[go: nahoru, domu]

1/*
2 *  linux/drivers/block/loop.c
3 *
4 *  Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/compat.h>
67#include <linux/suspend.h>
68#include <linux/freezer.h>
69#include <linux/mutex.h>
70#include <linux/writeback.h>
71#include <linux/completion.h>
72#include <linux/highmem.h>
73#include <linux/kthread.h>
74#include <linux/splice.h>
75#include <linux/sysfs.h>
76#include <linux/miscdevice.h>
77#include <linux/falloc.h>
78#include "loop.h"
79
80#include <asm/uaccess.h>
81
82static DEFINE_IDR(loop_index_idr);
83static DEFINE_MUTEX(loop_index_mutex);
84
85static int max_part;
86static int part_shift;
87
88/*
89 * Transfer functions
90 */
91static int transfer_none(struct loop_device *lo, int cmd,
92			 struct page *raw_page, unsigned raw_off,
93			 struct page *loop_page, unsigned loop_off,
94			 int size, sector_t real_block)
95{
96	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98
99	if (cmd == READ)
100		memcpy(loop_buf, raw_buf, size);
101	else
102		memcpy(raw_buf, loop_buf, size);
103
104	kunmap_atomic(loop_buf);
105	kunmap_atomic(raw_buf);
106	cond_resched();
107	return 0;
108}
109
110static int transfer_xor(struct loop_device *lo, int cmd,
111			struct page *raw_page, unsigned raw_off,
112			struct page *loop_page, unsigned loop_off,
113			int size, sector_t real_block)
114{
115	char *raw_buf = kmap_atomic(raw_page) + raw_off;
116	char *loop_buf = kmap_atomic(loop_page) + loop_off;
117	char *in, *out, *key;
118	int i, keysize;
119
120	if (cmd == READ) {
121		in = raw_buf;
122		out = loop_buf;
123	} else {
124		in = loop_buf;
125		out = raw_buf;
126	}
127
128	key = lo->lo_encrypt_key;
129	keysize = lo->lo_encrypt_key_size;
130	for (i = 0; i < size; i++)
131		*out++ = *in++ ^ key[(i & 511) % keysize];
132
133	kunmap_atomic(loop_buf);
134	kunmap_atomic(raw_buf);
135	cond_resched();
136	return 0;
137}
138
139static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140{
141	if (unlikely(info->lo_encrypt_key_size <= 0))
142		return -EINVAL;
143	return 0;
144}
145
146static struct loop_func_table none_funcs = {
147	.number = LO_CRYPT_NONE,
148	.transfer = transfer_none,
149};
150
151static struct loop_func_table xor_funcs = {
152	.number = LO_CRYPT_XOR,
153	.transfer = transfer_xor,
154	.init = xor_init
155};
156
157/* xfer_funcs[0] is special - its release function is never called */
158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159	&none_funcs,
160	&xor_funcs
161};
162
163static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164{
165	loff_t loopsize;
166
167	/* Compute loopsize in bytes */
168	loopsize = i_size_read(file->f_mapping->host);
169	if (offset > 0)
170		loopsize -= offset;
171	/* offset is beyond i_size, weird but possible */
172	if (loopsize < 0)
173		return 0;
174
175	if (sizelimit > 0 && sizelimit < loopsize)
176		loopsize = sizelimit;
177	/*
178	 * Unfortunately, if we want to do I/O on the device,
179	 * the number of 512-byte sectors has to fit into a sector_t.
180	 */
181	return loopsize >> 9;
182}
183
184static loff_t get_loop_size(struct loop_device *lo, struct file *file)
185{
186	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
187}
188
189static int
190figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
191{
192	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193	sector_t x = (sector_t)size;
194	struct block_device *bdev = lo->lo_device;
195
196	if (unlikely((loff_t)x != size))
197		return -EFBIG;
198	if (lo->lo_offset != offset)
199		lo->lo_offset = offset;
200	if (lo->lo_sizelimit != sizelimit)
201		lo->lo_sizelimit = sizelimit;
202	set_capacity(lo->lo_disk, x);
203	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
204	/* let user-space know about the new size */
205	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
206	return 0;
207}
208
209static inline int
210lo_do_transfer(struct loop_device *lo, int cmd,
211	       struct page *rpage, unsigned roffs,
212	       struct page *lpage, unsigned loffs,
213	       int size, sector_t rblock)
214{
215	if (unlikely(!lo->transfer))
216		return 0;
217
218	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
219}
220
221/**
222 * __do_lo_send_write - helper for writing data to a loop device
223 *
224 * This helper just factors out common code between do_lo_send_direct_write()
225 * and do_lo_send_write().
226 */
227static int __do_lo_send_write(struct file *file,
228		u8 *buf, const int len, loff_t pos)
229{
230	ssize_t bw;
231	mm_segment_t old_fs = get_fs();
232
233	file_start_write(file);
234	set_fs(get_ds());
235	bw = file->f_op->write(file, buf, len, &pos);
236	set_fs(old_fs);
237	file_end_write(file);
238	if (likely(bw == len))
239		return 0;
240	printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
241			(unsigned long long)pos, len);
242	if (bw >= 0)
243		bw = -EIO;
244	return bw;
245}
246
247/**
248 * do_lo_send_direct_write - helper for writing data to a loop device
249 *
250 * This is the fast, non-transforming version that does not need double
251 * buffering.
252 */
253static int do_lo_send_direct_write(struct loop_device *lo,
254		struct bio_vec *bvec, loff_t pos, struct page *page)
255{
256	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
257			kmap(bvec->bv_page) + bvec->bv_offset,
258			bvec->bv_len, pos);
259	kunmap(bvec->bv_page);
260	cond_resched();
261	return bw;
262}
263
264/**
265 * do_lo_send_write - helper for writing data to a loop device
266 *
267 * This is the slow, transforming version that needs to double buffer the
268 * data as it cannot do the transformations in place without having direct
269 * access to the destination pages of the backing file.
