sock->socket, data, size, 0);
666	/* DRBD protocol "pings" are latency critical.
667	 * This is supposed to trigger tcp_push_pending_frames() */
668	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
669		drbd_tcp_nodelay(sock->socket);
670
671	return err;
672}
673
674static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
675			       enum drbd_packet cmd, unsigned int header_size,
676			       void *data, unsigned int size)
677{
678	return __send_command(connection, 0, sock, cmd, header_size, data, size);
679}
680
681int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
682		      enum drbd_packet cmd, unsigned int header_size,
683		      void *data, unsigned int size)
684{
685	int err;
686
687	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
688	mutex_unlock(&sock->mutex);
689	return err;
690}
691
692int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
693		      enum drbd_packet cmd, unsigned int header_size,
694		      void *data, unsigned int size)
695{
696	int err;
697
698	err = __send_command(peer_device->connection, peer_device->device->vnr,
699			     sock, cmd, header_size, data, size);
700	mutex_unlock(&sock->mutex);
701	return err;
702}
703
704int drbd_send_ping(struct drbd_connection *connection)
705{
706	struct drbd_socket *sock;
707
708	sock = &connection->meta;
709	if (!conn_prepare_command(connection, sock))
710		return -EIO;
711	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
712}
713
714int drbd_send_ping_ack(struct drbd_connection *connection)
715{
716	struct drbd_socket *sock;
717
718	sock = &connection->meta;
719	if (!conn_prepare_command(connection, sock))
720		return -EIO;
721	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
722}
723
724int drbd_send_sync_param(struct drbd_peer_device *peer_device)
725{
726	struct drbd_socket *sock;
727	struct p_rs_param_95 *p;
728	int size;
729	const int apv = peer_device->connection->agreed_pro_version;
730	enum drbd_packet cmd;
731	struct net_conf *nc;
732	struct disk_conf *dc;
733
734	sock = &peer_device->connection->data;
735	p = drbd_prepare_command(peer_device, sock);
736	if (!p)
737		return -EIO;
738
739	rcu_read_lock();
740	nc = rcu_dereference(peer_device->connection->net_conf);
741
742	size = apv <= 87 ? sizeof(struct p_rs_param)
743		: apv == 88 ? sizeof(struct p_rs_param)
744			+ strlen(nc->verify_alg) + 1
745		: apv <= 94 ? sizeof(struct p_rs_param_89)
746		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
747
748	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
749
750	/* initialize verify_alg and csums_alg */
751	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
752
753	if (get_ldev(peer_device->device)) {
754		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
755		p->resync_rate = cpu_to_be32(dc->resync_rate);
756		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
757		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
758		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
759		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
760		put_ldev(peer_device->device);
761	} else {
762		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
763		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
764		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
765		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
766		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
767	}
768
769	if (apv >= 88)
770		strcpy(p->verify_alg, nc->verify_alg);
771	if (apv >= 89)
772		strcpy(p->csums_alg, nc->csums_alg);
773	rcu_read_unlock();
774
775	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
776}
777
778int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
779{
780	struct drbd_socket *sock;
781	struct p_protocol *p;
782	struct net_conf *nc;
783	int size, cf;
784
785	sock = &connection->data;
786	p = __conn_prepare_command(connection, sock);
787	if (!p)
788		return -EIO;
789
790	rcu_read_lock();
791	nc = rcu_dereference(connection->net_conf);
792
793	if (nc->tentative && connection->agreed_pro_version < 92) {
794		rcu_read_unlock();
795		mutex_unlock(&sock->mutex);
796		drbd_err(connection, "--dry-run is not supported by peer");
797		return -EOPNOTSUPP;
798	}
799
800	size = sizeof(*p);
801	if (connection->agreed_pro_version >= 87)
802		size += strlen(nc->integrity_alg) + 1;
803
804	p->protocol      = cpu_to_be32(nc->wire_protocol);
805	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
806	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
807	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
808	p->two_primaries = cpu_to_be32(nc->two_primaries);
809	cf = 0;
810	if (nc->discard_my_data)
811		cf |= CF_DISCARD_MY_DATA;
812	if (nc->tentative)
813		cf |= CF_DRY_RUN;
814	p->conn_flags    = cpu_to_be32(cf);
815
816	if (connection->agreed_pro_version >= 87)
817		strcpy(p->integrity_alg, nc->integrity_alg);
818	rcu_read_unlock();
819
820	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
821}
822
823int drbd_send_protocol(struct drbd_connection *connection)
824{
825	int err;
826
827	mutex_lock(&connection->data.mutex);
828	err = __drbd_send_protocol(connection, P_PROTOCOL);
829	mutex_unlock(&connection->data.mutex);
830
831	return err;
832}
833
834static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
835{
836	struct drbd_device *device = peer_device->device;
837	struct drbd_socket *sock;
838	struct p_uuids *p;
839	int i;
840
841	if (!get_ldev_if_state(device, D_NEGOTIATING))
842		return 0;
843
844	sock = &peer_device->connection->data;
845	p = drbd_prepare_command(peer_device, sock);
846	if (!p) {
847		put_ldev(device);
848		return -EIO;
849	}
850	spin_lock_irq(&device->ldev->md.uuid_lock);
851	for (i = UI_CURRENT; i < UI_SIZE; i++)
852		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
853	spin_unlock_irq(&device->ldev->md.uuid_lock);
854
855	device->comm_bm_set = drbd_bm_total_weight(device);
856	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
857	rcu_read_lock();
858	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
859	rcu_read_unlock();
860	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
861	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
862	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
863
864	put_ldev(device);
865	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
866}
867
868int drbd_send_uuids(struct drbd_peer_device *peer_device)
869{
870	return _drbd_send_uuids(peer_device, 0);
871}
872
873int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
874{
875	return _drbd_send_uuids(peer_device, 8);
876}
877
878void drbd_print_uuids(struct drbd_device *device, const char *text)
879{
880	if (get_ldev_if_state(device, D_NEGOTIATING)) {
881		u64 *uuid = device->ldev->md.uuid;
882		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
883		     text,
884		     (unsigned long long)uuid[UI_CURRENT],
885		     (unsigned long long)uuid[UI_BITMAP],
886		     (unsigned long long)uuid[UI_HISTORY_START],
887		     (unsigned long long)uuid[UI_HISTORY_END]);
888		put_ldev(device);
889	} else {
890		drbd_info(device, "%s effective data uuid: %016llX\n",
891				text,
892				(unsigned long long)device->ed_uuid);
893	}
894}
895
896void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
897{
898	struct drbd_device *device = peer_device->device;
899	struct drbd_socket *sock;
900	struct p_rs_uuid *p;
901	u64 uuid;
902
903	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
904
905	uuid = device->ldev->md.uuid[UI_BITMAP];
906	if (uuid && uuid != UUID_JUST_CREATED)
907		uuid = uuid + UUID_NEW_BM_OFFSET;
908	else
909		get_random_bytes(&uuid, sizeof(u64));
910	drbd_uuid_set(device, UI_BITMAP, uuid);
911	drbd_print_uuids(device, "updated sync UUID");
912	drbd_md_sync(device);
913
914	sock = &peer_device->connection->data;
915	p = drbd_prepare_command(peer_device, sock);
916	if (p) {
917		p->uuid = cpu_to_be64(uuid);
918		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
919	}
920}
921
922int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
923{
924	struct drbd_device *device = peer_device->device;
925	struct drbd_socket *sock;
926	struct p_sizes *p;
927	sector_t d_size, u_size;
928	int q_order_type;
929	unsigned int max_bio_size;
930
931	if (get_ldev_if_state(device, D_NEGOTIATING)) {
932		D_ASSERT(device, device->ldev->backing_bdev);
933		d_size = drbd_get_max_capacity(device->ldev);
934		rcu_read_lock();
935		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
936		rcu_read_unlock();
937		q_order_type = drbd_queue_order_type(device);
938		max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
939		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
940		put_ldev(device);
941	} else {
942		d_size = 0;
943		u_size = 0;
944		q_order_type = QUEUE_ORDERED_NONE;
945		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
946	}
947
948	sock = &peer_device->connection->data;
949	p = drbd_prepare_command(peer_device, sock);
950	if (!p)
951		return -EIO;
952
953	if (peer_device->connection->agreed_pro_version <= 94)
954		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
955	else if (peer_device->connection->agreed_pro_version < 100)
956		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
957
958	p->d_size = cpu_to_be64(d_size);
959	p->u_size = cpu_to_be64(u_size);
960	p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
961	p->max_bio_size = cpu_to_be32(max_bio_size);
962	p->queue_order_type = cpu_to_be16(q_order_type);
963	p->dds_flags = cpu_to_be16(flags);
964	return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
965}
966
967/**
968 * drbd_send_current_state() - Sends the drbd state to the peer
969 * @peer_device:	DRBD peer device.
970 */
971int drbd_send_current_state(struct drbd_peer_device *peer_device)
972{
973	struct drbd_socket *sock;
974	struct p_state *p;
975
976	sock = &peer_device->connection->data;
977	p = drbd_prepare_command(peer_device, sock);
978	if (!p)
979		return -EIO;
980	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
981	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
982}
983
984/**
985 * drbd_send_state() - After a state change, sends the new state to the peer
986 * @peer_device:      DRBD peer device.
987 * @state:     the state to send, not necessarily the current state.
988 *
989 * Each state change queues an "after_state_ch" work, which will eventually
990 * send the resulting new state to the peer. If more state changes happen
991 * between queuing and processing of the after_state_ch work, we still
992 * want to send each intermediary state in the order it occurred.
993 */
994int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
995{
996	struct drbd_socket *sock;
997	struct p_state *p;
998
999	sock = &peer_device->connection->data;
1000	p = drbd_prepare_command(peer_device, sock);
1001	if (!p)
1002		return -EIO;
1003	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1004	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1005}
1006
1007int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1008{
1009	struct drbd_socket *sock;
1010	struct p_req_state *p;
1011
1012	sock = &peer_device->connection->data;
1013	p = drbd_prepare_command(peer_device, sock);
1014	if (!p)
1015		return -EIO;
1016	p->mask = cpu_to_be32(mask.i);
1017	p->val = cpu_to_be32(val.i);
1018	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1019}
1020
1021int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1022{
1023	enum drbd_packet cmd;
1024	struct drbd_socket *sock;
1025	struct p_req_state *p;
1026
1027	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1028	sock = &connection->data;
1029	p = conn_prepare_command(connection, sock);
1030	if (!p)
1031		return -EIO;
1032	p->mask = cpu_to_be32(mask.i);
1033	p->val = cpu_to_be32(val.i);
1034	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1035}
1036
1037void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1038{
1039	struct drbd_socket *sock;
1040	struct p_req_state_reply *p;
1041
1042	sock = &peer_device->connection->meta;
1043	p = drbd_prepare_command(peer_device, sock);
1044	if (p) {
1045		p->retcode = cpu_to_be32(retcode);
1046		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1047	}
1048}
1049
1050void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1051{
1052	struct drbd_socket *sock;
1053	struct p_req_state_reply *p;
1054	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1055
1056	sock = &connection->meta;
1057	p = conn_prepare_command(connection, sock);
1058	if (p) {
1059		p->retcode = cpu_to_be32(retcode);
1060		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1061	}
1062}
1063
1064static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1065{
1066	BUG_ON(code & ~0xf);
1067	p->encoding = (p->encoding & ~0xf) | code;
1068}
1069
1070static void dcbp_set_start(struct p_compressed_bm *p, int set)
1071{
1072	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1073}
1074
1075static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1076{
1077	BUG_ON(n & ~0x7);
1078	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1079}
1080
1081static int fill_bitmap_rle_bits(struct drbd_device *device,
1082			 struct p_compressed_bm *p,
1083			 unsigned int size,
1084			 struct bm_xfer_ctx *c)
1085{
1086	struct bitstream bs;
1087	unsigned long plain_bits;
1088	unsigned long tmp;
1089	unsigned long rl;
1090	unsigned len;
1091	unsigned toggle;
1092	int bits, use_rle;
1093
1094	/* may we use this feature? */
1095	rcu_read_lock();
1096	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1097	rcu_read_unlock();
1098	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1099		return 0;
1100
1101	if (c->bit_offset >= c->bm_bits)
1102		return 0; /* nothing to do. */
1103
1104	/* use at most thus many bytes */
1105	bitstream_init(&bs, p->code, size, 0);
1106	memset(p->code, 0, size);
1107	/* plain bits covered in this code string */
1108	plain_bits = 0;
1109
1110	/* p->encoding & 0x80 stores whether the first run length is set.
