[go: nahoru, domu]

drm_edid.c revision 3cf70dafd7bbbc91df0a9ecb081d46f9f3d867f6
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 *   Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30#include <linux/kernel.h>
31#include <linux/slab.h>
32#include <linux/hdmi.h>
33#include <linux/i2c.h>
34#include <linux/module.h>
35#include <drm/drmP.h>
36#include <drm/drm_edid.h>
37
38#define version_greater(edid, maj, min) \
39	(((edid)->version > (maj)) || \
40	 ((edid)->version == (maj) && (edid)->revision > (min)))
41
42#define EDID_EST_TIMINGS 16
43#define EDID_STD_TIMINGS 8
44#define EDID_DETAILED_TIMINGS 4
45
46/*
47 * EDID blocks out in the wild have a variety of bugs, try to collect
48 * them here (note that userspace may work around broken monitors first,
49 * but fixes should make their way here so that the kernel "just works"
50 * on as many displays as possible).
51 */
52
53/* First detailed mode wrong, use largest 60Hz mode */
54#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
55/* Reported 135MHz pixel clock is too high, needs adjustment */
56#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
57/* Prefer the largest mode at 75 Hz */
58#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
59/* Detail timing is in cm not mm */
60#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
61/* Detailed timing descriptors have bogus size values, so just take the
62 * maximum size and use that.
63 */
64#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
65/* Monitor forgot to set the first detailed is preferred bit. */
66#define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
67/* use +hsync +vsync for detailed mode */
68#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
69/* Force reduced-blanking timings for detailed modes */
70#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
71
72struct detailed_mode_closure {
73	struct drm_connector *connector;
74	struct edid *edid;
75	bool preferred;
76	u32 quirks;
77	int modes;
78};
79
80#define LEVEL_DMT	0
81#define LEVEL_GTF	1
82#define LEVEL_GTF2	2
83#define LEVEL_CVT	3
84
85static struct edid_quirk {
86	char vendor[4];
87	int product_id;
88	u32 quirks;
89} edid_quirk_list[] = {
90	/* Acer AL1706 */
91	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
92	/* Acer F51 */
93	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
94	/* Unknown Acer */
95	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
96
97	/* Belinea 10 15 55 */
98	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
99	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
100
101	/* Envision Peripherals, Inc. EN-7100e */
102	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
103	/* Envision EN2028 */
104	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
105
106	/* Funai Electronics PM36B */
107	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
108	  EDID_QUIRK_DETAILED_IN_CM },
109
110	/* LG Philips LCD LP154W01-A5 */
111	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
112	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
113
114	/* Philips 107p5 CRT */
115	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116
117	/* Proview AY765C */
118	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119
120	/* Samsung SyncMaster 205BW.  Note: irony */
121	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
122	/* Samsung SyncMaster 22[5-6]BW */
123	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
124	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
125
126	/* ViewSonic VA2026w */
127	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
128
129	/* Medion MD 30217 PG */
130	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
131};
132
133/*
134 * Autogenerated from the DMT spec.
135 * This table is copied from xfree86/modes/xf86EdidModes.c.
136 */
137static const struct drm_display_mode drm_dmt_modes[] = {
138	/* 640x350@85Hz */
139	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
140		   736, 832, 0, 350, 382, 385, 445, 0,
141		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
142	/* 640x400@85Hz */
143	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
144		   736, 832, 0, 400, 401, 404, 445, 0,
145		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
146	/* 720x400@85Hz */
147	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
148		   828, 936, 0, 400, 401, 404, 446, 0,
149		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
150	/* 640x480@60Hz */
151	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
152		   752, 800, 0, 480, 489, 492, 525, 0,
153		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
154	/* 640x480@72Hz */
155	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
156		   704, 832, 0, 480, 489, 492, 520, 0,
157		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
158	/* 640x480@75Hz */
159	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
160		   720, 840, 0, 480, 481, 484, 500, 0,
161		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
162	/* 640x480@85Hz */
163	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
164		   752, 832, 0, 480, 481, 484, 509, 0,
165		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
166	/* 800x600@56Hz */
167	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
168		   896, 1024, 0, 600, 601, 603, 625, 0,
169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
170	/* 800x600@60Hz */
171	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
172		   968, 1056, 0, 600, 601, 605, 628, 0,
173		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
174	/* 800x600@72Hz */
175	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
176		   976, 1040, 0, 600, 637, 643, 666, 0,
177		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
178	/* 800x600@75Hz */
179	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
180		   896, 1056, 0, 600, 601, 604, 625, 0,
181		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
182	/* 800x600@85Hz */
183	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
184		   896, 1048, 0, 600, 601, 604, 631, 0,
185		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
186	/* 800x600@120Hz RB */
187	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
188		   880, 960, 0, 600, 603, 607, 636, 0,
189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
190	/* 848x480@60Hz */
191	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
192		   976, 1088, 0, 480, 486, 494, 517, 0,
193		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194	/* 1024x768@43Hz, interlace */
195	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
196		   1208, 1264, 0, 768, 768, 772, 817, 0,
197		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
198			DRM_MODE_FLAG_INTERLACE) },
199	/* 1024x768@60Hz */
200	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
201		   1184, 1344, 0, 768, 771, 777, 806, 0,
202		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
203	/* 1024x768@70Hz */
204	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
205		   1184, 1328, 0, 768, 771, 777, 806, 0,
206		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
207	/* 1024x768@75Hz */
208	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
209		   1136, 1312, 0, 768, 769, 772, 800, 0,
210		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
211	/* 1024x768@85Hz */
212	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
213		   1168, 1376, 0, 768, 769, 772, 808, 0,
214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
215	/* 1024x768@120Hz RB */
216	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
217		   1104, 1184, 0, 768, 771, 775, 813, 0,
218		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
219	/* 1152x864@75Hz */
220	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
221		   1344, 1600, 0, 864, 865, 868, 900, 0,
222		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
223	/* 1280x768@60Hz RB */
224	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
225		   1360, 1440, 0, 768, 771, 778, 790, 0,
226		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
227	/* 1280x768@60Hz */
228	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
229		   1472, 1664, 0, 768, 771, 778, 798, 0,
230		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
231	/* 1280x768@75Hz */
232	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
233		   1488, 1696, 0, 768, 771, 778, 805, 0,
234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
235	/* 1280x768@85Hz */
236	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
237		   1496, 1712, 0, 768, 771, 778, 809, 0,
238		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
239	/* 1280x768@120Hz RB */
240	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
241		   1360, 1440, 0, 768, 771, 778, 813, 0,
242		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
243	/* 1280x800@60Hz RB */
244	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
245		   1360, 1440, 0, 800, 803, 809, 823, 0,
246		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
247	/* 1280x800@60Hz */
248	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
249		   1480, 1680, 0, 800, 803, 809, 831, 0,
250		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251	/* 1280x800@75Hz */
252	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
253		   1488, 1696, 0, 800, 803, 809, 838, 0,
254		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255	/* 1280x800@85Hz */
256	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
257		   1496, 1712, 0, 800, 803, 809, 843, 0,
258		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259	/* 1280x800@120Hz RB */
260	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
261		   1360, 1440, 0, 800, 803, 809, 847, 0,
262		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
263	/* 1280x960@60Hz */
264	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
265		   1488, 1800, 0, 960, 961, 964, 1000, 0,
266		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
267	/* 1280x960@85Hz */
268	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
269		   1504, 1728, 0, 960, 961, 964, 1011, 0,
270		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
271	/* 1280x960@120Hz RB */
272	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
273		   1360, 1440, 0, 960, 963, 967, 1017, 0,
274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
275	/* 1280x1024@60Hz */
276	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
277		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279	/* 1280x1024@75Hz */
280	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
281		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283	/* 1280x1024@85Hz */
284	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
285		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
286		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287	/* 1280x1024@120Hz RB */
288	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
289		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
290		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
291	/* 1360x768@60Hz */
292	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
293		   1536, 1792, 0, 768, 771, 777, 795, 0,
294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295	/* 1360x768@120Hz RB */
296	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
297		   1440, 1520, 0, 768, 771, 776, 813, 0,
298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299	/* 1400x1050@60Hz RB */
300	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
301		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
303	/* 1400x1050@60Hz */
304	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
305		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
306		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
307	/* 1400x1050@75Hz */
308	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
309		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
310		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
311	/* 1400x1050@85Hz */
312	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
313		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
314		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