270 */
271static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
272		loff_t pos, struct page *page)
273{
274	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
275			bvec->bv_offset, bvec->bv_len, pos >> 9);
276	if (likely(!ret))
277		return __do_lo_send_write(lo->lo_backing_file,
278				page_address(page), bvec->bv_len,
279				pos);
280	printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, "
281			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
282	if (ret > 0)
283		ret = -EIO;
284	return ret;
285}
286
287static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
288{
289	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
290			struct page *page);
291	struct bio_vec bvec;
292	struct bvec_iter iter;
293	struct page *page = NULL;
294	int ret = 0;
295
296	if (lo->transfer != transfer_none) {
297		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
298		if (unlikely(!page))
299			goto fail;
300		kmap(page);
301		do_lo_send = do_lo_send_write;
302	} else {
303		do_lo_send = do_lo_send_direct_write;
304	}
305
306	bio_for_each_segment(bvec, bio, iter) {
307		ret = do_lo_send(lo, &bvec, pos, page);
308		if (ret < 0)
309			break;
310		pos += bvec.bv_len;
311	}
312	if (page) {
313		kunmap(page);
314		__free_page(page);
315	}
316out:
317	return ret;
318fail:
319	printk_ratelimited(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
320	ret = -ENOMEM;
321	goto out;
322}
323
324struct lo_read_data {
325	struct loop_device *lo;
326	struct page *page;
327	unsigned offset;
328	int bsize;
329};
330
331static int
332lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
333		struct splice_desc *sd)
334{
335	struct lo_read_data *p = sd->u.data;
336	struct loop_device *lo = p->lo;
337	struct page *page = buf->page;
338	sector_t IV;
339	int size;
340
341	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
342							(buf->offset >> 9);
343	size = sd->len;
344	if (size > p->bsize)
345		size = p->bsize;
346
347	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
348		printk_ratelimited(KERN_ERR "loop: transfer error block %ld\n",
349		       page->index);
350		size = -EINVAL;
351	}
352
353	flush_dcache_page(p->page);
354
355	if (size > 0)
356		p->offset += size;
357
358	return size;
359}
360
361static int
362lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
363{
364	return __splice_from_pipe(pipe, sd, lo_splice_actor);
365}
366
367static ssize_t
368do_lo_receive(struct loop_device *lo,
369	      struct bio_vec *bvec, int bsize, loff_t pos)
370{
371	struct lo_read_data cookie;
372	struct splice_desc sd;
373	struct file *file;
374	ssize_t retval;
375
376	cookie.lo = lo;
377	cookie.page = bvec->bv_page;
378	cookie.offset = bvec->bv_offset;
379	cookie.bsize = bsize;
380
381	sd.len = 0;
382	sd.total_len = bvec->bv_len;
383	sd.flags = 0;
384	sd.pos = pos;
385	sd.u.data = &cookie;
386
387	file = lo->lo_backing_file;
388	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
389
390	return retval;
391}
392
393static int
394lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
395{
396	struct bio_vec bvec;
397	struct bvec_iter iter;
398	ssize_t s;
399
400	bio_for_each_segment(bvec, bio, iter) {
401		s = do_lo_receive(lo, &bvec, bsize, pos);
402		if (s < 0)
403			return s;
404
405		if (s != bvec.bv_len) {
406			zero_fill_bio(bio);
407			break;
408		}
409		pos += bvec.bv_len;
410	}
411	return 0;
412}
413
414static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
415{
416	loff_t pos;
417	int ret;
418
419	pos = ((loff_t) bio->bi_iter.bi_sector << 9) + lo->lo_offset;
420
421	if (bio_rw(bio) == WRITE) {
422		struct file *file = lo->lo_backing_file;
423
424		if (bio->bi_rw & REQ_FLUSH) {
425			ret = vfs_fsync(file, 0);
426			if (unlikely(ret && ret != -EINVAL)) {
427				ret = -EIO;
428				goto out;
429			}
430		}
431
432		/*
433		 * We use punch hole to reclaim the free space used by the
434		 * image a.k.a. discard. However we do not support discard if
435		 * encryption is enabled, because it may give an attacker
436		 * useful information.
437		 */
438		if (bio->bi_rw & REQ_DISCARD) {
439			struct file *file = lo->lo_backing_file;
440			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
441
442			if ((!file->f_op->fallocate) ||
443			    lo->lo_encrypt_key_size) {
444				ret = -EOPNOTSUPP;
445				goto out;
446			}
447			ret = file->f_op->fallocate(file, mode, pos,
448						    bio->bi_iter.bi_size);
449			if (unlikely(ret && ret != -EINVAL &&
450				     ret != -EOPNOTSUPP))
451				ret = -EIO;
452			goto out;
453		}
454
455		ret = lo_send(lo, bio, pos);
456
457		if ((bio->bi_rw & REQ_FUA) && !ret) {
458			ret = vfs_fsync(file, 0);
459			if (unlikely(ret && ret != -EINVAL))
460				ret = -EIO;
461		}
462	} else
463		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
464
465out:
466	return ret;
467}
468
469/*
470 * Add bio to back of pending list
471 */
472static void loop_add_bio(struct loop_device *lo, struct bio *bio)
473{
474	lo->lo_bio_count++;
475	bio_list_add(&lo->lo_bio_list, bio);
476}
477
478/*
479 * Grab first pending buffer
480 */
481static struct bio *loop_get_bio(struct loop_device *lo)
482{
483	lo->lo_bio_count--;
484	return bio_list_pop(&lo->lo_bio_list);
485}
486
487static void loop_make_request(struct request_queue *q, struct bio *old_bio)
488{
489	struct loop_device *lo = q->queuedata;
490	int rw = bio_rw(old_bio);
491
492	if (rw == READA)
493		rw = READ;
494
495	BUG_ON(!lo || (rw != READ && rw != WRITE));
496
497	spin_lock_irq(&lo->lo_lock);
498	if (lo->lo_state != Lo_bound)
499		goto out;
500	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
501		goto out;
502	if (lo->lo_bio_count >= q->nr_congestion_on)
503		wait_event_lock_irq(lo->lo_req_wait,
504				    lo->lo_bio_count < q->nr_congestion_off,
505				    lo->lo_lock);
506	loop_add_bio(lo, old_bio);
507	wake_up(&lo->lo_event);
508	spin_unlock_irq(&lo->lo_lock);
509	return;
510
511out:
512	spin_unlock_irq(&lo->lo_lock);
513	bio_io_error(old_bio);
514}
515
516struct switch_request {
517	struct file *file;
518	struct completion wait;
519};
520
521static void do_loop_switch(struct loop_device *, struct switch_request *);
522
523static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
524{
525	if (unlikely(!bio->bi_bdev)) {
526		do_loop_switch(lo, bio->bi_private);
527		bio_put(bio);
528	} else {
529		int ret = do_bio_filebacked(lo, bio);
530		bio_endio(bio, ret);
531	}
532}
533
534/*
535 * worker thread that handles reads/writes to file backed loop devices,
536 * to avoid blocking in our make_request_fn. it also does loop decrypting
537 * on reads for block backed loop, as that is too heavy to do from
538 * b_end_io context where irqs may be disabled.
539 *
540 * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
541 * calling kthread_stop().  Therefore once kthread_should_stop() is
542 * true, make_request will not place any more requests.  Therefore
543 * once kthread_should_stop() is true and lo_bio is NULL, we are
544 * done with the loop.