1111	 * bit offset is implicit.
1112	 * start with toggle == 2 to be able to tell the first iteration */
1113	toggle = 2;
1114
1115	/* see how much plain bits we can stuff into one packet
1116	 * using RLE and VLI. */
1117	do {
1118		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1119				    : _drbd_bm_find_next(device, c->bit_offset);
1120		if (tmp == -1UL)
1121			tmp = c->bm_bits;
1122		rl = tmp - c->bit_offset;
1123
1124		if (toggle == 2) { /* first iteration */
1125			if (rl == 0) {
1126				/* the first checked bit was set,
1127				 * store start value, */
1128				dcbp_set_start(p, 1);
1129				/* but skip encoding of zero run length */
1130				toggle = !toggle;
1131				continue;
1132			}
1133			dcbp_set_start(p, 0);
1134		}
1135
1136		/* paranoia: catch zero runlength.
1137		 * can only happen if bitmap is modified while we scan it. */
1138		if (rl == 0) {
1139			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1140			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1141			return -1;
1142		}
1143
1144		bits = vli_encode_bits(&bs, rl);
1145		if (bits == -ENOBUFS) /* buffer full */
1146			break;
1147		if (bits <= 0) {
1148			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1149			return 0;
1150		}
1151
1152		toggle = !toggle;
1153		plain_bits += rl;
1154		c->bit_offset = tmp;
1155	} while (c->bit_offset < c->bm_bits);
1156
1157	len = bs.cur.b - p->code + !!bs.cur.bit;
1158
1159	if (plain_bits < (len << 3)) {
1160		/* incompressible with this method.
1161		 * we need to rewind both word and bit position. */
1162		c->bit_offset -= plain_bits;
1163		bm_xfer_ctx_bit_to_word_offset(c);
1164		c->bit_offset = c->word_offset * BITS_PER_LONG;
1165		return 0;
1166	}
1167
1168	/* RLE + VLI was able to compress it just fine.
1169	 * update c->word_offset. */
1170	bm_xfer_ctx_bit_to_word_offset(c);
1171
1172	/* store pad_bits */
1173	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1174
1175	return len;
1176}
1177
1178/**
1179 * send_bitmap_rle_or_plain
1180 *
1181 * Return 0 when done, 1 when another iteration is needed, and a negative error
1182 * code upon failure.
1183 */
1184static int
1185send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1186{
1187	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1188	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1189	struct p_compressed_bm *p = sock->sbuf + header_size;
1190	int len, err;
1191
1192	len = fill_bitmap_rle_bits(device, p,
1193			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1194	if (len < 0)
1195		return -EIO;
1196
1197	if (len) {
1198		dcbp_set_code(p, RLE_VLI_Bits);
1199		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1200				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1201				     NULL, 0);
1202		c->packets[0]++;
1203		c->bytes[0] += header_size + sizeof(*p) + len;
1204
1205		if (c->bit_offset >= c->bm_bits)
1206			len = 0; /* DONE */
1207	} else {
1208		/* was not compressible.
1209		 * send a buffer full of plain text bits instead. */
1210		unsigned int data_size;
1211		unsigned long num_words;
1212		unsigned long *p = sock->sbuf + header_size;
1213
1214		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1215		num_words = min_t(size_t, data_size / sizeof(*p),
1216				  c->bm_words - c->word_offset);
1217		len = num_words * sizeof(*p);
1218		if (len)
1219			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1220		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1221		c->word_offset += num_words;
1222		c->bit_offset = c->word_offset * BITS_PER_LONG;
1223
1224		c->packets[1]++;
1225		c->bytes[1] += header_size + len;
1226
1227		if (c->bit_offset > c->bm_bits)
1228			c->bit_offset = c->bm_bits;
1229	}
1230	if (!err) {
1231		if (len == 0) {
1232			INFO_bm_xfer_stats(device, "send", c);
1233			return 0;
1234		} else
1235			return 1;
1236	}
1237	return -EIO;
1238}
1239
1240/* See the comment at receive_bitmap() */
1241static int _drbd_send_bitmap(struct drbd_device *device)
1242{
1243	struct bm_xfer_ctx c;
1244	int err;
1245
1246	if (!expect(device->bitmap))
1247		return false;
1248
1249	if (get_ldev(device)) {
1250		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1251			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1252			drbd_bm_set_all(device);
1253			if (drbd_bm_write(device)) {
1254				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1255				 * but otherwise process as per normal - need to tell other
1256				 * side that a full resync is required! */
1257				drbd_err(device, "Failed to write bitmap to disk!\n");
1258			} else {
1259				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1260				drbd_md_sync(device);
1261			}
1262		}
1263		put_ldev(device);
1264	}
1265
1266	c = (struct bm_xfer_ctx) {
1267		.bm_bits = drbd_bm_bits(device),
1268		.bm_words = drbd_bm_words(device),
1269	};
1270
1271	do {
1272		err = send_bitmap_rle_or_plain(device, &c);
1273	} while (err > 0);
1274
1275	return err == 0;
1276}
1277
1278int drbd_send_bitmap(struct drbd_device *device)
1279{
1280	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1281	int err = -1;
1282
1283	mutex_lock(&sock->mutex);
1284	if (sock->socket)
1285		err = !_drbd_send_bitmap(device);
1286	mutex_unlock(&sock->mutex);
1287	return err;
1288}
1289
1290void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1291{
1292	struct drbd_socket *sock;
1293	struct p_barrier_ack *p;
1294
1295	if (connection->cstate < C_WF_REPORT_PARAMS)
1296		return;
1297
1298	sock = &connection->meta;
1299	p = conn_prepare_command(connection, sock);
1300	if (!p)
1301		return;
1302	p->barrier = barrier_nr;
1303	p->set_size = cpu_to_be32(set_size);
1304	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1305}
1306
1307/**
1308 * _drbd_send_ack() - Sends an ack packet
1309 * @device:	DRBD device.
1310 * @cmd:	Packet command code.
1311 * @sector:	sector, needs to be in big endian byte order
1312 * @blksize:	size in byte, needs to be in big endian byte order
1313 * @block_id:	Id, big endian byte order
1314 */
1315static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1316			  u64 sector, u32 blksize, u64 block_id)
1317{
1318	struct drbd_socket *sock;
1319	struct p_block_ack *p;
1320
1321	if (peer_device->device->state.conn < C_CONNECTED)
1322		return -EIO;
1323
1324	sock = &peer_device->connection->meta;
1325	p = drbd_prepare_command(peer_device, sock);
1326	if (!p)
1327		return -EIO;
1328	p->sector = sector;
1329	p->block_id = block_id;
1330	p->blksize = blksize;
1331	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1332	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1333}
1334
1335/* dp->sector and dp->block_id already/still in network byte order,
1336 * data_size is payload size according to dp->head,
1337 * and may need to be corrected for digest size. */
1338void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1339		      struct p_data *dp, int data_size)
1340{
1341	if (peer_device->connection->peer_integrity_tfm)
1342		data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
1343	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1344		       dp->block_id);
1345}
1346
1347void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1348		      struct p_block_req *rp)
1349{
1350	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1351}
1352
1353/**
1354 * drbd_send_ack() - Sends an ack packet
1355 * @device:	DRBD device
1356 * @cmd:	packet command code
1357 * @peer_req:	peer request
1358 */
1359int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1360		  struct drbd_peer_request *peer_req)
1361{
1362	return _drbd_send_ack(peer_device, cmd,
1363			      cpu_to_be64(peer_req->i.sector),
1364			      cpu_to_be32(peer_req->i.size),
1365			      peer_req->block_id);
1366}
1367
1368/* This function misuses the block_id field to signal if the blocks
1369 * are is sync or not. */
1370int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1371		     sector_t sector, int blksize, u64 block_id)
1372{
1373	return _drbd_send_ack(peer_device, cmd,
1374			      cpu_to_be64(sector),
1375			      cpu_to_be32(blksize),
1376			      cpu_to_be64(block_id));
1377}
1378
1379int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1380		       sector_t sector, int size, u64 block_id)
1381{
1382	struct drbd_socket *sock;
1383	struct p_block_req *p;
1384
1385	sock = &peer_device->connection->data;
1386	p = drbd_prepare_command(peer_device, sock);
1387	if (!p)
1388		return -EIO;
1389	p->sector = cpu_to_be64(sector);
1390	p->block_id = block_id;
1391	p->blksize = cpu_to_be32(size);
1392	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1393}
1394
1395int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1396			    void *digest, int digest_size, enum drbd_packet cmd)
1397{
1398	struct drbd_socket *sock;
1399	struct p_block_req *p;
1400
1401	/* FIXME: Put the digest into the preallocated socket buffer.  */
1402
1403	sock = &peer_device->connection->data;
1404	p = drbd_prepare_command(peer_device, sock);
1405	if (!p)
1406		return -EIO;
1407	p->sector = cpu_to_be64(sector);
1408	p->block_id = ID_SYNCER /* unused */;
1409	p->blksize = cpu_to_be32(size);
1410	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1411}
1412
1413int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1414{
1415	struct drbd_socket *sock;
1416	struct p_block_req *p;
1417
1418	sock = &peer_device->connection->data;
1419	p = drbd_prepare_command(peer_device, sock);
1420	if (!p)
1421		return -EIO;
1422	p->sector = cpu_to_be64(sector);
1423	p->block_id = ID_SYNCER /* unused */;
1424	p->blksize = cpu_to_be32(size);
1425	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1426}
1427
1428/* called on sndtimeo
1429 * returns false if we should retry,
1430 * true if we think connection is dead
1431 */
1432static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1433{
1434	int drop_it;
1435	/* long elapsed = (long)(jiffies - device->last_received); */
1436
1437	drop_it =   connection->meta.socket == sock
1438		|| !connection->asender.task
1439		|| get_t_state(&connection->asender) != RUNNING
1440		|| connection->cstate < C_WF_REPORT_PARAMS;
1441
1442	if (drop_it)
1443		return true;
1444
1445	drop_it = !--connection->ko_count;
1446	if (!drop_it) {
1447		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1448			 current->comm, current->pid, connection->ko_count);
1449		request_ping(connection);
1450	}
1451
1452	return drop_it; /* && (device->state == R_PRIMARY) */;
1453}
1454
1455static void drbd_update_congested(struct drbd_connection *connection)
1456{
1457	struct sock *sk = connection->data.socket->sk;
1458	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1459		set_bit(NET_CONGESTED, &connection->flags);
1460}
1461
1462/* The idea of sendpage seems to be to put some kind of reference
1463 * to the page into the skb, and to hand it over to the NIC. In
1464 * this process get_page() gets called.
1465 *
1466 * As soon as the page was really sent over the network put_page()
1467 * gets called by some part of the network layer. [ NIC driver? ]
1468 *
1469 * [ get_page() / put_page() increment/decrement the count. If count
1470 *   reaches 0 the page will be freed. ]
1471 *
1472 * This works nicely with pages from FSs.
1473 * But this means that in protocol A we might signal IO completion too early!
1474 *
1475 * In order not to corrupt data during a resync we must make sure
1476 * that we do not reuse our own buffer pages (EEs) to early, therefore
1477 * we have the net_ee list.
1478 *
1479 * XFS seems to have problems, still, it submits pages with page_count == 0!
1480 * As a workaround, we disable sendpage on pages
1481 * with page_count == 0 or PageSlab.
1482 */
1483static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1484			      int offset, size_t size, unsigned msg_flags)
1485{
1486	struct socket *socket;
1487	void *addr;
1488	int err;
1489
1490	socket = peer_device->connection->data.socket;
1491	addr = kmap(page) + offset;
1492	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1493	kunmap(page);
1494	if (!err)
1495		peer_device->device->send_cnt += size >> 9;
1496	return err;
1497}
1498
1499static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1500		    int offset, size_t size, unsigned msg_flags)
1501{
1502	struct socket *socket = peer_device->connection->data.socket;
1503	mm_segment_t oldfs = get_fs();
1504	int len = size;
1505	int err = -EIO;
1506
1507	/* e.g. XFS meta- & log-data is in slab pages, which have a
1508	 * page_count of 0 and/or have PageSlab() set.