315	/* 1400x1050@120Hz RB */
316	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
317		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
318		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
319	/* 1440x900@60Hz RB */
320	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
321		   1520, 1600, 0, 900, 903, 909, 926, 0,
322		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323	/* 1440x900@60Hz */
324	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
325		   1672, 1904, 0, 900, 903, 909, 934, 0,
326		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
327	/* 1440x900@75Hz */
328	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
329		   1688, 1936, 0, 900, 903, 909, 942, 0,
330		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
331	/* 1440x900@85Hz */
332	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
333		   1696, 1952, 0, 900, 903, 909, 948, 0,
334		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
335	/* 1440x900@120Hz RB */
336	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
337		   1520, 1600, 0, 900, 903, 909, 953, 0,
338		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
339	/* 1600x1200@60Hz */
340	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
341		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
342		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
343	/* 1600x1200@65Hz */
344	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
345		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
346		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
347	/* 1600x1200@70Hz */
348	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
349		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
350		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
351	/* 1600x1200@75Hz */
352	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
353		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
354		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
355	/* 1600x1200@85Hz */
356	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
357		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
358		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
359	/* 1600x1200@120Hz RB */
360	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
361		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
362		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
363	/* 1680x1050@60Hz RB */
364	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
365		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
366		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
367	/* 1680x1050@60Hz */
368	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
369		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
370		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
371	/* 1680x1050@75Hz */
372	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
373		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
374		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
375	/* 1680x1050@85Hz */
376	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
377		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
378		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
379	/* 1680x1050@120Hz RB */
380	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
381		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
382		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
383	/* 1792x1344@60Hz */
384	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
385		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
386		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
387	/* 1792x1344@75Hz */
388	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
389		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
390		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
391	/* 1792x1344@120Hz RB */
392	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
393		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
394		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
395	/* 1856x1392@60Hz */
396	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
397		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
398		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
399	/* 1856x1392@75Hz */
400	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
401		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
402		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
403	/* 1856x1392@120Hz RB */
404	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
405		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
406		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
407	/* 1920x1200@60Hz RB */
408	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
409		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
410		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
411	/* 1920x1200@60Hz */
412	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
413		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
414		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415	/* 1920x1200@75Hz */
416	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
417		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
418		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
419	/* 1920x1200@85Hz */
420	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
421		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
422		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
423	/* 1920x1200@120Hz RB */
424	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
425		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
426		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
427	/* 1920x1440@60Hz */
428	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
429		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
430		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
431	/* 1920x1440@75Hz */
432	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
433		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
434		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435	/* 1920x1440@120Hz RB */
436	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
437		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
438		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
439	/* 2560x1600@60Hz RB */
440	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
441		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
442		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
443	/* 2560x1600@60Hz */
444	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
445		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
446		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
447	/* 2560x1600@75HZ */
448	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
449		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
450		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
451	/* 2560x1600@85HZ */
452	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
453		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
454		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
455	/* 2560x1600@120Hz RB */
456	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
457		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
458		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
459};
460
461/*
462 * These more or less come from the DMT spec.  The 720x400 modes are
463 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
464 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
465 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
466 * mode.
467 *
468 * The DMT modes have been fact-checked; the rest are mild guesses.
469 */
470static const struct drm_display_mode edid_est_modes[] = {
471	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
472		   968, 1056, 0, 600, 601, 605, 628, 0,
473		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
474	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
475		   896, 1024, 0, 600, 601, 603,  625, 0,
476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
477	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
478		   720, 840, 0, 480, 481, 484, 500, 0,
479		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
480	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
481		   704,  832, 0, 480, 489, 491, 520, 0,
482		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
483	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
484		   768,  864, 0, 480, 483, 486, 525, 0,
485		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
486	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
487		   752, 800, 0, 480, 490, 492, 525, 0,
488		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
489	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
490		   846, 900, 0, 400, 421, 423,  449, 0,
491		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
492	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
493		   846,  900, 0, 400, 412, 414, 449, 0,
494		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
495	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
496		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
498	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
499		   1136, 1312, 0,  768, 769, 772, 800, 0,
500		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
501	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
502		   1184, 1328, 0,  768, 771, 777, 806, 0,
503		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
504	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
505		   1184, 1344, 0,  768, 771, 777, 806, 0,
506		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
507	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
508		   1208, 1264, 0, 768, 768, 776, 817, 0,
509		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
510	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
511		   928, 1152, 0, 624, 625, 628, 667, 0,
512		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
513	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
514		   896, 1056, 0, 600, 601, 604,  625, 0,
515		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
516	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
517		   976, 1040, 0, 600, 637, 643, 666, 0,
518		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
519	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
520		   1344, 1600, 0,  864, 865, 868, 900, 0,
521		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
522};
523
524struct minimode {
525	short w;
526	short h;
527	short r;
528	short rb;
529};
530
531static const struct minimode est3_modes[] = {
532	/* byte 6 */
533	{ 640, 350, 85, 0 },
534	{ 640, 400, 85, 0 },
535	{ 720, 400, 85, 0 },
536	{ 640, 480, 85, 0 },
537	{ 848, 480, 60, 0 },
538	{ 800, 600, 85, 0 },
539	{ 1024, 768, 85, 0 },
540	{ 1152, 864, 75, 0 },
541	/* byte 7 */
542	{ 1280, 768, 60, 1 },
543	{ 1280, 768, 60, 0 },
544	{ 1280, 768, 75, 0 },
545	{ 1280, 768, 85, 0 },
546	{ 1280, 960, 60, 0 },
547	{ 1280, 960, 85, 0 },
548	{ 1280, 1024, 60, 0 },
549	{ 1280, 1024, 85, 0 },
550	/* byte 8 */
551	{ 1360, 768, 60, 0 },
552	{ 1440, 900, 60, 1 },
553	{ 1440, 900, 60, 0 },
554	{ 1440, 900, 75, 0 },
555	{ 1440, 900, 85, 0 },
556	{ 1400, 1050, 60, 1 },
557	{ 1400, 1050, 60, 0 },
558	{ 1400, 1050, 75, 0 },
559	/* byte 9 */
560	{ 1400, 1050, 85, 0 },
561	{ 1680, 1050, 60, 1 },
562	{ 1680, 1050, 60, 0 },
563	{ 1680, 1050, 75, 0 },
564	{ 1680, 1050, 85, 0 },
565	{ 1600, 1200, 60, 0 },
566	{ 1600, 1200, 65, 0 },
567	{ 1600, 1200, 70, 0 },
568	/* byte 10 */
569	{ 1600, 1200, 75, 0 },
570	{ 1600, 1200, 85, 0 },
571	{ 1792, 1344, 60, 0 },
572	{ 1792, 1344, 75, 0 },
573	{ 1856, 1392, 60, 0 },
574	{ 1856, 1392, 75, 0 },
575	{ 1920, 1200, 60, 1 },
576	{ 1920, 1200, 60, 0 },
577	/* byte 11 */
578	{ 1920, 1200, 75, 0 },
579	{ 1920, 1200, 85, 0 },
580	{ 1920, 1440, 60, 0 },
581	{ 1920, 1440, 75, 0 },
582};
583
584static const struct minimode extra_modes[] = {
585	{ 1024, 576,  60, 0 },
586	{ 1366, 768,  60, 0 },
587	{ 1600, 900,  60, 0 },
588	{ 1680, 945,  60, 0 },
589	{ 1920, 1080, 60, 0 },
590	{ 2048, 1152, 60, 0 },
591	{ 2048, 1536, 60, 0 },
592};
593
594/*
595 * Probably taken from CEA-861 spec.