545 */
546static int loop_thread(void *data)
547{
548	struct loop_device *lo = data;
549	struct bio *bio;
550
551	set_user_nice(current, MIN_NICE);
552
553	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
554
555		wait_event_interruptible(lo->lo_event,
556				!bio_list_empty(&lo->lo_bio_list) ||
557				kthread_should_stop());
558
559		if (bio_list_empty(&lo->lo_bio_list))
560			continue;
561		spin_lock_irq(&lo->lo_lock);
562		bio = loop_get_bio(lo);
563		if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
564			wake_up(&lo->lo_req_wait);
565		spin_unlock_irq(&lo->lo_lock);
566
567		BUG_ON(!bio);
568		loop_handle_bio(lo, bio);
569	}
570
571	return 0;
572}
573
574/*
575 * loop_switch performs the hard work of switching a backing store.
576 * First it needs to flush existing IO, it does this by sending a magic
577 * BIO down the pipe. The completion of this BIO does the actual switch.
578 */
579static int loop_switch(struct loop_device *lo, struct file *file)
580{
581	struct switch_request w;
582	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
583	if (!bio)
584		return -ENOMEM;
585	init_completion(&w.wait);
586	w.file = file;
587	bio->bi_private = &w;
588	bio->bi_bdev = NULL;
589	loop_make_request(lo->lo_queue, bio);
590	wait_for_completion(&w.wait);
591	return 0;
592}
593
594/*
595 * Helper to flush the IOs in loop, but keeping loop thread running
596 */
597static int loop_flush(struct loop_device *lo)
598{
599	/* loop not yet configured, no running thread, nothing to flush */
600	if (!lo->lo_thread)
601		return 0;
602
603	return loop_switch(lo, NULL);
604}
605
606/*
607 * Do the actual switch; called from the BIO completion routine
608 */
609static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
610{
611	struct file *file = p->file;
612	struct file *old_file = lo->lo_backing_file;
613	struct address_space *mapping;
614
615	/* if no new file, only flush of queued bios requested */
616	if (!file)
617		goto out;
618
619	mapping = file->f_mapping;
620	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
621	lo->lo_backing_file = file;
622	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
623		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
624	lo->old_gfp_mask = mapping_gfp_mask(mapping);
625	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
626out:
627	complete(&p->wait);
628}
629
630
631/*
632 * loop_change_fd switched the backing store of a loopback device to
633 * a new file. This is useful for operating system installers to free up
634 * the original file and in High Availability environments to switch to
635 * an alternative location for the content in case of server meltdown.
636 * This can only work if the loop device is used read-only, and if the
637 * new backing store is the same size and type as the old backing store.
638 */
639static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
640			  unsigned int arg)
641{
642	struct file	*file, *old_file;
643	struct inode	*inode;
644	int		error;
645
646	error = -ENXIO;
647	if (lo->lo_state != Lo_bound)
648		goto out;
649
650	/* the loop device has to be read-only */
651	error = -EINVAL;
652	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
653		goto out;
654
655	error = -EBADF;
656	file = fget(arg);
657	if (!file)
658		goto out;
659
660	inode = file->f_mapping->host;
661	old_file = lo->lo_backing_file;
662
663	error = -EINVAL;
664
665	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
666		goto out_putf;
667
668	/* size of the new backing store needs to be the same */
669	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
670		goto out_putf;
671
672	/* and ... switch */
673	error = loop_switch(lo, file);
674	if (error)
675		goto out_putf;
676
677	fput(old_file);
678	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
679		ioctl_by_bdev(bdev, BLKRRPART, 0);
680	return 0;
681
682 out_putf:
683	fput(file);
684 out:
685	return error;
686}
687
688static inline int is_loop_device(struct file *file)
689{
690	struct inode *i = file->f_mapping->host;
691
692	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
693}
694
695/* loop sysfs attributes */
696
697static ssize_t loop_attr_show(struct device *dev, char *page,
698			      ssize_t (*callback)(struct loop_device *, char *))
699{
700	struct gendisk *disk = dev_to_disk(dev);
701	struct loop_device *lo = disk->private_data;
702
703	return callback(lo, page);
704}
705
706#define LOOP_ATTR_RO(_name)						\
707static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
708static ssize_t loop_attr_do_show_##_name(struct device *d,		\
709				struct device_attribute *attr, char *b)	\
710{									\
711	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
712}									\
713static struct device_attribute loop_attr_##_name =			\
714	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
715
716static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
717{
718	ssize_t ret;
719	char *p = NULL;
720
721	spin_lock_irq(&lo->lo_lock);
722	if (lo->lo_backing_file)
723		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
724	spin_unlock_irq(&lo->lo_lock);
725
726	if (IS_ERR_OR_NULL(p))
727		ret = PTR_ERR(p);
728	else {
729		ret = strlen(p);
730		memmove(buf, p, ret);
731		buf[ret++] = '\n';
732		buf[ret] = 0;
733	}
734
735	return ret;
736}
737
738static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
739{
740	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
741}
742
743static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
744{
745	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
746}
747
748static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
749{
750	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
751
752	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
753}
754
755static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
756{
757	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
758
759	return sprintf(buf, "%s\n", partscan ? "1" : "0");
760}
761
762LOOP_ATTR_RO(backing_file);
763LOOP_ATTR_RO(offset);
764LOOP_ATTR_RO(sizelimit);
765LOOP_ATTR_RO(autoclear);
766LOOP_ATTR_RO(partscan);
767
768static struct attribute *loop_attrs[] = {
769	&loop_attr_backing_file.attr,
770	&loop_attr_offset.attr,
771	&loop_attr_sizelimit.attr,
772	&loop_attr_autoclear.attr,
773	&loop_attr_partscan.attr,
774	NULL,
775};
776
777static struct attribute_group loop_attribute_group = {
778	.name = "loop",
779	.attrs= loop_attrs,
780};
781
782static int loop_sysfs_init(struct loop_device *lo)
783{
784	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
785				  &loop_attribute_group);
786}
787
788static void loop_sysfs_exit(struct loop_device *lo)
789{
790	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
791			   &loop_attribute_group);
792}
793
794static void loop_config_discard(struct loop_device *lo)
795{
796	struct file *file = lo->lo_backing_file;
797	struct inode *inode = file->f_mapping->host;
798	struct request_queue *q = lo->lo_queue;
799
800	/*
801	 * We use punch hole to reclaim the free space used by the
802	 * image a.k.a. discard. However we do not support discard if
803	 * encryption is enabled, because it may give an attacker
804	 * useful information.