1509	 * we cannot use send_page for those, as that does get_page();
1510	 * put_page(); and would cause either a VM_BUG directly, or
1511	 * __page_cache_release a page that would actually still be referenced
1512	 * by someone, leading to some obscure delayed Oops somewhere else. */
1513	if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1514		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1515
1516	msg_flags |= MSG_NOSIGNAL;
1517	drbd_update_congested(peer_device->connection);
1518	set_fs(KERNEL_DS);
1519	do {
1520		int sent;
1521
1522		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1523		if (sent <= 0) {
1524			if (sent == -EAGAIN) {
1525				if (we_should_drop_the_connection(peer_device->connection, socket))
1526					break;
1527				continue;
1528			}
1529			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1530			     __func__, (int)size, len, sent);
1531			if (sent < 0)
1532				err = sent;
1533			break;
1534		}
1535		len    -= sent;
1536		offset += sent;
1537	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1538	set_fs(oldfs);
1539	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1540
1541	if (len == 0) {
1542		err = 0;
1543		peer_device->device->send_cnt += size >> 9;
1544	}
1545	return err;
1546}
1547
1548static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1549{
1550	struct bio_vec bvec;
1551	struct bvec_iter iter;
1552
1553	/* hint all but last page with MSG_MORE */
1554	bio_for_each_segment(bvec, bio, iter) {
1555		int err;
1556
1557		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1558					 bvec.bv_offset, bvec.bv_len,
1559					 bio_iter_last(bvec, iter)
1560					 ? 0 : MSG_MORE);
1561		if (err)
1562			return err;
1563	}
1564	return 0;
1565}
1566
1567static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1568{
1569	struct bio_vec bvec;
1570	struct bvec_iter iter;
1571
1572	/* hint all but last page with MSG_MORE */
1573	bio_for_each_segment(bvec, bio, iter) {
1574		int err;
1575
1576		err = _drbd_send_page(peer_device, bvec.bv_page,
1577				      bvec.bv_offset, bvec.bv_len,
1578				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1579		if (err)
1580			return err;
1581	}
1582	return 0;
1583}
1584
1585static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1586			    struct drbd_peer_request *peer_req)
1587{
1588	struct page *page = peer_req->pages;
1589	unsigned len = peer_req->i.size;
1590	int err;
1591
1592	/* hint all but last page with MSG_MORE */
1593	page_chain_for_each(page) {
1594		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1595
1596		err = _drbd_send_page(peer_device, page, 0, l,
1597				      page_chain_next(page) ? MSG_MORE : 0);
1598		if (err)
1599			return err;
1600		len -= l;
1601	}
1602	return 0;
1603}
1604
1605static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1606{
1607	if (connection->agreed_pro_version >= 95)
1608		return  (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1609			(bi_rw & REQ_FUA ? DP_FUA : 0) |
1610			(bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1611			(bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1612	else
1613		return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1614}
1615
1616/* Used to send write or TRIM aka REQ_DISCARD requests
1617 * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1618 */
1619int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1620{
1621	struct drbd_device *device = peer_device->device;
1622	struct drbd_socket *sock;
1623	struct p_data *p;
1624	unsigned int dp_flags = 0;
1625	int digest_size;
1626	int err;
1627
1628	sock = &peer_device->connection->data;
1629	p = drbd_prepare_command(peer_device, sock);
1630	digest_size = peer_device->connection->integrity_tfm ?
1631		      crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1632
1633	if (!p)
1634		return -EIO;
1635	p->sector = cpu_to_be64(req->i.sector);
1636	p->block_id = (unsigned long)req;
1637	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1638	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1639	if (device->state.conn >= C_SYNC_SOURCE &&
1640	    device->state.conn <= C_PAUSED_SYNC_T)
1641		dp_flags |= DP_MAY_SET_IN_SYNC;
1642	if (peer_device->connection->agreed_pro_version >= 100) {
1643		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1644			dp_flags |= DP_SEND_RECEIVE_ACK;
1645		/* During resync, request an explicit write ack,
1646		 * even in protocol != C */
1647		if (req->rq_state & RQ_EXP_WRITE_ACK
1648		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1649			dp_flags |= DP_SEND_WRITE_ACK;
1650	}
1651	p->dp_flags = cpu_to_be32(dp_flags);
1652
1653	if (dp_flags & DP_DISCARD) {
1654		struct p_trim *t = (struct p_trim*)p;
1655		t->size = cpu_to_be32(req->i.size);
1656		err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1657		goto out;
1658	}
1659
1660	/* our digest is still only over the payload.
1661	 * TRIM does not carry any payload. */
1662	if (digest_size)
1663		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1664	err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size);
1665	if (!err) {
1666		/* For protocol A, we have to memcpy the payload into
1667		 * socket buffers, as we may complete right away
1668		 * as soon as we handed it over to tcp, at which point the data
1669		 * pages may become invalid.
1670		 *
1671		 * For data-integrity enabled, we copy it as well, so we can be
1672		 * sure that even if the bio pages may still be modified, it
1673		 * won't change the data on the wire, thus if the digest checks
1674		 * out ok after sending on this side, but does not fit on the
1675		 * receiving side, we sure have detected corruption elsewhere.
1676		 */
1677		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1678			err = _drbd_send_bio(peer_device, req->master_bio);
1679		else
1680			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1681
1682		/* double check digest, sometimes buffers have been modified in flight. */
1683		if (digest_size > 0 && digest_size <= 64) {
1684			/* 64 byte, 512 bit, is the largest digest size
1685			 * currently supported in kernel crypto. */
1686			unsigned char digest[64];
1687			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1688			if (memcmp(p + 1, digest, digest_size)) {
1689				drbd_warn(device,
1690					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1691					(unsigned long long)req->i.sector, req->i.size);
1692			}
1693		} /* else if (digest_size > 64) {
1694		     ... Be noisy about digest too large ...
1695		} */
1696	}
1697out:
1698	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1699
1700	return err;
1701}
1702
1703/* answer packet, used to send data back for read requests:
1704 *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1705 *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1706 */
1707int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1708		    struct drbd_peer_request *peer_req)
1709{
1710	struct drbd_device *device = peer_device->device;
1711	struct drbd_socket *sock;
1712	struct p_data *p;
1713	int err;
1714	int digest_size;
1715
1716	sock = &peer_device->connection->data;
1717	p = drbd_prepare_command(peer_device, sock);
1718
1719	digest_size = peer_device->connection->integrity_tfm ?
1720		      crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1721
1722	if (!p)
1723		return -EIO;
1724	p->sector = cpu_to_be64(peer_req->i.sector);
1725	p->block_id = peer_req->block_id;
1726	p->seq_num = 0;  /* unused */
1727	p->dp_flags = 0;
1728	if (digest_size)
1729		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1730	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1731	if (!err)
1732		err = _drbd_send_zc_ee(peer_device, peer_req);
1733	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1734
1735	return err;
1736}
1737
1738int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1739{
1740	struct drbd_socket *sock;
1741	struct p_block_desc *p;
1742
1743	sock = &peer_device->connection->data;
1744	p = drbd_prepare_command(peer_device, sock);
1745	if (!p)
1746		return -EIO;
1747	p->sector = cpu_to_be64(req->i.sector);
1748	p->blksize = cpu_to_be32(req->i.size);
1749	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1750}
1751
1752/*
1753  drbd_send distinguishes two cases:
1754
1755  Packets sent via the data socket "sock"
1756  and packets sent via the meta data socket "msock"
1757
1758		    sock                      msock
1759  -----------------+-------------------------+------------------------------
1760  timeout           conf.timeout / 2          conf.timeout / 2
1761  timeout action    send a ping via msock     Abort communication
1762					      and close all sockets
1763*/
1764
1765/*
1766 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1767 */
1768int drbd_send(struct drbd_connection *connection, struct socket *sock,
1769	      void *buf, size_t size, unsigned msg_flags)
1770{
1771	struct kvec iov;
1772	struct msghdr msg;
1773	int rv, sent = 0;
1774
1775	if (!sock)
1776		return -EBADR;
1777
1778	/* THINK  if (signal_pending) return ... ? */
1779
1780	iov.iov_base = buf;
1781	iov.iov_len  = size;
1782
1783	msg.msg_name       = NULL;
1784	msg.msg_namelen    = 0;
1785	msg.msg_control    = NULL;
1786	msg.msg_controllen = 0;
1787	msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1788
1789	if (sock == connection->data.socket) {
1790		rcu_read_lock();
1791		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1792		rcu_read_unlock();
1793		drbd_update_congested(connection);
1794	}
1795	do {
1796		/* STRANGE
1797		 * tcp_sendmsg does _not_ use its size parameter at all ?
1798		 *
1799		 * -EAGAIN on timeout, -EINTR on signal.
1800		 */
1801/* THINK
1802 * do we need to block DRBD_SIG if sock == &meta.socket ??
1803 * otherwise wake_asender() might interrupt some send_*Ack !
1804 */
1805		rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1806		if (rv == -EAGAIN) {
1807			if (we_should_drop_the_connection(connection, sock))
1808				break;
1809			else
1810				continue;
1811		}
1812		if (rv == -EINTR) {
1813			flush_signals(current);
1814			rv = 0;
1815		}
1816		if (rv < 0)
1817			break;
1818		sent += rv;
1819		iov.iov_base += rv;
1820		iov.iov_len  -= rv;
1821	} while (sent < size);
1822
1823	if (sock == connection->data.socket)
1824		clear_bit(NET_CONGESTED, &connection->flags);
1825
1826	if (rv <= 0) {
1827		if (rv != -EAGAIN) {
1828			drbd_err(connection, "%s_sendmsg returned %d\n",
1829				 sock == connection->meta.socket ? "msock" : "sock",
1830				 rv);
1831			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1832		} else
1833			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1834	}
1835
1836	return sent;
1837}
1838
1839/**
1840 * drbd_send_all  -  Send an entire buffer
1841 *
1842 * Returns 0 upon success and a negative error value otherwise.
1843 */
1844int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1845		  size_t size, unsigned msg_flags)
1846{
1847	int err;
1848
1849	err = drbd_send(connection, sock, buffer, size, msg_flags);
1850	if (err < 0)
1851		return err;
1852	if (err != size)
1853		return -EIO;
1854	return 0;
1855}
1856
1857static int drbd_open(struct block_device *bdev, fmode_t mode)
1858{
1859	struct drbd_device *device = bdev->bd_disk->private_data;
1860	unsigned long flags;
1861	int rv = 0;
1862
1863	mutex_lock(&drbd_main_mutex);
1864	spin_lock_irqsave(&device->resource->req_lock, flags);
1865	/* to have a stable device->state.role
1866	 * and no race with updating open_cnt */
1867
1868	if (device->state.role != R_PRIMARY) {
1869		if (mode & FMODE_WRITE)
1870			rv = -EROFS;
1871		else if (!allow_oos)
1872			rv = -EMEDIUMTYPE;
1873	}
1874
1875	if (!rv)
1876		device->open_cnt++;
1877	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1878	mutex_unlock(&drbd_main_mutex);
1879
1880	return rv;
1881}
1882
1883static void drbd_release(struct gendisk *gd, fmode_t mode)
1884{
1885	struct drbd_device *device = gd->private_data;
1886	mutex_lock(&drbd_main_mutex);
1887	device->open_cnt--;
1888	mutex_unlock(&drbd_main_mutex);
1889}
1890
1891static void drbd_set_defaults(struct drbd_device *device)
1892{
1893	/* Beware! The actual layout differs
1894	 * between big endian and little endian */
1895	device->state = (union drbd_dev_state) {
1896		{ .role = R_SECONDARY,
1897		  .peer = R_UNKNOWN,
1898		  .conn = C_STANDALONE,
1899		  .disk = D_DISKLESS,
1900		  .pdsk = D_UNKNOWN,
1901		} };
1902}
1903
1904void drbd_init_set_defaults(struct drbd_device *device)
1905{
1906	/* the memset(,0,) did most of this.