596 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
597 */
598static const struct drm_display_mode edid_cea_modes[] = {
599	/* 1 - 640x480@60Hz */
600	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
601		   752, 800, 0, 480, 490, 492, 525, 0,
602		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
603	  .vrefresh = 60, },
604	/* 2 - 720x480@60Hz */
605	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
606		   798, 858, 0, 480, 489, 495, 525, 0,
607		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
608	  .vrefresh = 60, },
609	/* 3 - 720x480@60Hz */
610	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
611		   798, 858, 0, 480, 489, 495, 525, 0,
612		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
613	  .vrefresh = 60, },
614	/* 4 - 1280x720@60Hz */
615	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
616		   1430, 1650, 0, 720, 725, 730, 750, 0,
617		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
618	  .vrefresh = 60, },
619	/* 5 - 1920x1080i@60Hz */
620	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
621		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
622		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
623			DRM_MODE_FLAG_INTERLACE),
624	  .vrefresh = 60, },
625	/* 6 - 1440x480i@60Hz */
626	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
627		   1602, 1716, 0, 480, 488, 494, 525, 0,
628		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
629			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
630	  .vrefresh = 60, },
631	/* 7 - 1440x480i@60Hz */
632	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
633		   1602, 1716, 0, 480, 488, 494, 525, 0,
634		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
635			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
636	  .vrefresh = 60, },
637	/* 8 - 1440x240@60Hz */
638	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
639		   1602, 1716, 0, 240, 244, 247, 262, 0,
640		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
641			DRM_MODE_FLAG_DBLCLK),
642	  .vrefresh = 60, },
643	/* 9 - 1440x240@60Hz */
644	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
645		   1602, 1716, 0, 240, 244, 247, 262, 0,
646		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
647			DRM_MODE_FLAG_DBLCLK),
648	  .vrefresh = 60, },
649	/* 10 - 2880x480i@60Hz */
650	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
651		   3204, 3432, 0, 480, 488, 494, 525, 0,
652		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
653			DRM_MODE_FLAG_INTERLACE),
654	  .vrefresh = 60, },
655	/* 11 - 2880x480i@60Hz */
656	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
657		   3204, 3432, 0, 480, 488, 494, 525, 0,
658		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
659			DRM_MODE_FLAG_INTERLACE),
660	  .vrefresh = 60, },
661	/* 12 - 2880x240@60Hz */
662	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
663		   3204, 3432, 0, 240, 244, 247, 262, 0,
664		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
665	  .vrefresh = 60, },
666	/* 13 - 2880x240@60Hz */
667	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
668		   3204, 3432, 0, 240, 244, 247, 262, 0,
669		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
670	  .vrefresh = 60, },
671	/* 14 - 1440x480@60Hz */
672	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
673		   1596, 1716, 0, 480, 489, 495, 525, 0,
674		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
675	  .vrefresh = 60, },
676	/* 15 - 1440x480@60Hz */
677	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
678		   1596, 1716, 0, 480, 489, 495, 525, 0,
679		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
680	  .vrefresh = 60, },
681	/* 16 - 1920x1080@60Hz */
682	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
683		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
684		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
685	  .vrefresh = 60, },
686	/* 17 - 720x576@50Hz */
687	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
688		   796, 864, 0, 576, 581, 586, 625, 0,
689		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
690	  .vrefresh = 50, },
691	/* 18 - 720x576@50Hz */
692	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
693		   796, 864, 0, 576, 581, 586, 625, 0,
694		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
695	  .vrefresh = 50, },
696	/* 19 - 1280x720@50Hz */
697	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
698		   1760, 1980, 0, 720, 725, 730, 750, 0,
699		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
700	  .vrefresh = 50, },
701	/* 20 - 1920x1080i@50Hz */
702	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
703		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
704		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
705			DRM_MODE_FLAG_INTERLACE),
706	  .vrefresh = 50, },
707	/* 21 - 1440x576i@50Hz */
708	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
709		   1590, 1728, 0, 576, 580, 586, 625, 0,
710		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
711			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
712	  .vrefresh = 50, },
713	/* 22 - 1440x576i@50Hz */
714	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
715		   1590, 1728, 0, 576, 580, 586, 625, 0,
716		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
717			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
718	  .vrefresh = 50, },
719	/* 23 - 1440x288@50Hz */
720	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
721		   1590, 1728, 0, 288, 290, 293, 312, 0,
722		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
723			DRM_MODE_FLAG_DBLCLK),
724	  .vrefresh = 50, },
725	/* 24 - 1440x288@50Hz */
726	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
727		   1590, 1728, 0, 288, 290, 293, 312, 0,
728		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
729			DRM_MODE_FLAG_DBLCLK),
730	  .vrefresh = 50, },
731	/* 25 - 2880x576i@50Hz */
732	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
733		   3180, 3456, 0, 576, 580, 586, 625, 0,
734		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
735			DRM_MODE_FLAG_INTERLACE),
736	  .vrefresh = 50, },
737	/* 26 - 2880x576i@50Hz */
738	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
739		   3180, 3456, 0, 576, 580, 586, 625, 0,
740		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
741			DRM_MODE_FLAG_INTERLACE),
742	  .vrefresh = 50, },
743	/* 27 - 2880x288@50Hz */
744	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
745		   3180, 3456, 0, 288, 290, 293, 312, 0,
746		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
747	  .vrefresh = 50, },
748	/* 28 - 2880x288@50Hz */
749	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
750		   3180, 3456, 0, 288, 290, 293, 312, 0,
751		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
752	  .vrefresh = 50, },
753	/* 29 - 1440x576@50Hz */
754	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
755		   1592, 1728, 0, 576, 581, 586, 625, 0,
756		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
757	  .vrefresh = 50, },
758	/* 30 - 1440x576@50Hz */
759	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
760		   1592, 1728, 0, 576, 581, 586, 625, 0,
761		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
762	  .vrefresh = 50, },
763	/* 31 - 1920x1080@50Hz */
764	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
765		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
766		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
767	  .vrefresh = 50, },
768	/* 32 - 1920x1080@24Hz */
769	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
770		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
771		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
772	  .vrefresh = 24, },
773	/* 33 - 1920x1080@25Hz */
774	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
775		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
776		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
777	  .vrefresh = 25, },
778	/* 34 - 1920x1080@30Hz */
779	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
780		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
781		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
782	  .vrefresh = 30, },
783	/* 35 - 2880x480@60Hz */
784	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
785		   3192, 3432, 0, 480, 489, 495, 525, 0,
786		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
787	  .vrefresh = 60, },
788	/* 36 - 2880x480@60Hz */
789	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
790		   3192, 3432, 0, 480, 489, 495, 525, 0,
791		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
792	  .vrefresh = 60, },
793	/* 37 - 2880x576@50Hz */
794	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
795		   3184, 3456, 0, 576, 581, 586, 625, 0,
796		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
797	  .vrefresh = 50, },
798	/* 38 - 2880x576@50Hz */
799	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
800		   3184, 3456, 0, 576, 581, 586, 625, 0,
801		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
802	  .vrefresh = 50, },
803	/* 39 - 1920x1080i@50Hz */
804	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
805		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
806		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
807			DRM_MODE_FLAG_INTERLACE),
808	  .vrefresh = 50, },
809	/* 40 - 1920x1080i@100Hz */
810	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
811		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
812		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
813			DRM_MODE_FLAG_INTERLACE),
814	  .vrefresh = 100, },
815	/* 41 - 1280x720@100Hz */
816	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
817		   1760, 1980, 0, 720, 725, 730, 750, 0,
818		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
819	  .vrefresh = 100, },
820	/* 42 - 720x576@100Hz */
821	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
822		   796, 864, 0, 576, 581, 586, 625, 0,
823		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
824	  .vrefresh = 100, },
825	/* 43 - 720x576@100Hz */
826	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
827		   796, 864, 0, 576, 581, 586, 625, 0,