805	 */
806	if ((!file->f_op->fallocate) ||
807	    lo->lo_encrypt_key_size) {
808		q->limits.discard_granularity = 0;
809		q->limits.discard_alignment = 0;
810		q->limits.max_discard_sectors = 0;
811		q->limits.discard_zeroes_data = 0;
812		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
813		return;
814	}
815
816	q->limits.discard_granularity = inode->i_sb->s_blocksize;
817	q->limits.discard_alignment = 0;
818	q->limits.max_discard_sectors = UINT_MAX >> 9;
819	q->limits.discard_zeroes_data = 1;
820	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
821}
822
823static int loop_set_fd(struct loop_device *lo, fmode_t mode,
824		       struct block_device *bdev, unsigned int arg)
825{
826	struct file	*file, *f;
827	struct inode	*inode;
828	struct address_space *mapping;
829	unsigned lo_blocksize;
830	int		lo_flags = 0;
831	int		error;
832	loff_t		size;
833
834	/* This is safe, since we have a reference from open(). */
835	__module_get(THIS_MODULE);
836
837	error = -EBADF;
838	file = fget(arg);
839	if (!file)
840		goto out;
841
842	error = -EBUSY;
843	if (lo->lo_state != Lo_unbound)
844		goto out_putf;
845
846	/* Avoid recursion */
847	f = file;
848	while (is_loop_device(f)) {
849		struct loop_device *l;
850
851		if (f->f_mapping->host->i_bdev == bdev)
852			goto out_putf;
853
854		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
855		if (l->lo_state == Lo_unbound) {
856			error = -EINVAL;
857			goto out_putf;
858		}
859		f = l->lo_backing_file;
860	}
861
862	mapping = file->f_mapping;
863	inode = mapping->host;
864
865	error = -EINVAL;
866	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
867		goto out_putf;
868
869	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
870	    !file->f_op->write)
871		lo_flags |= LO_FLAGS_READ_ONLY;
872
873	lo_blocksize = S_ISBLK(inode->i_mode) ?
874		inode->i_bdev->bd_block_size : PAGE_SIZE;
875
876	error = -EFBIG;
877	size = get_loop_size(lo, file);
878	if ((loff_t)(sector_t)size != size)
879		goto out_putf;
880
881	error = 0;
882
883	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
884
885	lo->lo_blocksize = lo_blocksize;
886	lo->lo_device = bdev;
887	lo->lo_flags = lo_flags;
888	lo->lo_backing_file = file;
889	lo->transfer = transfer_none;
890	lo->ioctl = NULL;
891	lo->lo_sizelimit = 0;
892	lo->lo_bio_count = 0;
893	lo->old_gfp_mask = mapping_gfp_mask(mapping);
894	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
895
896	bio_list_init(&lo->lo_bio_list);
897
898	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
899		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
900
901	set_capacity(lo->lo_disk, size);
902	bd_set_size(bdev, size << 9);
903	loop_sysfs_init(lo);
904	/* let user-space know about the new size */
905	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
906
907	set_blocksize(bdev, lo_blocksize);
908
909	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
910						lo->lo_number);
911	if (IS_ERR(lo->lo_thread)) {
912		error = PTR_ERR(lo->lo_thread);
913		goto out_clr;
914	}
915	lo->lo_state = Lo_bound;
916	wake_up_process(lo->lo_thread);
917	if (part_shift)
918		lo->lo_flags |= LO_FLAGS_PARTSCAN;
919	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
920		ioctl_by_bdev(bdev, BLKRRPART, 0);
921
922	/* Grab the block_device to prevent its destruction after we
923	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
924	 */
925	bdgrab(bdev);
926	return 0;
927
928out_clr:
929	loop_sysfs_exit(lo);
930	lo->lo_thread = NULL;
931	lo->lo_device = NULL;
932	lo->lo_backing_file = NULL;
933	lo->lo_flags = 0;
934	set_capacity(lo->lo_disk, 0);
935	invalidate_bdev(bdev);
936	bd_set_size(bdev, 0);
937	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
938	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
939	lo->lo_state = Lo_unbound;
940 out_putf:
941	fput(file);
942 out:
943	/* This is safe: open() is still holding a reference. */
944	module_put(THIS_MODULE);
945	return error;
946}
947
948static int
949loop_release_xfer(struct loop_device *lo)
950{
951	int err = 0;
952	struct loop_func_table *xfer = lo->lo_encryption;
953
954	if (xfer) {
955		if (xfer->release)
956			err = xfer->release(lo);
957		lo->transfer = NULL;
958		lo->lo_encryption = NULL;
959		module_put(xfer->owner);
960	}
961	return err;
962}
963
964static int
965loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
966	       const struct loop_info64 *i)
967{
968	int err = 0;
969
970	if (xfer) {
971		struct module *owner = xfer->owner;
972
973		if (!try_module_get(owner))
974			return -EINVAL;
975		if (xfer->init)
976			err = xfer->init(lo, i);
977		if (err)
978			module_put(owner);
979		else
980			lo->lo_encryption = xfer;
981	}
982	return err;
983}
984
985static int loop_clr_fd(struct loop_device *lo)
986{
987	struct file *filp = lo->lo_backing_file;
988	gfp_t gfp = lo->old_gfp_mask;
989	struct block_device *bdev = lo->lo_device;
990
991	if (lo->lo_state != Lo_bound)
992		return -ENXIO;
993
994	/*
995	 * If we've explicitly asked to tear down the loop device,
996	 * and it has an elevated reference count, set it for auto-teardown when
997	 * the last reference goes away. This stops $!~#$@ udev from
998	 * preventing teardown because it decided that it needs to run blkid on
999	 * the loopback device whenever they appear. xfstests is notorious for
1000	 * failing tests because blkid via udev races with a losetup
1001	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1002	 * command to fail with EBUSY.
1003	 */
1004	if (lo->lo_refcnt > 1) {
1005		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1006		mutex_unlock(&lo->lo_ctl_mutex);
1007		return 0;
1008	}
1009
1010	if (filp == NULL)
1011		return -EINVAL;
1012
1013	spin_lock_irq(&lo->lo_lock);
1014	lo->lo_state = Lo_rundown;
1015	spin_unlock_irq(&lo->lo_lock);
1016
1017	kthread_stop(lo->lo_thread);
1018
1019	spin_lock_irq(&lo->lo_lock);
1020	lo->lo_backing_file = NULL;
1021	spin_unlock_irq(&lo->lo_lock);
1022
1023	loop_release_xfer(lo);
1024	lo->transfer = NULL;
1025	lo->ioctl = NULL;
1026	lo->lo_device = NULL;
1027	lo->lo_encryption = NULL;
1028	lo->lo_offset = 0;
1029	lo->lo_sizelimit = 0;
1030	lo->lo_encrypt_key_size = 0;
1031	lo->lo_thread = NULL;
1032	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1033	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1034	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1035	if (bdev) {
1036		bdput(bdev);
1037		invalidate_bdev(bdev);
1038	}
1039	set_capacity(lo->lo_disk, 0);
1040	loop_sysfs_exit(lo);
1041	if (bdev) {
1042		bd_set_size(bdev, 0);
1043		/* let user-space know about this change */
1044		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1045	}
1046	mapping_set_gfp_mask(filp->f_mapping, gfp);
1047	lo->lo_state = Lo_unbound;
1048	/* This is safe: open() is still holding a reference. */
1049	module_put(THIS_MODULE);
1050	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1051		ioctl_by_bdev(bdev, BLKRRPART, 0);
1052	lo->lo_flags = 0;
1053	if (!part_shift)
1054		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1055	mutex_unlock(&lo->lo_ctl_mutex);
1056	/*
1057	 * Need not hold lo_ctl_mutex to fput backing file.