1907	 * note: only assignments, no allocation in here */
1908
1909	drbd_set_defaults(device);
1910
1911	atomic_set(&device->ap_bio_cnt, 0);
1912	atomic_set(&device->ap_actlog_cnt, 0);
1913	atomic_set(&device->ap_pending_cnt, 0);
1914	atomic_set(&device->rs_pending_cnt, 0);
1915	atomic_set(&device->unacked_cnt, 0);
1916	atomic_set(&device->local_cnt, 0);
1917	atomic_set(&device->pp_in_use_by_net, 0);
1918	atomic_set(&device->rs_sect_in, 0);
1919	atomic_set(&device->rs_sect_ev, 0);
1920	atomic_set(&device->ap_in_flight, 0);
1921	atomic_set(&device->md_io.in_use, 0);
1922
1923	mutex_init(&device->own_state_mutex);
1924	device->state_mutex = &device->own_state_mutex;
1925
1926	spin_lock_init(&device->al_lock);
1927	spin_lock_init(&device->peer_seq_lock);
1928
1929	INIT_LIST_HEAD(&device->active_ee);
1930	INIT_LIST_HEAD(&device->sync_ee);
1931	INIT_LIST_HEAD(&device->done_ee);
1932	INIT_LIST_HEAD(&device->read_ee);
1933	INIT_LIST_HEAD(&device->net_ee);
1934	INIT_LIST_HEAD(&device->resync_reads);
1935	INIT_LIST_HEAD(&device->resync_work.list);
1936	INIT_LIST_HEAD(&device->unplug_work.list);
1937	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1938	INIT_LIST_HEAD(&device->pending_master_completion[0]);
1939	INIT_LIST_HEAD(&device->pending_master_completion[1]);
1940	INIT_LIST_HEAD(&device->pending_completion[0]);
1941	INIT_LIST_HEAD(&device->pending_completion[1]);
1942
1943	device->resync_work.cb  = w_resync_timer;
1944	device->unplug_work.cb  = w_send_write_hint;
1945	device->bm_io_work.w.cb = w_bitmap_io;
1946
1947	init_timer(&device->resync_timer);
1948	init_timer(&device->md_sync_timer);
1949	init_timer(&device->start_resync_timer);
1950	init_timer(&device->request_timer);
1951	device->resync_timer.function = resync_timer_fn;
1952	device->resync_timer.data = (unsigned long) device;
1953	device->md_sync_timer.function = md_sync_timer_fn;
1954	device->md_sync_timer.data = (unsigned long) device;
1955	device->start_resync_timer.function = start_resync_timer_fn;
1956	device->start_resync_timer.data = (unsigned long) device;
1957	device->request_timer.function = request_timer_fn;
1958	device->request_timer.data = (unsigned long) device;
1959
1960	init_waitqueue_head(&device->misc_wait);
1961	init_waitqueue_head(&device->state_wait);
1962	init_waitqueue_head(&device->ee_wait);
1963	init_waitqueue_head(&device->al_wait);
1964	init_waitqueue_head(&device->seq_wait);
1965
1966	device->resync_wenr = LC_FREE;
1967	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1968	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1969}
1970
1971void drbd_device_cleanup(struct drbd_device *device)
1972{
1973	int i;
1974	if (first_peer_device(device)->connection->receiver.t_state != NONE)
1975		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1976				first_peer_device(device)->connection->receiver.t_state);
1977
1978	device->al_writ_cnt  =
1979	device->bm_writ_cnt  =
1980	device->read_cnt     =
1981	device->recv_cnt     =
1982	device->send_cnt     =
1983	device->writ_cnt     =
1984	device->p_size       =
1985	device->rs_start     =
1986	device->rs_total     =
1987	device->rs_failed    = 0;
1988	device->rs_last_events = 0;
1989	device->rs_last_sect_ev = 0;
1990	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1991		device->rs_mark_left[i] = 0;
1992		device->rs_mark_time[i] = 0;
1993	}
1994	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1995
1996	drbd_set_my_capacity(device, 0);
1997	if (device->bitmap) {
1998		/* maybe never allocated. */
1999		drbd_bm_resize(device, 0, 1);
2000		drbd_bm_cleanup(device);
2001	}
2002
2003	drbd_free_ldev(device->ldev);
2004	device->ldev = NULL;
2005
2006	clear_bit(AL_SUSPENDED, &device->flags);
2007
2008	D_ASSERT(device, list_empty(&device->active_ee));
2009	D_ASSERT(device, list_empty(&device->sync_ee));
2010	D_ASSERT(device, list_empty(&device->done_ee));
2011	D_ASSERT(device, list_empty(&device->read_ee));
2012	D_ASSERT(device, list_empty(&device->net_ee));
2013	D_ASSERT(device, list_empty(&device->resync_reads));
2014	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2015	D_ASSERT(device, list_empty(&device->resync_work.list));
2016	D_ASSERT(device, list_empty(&device->unplug_work.list));
2017
2018	drbd_set_defaults(device);
2019}
2020
2021
2022static void drbd_destroy_mempools(void)
2023{
2024	struct page *page;
2025
2026	while (drbd_pp_pool) {
2027		page = drbd_pp_pool;
2028		drbd_pp_pool = (struct page *)page_private(page);
2029		__free_page(page);
2030		drbd_pp_vacant--;
2031	}
2032
2033	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2034
2035	if (drbd_md_io_bio_set)
2036		bioset_free(drbd_md_io_bio_set);
2037	if (drbd_md_io_page_pool)
2038		mempool_destroy(drbd_md_io_page_pool);
2039	if (drbd_ee_mempool)
2040		mempool_destroy(drbd_ee_mempool);
2041	if (drbd_request_mempool)
2042		mempool_destroy(drbd_request_mempool);
2043	if (drbd_ee_cache)
2044		kmem_cache_destroy(drbd_ee_cache);
2045	if (drbd_request_cache)
2046		kmem_cache_destroy(drbd_request_cache);
2047	if (drbd_bm_ext_cache)
2048		kmem_cache_destroy(drbd_bm_ext_cache);
2049	if (drbd_al_ext_cache)
2050		kmem_cache_destroy(drbd_al_ext_cache);
2051
2052	drbd_md_io_bio_set   = NULL;
2053	drbd_md_io_page_pool = NULL;
2054	drbd_ee_mempool      = NULL;
2055	drbd_request_mempool = NULL;
2056	drbd_ee_cache        = NULL;
2057	drbd_request_cache   = NULL;
2058	drbd_bm_ext_cache    = NULL;
2059	drbd_al_ext_cache    = NULL;
2060
2061	return;
2062}
2063
2064static int drbd_create_mempools(void)
2065{
2066	struct page *page;
2067	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2068	int i;
2069
2070	/* prepare our caches and mempools */
2071	drbd_request_mempool = NULL;
2072	drbd_ee_cache        = NULL;
2073	drbd_request_cache   = NULL;
2074	drbd_bm_ext_cache    = NULL;
2075	drbd_al_ext_cache    = NULL;
2076	drbd_pp_pool         = NULL;
2077	drbd_md_io_page_pool = NULL;
2078	drbd_md_io_bio_set   = NULL;
2079
2080	/* caches */
2081	drbd_request_cache = kmem_cache_create(
2082		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2083	if (drbd_request_cache == NULL)
2084		goto Enomem;
2085
2086	drbd_ee_cache = kmem_cache_create(
2087		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2088	if (drbd_ee_cache == NULL)
2089		goto Enomem;
2090
2091	drbd_bm_ext_cache = kmem_cache_create(
2092		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2093	if (drbd_bm_ext_cache == NULL)
2094		goto Enomem;
2095
2096	drbd_al_ext_cache = kmem_cache_create(
2097		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2098	if (drbd_al_ext_cache == NULL)
2099		goto Enomem;
2100
2101	/* mempools */
2102	drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2103	if (drbd_md_io_bio_set == NULL)
2104		goto Enomem;
2105
2106	drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2107	if (drbd_md_io_page_pool == NULL)
2108		goto Enomem;
2109
2110	drbd_request_mempool = mempool_create(number,
2111		mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2112	if (drbd_request_mempool == NULL)
2113		goto Enomem;
2114
2115	drbd_ee_mempool = mempool_create(number,
2116		mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2117	if (drbd_ee_mempool == NULL)
2118		goto Enomem;
2119
2120	/* drbd's page pool */
2121	spin_lock_init(&drbd_pp_lock);
2122
2123	for (i = 0; i < number; i++) {
2124		page = alloc_page(GFP_HIGHUSER);
2125		if (!page)
2126			goto Enomem;
2127		set_page_private(page, (unsigned long)drbd_pp_pool);
2128		drbd_pp_pool = page;
2129	}
2130	drbd_pp_vacant = number;
2131
2132	return 0;
2133
2134Enomem:
2135	drbd_destroy_mempools(); /* in case we allocated some */
2136	return -ENOMEM;
2137}
2138
2139static void drbd_release_all_peer_reqs(struct drbd_device *device)
2140{
2141	int rr;
2142
2143	rr = drbd_free_peer_reqs(device, &device->active_ee);
2144	if (rr)
2145		drbd_err(device, "%d EEs in active list found!\n", rr);
2146
2147	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2148	if (rr)
2149		drbd_err(device, "%d EEs in sync list found!\n", rr);
2150
2151	rr = drbd_free_peer_reqs(device, &device->read_ee);
2152	if (rr)
2153		drbd_err(device, "%d EEs in read list found!\n", rr);
2154
2155	rr = drbd_free_peer_reqs(device, &device->done_ee);
2156	if (rr)
2157		drbd_err(device, "%d EEs in done list found!\n", rr);
2158
2159	rr = drbd_free_peer_reqs(device, &device->net_ee);
2160	if (rr)
2161		drbd_err(device, "%d EEs in net list found!\n", rr);
2162}
2163
2164/* caution. no locking. */
2165void drbd_destroy_device(struct kref *kref)
2166{
2167	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2168	struct drbd_resource *resource = device->resource;
2169	struct drbd_peer_device *peer_device, *tmp_peer_device;
2170
2171	del_timer_sync(&device->request_timer);
2172
2173	/* paranoia asserts */
2174	D_ASSERT(device, device->open_cnt == 0);
2175	/* end paranoia asserts */
2176
2177	/* cleanup stuff that may have been allocated during
2178	 * device (re-)configuration or state changes */
2179
2180	if (device->this_bdev)
2181		bdput(device->this_bdev);
2182
2183	drbd_free_ldev(device->ldev);
2184	device->ldev = NULL;
2185
2186	drbd_release_all_peer_reqs(device);
2187
2188	lc_destroy(device->act_log);
2189	lc_destroy(device->resync);
2190
2191	kfree(device->p_uuid);
2192	/* device->p_uuid = NULL; */
2193
2194	if (device->bitmap) /* should no longer be there. */
2195		drbd_bm_cleanup(device);
2196	__free_page(device->md_io.page);
2197	put_disk(device->vdisk);
2198	blk_cleanup_queue(device->rq_queue);
2199	kfree(device->rs_plan_s);
2200
2201	/* not for_each_connection(connection, resource):
2202	 * those may have been cleaned up and disassociated already.
2203	 */
2204	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2205		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2206		kfree(peer_device);
2207	}
2208	memset(device, 0xfd, sizeof(*device));
2209	kfree(device);
2210	kref_put(&resource->kref, drbd_destroy_resource);
2211}
2212
2213/* One global retry thread, if we need to push back some bio and have it
2214 * reinserted through our make request function.
2215 */
2216static struct retry_worker {
2217	struct workqueue_struct *wq;
2218	struct work_struct worker;
2219
2220	spinlock_t lock;
2221	struct list_head writes;
2222} retry;
2223
2224static void do_retry(struct work_struct *ws)
2225{
2226	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2227	LIST_HEAD(writes);
2228	struct drbd_request *req, *tmp;
2229
2230	spin_lock_irq(&retry->lock);
2231	list_splice_init(&retry->writes, &writes);
2232	spin_unlock_irq(&retry->lock);
2233
2234	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2235		struct drbd_device *device = req->device;
2236		struct bio *bio = req->master_bio;
2237		unsigned long start_jif = req->start_jif;
2238		bool expected;
2239
2240		expected =
2241			expect(atomic_read(&req->completion_ref) == 0) &&
2242			expect(req->rq_state & RQ_POSTPONED) &&
2243			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2244				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2245
2246		if (!expected)
2247			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2248				req, atomic_read(&req->completion_ref),
2249				req->rq_state);
2250
2251		/* We still need to put one kref associated with the
2252		 * "completion_ref" going zero in the code path that queued it
2253		 * here.  The request object may still be referenced by a
2254		 * frozen local req->private_bio, in case we force-detached.