828		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
829	  .vrefresh = 100, },
830	/* 44 - 1440x576i@100Hz */
831	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
832		   1590, 1728, 0, 576, 580, 586, 625, 0,
833		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
834			DRM_MODE_FLAG_DBLCLK),
835	  .vrefresh = 100, },
836	/* 45 - 1440x576i@100Hz */
837	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
838		   1590, 1728, 0, 576, 580, 586, 625, 0,
839		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
840			DRM_MODE_FLAG_DBLCLK),
841	  .vrefresh = 100, },
842	/* 46 - 1920x1080i@120Hz */
843	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
844		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
845		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
846			DRM_MODE_FLAG_INTERLACE),
847	  .vrefresh = 120, },
848	/* 47 - 1280x720@120Hz */
849	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
850		   1430, 1650, 0, 720, 725, 730, 750, 0,
851		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
852	  .vrefresh = 120, },
853	/* 48 - 720x480@120Hz */
854	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
855		   798, 858, 0, 480, 489, 495, 525, 0,
856		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
857	  .vrefresh = 120, },
858	/* 49 - 720x480@120Hz */
859	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
860		   798, 858, 0, 480, 489, 495, 525, 0,
861		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
862	  .vrefresh = 120, },
863	/* 50 - 1440x480i@120Hz */
864	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
865		   1602, 1716, 0, 480, 488, 494, 525, 0,
866		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
867			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
868	  .vrefresh = 120, },
869	/* 51 - 1440x480i@120Hz */
870	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
871		   1602, 1716, 0, 480, 488, 494, 525, 0,
872		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
873			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
874	  .vrefresh = 120, },
875	/* 52 - 720x576@200Hz */
876	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
877		   796, 864, 0, 576, 581, 586, 625, 0,
878		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
879	  .vrefresh = 200, },
880	/* 53 - 720x576@200Hz */
881	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
882		   796, 864, 0, 576, 581, 586, 625, 0,
883		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
884	  .vrefresh = 200, },
885	/* 54 - 1440x576i@200Hz */
886	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
887		   1590, 1728, 0, 576, 580, 586, 625, 0,
888		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
889			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
890	  .vrefresh = 200, },
891	/* 55 - 1440x576i@200Hz */
892	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
893		   1590, 1728, 0, 576, 580, 586, 625, 0,
894		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
895			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
896	  .vrefresh = 200, },
897	/* 56 - 720x480@240Hz */
898	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
899		   798, 858, 0, 480, 489, 495, 525, 0,
900		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
901	  .vrefresh = 240, },
902	/* 57 - 720x480@240Hz */
903	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
904		   798, 858, 0, 480, 489, 495, 525, 0,
905		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
906	  .vrefresh = 240, },
907	/* 58 - 1440x480i@240 */
908	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
909		   1602, 1716, 0, 480, 488, 494, 525, 0,
910		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
911			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
912	  .vrefresh = 240, },
913	/* 59 - 1440x480i@240 */
914	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
915		   1602, 1716, 0, 480, 488, 494, 525, 0,
916		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
917			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
918	  .vrefresh = 240, },
919	/* 60 - 1280x720@24Hz */
920	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
921		   3080, 3300, 0, 720, 725, 730, 750, 0,
922		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923	  .vrefresh = 24, },
924	/* 61 - 1280x720@25Hz */
925	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
926		   3740, 3960, 0, 720, 725, 730, 750, 0,
927		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928	  .vrefresh = 25, },
929	/* 62 - 1280x720@30Hz */
930	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
931		   3080, 3300, 0, 720, 725, 730, 750, 0,
932		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933	  .vrefresh = 30, },
934	/* 63 - 1920x1080@120Hz */
935	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
936		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
937		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938	 .vrefresh = 120, },
939	/* 64 - 1920x1080@100Hz */
940	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
941		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
942		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943	 .vrefresh = 100, },
944};
945
946/*
947 * HDMI 1.4 4k modes.
948 */
949static const struct drm_display_mode edid_4k_modes[] = {
950	/* 1 - 3840x2160@30Hz */
951	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
952		   3840, 4016, 4104, 4400, 0,
953		   2160, 2168, 2178, 2250, 0,
954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955	  .vrefresh = 30, },
956	/* 2 - 3840x2160@25Hz */
957	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
958		   3840, 4896, 4984, 5280, 0,
959		   2160, 2168, 2178, 2250, 0,
960		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961	  .vrefresh = 25, },
962	/* 3 - 3840x2160@24Hz */
963	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
964		   3840, 5116, 5204, 5500, 0,
965		   2160, 2168, 2178, 2250, 0,
966		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
967	  .vrefresh = 24, },
968	/* 4 - 4096x2160@24Hz (SMPTE) */
969	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
970		   4096, 5116, 5204, 5500, 0,
971		   2160, 2168, 2178, 2250, 0,
972		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
973	  .vrefresh = 24, },
974};
975
976/*** DDC fetch and block validation ***/
977
978static const u8 edid_header[] = {
979	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
980};
981
982 /*
983 * Sanity check the header of the base EDID block.  Return 8 if the header
984 * is perfect, down to 0 if it's totally wrong.
985 */
986int drm_edid_header_is_valid(const u8 *raw_edid)
987{
988	int i, score = 0;
989
990	for (i = 0; i < sizeof(edid_header); i++)
991		if (raw_edid[i] == edid_header[i])
992			score++;
993
994	return score;
995}
996EXPORT_SYMBOL(drm_edid_header_is_valid);
997
998static int edid_fixup __read_mostly = 6;
999module_param_named(edid_fixup, edid_fixup, int, 0400);
1000MODULE_PARM_DESC(edid_fixup,
1001		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1002
1003/*
1004 * Sanity check the EDID block (base or extension).  Return 0 if the block
1005 * doesn't check out, or 1 if it's valid.
1006 */
1007bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1008{
1009	int i;
1010	u8 csum = 0;
1011	struct edid *edid = (struct edid *)raw_edid;
1012
1013	if (WARN_ON(!raw_edid))
1014		return false;
1015
1016	if (edid_fixup > 8 || edid_fixup < 0)
1017		edid_fixup = 6;
1018
1019	if (block == 0) {
1020		int score = drm_edid_header_is_valid(raw_edid);
1021		if (score == 8) ;
1022		else if (score >= edid_fixup) {
1023			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1024			memcpy(raw_edid, edid_header, sizeof(edid_header));
1025		} else {
1026			goto bad;
1027		}
1028	}
1029
1030	for (i = 0; i < EDID_LENGTH; i++)
1031		csum += raw_edid[i];
1032	if (csum) {
1033		if (print_bad_edid) {
1034			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1035		}
1036
1037		/* allow CEA to slide through, switches mangle this */
1038		if (raw_edid[0] != 0x02)
1039			goto bad;
1040	}
1041
1042	/* per-block-type checks */
1043	switch (raw_edid[0]) {
1044	case 0: /* base */
1045		if (edid->version != 1) {
1046			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1047			goto bad;
1048		}
1049
1050		if (edid->revision > 4)
1051			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1052		break;
1053
1054	default:
1055		break;
1056	}
1057
1058	return true;
1059
1060bad:
1061	if (print_bad_edid) {
1062		printk(KERN_ERR "Raw EDID:\n");
1063		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1064			       raw_edid, EDID_LENGTH, false);
1065	}
1066	return false;
1067}
1068EXPORT_SYMBOL(drm_edid_block_valid);
1069
1070/**
1071 * drm_edid_is_valid - sanity check EDID data
1072 * @edid: EDID data
1073 *
1074 * Sanity-check an entire EDID record (including extensions)
1075 */
1076bool drm_edid_is_valid(struct edid *edid)
1077{
1078	int i;
1079	u8 *raw = (u8 *)edid;
1080
1081	if (!edid)
1082		return false;
1083
1084	for (i = 0; i <= edid->extensions; i++)
1085		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1086			return false;
1087
1088	return true;
1089}
1090EXPORT_SYMBOL(drm_edid_is_valid);
1091
1092#define DDC_SEGMENT_ADDR 0x30
1093/**
1094 * Get EDID information via I2C.
1095 *
1096 * \param adapter : i2c device adaptor
1097 * \param buf     : EDID data buffer to be filled
1098 * \param len     : EDID data buffer length
1099 * \return 0 on success or -1 on failure.
1100 *
1101 * Try to fetch EDID information by calling i2c driver function.
1102 */
1103static int
1104drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1105		      int block, int len)
1106{
1107	unsigned char start = block * EDID_LENGTH;
1108	unsigned char segment = block >> 1;
1109	unsigned char xfers = segment ? 3 : 2;
1110	int ret, retries = 5;
1111
1112	/* The core i2c driver will automatically retry the transfer if the
1113	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1114	 * are susceptible to errors under a heavily loaded machine and
1115	 * generate spurious NAKs and timeouts. Retrying the transfer
1116	 * of the individual block a few times seems to overcome this.