1058	 * Calling fput holding lo_ctl_mutex triggers a circular
1059	 * lock dependency possibility warning as fput can take
1060	 * bd_mutex which is usually taken before lo_ctl_mutex.
1061	 */
1062	fput(filp);
1063	return 0;
1064}
1065
1066static int
1067loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1068{
1069	int err;
1070	struct loop_func_table *xfer;
1071	kuid_t uid = current_uid();
1072
1073	if (lo->lo_encrypt_key_size &&
1074	    !uid_eq(lo->lo_key_owner, uid) &&
1075	    !capable(CAP_SYS_ADMIN))
1076		return -EPERM;
1077	if (lo->lo_state != Lo_bound)
1078		return -ENXIO;
1079	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1080		return -EINVAL;
1081
1082	err = loop_release_xfer(lo);
1083	if (err)
1084		return err;
1085
1086	if (info->lo_encrypt_type) {
1087		unsigned int type = info->lo_encrypt_type;
1088
1089		if (type >= MAX_LO_CRYPT)
1090			return -EINVAL;
1091		xfer = xfer_funcs[type];
1092		if (xfer == NULL)
1093			return -EINVAL;
1094	} else
1095		xfer = NULL;
1096
1097	err = loop_init_xfer(lo, xfer, info);
1098	if (err)
1099		return err;
1100
1101	if (lo->lo_offset != info->lo_offset ||
1102	    lo->lo_sizelimit != info->lo_sizelimit)
1103		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1104			return -EFBIG;
1105
1106	loop_config_discard(lo);
1107
1108	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1109	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1110	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1111	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1112
1113	if (!xfer)
1114		xfer = &none_funcs;
1115	lo->transfer = xfer->transfer;
1116	lo->ioctl = xfer->ioctl;
1117
1118	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1119	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1120		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1121
1122	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1123	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1124		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1125		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1126		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1127	}
1128
1129	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1130	lo->lo_init[0] = info->lo_init[0];
1131	lo->lo_init[1] = info->lo_init[1];
1132	if (info->lo_encrypt_key_size) {
1133		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1134		       info->lo_encrypt_key_size);
1135		lo->lo_key_owner = uid;
1136	}
1137
1138	return 0;
1139}
1140
1141static int
1142loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1143{
1144	struct file *file = lo->lo_backing_file;
1145	struct kstat stat;
1146	int error;
1147
1148	if (lo->lo_state != Lo_bound)
1149		return -ENXIO;
1150	error = vfs_getattr(&file->f_path, &stat);
1151	if (error)
1152		return error;
1153	memset(info, 0, sizeof(*info));
1154	info->lo_number = lo->lo_number;
1155	info->lo_device = huge_encode_dev(stat.dev);
1156	info->lo_inode = stat.ino;
1157	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1158	info->lo_offset = lo->lo_offset;
1159	info->lo_sizelimit = lo->lo_sizelimit;
1160	info->lo_flags = lo->lo_flags;
1161	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1162	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1163	info->lo_encrypt_type =
1164		lo->lo_encryption ? lo->lo_encryption->number : 0;
1165	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1166		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1167		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1168		       lo->lo_encrypt_key_size);
1169	}
1170	return 0;
1171}
1172
1173static void
1174loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1175{
1176	memset(info64, 0, sizeof(*info64));
1177	info64->lo_number = info->lo_number;
1178	info64->lo_device = info->lo_device;
1179	info64->lo_inode = info->lo_inode;
1180	info64->lo_rdevice = info->lo_rdevice;
1181	info64->lo_offset = info->lo_offset;
1182	info64->lo_sizelimit = 0;
1183	info64->lo_encrypt_type = info->lo_encrypt_type;
1184	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1185	info64->lo_flags = info->lo_flags;
1186	info64->lo_init[0] = info->lo_init[0];
1187	info64->lo_init[1] = info->lo_init[1];
1188	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1189		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1190	else
1191		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1192	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1193}
1194
1195static int
1196loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1197{
1198	memset(info, 0, sizeof(*info));
1199	info->lo_number = info64->lo_number;
1200	info->lo_device = info64->lo_device;
1201	info->lo_inode = info64->lo_inode;
1202	info->lo_rdevice = info64->lo_rdevice;
1203	info->lo_offset = info64->lo_offset;
1204	info->lo_encrypt_type = info64->lo_encrypt_type;
1205	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1206	info->lo_flags = info64->lo_flags;
1207	info->lo_init[0] = info64->lo_init[0];
1208	info->lo_init[1] = info64->lo_init[1];
1209	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1210		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1211	else
1212		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1213	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1214
1215	/* error in case values were truncated */
1216	if (info->lo_device != info64->lo_device ||
1217	    info->lo_rdevice != info64->lo_rdevice ||
1218	    info->lo_inode != info64->lo_inode ||
1219	    info->lo_offset != info64->lo_offset)
1220		return -EOVERFLOW;
1221
1222	return 0;
1223}
1224
1225static int
1226loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1227{
1228	struct loop_info info;
1229	struct loop_info64 info64;
1230
1231	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1232		return -EFAULT;
1233	loop_info64_from_old(&info, &info64);
1234	return loop_set_status(lo, &info64);
1235}
1236
1237static int
1238loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1239{
1240	struct loop_info64 info64;
1241
1242	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1243		return -EFAULT;
1244	return loop_set_status(lo, &info64);
1245}
1246
1247static int
1248loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1249	struct loop_info info;
1250	struct loop_info64 info64;
1251	int err = 0;
1252
1253	if (!arg)
1254		err = -EINVAL;
1255	if (!err)
1256		err = loop_get_status(lo, &info64);
1257	if (!err)
1258		err = loop_info64_to_old(&info64, &info);
1259	if (!err && copy_to_user(arg, &info, sizeof(info)))
1260		err = -EFAULT;
1261
1262	return err;
1263}
1264
1265static int
1266loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1267	struct loop_info64 info64;
1268	int err = 0;
1269
1270	if (!arg)
1271		err = -EINVAL;
1272	if (!err)
1273		err = loop_get_status(lo, &info64);
1274	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1275		err = -EFAULT;
1276
1277	return err;
1278}
1279
1280static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1281{
1282	if (unlikely(lo->lo_state != Lo_bound))
1283		return -ENXIO;
1284
1285	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1286}
1287
1288static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1289	unsigned int cmd, unsigned long arg)
1290{