2255		 */
2256		kref_put(&req->kref, drbd_req_destroy);
2257
2258		/* A single suspended or otherwise blocking device may stall
2259		 * all others as well.  Fortunately, this code path is to
2260		 * recover from a situation that "should not happen":
2261		 * concurrent writes in multi-primary setup.
2262		 * In a "normal" lifecycle, this workqueue is supposed to be
2263		 * destroyed without ever doing anything.
2264		 * If it turns out to be an issue anyways, we can do per
2265		 * resource (replication group) or per device (minor) retry
2266		 * workqueues instead.
2267		 */
2268
2269		/* We are not just doing generic_make_request(),
2270		 * as we want to keep the start_time information. */
2271		inc_ap_bio(device);
2272		__drbd_make_request(device, bio, start_jif);
2273	}
2274}
2275
2276/* called via drbd_req_put_completion_ref(),
2277 * holds resource->req_lock */
2278void drbd_restart_request(struct drbd_request *req)
2279{
2280	unsigned long flags;
2281	spin_lock_irqsave(&retry.lock, flags);
2282	list_move_tail(&req->tl_requests, &retry.writes);
2283	spin_unlock_irqrestore(&retry.lock, flags);
2284
2285	/* Drop the extra reference that would otherwise
2286	 * have been dropped by complete_master_bio.
2287	 * do_retry() needs to grab a new one. */
2288	dec_ap_bio(req->device);
2289
2290	queue_work(retry.wq, &retry.worker);
2291}
2292
2293void drbd_destroy_resource(struct kref *kref)
2294{
2295	struct drbd_resource *resource =
2296		container_of(kref, struct drbd_resource, kref);
2297
2298	idr_destroy(&resource->devices);
2299	free_cpumask_var(resource->cpu_mask);
2300	kfree(resource->name);
2301	memset(resource, 0xf2, sizeof(*resource));
2302	kfree(resource);
2303}
2304
2305void drbd_free_resource(struct drbd_resource *resource)
2306{
2307	struct drbd_connection *connection, *tmp;
2308
2309	for_each_connection_safe(connection, tmp, resource) {
2310		list_del(&connection->connections);
2311		drbd_debugfs_connection_cleanup(connection);
2312		kref_put(&connection->kref, drbd_destroy_connection);
2313	}
2314	drbd_debugfs_resource_cleanup(resource);
2315	kref_put(&resource->kref, drbd_destroy_resource);
2316}
2317
2318static void drbd_cleanup(void)
2319{
2320	unsigned int i;
2321	struct drbd_device *device;
2322	struct drbd_resource *resource, *tmp;
2323
2324	/* first remove proc,
2325	 * drbdsetup uses it's presence to detect
2326	 * whether DRBD is loaded.
2327	 * If we would get stuck in proc removal,
2328	 * but have netlink already deregistered,
2329	 * some drbdsetup commands may wait forever
2330	 * for an answer.
2331	 */
2332	if (drbd_proc)
2333		remove_proc_entry("drbd", NULL);
2334
2335	if (retry.wq)
2336		destroy_workqueue(retry.wq);
2337
2338	drbd_genl_unregister();
2339	drbd_debugfs_cleanup();
2340
2341	idr_for_each_entry(&drbd_devices, device, i)
2342		drbd_delete_device(device);
2343
2344	/* not _rcu since, no other updater anymore. Genl already unregistered */
2345	for_each_resource_safe(resource, tmp, &drbd_resources) {
2346		list_del(&resource->resources);
2347		drbd_free_resource(resource);
2348	}
2349
2350	drbd_destroy_mempools();
2351	unregister_blkdev(DRBD_MAJOR, "drbd");
2352
2353	idr_destroy(&drbd_devices);
2354
2355	pr_info("module cleanup done.\n");
2356}
2357
2358/**
2359 * drbd_congested() - Callback for the flusher thread
2360 * @congested_data:	User data
2361 * @bdi_bits:		Bits the BDI flusher thread is currently interested in
2362 *
2363 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2364 */
2365static int drbd_congested(void *congested_data, int bdi_bits)
2366{
2367	struct drbd_device *device = congested_data;
2368	struct request_queue *q;
2369	char reason = '-';
2370	int r = 0;
2371
2372	if (!may_inc_ap_bio(device)) {
2373		/* DRBD has frozen IO */
2374		r = bdi_bits;
2375		reason = 'd';
2376		goto out;
2377	}
2378
2379	if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2380		r |= (1 << BDI_async_congested);
2381		/* Without good local data, we would need to read from remote,
2382		 * and that would need the worker thread as well, which is
2383		 * currently blocked waiting for that usermode helper to
2384		 * finish.
2385		 */
2386		if (!get_ldev_if_state(device, D_UP_TO_DATE))
2387			r |= (1 << BDI_sync_congested);
2388		else
2389			put_ldev(device);
2390		r &= bdi_bits;
2391		reason = 'c';
2392		goto out;
2393	}
2394
2395	if (get_ldev(device)) {
2396		q = bdev_get_queue(device->ldev->backing_bdev);
2397		r = bdi_congested(&q->backing_dev_info, bdi_bits);
2398		put_ldev(device);
2399		if (r)
2400			reason = 'b';
2401	}
2402
2403	if (bdi_bits & (1 << BDI_async_congested) &&
2404	    test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2405		r |= (1 << BDI_async_congested);
2406		reason = reason == 'b' ? 'a' : 'n';
2407	}
2408
2409out:
2410	device->congestion_reason = reason;
2411	return r;
2412}
2413
2414static void drbd_init_workqueue(struct drbd_work_queue* wq)
2415{
2416	spin_lock_init(&wq->q_lock);
2417	INIT_LIST_HEAD(&wq->q);
2418	init_waitqueue_head(&wq->q_wait);
2419}
2420
2421struct completion_work {
2422	struct drbd_work w;
2423	struct completion done;
2424};
2425
2426static int w_complete(struct drbd_work *w, int cancel)
2427{
2428	struct completion_work *completion_work =
2429		container_of(w, struct completion_work, w);
2430
2431	complete(&completion_work->done);
2432	return 0;
2433}
2434
2435void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2436{
2437	struct completion_work completion_work;
2438
2439	completion_work.w.cb = w_complete;
2440	init_completion(&completion_work.done);
2441	drbd_queue_work(work_queue, &completion_work.w);
2442	wait_for_completion(&completion_work.done);
2443}
2444
2445struct drbd_resource *drbd_find_resource(const char *name)
2446{
2447	struct drbd_resource *resource;
2448
2449	if (!name || !name[0])
2450		return NULL;
2451
2452	rcu_read_lock();
2453	for_each_resource_rcu(resource, &drbd_resources) {
2454		if (!strcmp(resource->name, name)) {
2455			kref_get(&resource->kref);
2456			goto found;
2457		}
2458	}
2459	resource = NULL;
2460found:
2461	rcu_read_unlock();
2462	return resource;
2463}
2464
2465struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2466				     void *peer_addr, int peer_addr_len)
2467{
2468	struct drbd_resource *resource;
2469	struct drbd_connection *connection;
2470
2471	rcu_read_lock();
2472	for_each_resource_rcu(resource, &drbd_resources) {
2473		for_each_connection_rcu(connection, resource) {
2474			if (connection->my_addr_len == my_addr_len &&
2475			    connection->peer_addr_len == peer_addr_len &&
2476			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2477			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2478				kref_get(&connection->kref);
2479				goto found;
2480			}
2481		}
2482	}
2483	connection = NULL;
2484found:
2485	rcu_read_unlock();
2486	return connection;
2487}
2488
2489static int drbd_alloc_socket(struct drbd_socket *socket)
2490{
2491	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2492	if (!socket->rbuf)
2493		return -ENOMEM;
2494	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2495	if (!socket->sbuf)
2496		return -ENOMEM;
2497	return 0;
2498}
2499
2500static void drbd_free_socket(struct drbd_socket *socket)
2501{
2502	free_page((unsigned long) socket->sbuf);
2503	free_page((unsigned long) socket->rbuf);
2504}
2505
2506void conn_free_crypto(struct drbd_connection *connection)
2507{
2508	drbd_free_sock(connection);
2509
2510	crypto_free_hash(connection->csums_tfm);
2511	crypto_free_hash(connection->verify_tfm);
2512	crypto_free_hash(connection->cram_hmac_tfm);
2513	crypto_free_hash(connection->integrity_tfm);
2514	crypto_free_hash(connection->peer_integrity_tfm);
2515	kfree(connection->int_dig_in);
2516	kfree(connection->int_dig_vv);
2517
2518	connection->csums_tfm = NULL;
2519	connection->verify_tfm = NULL;
2520	connection->cram_hmac_tfm = NULL;
2521	connection->integrity_tfm = NULL;
2522	connection->peer_integrity_tfm = NULL;
2523	connection->int_dig_in = NULL;
2524	connection->int_dig_vv = NULL;
2525}
2526
2527int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2528{
2529	struct drbd_connection *connection;
2530	cpumask_var_t new_cpu_mask;
2531	int err;
2532
2533	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2534		return -ENOMEM;
2535		/*
2536		retcode = ERR_NOMEM;
2537		drbd_msg_put_info("unable to allocate cpumask");
2538		*/
2539
2540	/* silently ignore cpu mask on UP kernel */
2541	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2542		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2543				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2544		if (err == -EOVERFLOW) {
2545			/* So what. mask it out. */
2546			cpumask_var_t tmp_cpu_mask;
2547			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2548				cpumask_setall(tmp_cpu_mask);
2549				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2550				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2551					res_opts->cpu_mask,
2552					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2553					nr_cpu_ids);
2554				free_cpumask_var(tmp_cpu_mask);
2555				err = 0;
2556			}
2557		}
2558		if (err) {
2559			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2560			/* retcode = ERR_CPU_MASK_PARSE; */
2561			goto fail;
2562		}
2563	}
2564	resource->res_opts = *res_opts;
2565	if (cpumask_empty(new_cpu_mask))
2566		drbd_calc_cpu_mask(&new_cpu_mask);
2567	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2568		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2569		for_each_connection_rcu(connection, resource) {
2570			connection->receiver.reset_cpu_mask = 1;
2571			connection->asender.reset_cpu_mask = 1;
2572			connection->worker.reset_cpu_mask = 1;
2573		}
2574	}
2575	err = 0;
2576
2577fail:
2578	free_cpumask_var(new_cpu_mask);
2579	return err;
2580
2581}
2582
2583struct drbd_resource *drbd_create_resource(const char *name)
2584{
2585	struct drbd_resource *resource;
2586
2587	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2588	if (!resource)
2589		goto fail;
2590	resource->name = kstrdup(name, GFP_KERNEL);
2591	if (!resource->name)
2592		goto fail_free_resource;
2593	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2594		goto fail_free_name;
2595	kref_init(&resource->kref);
2596	idr_init(&resource->devices);
2597	INIT_LIST_HEAD(&resource->connections);
2598	resource->write_ordering = WO_bdev_flush;
2599	list_add_tail_rcu(&resource->resources, &drbd_resources);
2600	mutex_init(&resource->conf_update);
2601	mutex_init(&resource->adm_mutex);
2602	spin_lock_init(&resource->req_lock);
2603	drbd_debugfs_resource_add(resource);
2604	return resource;
2605
2606fail_free_name:
2607	kfree(resource->name);
2608fail_free_resource:
2609	kfree(resource);
2610fail:
2611	return NULL;
2612}
2613
2614/* caller must be under adm_mutex */
2615struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2616{
2617	struct drbd_resource *resource;
2618	struct drbd_connection *connection;
2619
2620	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2621	if (!connection)
2622		return NULL;
2623
2624	if (drbd_alloc_socket(&connection->data))
2625		goto fail;
2626	if (drbd_alloc_socket(&connection->meta))
2627		goto fail;
2628
2629	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2630	if (!connection->current_epoch)
2631		goto fail;
2632
2633	INIT_LIST_HEAD(&connection->transfer_log);
2634
2635	INIT_LIST_HEAD(&connection->current_epoch->list);
2636	connection->epochs = 1;
2637	spin_lock_init(&connection->epoch_lock);
2638
2639	connection->send.seen_any_write_yet = false;
2640	connection->send.current_epoch_nr = 0;
2641	connection->send.current_epoch_writes = 0;
2642
2643	resource = drbd_create_resource(name);
2644	if (!resource)
2645		goto fail;
2646
2647	connection->cstate = C_STANDALONE;
2648	mutex_init(&connection->cstate_mutex);
2649	init_waitqueue_head(&connection->ping_wait);
2650	idr_init(&connection->peer_devices);
2651
2652	drbd_init_workqueue(&connection->sender_work);
2653	mutex_init(&connection->data.mutex);
2654	mutex_init(&connection->meta.mutex);
2655
2656	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2657	connection->receiver.connection = connection;
2658	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2659	connection->worker.connection = connection;
2660	drbd_thread_init(resource, &connection->asender, drbd_asender, "asender");
2661	connection->asender.connection = connection;
2662
2663	kref_init(&connection->kref);
2664
2665	connection->resource = resource;
2666
2667	if (set_resource_options(resource, res_opts))
2668		goto fail_resource;
2669
2670	kref_get(&resource->kref);
2671	list_add_tail_rcu(&connection->connections, &resource->connections);
2672	drbd_debugfs_connection_add(connection);
2673	return connection;
2674
2675fail_resource:
2676	list_del(&resource->resources);
2677	drbd_free_resource(resource);
2678fail:
2679	kfree(connection->current_epoch);
2680	drbd_free_socket(&connection->meta);