1117	 */
1118	do {
1119		struct i2c_msg msgs[] = {
1120			{
1121				.addr	= DDC_SEGMENT_ADDR,
1122				.flags	= 0,
1123				.len	= 1,
1124				.buf	= &segment,
1125			}, {
1126				.addr	= DDC_ADDR,
1127				.flags	= 0,
1128				.len	= 1,
1129				.buf	= &start,
1130			}, {
1131				.addr	= DDC_ADDR,
1132				.flags	= I2C_M_RD,
1133				.len	= len,
1134				.buf	= buf,
1135			}
1136		};
1137
1138	/*
1139	 * Avoid sending the segment addr to not upset non-compliant ddc
1140	 * monitors.
1141	 */
1142		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1143
1144		if (ret == -ENXIO) {
1145			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1146					adapter->name);
1147			break;
1148		}
1149	} while (ret != xfers && --retries);
1150
1151	return ret == xfers ? 0 : -1;
1152}
1153
1154static bool drm_edid_is_zero(u8 *in_edid, int length)
1155{
1156	if (memchr_inv(in_edid, 0, length))
1157		return false;
1158
1159	return true;
1160}
1161
1162static u8 *
1163drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1164{
1165	int i, j = 0, valid_extensions = 0;
1166	u8 *block, *new;
1167	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1168
1169	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1170		return NULL;
1171
1172	/* base block fetch */
1173	for (i = 0; i < 4; i++) {
1174		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1175			goto out;
1176		if (drm_edid_block_valid(block, 0, print_bad_edid))
1177			break;
1178		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1179			connector->null_edid_counter++;
1180			goto carp;
1181		}
1182	}
1183	if (i == 4)
1184		goto carp;
1185
1186	/* if there's no extensions, we're done */
1187	if (block[0x7e] == 0)
1188		return block;
1189
1190	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1191	if (!new)
1192		goto out;
1193	block = new;
1194
1195	for (j = 1; j <= block[0x7e]; j++) {
1196		for (i = 0; i < 4; i++) {
1197			if (drm_do_probe_ddc_edid(adapter,
1198				  block + (valid_extensions + 1) * EDID_LENGTH,
1199				  j, EDID_LENGTH))
1200				goto out;
1201			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1202				valid_extensions++;
1203				break;
1204			}
1205		}
1206
1207		if (i == 4 && print_bad_edid) {
1208			dev_warn(connector->dev->dev,
1209			 "%s: Ignoring invalid EDID block %d.\n",
1210			 drm_get_connector_name(connector), j);
1211
1212			connector->bad_edid_counter++;
1213		}
1214	}
1215
1216	if (valid_extensions != block[0x7e]) {
1217		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1218		block[0x7e] = valid_extensions;
1219		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1220		if (!new)
1221			goto out;
1222		block = new;
1223	}
1224
1225	return block;
1226
1227carp:
1228	if (print_bad_edid) {
1229		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1230			 drm_get_connector_name(connector), j);
1231	}
1232	connector->bad_edid_counter++;
1233
1234out:
1235	kfree(block);
1236	return NULL;
1237}
1238
1239/**
1240 * Probe DDC presence.
1241 *
1242 * \param adapter : i2c device adaptor
1243 * \return 1 on success
1244 */
1245bool
1246drm_probe_ddc(struct i2c_adapter *adapter)
1247{
1248	unsigned char out;
1249
1250	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1251}
1252EXPORT_SYMBOL(drm_probe_ddc);
1253
1254/**
1255 * drm_get_edid - get EDID data, if available
1256 * @connector: connector we're probing
1257 * @adapter: i2c adapter to use for DDC
1258 *
1259 * Poke the given i2c channel to grab EDID data if possible.  If found,
1260 * attach it to the connector.
1261 *
1262 * Return edid data or NULL if we couldn't find any.
1263 */
1264struct edid *drm_get_edid(struct drm_connector *connector,
1265			  struct i2c_adapter *adapter)
1266{
1267	struct edid *edid = NULL;
1268
1269	if (drm_probe_ddc(adapter))
1270		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1271
1272	return edid;
1273}
1274EXPORT_SYMBOL(drm_get_edid);
1275
1276/**
1277 * drm_edid_duplicate - duplicate an EDID and the extensions
1278 * @edid: EDID to duplicate
1279 *
1280 * Return duplicate edid or NULL on allocation failure.
1281 */
1282struct edid *drm_edid_duplicate(const struct edid *edid)
1283{
1284	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1285}
1286EXPORT_SYMBOL(drm_edid_duplicate);
1287
1288/*** EDID parsing ***/
1289
1290/**
1291 * edid_vendor - match a string against EDID's obfuscated vendor field
1292 * @edid: EDID to match
1293 * @vendor: vendor string
1294 *
1295 * Returns true if @vendor is in @edid, false otherwise
1296 */
1297static bool edid_vendor(struct edid *edid, char *vendor)
1298{
1299	char edid_vendor[3];
1300
1301	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1302	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1303			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1304	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1305
1306	return !strncmp(edid_vendor, vendor, 3);
1307}
1308
1309/**
1310 * edid_get_quirks - return quirk flags for a given EDID
1311 * @edid: EDID to process
1312 *
1313 * This tells subsequent routines what fixes they need to apply.
1314 */
1315static u32 edid_get_quirks(struct edid *edid)
1316{
1317	struct edid_quirk *quirk;
1318	int i;
1319
1320	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1321		quirk = &edid_quirk_list[i];
1322
1323		if (edid_vendor(edid, quirk->vendor) &&
1324		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1325			return quirk->quirks;
1326	}
1327
1328	return 0;
1329}
1330
1331#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1332#define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1333
1334/**
1335 * edid_fixup_preferred - set preferred modes based on quirk list
1336 * @connector: has mode list to fix up
1337 * @quirks: quirks list
1338 *
1339 * Walk the mode list for @connector, clearing the preferred status
1340 * on existing modes and setting it anew for the right mode ala @quirks.
1341 */
1342static void edid_fixup_preferred(struct drm_connector *connector,
1343				 u32 quirks)
1344{
1345	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1346	int target_refresh = 0;
1347
1348	if (list_empty(&connector->probed_modes))
1349		return;
1350
1351	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1352		target_refresh = 60;
1353	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1354		target_refresh = 75;
1355
1356	preferred_mode = list_first_entry(&connector->probed_modes,
1357					  struct drm_display_mode, head);
1358
1359	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1360		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1361
1362		if (cur_mode == preferred_mode)
1363			continue;
1364
1365		/* Largest mode is preferred */
1366		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1367			preferred_mode = cur_mode;
1368
1369		/* At a given size, try to get closest to target refresh */
1370		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1371		    MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1372		    MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1373			preferred_mode = cur_mode;
1374		}
1375	}
1376
1377	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1378}
1379
1380static bool
1381mode_is_rb(const struct drm_display_mode *mode)
1382{
1383	return (mode->htotal - mode->hdisplay == 160) &&
1384	       (mode->hsync_end - mode->hdisplay == 80) &&
1385	       (mode->hsync_end - mode->hsync_start == 32) &&
1386	       (mode->vsync_start - mode->vdisplay == 3);
1387}
1388
1389/*
1390 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1391 * @dev: Device to duplicate against
1392 * @hsize: Mode width
1393 * @vsize: Mode height
1394 * @fresh: Mode refresh rate
1395 * @rb: Mode reduced-blanking-ness
1396 *
1397 * Walk the DMT mode list looking for a match for the given parameters.
1398 * Return a newly allocated copy of the mode, or NULL if not found.