1291	struct loop_device *lo = bdev->bd_disk->private_data;
1292	int err;
1293
1294	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1295	switch (cmd) {
1296	case LOOP_SET_FD:
1297		err = loop_set_fd(lo, mode, bdev, arg);
1298		break;
1299	case LOOP_CHANGE_FD:
1300		err = loop_change_fd(lo, bdev, arg);
1301		break;
1302	case LOOP_CLR_FD:
1303		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1304		err = loop_clr_fd(lo);
1305		if (!err)
1306			goto out_unlocked;
1307		break;
1308	case LOOP_SET_STATUS:
1309		err = -EPERM;
1310		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1311			err = loop_set_status_old(lo,
1312					(struct loop_info __user *)arg);
1313		break;
1314	case LOOP_GET_STATUS:
1315		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1316		break;
1317	case LOOP_SET_STATUS64:
1318		err = -EPERM;
1319		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1320			err = loop_set_status64(lo,
1321					(struct loop_info64 __user *) arg);
1322		break;
1323	case LOOP_GET_STATUS64:
1324		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1325		break;
1326	case LOOP_SET_CAPACITY:
1327		err = -EPERM;
1328		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1329			err = loop_set_capacity(lo, bdev);
1330		break;
1331	default:
1332		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1333	}
1334	mutex_unlock(&lo->lo_ctl_mutex);
1335
1336out_unlocked:
1337	return err;
1338}
1339
1340#ifdef CONFIG_COMPAT
1341struct compat_loop_info {
1342	compat_int_t	lo_number;      /* ioctl r/o */
1343	compat_dev_t	lo_device;      /* ioctl r/o */
1344	compat_ulong_t	lo_inode;       /* ioctl r/o */
1345	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1346	compat_int_t	lo_offset;
1347	compat_int_t	lo_encrypt_type;
1348	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1349	compat_int_t	lo_flags;       /* ioctl r/o */
1350	char		lo_name[LO_NAME_SIZE];
1351	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1352	compat_ulong_t	lo_init[2];
1353	char		reserved[4];
1354};
1355
1356/*
1357 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1358 * - noinlined to reduce stack space usage in main part of driver
1359 */
1360static noinline int
1361loop_info64_from_compat(const struct compat_loop_info __user *arg,
1362			struct loop_info64 *info64)
1363{
1364	struct compat_loop_info info;
1365
1366	if (copy_from_user(&info, arg, sizeof(info)))
1367		return -EFAULT;
1368
1369	memset(info64, 0, sizeof(*info64));
1370	info64->lo_number = info.lo_number;
1371	info64->lo_device = info.lo_device;
1372	info64->lo_inode = info.lo_inode;
1373	info64->lo_rdevice = info.lo_rdevice;
1374	info64->lo_offset = info.lo_offset;
1375	info64->lo_sizelimit = 0;
1376	info64->lo_encrypt_type = info.lo_encrypt_type;
1377	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1378	info64->lo_flags = info.lo_flags;
1379	info64->lo_init[0] = info.lo_init[0];
1380	info64->lo_init[1] = info.lo_init[1];
1381	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1382		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1383	else
1384		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1385	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1386	return 0;
1387}
1388
1389/*
1390 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1391 * - noinlined to reduce stack space usage in main part of driver
1392 */
1393static noinline int
1394loop_info64_to_compat(const struct loop_info64 *info64,
1395		      struct compat_loop_info __user *arg)
1396{
1397	struct compat_loop_info info;
1398
1399	memset(&info, 0, sizeof(info));
1400	info.lo_number = info64->lo_number;
1401	info.lo_device = info64->lo_device;
1402	info.lo_inode = info64->lo_inode;
1403	info.lo_rdevice = info64->lo_rdevice;
1404	info.lo_offset = info64->lo_offset;
1405	info.lo_encrypt_type = info64->lo_encrypt_type;
1406	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1407	info.lo_flags = info64->lo_flags;
1408	info.lo_init[0] = info64->lo_init[0];
1409	info.lo_init[1] = info64->lo_init[1];
1410	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1411		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1412	else
1413		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1414	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1415
1416	/* error in case values were truncated */
1417	if (info.lo_device != info64->lo_device ||
1418	    info.lo_rdevice != info64->lo_rdevice ||
1419	    info.lo_inode != info64->lo_inode ||
1420	    info.lo_offset != info64->lo_offset ||
1421	    info.lo_init[0] != info64->lo_init[0] ||
1422	    info.lo_init[1] != info64->lo_init[1])
1423		return -EOVERFLOW;
1424
1425	if (copy_to_user(arg, &info, sizeof(info)))
1426		return -EFAULT;
1427	return 0;
1428}
1429
1430static int
1431loop_set_status_compat(struct loop_device *lo,
1432		       const struct compat_loop_info __user *arg)
1433{
1434	struct loop_info64 info64;
1435	int ret;
1436
1437	ret = loop_info64_from_compat(arg, &info64);
1438	if (ret < 0)
1439		return ret;
1440	return loop_set_status(lo, &info64);
1441}
1442
1443static int
1444loop_get_status_compat(struct loop_device *lo,
1445		       struct compat_loop_info __user *arg)
1446{
1447	struct loop_info64 info64;
1448	int err = 0;
1449
1450	if (!arg)
1451		err = -EINVAL;
1452	if (!err)
1453		err = loop_get_status(lo, &info64);
1454	if (!err)
1455		err = loop_info64_to_compat(&info64, arg);
1456	return err;
1457}
1458
1459static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1460			   unsigned int cmd, unsigned long arg)
1461{
1462	struct loop_device *lo = bdev->bd_disk->private_data;
1463	int err;
1464
1465	switch(cmd) {
1466	case LOOP_SET_STATUS:
1467		mutex_lock(&lo->lo_ctl_mutex);
1468		err = loop_set_status_compat(
1469			lo, (const struct compat_loop_info __user *) arg);
1470		mutex_unlock(&lo->lo_ctl_mutex);
1471		break;
1472	case LOOP_GET_STATUS:
1473		mutex_lock(&lo->lo_ctl_mutex);
1474		err = loop_get_status_compat(
1475			lo, (struct compat_loop_info __user *) arg);
1476		mutex_unlock(&lo->lo_ctl_mutex);
1477		break;
1478	case LOOP_SET_CAPACITY:
1479	case LOOP_CLR_FD:
1480	case LOOP_GET_STATUS64:
1481	case LOOP_SET_STATUS64:
1482		arg = (unsigned long) compat_ptr(arg);
1483	case LOOP_SET_FD:
1484	case LOOP_CHANGE_FD:
1485		err = lo_ioctl(bdev, mode, cmd, arg);
1486		break;
1487	default:
1488		err = -ENOIOCTLCMD;
1489		break;
1490	}
1491	return err;
1492}
1493#endif
1494
1495static int lo_open(struct block_device *bdev, fmode_t mode)
1496{
1497	struct loop_device *lo;
1498	int err = 0;
1499
1500	mutex_lock(&loop_index_mutex);
1501	lo = bdev->bd_disk->private_data;
1502	if (!lo) {
1503		err = -ENXIO;
1504		goto out;
1505	}
1506
1507	mutex_lock(&lo->lo_ctl_mutex);
1508	lo->lo_refcnt++;
1509	mutex_unlock(&lo->lo_ctl_mutex);
1510out:
1511	mutex_unlock(&loop_index_mutex);
1512	return err;
1513}
1514
1515static void lo_release(struct gendisk *disk, fmode_t mode)
1516{
1517	struct loop_device *lo = disk->private_data;
1518	int err;
1519
1520	mutex_lock(&lo->lo_ctl_mutex);
1521
1522	if (--lo->lo_refcnt)
1523		goto out;
1524
1525	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1526		/*
1527		 * In autoclear mode, stop the loop thread
1528		 * and remove configuration after last close.