2681	drbd_free_socket(&connection->data);
2682	kfree(connection);
2683	return NULL;
2684}
2685
2686void drbd_destroy_connection(struct kref *kref)
2687{
2688	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2689	struct drbd_resource *resource = connection->resource;
2690
2691	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2692		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2693	kfree(connection->current_epoch);
2694
2695	idr_destroy(&connection->peer_devices);
2696
2697	drbd_free_socket(&connection->meta);
2698	drbd_free_socket(&connection->data);
2699	kfree(connection->int_dig_in);
2700	kfree(connection->int_dig_vv);
2701	memset(connection, 0xfc, sizeof(*connection));
2702	kfree(connection);
2703	kref_put(&resource->kref, drbd_destroy_resource);
2704}
2705
2706static int init_submitter(struct drbd_device *device)
2707{
2708	/* opencoded create_singlethread_workqueue(),
2709	 * to be able to say "drbd%d", ..., minor */
2710	device->submit.wq = alloc_workqueue("drbd%u_submit",
2711			WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2712	if (!device->submit.wq)
2713		return -ENOMEM;
2714
2715	INIT_WORK(&device->submit.worker, do_submit);
2716	INIT_LIST_HEAD(&device->submit.writes);
2717	return 0;
2718}
2719
2720enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2721{
2722	struct drbd_resource *resource = adm_ctx->resource;
2723	struct drbd_connection *connection;
2724	struct drbd_device *device;
2725	struct drbd_peer_device *peer_device, *tmp_peer_device;
2726	struct gendisk *disk;
2727	struct request_queue *q;
2728	int id;
2729	int vnr = adm_ctx->volume;
2730	enum drbd_ret_code err = ERR_NOMEM;
2731
2732	device = minor_to_device(minor);
2733	if (device)
2734		return ERR_MINOR_EXISTS;
2735
2736	/* GFP_KERNEL, we are outside of all write-out paths */
2737	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2738	if (!device)
2739		return ERR_NOMEM;
2740	kref_init(&device->kref);
2741
2742	kref_get(&resource->kref);
2743	device->resource = resource;
2744	device->minor = minor;
2745	device->vnr = vnr;
2746
2747	drbd_init_set_defaults(device);
2748
2749	q = blk_alloc_queue(GFP_KERNEL);
2750	if (!q)
2751		goto out_no_q;
2752	device->rq_queue = q;
2753	q->queuedata   = device;
2754
2755	disk = alloc_disk(1);
2756	if (!disk)
2757		goto out_no_disk;
2758	device->vdisk = disk;
2759
2760	set_disk_ro(disk, true);
2761
2762	disk->queue = q;
2763	disk->major = DRBD_MAJOR;
2764	disk->first_minor = minor;
2765	disk->fops = &drbd_ops;
2766	sprintf(disk->disk_name, "drbd%d", minor);
2767	disk->private_data = device;
2768
2769	device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2770	/* we have no partitions. we contain only ourselves. */
2771	device->this_bdev->bd_contains = device->this_bdev;
2772
2773	q->backing_dev_info.congested_fn = drbd_congested;
2774	q->backing_dev_info.congested_data = device;
2775
2776	blk_queue_make_request(q, drbd_make_request);
2777	blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2778	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2779	   This triggers a max_bio_size message upon first attach or connect */
2780	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2781	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2782	blk_queue_merge_bvec(q, drbd_merge_bvec);
2783	q->queue_lock = &resource->req_lock;
2784
2785	device->md_io.page = alloc_page(GFP_KERNEL);
2786	if (!device->md_io.page)
2787		goto out_no_io_page;
2788
2789	if (drbd_bm_init(device))
2790		goto out_no_bitmap;
2791	device->read_requests = RB_ROOT;
2792	device->write_requests = RB_ROOT;
2793
2794	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2795	if (id < 0) {
2796		if (id == -ENOSPC) {
2797			err = ERR_MINOR_EXISTS;
2798			drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already");
2799		}
2800		goto out_no_minor_idr;
2801	}
2802	kref_get(&device->kref);
2803
2804	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2805	if (id < 0) {
2806		if (id == -ENOSPC) {
2807			err = ERR_MINOR_EXISTS;
2808			drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already");
2809		}
2810		goto out_idr_remove_minor;
2811	}
2812	kref_get(&device->kref);
2813
2814	INIT_LIST_HEAD(&device->peer_devices);
2815	INIT_LIST_HEAD(&device->pending_bitmap_io);
2816	for_each_connection(connection, resource) {
2817		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2818		if (!peer_device)
2819			goto out_idr_remove_from_resource;
2820		peer_device->connection = connection;
2821		peer_device->device = device;
2822
2823		list_add(&peer_device->peer_devices, &device->peer_devices);
2824		kref_get(&device->kref);
2825
2826		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2827		if (id < 0) {
2828			if (id == -ENOSPC) {
2829				err = ERR_INVALID_REQUEST;
2830				drbd_msg_put_info(adm_ctx->reply_skb, "requested volume exists already");
2831			}
2832			goto out_idr_remove_from_resource;
2833		}
2834		kref_get(&connection->kref);
2835	}
2836
2837	if (init_submitter(device)) {
2838		err = ERR_NOMEM;
2839		drbd_msg_put_info(adm_ctx->reply_skb, "unable to create submit workqueue");
2840		goto out_idr_remove_vol;
2841	}
2842
2843	add_disk(disk);
2844
2845	/* inherit the connection state */
2846	device->state.conn = first_connection(resource)->cstate;
2847	if (device->state.conn == C_WF_REPORT_PARAMS) {
2848		for_each_peer_device(peer_device, device)
2849			drbd_connected(peer_device);
2850	}
2851	/* move to create_peer_device() */
2852	for_each_peer_device(peer_device, device)
2853		drbd_debugfs_peer_device_add(peer_device);
2854	drbd_debugfs_device_add(device);
2855	return NO_ERROR;
2856
2857out_idr_remove_vol:
2858	idr_remove(&connection->peer_devices, vnr);
2859out_idr_remove_from_resource:
2860	for_each_connection(connection, resource) {
2861		peer_device = idr_find(&connection->peer_devices, vnr);
2862		if (peer_device) {
2863			idr_remove(&connection->peer_devices, vnr);
2864			kref_put(&connection->kref, drbd_destroy_connection);
2865		}
2866	}
2867	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2868		list_del(&peer_device->peer_devices);
2869		kfree(peer_device);
2870	}
2871	idr_remove(&resource->devices, vnr);
2872out_idr_remove_minor:
2873	idr_remove(&drbd_devices, minor);
2874	synchronize_rcu();
2875out_no_minor_idr:
2876	drbd_bm_cleanup(device);
2877out_no_bitmap:
2878	__free_page(device->md_io.page);
2879out_no_io_page:
2880	put_disk(disk);
2881out_no_disk:
2882	blk_cleanup_queue(q);
2883out_no_q:
2884	kref_put(&resource->kref, drbd_destroy_resource);
2885	kfree(device);
2886	return err;
2887}
2888
2889void drbd_delete_device(struct drbd_device *device)
2890{
2891	struct drbd_resource *resource = device->resource;
2892	struct drbd_connection *connection;
2893	struct drbd_peer_device *peer_device;
2894	int refs = 3;
2895
2896	/* move to free_peer_device() */
2897	for_each_peer_device(peer_device, device)
2898		drbd_debugfs_peer_device_cleanup(peer_device);
2899	drbd_debugfs_device_cleanup(device);
2900	for_each_connection(connection, resource) {
2901		idr_remove(&connection->peer_devices, device->vnr);
2902		refs++;
2903	}
2904	idr_remove(&resource->devices, device->vnr);
2905	idr_remove(&drbd_devices, device_to_minor(device));
2906	del_gendisk(device->vdisk);
2907	synchronize_rcu();
2908	kref_sub(&device->kref, refs, drbd_destroy_device);
2909}
2910
2911static int __init drbd_init(void)
2912{
2913	int err;
2914
2915	if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2916		pr_err("invalid minor_count (%d)\n", minor_count);
2917#ifdef MODULE
2918		return -EINVAL;
2919#else
2920		minor_count = DRBD_MINOR_COUNT_DEF;
2921#endif
2922	}
2923
2924	err = register_blkdev(DRBD_MAJOR, "drbd");
2925	if (err) {
2926		pr_err("unable to register block device major %d\n",
2927		       DRBD_MAJOR);
2928		return err;
2929	}
2930
2931	/*
2932	 * allocate all necessary structs
2933	 */
2934	init_waitqueue_head(&drbd_pp_wait);
2935
2936	drbd_proc = NULL; /* play safe for drbd_cleanup */
2937	idr_init(&drbd_devices);
2938
2939	rwlock_init(&global_state_lock);
2940	INIT_LIST_HEAD(&drbd_resources);
2941
2942	err = drbd_genl_register();
2943	if (err) {
2944		pr_err("unable to register generic netlink family\n");
2945		goto fail;
2946	}
2947
2948	err = drbd_create_mempools();
2949	if (err)
2950		goto fail;
2951
2952	err = -ENOMEM;
2953	drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2954	if (!drbd_proc)	{
2955		pr_err("unable to register proc file\n");
2956		goto fail;
2957	}
2958
2959	retry.wq = create_singlethread_workqueue("drbd-reissue");
2960	if (!retry.wq) {
2961		pr_err("unable to create retry workqueue\n");
2962		goto fail;
2963	}
2964	INIT_WORK(&retry.worker, do_retry);
2965	spin_lock_init(&retry.lock);
2966	INIT_LIST_HEAD(&retry.writes);
2967
2968	if (drbd_debugfs_init())
2969		pr_notice("failed to initialize debugfs -- will not be available\n");
2970
2971	pr_info("initialized. "
2972	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2973	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2974	pr_info("%s\n", drbd_buildtag());
2975	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2976	return 0; /* Success! */
2977
2978fail:
2979	drbd_cleanup();
2980	if (err == -ENOMEM)
2981		pr_err("ran out of memory\n");
2982	else
2983		pr_err("initialization failure\n");
2984	return err;
2985}
2986
2987void drbd_free_ldev(struct drbd_backing_dev *ldev)
2988{
2989	if (ldev == NULL)
2990		return;
2991
2992	blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2993	blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2994
2995	kfree(ldev->disk_conf);
2996	kfree(ldev);
2997}
2998
2999static void drbd_free_one_sock(struct drbd_socket *ds)
3000{
3001	struct socket *s;
3002	mutex_lock(&ds->mutex);
3003	s = ds->socket;
3004	ds->socket = NULL;
3005	mutex_unlock(&ds->mutex);
3006	if (s) {
3007		/* so debugfs does not need to mutex_lock() */
3008		synchronize_rcu();
3009		kernel_sock_shutdown(s, SHUT_RDWR);
3010		sock_release(s);
3011	}
3012}
3013
3014void drbd_free_sock(struct drbd_connection *connection)
3015{
3016	if (connection->data.socket)
3017		drbd_free_one_sock(&connection->data);
3018	if (connection->meta.socket)
3019		drbd_free_one_sock(&connection->meta);
3020}
3021
3022/* meta data management */
3023
3024void conn_md_sync(struct drbd_connection *connection)
3025{
3026	struct drbd_peer_device *peer_device;
3027	int vnr;
3028
3029	rcu_read_lock();
3030	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3031		struct drbd_device *device = peer_device->device;
3032
3033		kref_get(&device->kref);
3034		rcu_read_unlock();
3035		drbd_md_sync(device);
3036		kref_put(&device->kref, drbd_destroy_device);
3037		rcu_read_lock();
3038	}
3039	rcu_read_unlock();
3040}
3041
3042/* aligned 4kByte */
3043struct meta_data_on_disk {
3044	u64 la_size_sect;      /* last agreed size. */
3045	u64 uuid[UI_SIZE];   /* UUIDs. */
3046	u64 device_uuid;
3047	u64 reserved_u64_1;
3048	u32 flags;             /* MDF */
3049	u32 magic;
3050	u32 md_size_sect;
3051	u32 al_offset;         /* offset to this block */
3052	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3053	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3054	u32 bm_offset;         /* offset to the bitmap, from here */
3055	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3056	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3057
3058	/* see al_tr_number_to_on_disk_sector() */
3059	u32 al_stripes;
3060	u32 al_stripe_size_4k;
3061
3062	u8 reserved_u8[4096 - (7*8 + 10*4)];
3063} __packed;
3064
3065
3066
3067void drbd_md_write(struct drbd_device *device, void *b)
3068{
3069	struct meta_data_on_disk *buffer = b;
3070	sector_t sector;
3071	int i;
3072
3073	memset(buffer, 0, sizeof(*buffer));
3074
3075	buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3076	for (i = UI_CURRENT; i < UI_SIZE; i++)
3077		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3078	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3079	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3080
3081	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3082	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3083	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3084	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3085	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3086
3087	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3088	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3089
3090	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3091	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3092
3093	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3094	sector = device->ldev->md.md_offset;
3095
3096	if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3097		/* this was a try anyways ... */
3098		drbd_err(device, "meta data update failed!\n");
3099		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3100	}
3101}
3102
3103/**
3104 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3105 * @device:	DRBD device.