1399 */
1400struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1401					   int hsize, int vsize, int fresh,
1402					   bool rb)
1403{
1404	int i;
1405
1406	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1407		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1408		if (hsize != ptr->hdisplay)
1409			continue;
1410		if (vsize != ptr->vdisplay)
1411			continue;
1412		if (fresh != drm_mode_vrefresh(ptr))
1413			continue;
1414		if (rb != mode_is_rb(ptr))
1415			continue;
1416
1417		return drm_mode_duplicate(dev, ptr);
1418	}
1419
1420	return NULL;
1421}
1422EXPORT_SYMBOL(drm_mode_find_dmt);
1423
1424typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1425
1426static void
1427cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1428{
1429	int i, n = 0;
1430	u8 d = ext[0x02];
1431	u8 *det_base = ext + d;
1432
1433	n = (127 - d) / 18;
1434	for (i = 0; i < n; i++)
1435		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1436}
1437
1438static void
1439vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1440{
1441	unsigned int i, n = min((int)ext[0x02], 6);
1442	u8 *det_base = ext + 5;
1443
1444	if (ext[0x01] != 1)
1445		return; /* unknown version */
1446
1447	for (i = 0; i < n; i++)
1448		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1449}
1450
1451static void
1452drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1453{
1454	int i;
1455	struct edid *edid = (struct edid *)raw_edid;
1456
1457	if (edid == NULL)
1458		return;
1459
1460	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1461		cb(&(edid->detailed_timings[i]), closure);
1462
1463	for (i = 1; i <= raw_edid[0x7e]; i++) {
1464		u8 *ext = raw_edid + (i * EDID_LENGTH);
1465		switch (*ext) {
1466		case CEA_EXT:
1467			cea_for_each_detailed_block(ext, cb, closure);
1468			break;
1469		case VTB_EXT:
1470			vtb_for_each_detailed_block(ext, cb, closure);
1471			break;
1472		default:
1473			break;
1474		}
1475	}
1476}
1477
1478static void
1479is_rb(struct detailed_timing *t, void *data)
1480{
1481	u8 *r = (u8 *)t;
1482	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1483		if (r[15] & 0x10)
1484			*(bool *)data = true;
1485}
1486
1487/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1488static bool
1489drm_monitor_supports_rb(struct edid *edid)
1490{
1491	if (edid->revision >= 4) {
1492		bool ret = false;
1493		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1494		return ret;
1495	}
1496
1497	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1498}
1499
1500static void
1501find_gtf2(struct detailed_timing *t, void *data)
1502{
1503	u8 *r = (u8 *)t;
1504	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1505		*(u8 **)data = r;
1506}
1507
1508/* Secondary GTF curve kicks in above some break frequency */
1509static int
1510drm_gtf2_hbreak(struct edid *edid)
1511{
1512	u8 *r = NULL;
1513	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1514	return r ? (r[12] * 2) : 0;
1515}
1516
1517static int
1518drm_gtf2_2c(struct edid *edid)
1519{
1520	u8 *r = NULL;
1521	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1522	return r ? r[13] : 0;
1523}
1524
1525static int
1526drm_gtf2_m(struct edid *edid)
1527{
1528	u8 *r = NULL;
1529	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1530	return r ? (r[15] << 8) + r[14] : 0;
1531}
1532
1533static int
1534drm_gtf2_k(struct edid *edid)
1535{
1536	u8 *r = NULL;
1537	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1538	return r ? r[16] : 0;
1539}
1540
1541static int
1542drm_gtf2_2j(struct edid *edid)
1543{
1544	u8 *r = NULL;
1545	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1546	return r ? r[17] : 0;
1547}
1548
1549/**
1550 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1551 * @edid: EDID block to scan
1552 */
1553static int standard_timing_level(struct edid *edid)
1554{
1555	if (edid->revision >= 2) {
1556		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1557			return LEVEL_CVT;
1558		if (drm_gtf2_hbreak(edid))
1559			return LEVEL_GTF2;
1560		return LEVEL_GTF;
1561	}
1562	return LEVEL_DMT;
1563}
1564
1565/*
1566 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1567 * monitors fill with ascii space (0x20) instead.
1568 */
1569static int
1570bad_std_timing(u8 a, u8 b)
1571{
1572	return (a == 0x00 && b == 0x00) ||
1573	       (a == 0x01 && b == 0x01) ||
1574	       (a == 0x20 && b == 0x20);
1575}
1576
1577/**
1578 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1579 * @t: standard timing params
1580 * @timing_level: standard timing level
1581 *
1582 * Take the standard timing params (in this case width, aspect, and refresh)
1583 * and convert them into a real mode using CVT/GTF/DMT.
1584 */
1585static struct drm_display_mode *
1586drm_mode_std(struct drm_connector *connector, struct edid *edid,
1587	     struct std_timing *t, int revision)
1588{
1589	struct drm_device *dev = connector->dev;
1590	struct drm_display_mode *m, *mode = NULL;
1591	int hsize, vsize;
1592	int vrefresh_rate;
1593	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1594		>> EDID_TIMING_ASPECT_SHIFT;
1595	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1596		>> EDID_TIMING_VFREQ_SHIFT;
1597	int timing_level = standard_timing_level(edid);
1598
1599	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1600		return NULL;
1601
1602	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1603	hsize = t->hsize * 8 + 248;
1604	/* vrefresh_rate = vfreq + 60 */
1605	vrefresh_rate = vfreq + 60;
1606	/* the vdisplay is calculated based on the aspect ratio */
1607	if (aspect_ratio == 0) {
1608		if (revision < 3)
1609			vsize = hsize;
1610		else
1611			vsize = (hsize * 10) / 16;
1612	} else if (aspect_ratio == 1)
1613		vsize = (hsize * 3) / 4;
1614	else if (aspect_ratio == 2)
1615		vsize = (hsize * 4) / 5;
1616	else
1617		vsize = (hsize * 9) / 16;
1618
1619	/* HDTV hack, part 1 */
1620	if (vrefresh_rate == 60 &&
1621	    ((hsize == 1360 && vsize == 765) ||
1622	     (hsize == 1368 && vsize == 769))) {
1623		hsize = 1366;
1624		vsize = 768;
1625	}
1626
1627	/*
1628	 * If this connector already has a mode for this size and refresh
1629	 * rate (because it came from detailed or CVT info), use that
1630	 * instead.  This way we don't have to guess at interlace or
1631	 * reduced blanking.
1632	 */
1633	list_for_each_entry(m, &connector->probed_modes, head)
1634		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1635		    drm_mode_vrefresh(m) == vrefresh_rate)
1636			return NULL;
1637
1638	/* HDTV hack, part 2 */
1639	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1640		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1641				    false);
1642		mode->hdisplay = 1366;
1643		mode->hsync_start = mode->hsync_start - 1;
1644		mode->hsync_end = mode->hsync_end - 1;
1645		return mode;
1646	}
1647
1648	/* check whether it can be found in default mode table */
1649	if (drm_monitor_supports_rb(edid)) {
1650		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1651					 true);
1652		if (mode)
1653			return mode;
1654	}
1655	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1656	if (mode)
1657		return mode;
1658
1659	/* okay, generate it */
1660	switch (timing_level) {
1661	case LEVEL_DMT:
1662		break;
1663	case LEVEL_GTF:
1664		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1665		break;
1666	case LEVEL_GTF2:
1667		/*
1668		 * This is potentially wrong if there's ever a monitor with
1669		 * more than one ranges section, each claiming a different
1670		 * secondary GTF curve.  Please don't do that.
1671		 */
1672		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1673		if (!mode)
1674			return NULL;
1675		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1676			drm_mode_destroy(dev, mode);
1677			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1678						    vrefresh_rate, 0, 0,
1679						    drm_gtf2_m(edid),
1680						    drm_gtf2_2c(edid),
1681						    drm_gtf2_k(edid),
1682						    drm_gtf2_2j(edid));
1683		}
1684		break;
1685	case LEVEL_CVT:
1686		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1687				    false);
1688		break;
1689	}
1690	return mode;
1691}
1692
1693/*
1694 * EDID is delightfully ambiguous about how interlaced modes are to be
1695 * encoded.  Our internal representation is of frame height, but some
1696 * HDTV detailed timings are encoded as field height.
1697 *
1698 * The format list here is from CEA, in frame size.  Technically we
1699 * should be checking refresh rate too.  Whatever.
1700 */
1701static void
1702drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1703			    struct detailed_pixel_timing *pt)
1704{
1705	int i;
1706	static const struct {
1707		int w, h;
1708	} cea_interlaced[] = {
1709		{ 1920, 1080 },
1710		{  720,  480 },
1711		{ 1440,  480 },
1712		{ 2880,  480 },
1713		{  720,  576 },
1714		{ 1440,  576 },
1715		{ 2880,  576 },
1716	};
1717
1718	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1719		return;
1720
1721	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1722		if ((mode->hdisplay == cea_interlaced[i].w) &&
1723		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1724			mode->vdisplay *= 2;
1725			mode->vsync_start *= 2;
1726			mode->vsync_end *= 2;
1727			mode->vtotal *= 2;
1728			mode->vtotal |= 1;
1729		}
1730	}
1731
1732	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1733}
1734
1735/**
1736 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1737 * @dev: DRM device (needed to create new mode)
1738 * @edid: EDID block
1739 * @timing: EDID detailed timing info
1740 * @quirks: quirks to apply
1741 *
1742 * An EDID detailed timing block contains enough info for us to create and
1743 * return a new struct drm_display_mode.