1529		 */
1530		err = loop_clr_fd(lo);
1531		if (!err)
1532			return;
1533	} else {
1534		/*
1535		 * Otherwise keep thread (if running) and config,
1536		 * but flush possible ongoing bios in thread.
1537		 */
1538		loop_flush(lo);
1539	}
1540
1541out:
1542	mutex_unlock(&lo->lo_ctl_mutex);
1543}
1544
1545static const struct block_device_operations lo_fops = {
1546	.owner =	THIS_MODULE,
1547	.open =		lo_open,
1548	.release =	lo_release,
1549	.ioctl =	lo_ioctl,
1550#ifdef CONFIG_COMPAT
1551	.compat_ioctl =	lo_compat_ioctl,
1552#endif
1553};
1554
1555/*
1556 * And now the modules code and kernel interface.
1557 */
1558static int max_loop;
1559module_param(max_loop, int, S_IRUGO);
1560MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1561module_param(max_part, int, S_IRUGO);
1562MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1563MODULE_LICENSE("GPL");
1564MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1565
1566int loop_register_transfer(struct loop_func_table *funcs)
1567{
1568	unsigned int n = funcs->number;
1569
1570	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1571		return -EINVAL;
1572	xfer_funcs[n] = funcs;
1573	return 0;
1574}
1575
1576static int unregister_transfer_cb(int id, void *ptr, void *data)
1577{
1578	struct loop_device *lo = ptr;
1579	struct loop_func_table *xfer = data;
1580
1581	mutex_lock(&lo->lo_ctl_mutex);
1582	if (lo->lo_encryption == xfer)
1583		loop_release_xfer(lo);
1584	mutex_unlock(&lo->lo_ctl_mutex);
1585	return 0;
1586}
1587
1588int loop_unregister_transfer(int number)
1589{
1590	unsigned int n = number;
1591	struct loop_func_table *xfer;
1592
1593	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1594		return -EINVAL;
1595
1596	xfer_funcs[n] = NULL;
1597	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1598	return 0;
1599}
1600
1601EXPORT_SYMBOL(loop_register_transfer);
1602EXPORT_SYMBOL(loop_unregister_transfer);
1603
1604static int loop_add(struct loop_device **l, int i)
1605{
1606	struct loop_device *lo;
1607	struct gendisk *disk;
1608	int err;
1609
1610	err = -ENOMEM;
1611	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1612	if (!lo)
1613		goto out;
1614
1615	lo->lo_state = Lo_unbound;
1616
1617	/* allocate id, if @id >= 0, we're requesting that specific id */
1618	if (i >= 0) {
1619		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1620		if (err == -ENOSPC)
1621			err = -EEXIST;
1622	} else {
1623		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1624	}
1625	if (err < 0)
1626		goto out_free_dev;
1627	i = err;
1628
1629	err = -ENOMEM;
1630	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1631	if (!lo->lo_queue)
1632		goto out_free_idr;
1633
1634	/*
1635	 * set queue make_request_fn
1636	 */
1637	blk_queue_make_request(lo->lo_queue, loop_make_request);
1638	lo->lo_queue->queuedata = lo;
1639
1640	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1641	if (!disk)
1642		goto out_free_queue;
1643
1644	/*
1645	 * Disable partition scanning by default. The in-kernel partition
1646	 * scanning can be requested individually per-device during its
1647	 * setup. Userspace can always add and remove partitions from all
1648	 * devices. The needed partition minors are allocated from the
1649	 * extended minor space, the main loop device numbers will continue
1650	 * to match the loop minors, regardless of the number of partitions
1651	 * used.
1652	 *
1653	 * If max_part is given, partition scanning is globally enabled for
1654	 * all loop devices. The minors for the main loop devices will be
1655	 * multiples of max_part.
1656	 *
1657	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1658	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1659	 * complicated, are too static, inflexible and may surprise
1660	 * userspace tools. Parameters like this in general should be avoided.