3106 */
3107void drbd_md_sync(struct drbd_device *device)
3108{
3109	struct meta_data_on_disk *buffer;
3110
3111	/* Don't accidentally change the DRBD meta data layout. */
3112	BUILD_BUG_ON(UI_SIZE != 4);
3113	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3114
3115	del_timer(&device->md_sync_timer);
3116	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3117	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3118		return;
3119
3120	/* We use here D_FAILED and not D_ATTACHING because we try to write
3121	 * metadata even if we detach due to a disk failure! */
3122	if (!get_ldev_if_state(device, D_FAILED))
3123		return;
3124
3125	buffer = drbd_md_get_buffer(device, __func__);
3126	if (!buffer)
3127		goto out;
3128
3129	drbd_md_write(device, buffer);
3130
3131	/* Update device->ldev->md.la_size_sect,
3132	 * since we updated it on metadata. */
3133	device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3134
3135	drbd_md_put_buffer(device);
3136out:
3137	put_ldev(device);
3138}
3139
3140static int check_activity_log_stripe_size(struct drbd_device *device,
3141		struct meta_data_on_disk *on_disk,
3142		struct drbd_md *in_core)
3143{
3144	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3145	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3146	u64 al_size_4k;
3147
3148	/* both not set: default to old fixed size activity log */
3149	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3150		al_stripes = 1;
3151		al_stripe_size_4k = MD_32kB_SECT/8;
3152	}
3153
3154	/* some paranoia plausibility checks */
3155
3156	/* we need both values to be set */
3157	if (al_stripes == 0 || al_stripe_size_4k == 0)
3158		goto err;
3159
3160	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3161
3162	/* Upper limit of activity log area, to avoid potential overflow
3163	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3164	 * than 72 * 4k blocks total only increases the amount of history,
3165	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3166	if (al_size_4k > (16 * 1024 * 1024/4))
3167		goto err;
3168
3169	/* Lower limit: we need at least 8 transaction slots (32kB)
3170	 * to not break existing setups */
3171	if (al_size_4k < MD_32kB_SECT/8)
3172		goto err;
3173
3174	in_core->al_stripe_size_4k = al_stripe_size_4k;
3175	in_core->al_stripes = al_stripes;
3176	in_core->al_size_4k = al_size_4k;
3177
3178	return 0;
3179err:
3180	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3181			al_stripes, al_stripe_size_4k);
3182	return -EINVAL;
3183}
3184
3185static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3186{
3187	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3188	struct drbd_md *in_core = &bdev->md;
3189	s32 on_disk_al_sect;
3190	s32 on_disk_bm_sect;
3191
3192	/* The on-disk size of the activity log, calculated from offsets, and
3193	 * the size of the activity log calculated from the stripe settings,
3194	 * should match.
3195	 * Though we could relax this a bit: it is ok, if the striped activity log
3196	 * fits in the available on-disk activity log size.
3197	 * Right now, that would break how resize is implemented.
3198	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3199	 * of possible unused padding space in the on disk layout. */
3200	if (in_core->al_offset < 0) {
3201		if (in_core->bm_offset > in_core->al_offset)
3202			goto err;
3203		on_disk_al_sect = -in_core->al_offset;
3204		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3205	} else {
3206		if (in_core->al_offset != MD_4kB_SECT)
3207			goto err;
3208		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3209			goto err;
3210
3211		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3212		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3213	}
3214
3215	/* old fixed size meta data is exactly that: fixed. */
3216	if (in_core->meta_dev_idx >= 0) {
3217		if (in_core->md_size_sect != MD_128MB_SECT
3218		||  in_core->al_offset != MD_4kB_SECT
3219		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3220		||  in_core->al_stripes != 1
3221		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3222			goto err;
3223	}
3224
3225	if (capacity < in_core->md_size_sect)
3226		goto err;
3227	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3228		goto err;
3229
3230	/* should be aligned, and at least 32k */
3231	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3232		goto err;
3233
3234	/* should fit (for now: exactly) into the available on-disk space;
3235	 * overflow prevention is in check_activity_log_stripe_size() above. */
3236	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3237		goto err;
3238
3239	/* again, should be aligned */
3240	if (in_core->bm_offset & 7)
3241		goto err;
3242
3243	/* FIXME check for device grow with flex external meta data? */
3244
3245	/* can the available bitmap space cover the last agreed device size? */
3246	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3247		goto err;
3248
3249	return 0;
3250
3251err:
3252	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3253			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3254			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3255			in_core->meta_dev_idx,
3256			in_core->al_stripes, in_core->al_stripe_size_4k,
3257			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3258			(unsigned long long)in_core->la_size_sect,
3259			(unsigned long long)capacity);
3260
3261	return -EINVAL;
3262}
3263
3264
3265/**
3266 * drbd_md_read() - Reads in the meta data super block
3267 * @device:	DRBD device.
3268 * @bdev:	Device from which the meta data should be read in.
3269 *
3270 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3271 * something goes wrong.
3272 *
3273 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3274 * even before @bdev is assigned to @device->ldev.
3275 */
3276int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3277{
3278	struct meta_data_on_disk *buffer;
3279	u32 magic, flags;
3280	int i, rv = NO_ERROR;
3281
3282	if (device->state.disk != D_DISKLESS)
3283		return ERR_DISK_CONFIGURED;
3284
3285	buffer = drbd_md_get_buffer(device, __func__);
3286	if (!buffer)
3287		return ERR_NOMEM;
3288
3289	/* First, figure out where our meta data superblock is located,
3290	 * and read it. */
3291	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3292	bdev->md.md_offset = drbd_md_ss(bdev);
3293
3294	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3295		/* NOTE: can't do normal error processing here as this is
3296		   called BEFORE disk is attached */
3297		drbd_err(device, "Error while reading metadata.\n");
3298		rv = ERR_IO_MD_DISK;
3299		goto err;
3300	}
3301
3302	magic = be32_to_cpu(buffer->magic);
3303	flags = be32_to_cpu(buffer->flags);
3304	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3305	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3306			/* btw: that's Activity Log clean, not "all" clean. */
3307		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3308		rv = ERR_MD_UNCLEAN;
3309		goto err;
3310	}
3311
3312	rv = ERR_MD_INVALID;
3313	if (magic != DRBD_MD_MAGIC_08) {
3314		if (magic == DRBD_MD_MAGIC_07)
3315			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3316		else
3317			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3318		goto err;
3319	}
3320
3321	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3322		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3323		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3324		goto err;
3325	}
3326
3327
3328	/* convert to in_core endian */
3329	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3330	for (i = UI_CURRENT; i < UI_SIZE; i++)
3331		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3332	bdev->md.flags = be32_to_cpu(buffer->flags);
3333	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3334
3335	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3336	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3337	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3338
3339	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3340		goto err;
3341	if (check_offsets_and_sizes(device, bdev))
3342		goto err;
3343
3344	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3345		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3346		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3347		goto err;
3348	}
3349	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3350		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3351		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3352		goto err;
3353	}
3354
3355	rv = NO_ERROR;
3356
3357	spin_lock_irq(&device->resource->req_lock);
3358	if (device->state.conn < C_CONNECTED) {
3359		unsigned int peer;
3360		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3361		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3362		device->peer_max_bio_size = peer;
3363	}
3364	spin_unlock_irq(&device->resource->req_lock);
3365
3366 err:
3367	drbd_md_put_buffer(device);
3368
3369	return rv;
3370}
3371
3372/**
3373 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3374 * @device:	DRBD device.
3375 *
3376 * Call this function if you change anything that should be written to
3377 * the meta-data super block. This function sets MD_DIRTY, and starts a
3378 * timer that ensures that within five seconds you have to call drbd_md_sync().
3379 */
3380#ifdef DEBUG
3381void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3382{
3383	if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3384		mod_timer(&device->md_sync_timer, jiffies + HZ);
3385		device->last_md_mark_dirty.line = line;
3386		device->last_md_mark_dirty.func = func;
3387	}
3388}
3389#else
3390void drbd_md_mark_dirty(struct drbd_device *device)
3391{
3392	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3393		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3394}
3395#endif
3396
3397void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3398{
3399	int i;
3400
3401	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3402		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3403}
3404
3405void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3406{
3407	if (idx == UI_CURRENT) {
3408		if (device->state.role == R_PRIMARY)
3409			val |= 1;
3410		else
3411			val &= ~((u64)1);
3412
3413		drbd_set_ed_uuid(device, val);
3414	}
3415
3416	device->ldev->md.uuid[idx] = val;
3417	drbd_md_mark_dirty(device);
3418}
3419
3420void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3421{
3422	unsigned long flags;
3423	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3424	__drbd_uuid_set(device, idx, val);
3425	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3426}
3427
3428void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3429{
3430	unsigned long flags;
3431	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3432	if (device->ldev->md.uuid[idx]) {
3433		drbd_uuid_move_history(device);
3434		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3435	}
3436	__drbd_uuid_set(device, idx, val);
3437	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3438}
3439
3440/**
3441 * drbd_uuid_new_current() - Creates a new current UUID
3442 * @device:	DRBD device.
3443 *
3444 * Creates a new current UUID, and rotates the old current UUID into
3445 * the bitmap slot. Causes an incremental resync upon next connect.
3446 */
3447void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3448{
3449	u64 val;
3450	unsigned long long bm_uuid;
3451
3452	get_random_bytes(&val, sizeof(u64));
3453
3454	spin_lock_irq(&device->ldev->md.uuid_lock);
3455	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3456
3457	if (bm_uuid)
3458		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3459
3460	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3461	__drbd_uuid_set(device, UI_CURRENT, val);
3462	spin_unlock_irq(&device->ldev->md.uuid_lock);
3463
3464	drbd_print_uuids(device, "new current UUID");
3465	/* get it to stable storage _now_ */
3466	drbd_md_sync(device);
3467}
3468
3469void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3470{
3471	unsigned long flags;
3472	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3473		return;
3474
3475	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3476	if (val == 0) {
3477		drbd_uuid_move_history(device);
3478		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3479		device->ldev->md.uuid[UI_BITMAP] = 0;
3480	} else {
3481		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3482		if (bm_uuid)
3483			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3484
3485		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3486	}
3487	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3488
3489	drbd_md_mark_dirty(device);
3490}
3491
3492/**
3493 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3494 * @device:	DRBD device.