1744 */
1745static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1746						  struct edid *edid,
1747						  struct detailed_timing *timing,
1748						  u32 quirks)
1749{
1750	struct drm_display_mode *mode;
1751	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1752	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1753	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1754	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1755	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1756	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1757	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1758	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1759	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1760
1761	/* ignore tiny modes */
1762	if (hactive < 64 || vactive < 64)
1763		return NULL;
1764
1765	if (pt->misc & DRM_EDID_PT_STEREO) {
1766		DRM_DEBUG_KMS("stereo mode not supported\n");
1767		return NULL;
1768	}
1769	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1770		DRM_DEBUG_KMS("composite sync not supported\n");
1771	}
1772
1773	/* it is incorrect if hsync/vsync width is zero */
1774	if (!hsync_pulse_width || !vsync_pulse_width) {
1775		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1776				"Wrong Hsync/Vsync pulse width\n");
1777		return NULL;
1778	}
1779
1780	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1781		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1782		if (!mode)
1783			return NULL;
1784
1785		goto set_size;
1786	}
1787
1788	mode = drm_mode_create(dev);
1789	if (!mode)
1790		return NULL;
1791
1792	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1793		timing->pixel_clock = cpu_to_le16(1088);
1794
1795	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1796
1797	mode->hdisplay = hactive;
1798	mode->hsync_start = mode->hdisplay + hsync_offset;
1799	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1800	mode->htotal = mode->hdisplay + hblank;
1801
1802	mode->vdisplay = vactive;
1803	mode->vsync_start = mode->vdisplay + vsync_offset;
1804	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1805	mode->vtotal = mode->vdisplay + vblank;
1806
1807	/* Some EDIDs have bogus h/vtotal values */
1808	if (mode->hsync_end > mode->htotal)
1809		mode->htotal = mode->hsync_end + 1;
1810	if (mode->vsync_end > mode->vtotal)
1811		mode->vtotal = mode->vsync_end + 1;
1812
1813	drm_mode_do_interlace_quirk(mode, pt);
1814
1815	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1816		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1817	}
1818
1819	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1820		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1821	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1822		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1823
1824set_size:
1825	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1826	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1827
1828	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1829		mode->width_mm *= 10;
1830		mode->height_mm *= 10;
1831	}
1832
1833	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1834		mode->width_mm = edid->width_cm * 10;
1835		mode->height_mm = edid->height_cm * 10;
1836	}
1837
1838	mode->type = DRM_MODE_TYPE_DRIVER;
1839	mode->vrefresh = drm_mode_vrefresh(mode);
1840	drm_mode_set_name(mode);
1841
1842	return mode;
1843}
1844
1845static bool
1846mode_in_hsync_range(const struct drm_display_mode *mode,
1847		    struct edid *edid, u8 *t)
1848{
1849	int hsync, hmin, hmax;
1850
1851	hmin = t[7];
1852	if (edid->revision >= 4)
1853	    hmin += ((t[4] & 0x04) ? 255 : 0);
1854	hmax = t[8];
1855	if (edid->revision >= 4)
1856	    hmax += ((t[4] & 0x08) ? 255 : 0);
1857	hsync = drm_mode_hsync(mode);
1858
1859	return (hsync <= hmax && hsync >= hmin);
1860}
1861
1862static bool
1863mode_in_vsync_range(const struct drm_display_mode *mode,
1864		    struct edid *edid, u8 *t)
1865{
1866	int vsync, vmin, vmax;
1867
1868	vmin = t[5];
1869	if (edid->revision >= 4)
1870	    vmin += ((t[4] & 0x01) ? 255 : 0);
1871	vmax = t[6];
1872	if (edid->revision >= 4)
1873	    vmax += ((t[4] & 0x02) ? 255 : 0);
1874	vsync = drm_mode_vrefresh(mode);
1875
1876	return (vsync <= vmax && vsync >= vmin);
1877}
1878
1879static u32
1880range_pixel_clock(struct edid *edid, u8 *t)
1881{
1882	/* unspecified */
1883	if (t[9] == 0 || t[9] == 255)
1884		return 0;
1885
1886	/* 1.4 with CVT support gives us real precision, yay */
1887	if (edid->revision >= 4 && t[10] == 0x04)
1888		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1889
1890	/* 1.3 is pathetic, so fuzz up a bit */
1891	return t[9] * 10000 + 5001;
1892}
1893
1894static bool
1895mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1896	      struct detailed_timing *timing)
1897{
1898	u32 max_clock;
1899	u8 *t = (u8 *)timing;
1900
1901	if (!mode_in_hsync_range(mode, edid, t))
1902		return false;
1903
1904	if (!mode_in_vsync_range(mode, edid, t))
1905		return false;
1906
1907	if ((max_clock = range_pixel_clock(edid, t)))
1908		if (mode->clock > max_clock)
1909			return false;
1910
1911	/* 1.4 max horizontal check */
1912	if (edid->revision >= 4 && t[10] == 0x04)
1913		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1914			return false;
1915
1916	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1917		return false;
1918
1919	return true;
1920}
1921
1922static bool valid_inferred_mode(const struct drm_connector *connector,
1923				const struct drm_display_mode *mode)
1924{
1925	struct drm_display_mode *m;
1926	bool ok = false;
1927
1928	list_for_each_entry(m, &connector->probed_modes, head) {
1929		if (mode->hdisplay == m->hdisplay &&
1930		    mode->vdisplay == m->vdisplay &&
1931		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1932			return false; /* duplicated */
1933		if (mode->hdisplay <= m->hdisplay &&
1934		    mode->vdisplay <= m->vdisplay)
1935			ok = true;
1936	}
1937	return ok;
1938}
1939
1940static int
1941drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1942			struct detailed_timing *timing)
1943{
1944	int i, modes = 0;
1945	struct drm_display_mode *newmode;
1946	struct drm_device *dev = connector->dev;
1947
1948	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1949		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1950		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1951			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1952			if (newmode) {
1953				drm_mode_probed_add(connector, newmode);
1954				modes++;
1955			}
1956		}
1957	}
1958
1959	return modes;
1960}
1961
1962/* fix up 1366x768 mode from 1368x768;
1963 * GFT/CVT can't express 1366 width which isn't dividable by 8
1964 */
1965static void fixup_mode_1366x768(struct drm_display_mode *mode)
1966{
1967	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1968		mode->hdisplay = 1366;
1969		mode->hsync_start--;
1970		mode->hsync_end--;
1971		drm_mode_set_name(mode);
1972	}
1973}
1974
1975static int
1976drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1977			struct detailed_timing *timing)
1978{
1979	int i, modes = 0;
1980	struct drm_display_mode *newmode;
1981	struct drm_device *dev = connector->dev;
1982
1983	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1984		const struct minimode *m = &extra_modes[i];
1985		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1986		if (!newmode)
1987			return modes;
1988
1989		fixup_mode_1366x768(newmode);
1990		if (!mode_in_range(newmode, edid, timing) ||
1991		    !valid_inferred_mode(connector, newmode)) {
1992			drm_mode_destroy(dev, newmode);
1993			continue;
1994		}
1995
1996		drm_mode_probed_add(connector, newmode);
1997		modes++;
1998	}
1999
2000	return modes;
2001}
2002
2003static int
2004drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2005			struct detailed_timing *timing)
2006{
2007	int i, modes = 0;
2008	struct drm_display_mode *newmode;
2009	struct drm_device *dev = connector->dev;
2010	bool rb = drm_monitor_supports_rb(edid);
2011
2012	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2013		const struct minimode *m = &extra_modes[i];