1661	 */
1662	if (!part_shift)
1663		disk->flags |= GENHD_FL_NO_PART_SCAN;
1664	disk->flags |= GENHD_FL_EXT_DEVT;
1665	mutex_init(&lo->lo_ctl_mutex);
1666	lo->lo_number		= i;
1667	lo->lo_thread		= NULL;
1668	init_waitqueue_head(&lo->lo_event);
1669	init_waitqueue_head(&lo->lo_req_wait);
1670	spin_lock_init(&lo->lo_lock);
1671	disk->major		= LOOP_MAJOR;
1672	disk->first_minor	= i << part_shift;
1673	disk->fops		= &lo_fops;
1674	disk->private_data	= lo;
1675	disk->queue		= lo->lo_queue;
1676	sprintf(disk->disk_name, "loop%d", i);
1677	add_disk(disk);
1678	*l = lo;
1679	return lo->lo_number;
1680
1681out_free_queue:
1682	blk_cleanup_queue(lo->lo_queue);
1683out_free_idr:
1684	idr_remove(&loop_index_idr, i);
1685out_free_dev:
1686	kfree(lo);
1687out:
1688	return err;
1689}
1690
1691static void loop_remove(struct loop_device *lo)
1692{
1693	del_gendisk(lo->lo_disk);
1694	blk_cleanup_queue(lo->lo_queue);
1695	put_disk(lo->lo_disk);
1696	kfree(lo);
1697}
1698
1699static int find_free_cb(int id, void *ptr, void *data)
1700{
1701	struct loop_device *lo = ptr;
1702	struct loop_device **l = data;
1703
1704	if (lo->lo_state == Lo_unbound) {
1705		*l = lo;
1706		return 1;
1707	}
1708	return 0;
1709}
1710
1711static int loop_lookup(struct loop_device **l, int i)
1712{
1713	struct loop_device *lo;
1714	int ret = -ENODEV;
1715
1716	if (i < 0) {
1717		int err;
1718
1719		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1720		if (err == 1) {
1721			*l = lo;
1722			ret = lo->lo_number;
1723		}
1724		goto out;
1725	}
1726
1727	/* lookup and return a specific i */
1728	lo = idr_find(&loop_index_idr, i);
1729	if (lo) {
1730		*l = lo;
1731		ret = lo->lo_number;
1732	}
1733out:
1734	return ret;
1735}
1736
1737static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1738{
1739	struct loop_device *lo;
1740	struct kobject *kobj;
1741	int err;
1742
1743	mutex_lock(&loop_index_mutex);
1744	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1745	if (err < 0)
1746		err = loop_add(&lo, MINOR(dev) >> part_shift);
1747	if (err < 0)
1748		kobj = NULL;
1749	else
1750		kobj = get_disk(lo->lo_disk);
1751	mutex_unlock(&loop_index_mutex);
1752
1753	*part = 0;
1754	return kobj;
1755}
1756
1757static long loop_control_ioctl(struct file *file, unsigned int cmd,
1758			       unsigned long parm)
1759{
1760	struct loop_device *lo;
1761	int ret = -ENOSYS;
1762
1763	mutex_lock(&loop_index_mutex);
1764	switch (cmd) {
1765	case LOOP_CTL_ADD:
1766		ret = loop_lookup(&lo, parm);
1767		if (ret >= 0) {
1768			ret = -EEXIST;
1769			break;
1770		}
1771		ret = loop_add(&lo, parm);
1772		break;
1773	case LOOP_CTL_REMOVE:
1774		ret = loop_lookup(&lo, parm);
1775		if (ret < 0)
1776			break;
1777		mutex_lock(&lo->lo_ctl_mutex);
1778		if (lo->lo_state != Lo_unbound) {
1779			ret = -EBUSY;
1780			mutex_unlock(&lo->lo_ctl_mutex);
1781			break;
1782		}
1783		if (lo->lo_refcnt > 0) {
1784			ret = -EBUSY;
1785			mutex_unlock(&lo->lo_ctl_mutex);
1786			break;
1787		}
1788		lo->lo_disk->private_data = NULL;
1789		mutex_unlock(&lo->lo_ctl_mutex);
1790		idr_remove(&loop_index_idr, lo->lo_number);
1791		loop_remove(lo);
1792		break;
1793	case LOOP_CTL_GET_FREE:
1794		ret = loop_lookup(&lo, -1);
1795		if (ret >= 0)
1796			break;
1797		ret = loop_add(&lo, -1);
1798	}
1799	mutex_unlock(&loop_index_mutex);
1800
1801	return ret;
1802}
1803
1804static const struct file_operations loop_ctl_fops = {
1805	.open		= nonseekable_open,
1806	.unlocked_ioctl	= loop_control_ioctl,
1807	.compat_ioctl	= loop_control_ioctl,
1808	.owner		= THIS_MODULE,
1809	.llseek		= noop_llseek,
1810};
1811
1812static struct miscdevice loop_misc = {
1813	.minor		= LOOP_CTRL_MINOR,
1814	.name		= "loop-control",
1815	.fops		= &loop_ctl_fops,
1816};
1817
1818MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1819MODULE_ALIAS("devname:loop-control");
1820
1821static int __init loop_init(void)
1822{
1823	int i, nr;
1824	unsigned long range;
1825	struct loop_device *lo;
1826	int err;
1827
1828	err = misc_register(&loop_misc);
1829	if (err < 0)
1830		return err;
1831
1832	part_shift = 0;
1833	if (max_part > 0) {
1834		part_shift = fls(max_part);
1835
1836		/*
1837		 * Adjust max_part according to part_shift as it is exported
1838		 * to user space so that user can decide correct minor number
1839		 * if [s]he want to create more devices.
1840		 *
1841		 * Note that -1 is required because partition 0 is reserved
1842		 * for the whole disk.
1843		 */
1844		max_part = (1UL << part_shift) - 1;
1845	}
1846
1847	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1848		err = -EINVAL;
1849		goto misc_out;
1850	}
1851
1852	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1853		err = -EINVAL;
1854		goto misc_out;
1855	}
1856
1857	/*
1858	 * If max_loop is specified, create that many devices upfront.
1859	 * This also becomes a hard limit. If max_loop is not specified,
1860	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861	 * init time. Loop devices can be requested on-demand with the
1862	 * /dev/loop-control interface, or be instantiated by accessing
1863	 * a 'dead' device node.
1864	 */
1865	if (max_loop) {
1866		nr = max_loop;
1867		range = max_loop << part_shift;
1868	} else {
1869		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1870		range = 1UL << MINORBITS;
1871	}
1872
1873	if (register_blkdev(LOOP_MAJOR, "loop")) {
1874		err = -EIO;
1875		goto misc_out;
1876	}
1877
1878	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1879				  THIS_MODULE, loop_probe, NULL, NULL);
1880
1881	/* pre-create number of devices given by config or max_loop */
1882	mutex_lock(&loop_index_mutex);
1883	for (i = 0; i < nr; i++)
1884		loop_add(&lo, i);
1885	mutex_unlock(&loop_index_mutex);
1886
1887	printk(KERN_INFO "loop: module loaded\n");
1888	return 0;
1889
1890misc_out:
1891	misc_deregister(&loop_misc);
1892	return err;
1893}
1894
1895static int loop_exit_cb(int id, void *ptr, void *data)
1896{
1897	struct loop_device *lo = ptr;
1898
1899	loop_remove(lo);
1900	return 0;
1901}
1902
1903static void __exit loop_exit(void)
1904{
1905	unsigned long range;
1906
1907	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1908
1909	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1910	idr_destroy(&loop_index_idr);
1911
1912	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1913	unregister_blkdev(LOOP_MAJOR, "loop");
1914
1915	misc_deregister(&loop_misc);
1916}
1917
1918module_init(loop_init);
1919module_exit(loop_exit);
1920
1921#ifndef MODULE
1922static int __init max_loop_setup(char *str)
1923{
1924	max_loop = simple_strtol(str, NULL, 0);
1925	return 1;
1926}
1927
1928__setup("max_loop=", max_loop_setup);
1929#endif
1930