3495 *
3496 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3497 */
3498int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3499{
3500	int rv = -EIO;
3501
3502	drbd_md_set_flag(device, MDF_FULL_SYNC);
3503	drbd_md_sync(device);
3504	drbd_bm_set_all(device);
3505
3506	rv = drbd_bm_write(device);
3507
3508	if (!rv) {
3509		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3510		drbd_md_sync(device);
3511	}
3512
3513	return rv;
3514}
3515
3516/**
3517 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3518 * @device:	DRBD device.
3519 *
3520 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3521 */
3522int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3523{
3524	drbd_resume_al(device);
3525	drbd_bm_clear_all(device);
3526	return drbd_bm_write(device);
3527}
3528
3529static int w_bitmap_io(struct drbd_work *w, int unused)
3530{
3531	struct drbd_device *device =
3532		container_of(w, struct drbd_device, bm_io_work.w);
3533	struct bm_io_work *work = &device->bm_io_work;
3534	int rv = -EIO;
3535
3536	D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3537
3538	if (get_ldev(device)) {
3539		drbd_bm_lock(device, work->why, work->flags);
3540		rv = work->io_fn(device);
3541		drbd_bm_unlock(device);
3542		put_ldev(device);
3543	}
3544
3545	clear_bit_unlock(BITMAP_IO, &device->flags);
3546	wake_up(&device->misc_wait);
3547
3548	if (work->done)
3549		work->done(device, rv);
3550
3551	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3552	work->why = NULL;
3553	work->flags = 0;
3554
3555	return 0;
3556}
3557
3558/**
3559 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3560 * @device:	DRBD device.
3561 * @io_fn:	IO callback to be called when bitmap IO is possible
3562 * @done:	callback to be called after the bitmap IO was performed
3563 * @why:	Descriptive text of the reason for doing the IO
3564 *
3565 * While IO on the bitmap happens we freeze application IO thus we ensure
3566 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3567 * called from worker context. It MUST NOT be used while a previous such
3568 * work is still pending!
3569 *
3570 * Its worker function encloses the call of io_fn() by get_ldev() and
3571 * put_ldev().
3572 */
3573void drbd_queue_bitmap_io(struct drbd_device *device,
3574			  int (*io_fn)(struct drbd_device *),
3575			  void (*done)(struct drbd_device *, int),
3576			  char *why, enum bm_flag flags)
3577{
3578	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3579
3580	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3581	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3582	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3583	if (device->bm_io_work.why)
3584		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3585			why, device->bm_io_work.why);
3586
3587	device->bm_io_work.io_fn = io_fn;
3588	device->bm_io_work.done = done;
3589	device->bm_io_work.why = why;
3590	device->bm_io_work.flags = flags;
3591
3592	spin_lock_irq(&device->resource->req_lock);
3593	set_bit(BITMAP_IO, &device->flags);
3594	if (atomic_read(&device->ap_bio_cnt) == 0) {
3595		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3596			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3597					&device->bm_io_work.w);
3598	}
3599	spin_unlock_irq(&device->resource->req_lock);
3600}
3601
3602/**
3603 * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3604 * @device:	DRBD device.
3605 * @io_fn:	IO callback to be called when bitmap IO is possible
3606 * @why:	Descriptive text of the reason for doing the IO
3607 *
3608 * freezes application IO while that the actual IO operations runs. This
3609 * functions MAY NOT be called from worker context.
3610 */
3611int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3612		char *why, enum bm_flag flags)
3613{
3614	int rv;
3615
3616	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3617
3618	if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3619		drbd_suspend_io(device);
3620
3621	drbd_bm_lock(device, why, flags);
3622	rv = io_fn(device);
3623	drbd_bm_unlock(device);
3624
3625	if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3626		drbd_resume_io(device);
3627
3628	return rv;
3629}
3630
3631void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3632{
3633	if ((device->ldev->md.flags & flag) != flag) {
3634		drbd_md_mark_dirty(device);
3635		device->ldev->md.flags |= flag;
3636	}
3637}
3638
3639void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3640{
3641	if ((device->ldev->md.flags & flag) != 0) {
3642		drbd_md_mark_dirty(device);
3643		device->ldev->md.flags &= ~flag;
3644	}
3645}
3646int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3647{
3648	return (bdev->md.flags & flag) != 0;
3649}
3650
3651static void md_sync_timer_fn(unsigned long data)
3652{
3653	struct drbd_device *device = (struct drbd_device *) data;
3654	drbd_device_post_work(device, MD_SYNC);
3655}
3656
3657const char *cmdname(enum drbd_packet cmd)
3658{
3659	/* THINK may need to become several global tables
3660	 * when we want to support more than
3661	 * one PRO_VERSION */
3662	static const char *cmdnames[] = {
3663		[P_DATA]	        = "Data",
3664		[P_DATA_REPLY]	        = "DataReply",
3665		[P_RS_DATA_REPLY]	= "RSDataReply",
3666		[P_BARRIER]	        = "Barrier",
3667		[P_BITMAP]	        = "ReportBitMap",
3668		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3669		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3670		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3671		[P_DATA_REQUEST]	= "DataRequest",
3672		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3673		[P_SYNC_PARAM]	        = "SyncParam",
3674		[P_SYNC_PARAM89]	= "SyncParam89",
3675		[P_PROTOCOL]            = "ReportProtocol",
3676		[P_UUIDS]	        = "ReportUUIDs",
3677		[P_SIZES]	        = "ReportSizes",
3678		[P_STATE]	        = "ReportState",
3679		[P_SYNC_UUID]           = "ReportSyncUUID",
3680		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3681		[P_AUTH_RESPONSE]	= "AuthResponse",
3682		[P_PING]		= "Ping",
3683		[P_PING_ACK]	        = "PingAck",
3684		[P_RECV_ACK]	        = "RecvAck",
3685		[P_WRITE_ACK]	        = "WriteAck",
3686		[P_RS_WRITE_ACK]	= "RSWriteAck",
3687		[P_SUPERSEDED]          = "Superseded",
3688		[P_NEG_ACK]	        = "NegAck",
3689		[P_NEG_DREPLY]	        = "NegDReply",
3690		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3691		[P_BARRIER_ACK]	        = "BarrierAck",
3692		[P_STATE_CHG_REQ]       = "StateChgRequest",
3693		[P_STATE_CHG_REPLY]     = "StateChgReply",
3694		[P_OV_REQUEST]          = "OVRequest",
3695		[P_OV_REPLY]            = "OVReply",
3696		[P_OV_RESULT]           = "OVResult",
3697		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3698		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3699		[P_COMPRESSED_BITMAP]   = "CBitmap",
3700		[P_DELAY_PROBE]         = "DelayProbe",
3701		[P_OUT_OF_SYNC]		= "OutOfSync",
3702		[P_RETRY_WRITE]		= "RetryWrite",
3703		[P_RS_CANCEL]		= "RSCancel",
3704		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3705		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3706		[P_RETRY_WRITE]		= "retry_write",
3707		[P_PROTOCOL_UPDATE]	= "protocol_update",
3708
3709		/* enum drbd_packet, but not commands - obsoleted flags:
3710		 *	P_MAY_IGNORE
3711		 *	P_MAX_OPT_CMD
3712		 */
3713	};
3714
3715	/* too big for the array: 0xfffX */
3716	if (cmd == P_INITIAL_META)
3717		return "InitialMeta";
3718	if (cmd == P_INITIAL_DATA)
3719		return "InitialData";
3720	if (cmd == P_CONNECTION_FEATURES)
3721		return "ConnectionFeatures";
3722	if (cmd >= ARRAY_SIZE(cmdnames))
3723		return "Unknown";
3724	return cmdnames[cmd];
3725}
3726
3727/**
3728 * drbd_wait_misc  -  wait for a request to make progress
3729 * @device:	device associated with the request
3730 * @i:		the struct drbd_interval embedded in struct drbd_request or
3731 *		struct drbd_peer_request
3732 */
3733int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3734{
3735	struct net_conf *nc;
3736	DEFINE_WAIT(wait);
3737	long timeout;
3738
3739	rcu_read_lock();
3740	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3741	if (!nc) {
3742		rcu_read_unlock();
3743		return -ETIMEDOUT;
3744	}
3745	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3746	rcu_read_unlock();
3747
3748	/* Indicate to wake up device->misc_wait on progress.  */
3749	i->waiting = true;
3750	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3751	spin_unlock_irq(&device->resource->req_lock);
3752	timeout = schedule_timeout(timeout);
3753	finish_wait(&device->misc_wait, &wait);
3754	spin_lock_irq(&device->resource->req_lock);
3755	if (!timeout || device->state.conn < C_CONNECTED)
3756		return -ETIMEDOUT;
3757	if (signal_pending(current))
3758		return -ERESTARTSYS;
3759	return 0;
3760}
3761
3762#ifdef CONFIG_DRBD_FAULT_INJECTION
3763/* Fault insertion support including random number generator shamelessly
3764 * stolen from kernel/rcutorture.c */
3765struct fault_random_state {
3766	unsigned long state;
3767	unsigned long count;
3768};
3769
3770#define FAULT_RANDOM_MULT 39916801  /* prime */
3771#define FAULT_RANDOM_ADD	479001701 /* prime */
3772#define FAULT_RANDOM_REFRESH 10000
3773
3774/*
3775 * Crude but fast random-number generator.  Uses a linear congruential
3776 * generator, with occasional help from get_random_bytes().
3777 */
3778static unsigned long
3779_drbd_fault_random(struct fault_random_state *rsp)
3780{
3781	long refresh;
3782
3783	if (!rsp->count--) {
3784		get_random_bytes(&refresh, sizeof(refresh));
3785		rsp->state += refresh;
3786		rsp->count = FAULT_RANDOM_REFRESH;
3787	}
3788	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3789	return swahw32(rsp->state);
3790}
3791
3792static char *
3793_drbd_fault_str(unsigned int type) {
3794	static char *_faults[] = {
3795		[DRBD_FAULT_MD_WR] = "Meta-data write",
3796		[DRBD_FAULT_MD_RD] = "Meta-data read",
3797		[DRBD_FAULT_RS_WR] = "Resync write",
3798		[DRBD_FAULT_RS_RD] = "Resync read",
3799		[DRBD_FAULT_DT_WR] = "Data write",
3800		[DRBD_FAULT_DT_RD] = "Data read",
3801		[DRBD_FAULT_DT_RA] = "Data read ahead",
3802		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3803		[DRBD_FAULT_AL_EE] = "EE allocation",
3804		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3805	};
3806
3807	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3808}
3809
3810unsigned int
3811_drbd_insert_fault(struct drbd_device *device, unsigned int type)
3812{
3813	static struct fault_random_state rrs = {0, 0};
3814
3815	unsigned int ret = (
3816		(fault_devs == 0 ||
3817			((1 << device_to_minor(device)) & fault_devs) != 0) &&
3818		(((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3819
3820	if (ret) {
3821		fault_count++;
3822
3823		if (__ratelimit(&drbd_ratelimit_state))
3824			drbd_warn(device, "***Simulating %s failure\n",
3825				_drbd_fault_str(type));
3826	}
3827
3828	return ret;
3829}
3830#endif
3831
3832const char *drbd_buildtag(void)
3833{
3834	/* DRBD built from external sources has here a reference to the
3835	   git hash of the source code. */
3836
3837	static char buildtag[38] = "\0uilt-in";
3838
3839	if (buildtag[0] == 0) {
3840#ifdef MODULE
3841		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3842#else
3843		buildtag[0] = 'b';
3844#endif
3845	}
3846
3847	return buildtag;
3848}
3849
3850module_init(drbd_init)
3851module_exit(drbd_cleanup)
3852
3853EXPORT_SYMBOL(drbd_conn_str);
3854EXPORT_SYMBOL(drbd_role_str);
3855EXPORT_SYMBOL(drbd_disk_str);
3856EXPORT_SYMBOL(drbd_set_st_err_str);
3857