2014		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2015		if (!newmode)
2016			return modes;
2017
2018		fixup_mode_1366x768(newmode);
2019		if (!mode_in_range(newmode, edid, timing) ||
2020		    !valid_inferred_mode(connector, newmode)) {
2021			drm_mode_destroy(dev, newmode);
2022			continue;
2023		}
2024
2025		drm_mode_probed_add(connector, newmode);
2026		modes++;
2027	}
2028
2029	return modes;
2030}
2031
2032static void
2033do_inferred_modes(struct detailed_timing *timing, void *c)
2034{
2035	struct detailed_mode_closure *closure = c;
2036	struct detailed_non_pixel *data = &timing->data.other_data;
2037	struct detailed_data_monitor_range *range = &data->data.range;
2038
2039	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2040		return;
2041
2042	closure->modes += drm_dmt_modes_for_range(closure->connector,
2043						  closure->edid,
2044						  timing);
2045
2046	if (!version_greater(closure->edid, 1, 1))
2047		return; /* GTF not defined yet */
2048
2049	switch (range->flags) {
2050	case 0x02: /* secondary gtf, XXX could do more */
2051	case 0x00: /* default gtf */
2052		closure->modes += drm_gtf_modes_for_range(closure->connector,
2053							  closure->edid,
2054							  timing);
2055		break;
2056	case 0x04: /* cvt, only in 1.4+ */
2057		if (!version_greater(closure->edid, 1, 3))
2058			break;
2059
2060		closure->modes += drm_cvt_modes_for_range(closure->connector,
2061							  closure->edid,
2062							  timing);
2063		break;
2064	case 0x01: /* just the ranges, no formula */
2065	default:
2066		break;
2067	}
2068}
2069
2070static int
2071add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2072{
2073	struct detailed_mode_closure closure = {
2074		connector, edid, 0, 0, 0
2075	};
2076
2077	if (version_greater(edid, 1, 0))
2078		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2079					    &closure);
2080
2081	return closure.modes;
2082}
2083
2084static int
2085drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2086{
2087	int i, j, m, modes = 0;
2088	struct drm_display_mode *mode;
2089	u8 *est = ((u8 *)timing) + 5;
2090
2091	for (i = 0; i < 6; i++) {
2092		for (j = 7; j >= 0; j--) {
2093			m = (i * 8) + (7 - j);
2094			if (m >= ARRAY_SIZE(est3_modes))
2095				break;
2096			if (est[i] & (1 << j)) {
2097				mode = drm_mode_find_dmt(connector->dev,
2098							 est3_modes[m].w,
2099							 est3_modes[m].h,
2100							 est3_modes[m].r,
2101							 est3_modes[m].rb);
2102				if (mode) {
2103					drm_mode_probed_add(connector, mode);
2104					modes++;
2105				}
2106			}
2107		}
2108	}
2109
2110	return modes;
2111}
2112
2113static void
2114do_established_modes(struct detailed_timing *timing, void *c)
2115{
2116	struct detailed_mode_closure *closure = c;
2117	struct detailed_non_pixel *data = &timing->data.other_data;
2118
2119	if (data->type == EDID_DETAIL_EST_TIMINGS)
2120		closure->modes += drm_est3_modes(closure->connector, timing);
2121}
2122
2123/**
2124 * add_established_modes - get est. modes from EDID and add them
2125 * @edid: EDID block to scan
2126 *
2127 * Each EDID block contains a bitmap of the supported "established modes" list
2128 * (defined above).  Tease them out and add them to the global modes list.
2129 */
2130static int
2131add_established_modes(struct drm_connector *connector, struct edid *edid)
2132{
2133	struct drm_device *dev = connector->dev;
2134	unsigned long est_bits = edid->established_timings.t1 |
2135		(edid->established_timings.t2 << 8) |
2136		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2137	int i, modes = 0;
2138	struct detailed_mode_closure closure = {
2139		connector, edid, 0, 0, 0
2140	};
2141
2142	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2143		if (est_bits & (1<<i)) {
2144			struct drm_display_mode *newmode;
2145			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2146			if (newmode) {
2147				drm_mode_probed_add(connector, newmode);
2148				modes++;
2149			}
2150		}
2151	}
2152
2153	if (version_greater(edid, 1, 0))
2154		    drm_for_each_detailed_block((u8 *)edid,
2155						do_established_modes, &closure);
2156
2157	return modes + closure.modes;
2158}
2159
2160static void
2161do_standard_modes(struct detailed_timing *timing, void *c)
2162{
2163	struct detailed_mode_closure *closure = c;
2164	struct detailed_non_pixel *data = &timing->data.other_data;
2165	struct drm_connector *connector = closure->connector;
2166	struct edid *edid = closure->edid;
2167
2168	if (data->type == EDID_DETAIL_STD_MODES) {
2169		int i;
2170		for (i = 0; i < 6; i++) {
2171			struct std_timing *std;
2172			struct drm_display_mode *newmode;
2173
2174			std = &data->data.timings[i];
2175			newmode = drm_mode_std(connector, edid, std,
2176					       edid->revision);
2177			if (newmode) {
2178				drm_mode_probed_add(connector, newmode);
2179				closure->modes++;
2180			}
2181		}
2182	}
2183}
2184
2185/**
2186 * add_standard_modes - get std. modes from EDID and add them
2187 * @edid: EDID block to scan
2188 *
2189 * Standard modes can be calculated using the appropriate standard (DMT,
2190 * GTF or CVT. Grab them from @edid and add them to the list.
2191 */
2192static int
2193add_standard_modes(struct drm_connector *connector, struct edid *edid)
2194{
2195	int i, modes = 0;
2196	struct detailed_mode_closure closure = {
2197		connector, edid, 0, 0, 0
2198	};
2199
2200	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2201		struct drm_display_mode *newmode;
2202
2203		newmode = drm_mode_std(connector, edid,
2204				       &edid->standard_timings[i],
2205				       edid->revision);
2206		if (newmode) {
2207			drm_mode_probed_add(connector, newmode);
2208			modes++;
2209		}
2210	}
2211
2212	if (version_greater(edid, 1, 0))
2213		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2214					    &closure);
2215
2216	/* XXX should also look for standard codes in VTB blocks */
2217
2218	return modes + closure.modes;
2219}
2220
2221static int drm_cvt_modes(struct drm_connector *connector,
2222			 struct detailed_timing *timing)
2223{
2224	int i, j, modes = 0;
2225	struct drm_display_mode *newmode;
2226	struct drm_device *dev = connector->dev;
2227	struct cvt_timing *cvt;
2228	const int rates[] = { 60, 85, 75, 60, 50 };
2229	const u8 empty[3] = { 0, 0, 0 };
2230
2231	for (i = 0; i < 4; i++) {
2232		int uninitialized_var(width), height;
2233		cvt = &(timing->data.other_data.data.cvt[i]);
2234
2235		if (!memcmp(cvt->code, empty, 3))
2236			continue;
2237
2238		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2239		switch (cvt->code[1] & 0x0c) {
2240		case 0x00:
2241			width = height * 4 / 3;
2242			break;
2243		case 0x04:
2244			width = height * 16 / 9;
2245			break;
2246		case 0x08:
2247			width = height * 16 / 10;
2248			break;
2249		case 0x0c:
2250			width = height * 15 / 9;
2251			break;
2252		}
2253
2254		for (j = 1; j < 5; j++) {
2255			if (cvt->code[2] & (1 << j)) {
2256				newmode = drm_cvt_mode(dev, width, height,
2257						       rates[j], j == 0,
2258						       false, false);
2259				if (newmode) {
2260					drm_mode_probed_add(connector, newmode);
2261					modes++;
2262				}
2263			}
2264		}
2265	}
2266
2267	return modes;
2268}
2269
2270static void
2271do_cvt_mode(struct detailed_timing *timing, void *c)
2272{
2273	struct detailed_mode_closure *closure = c;
2274	struct detailed_non_pixel *data = &timing->data.other_data;
2275
2276	if (data->type == EDID_DETAIL_CVT_3BYTE)
2277		closure->modes += drm_cvt_modes(closure->connector, timing);
2278}
2279
2280static int
2281add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2282{
2283	struct detailed_mode_closure closure = {
2284		connector, edid, 0, 0, 0
2285	};
2286
2287	if (version_greater(edid, 1, 2))
2288		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2289
2290	/* XXX should also look for CVT codes in VTB blocks */
2291
2292	return closure.modes;
2293}
2294
2295static void
2296do_detailed_mode(struct detailed_timing *timing, void *c)
2297{
2298	struct detailed_mode_closure *closure = c;
2299	struct drm_display_mode *newmode;
2300
2301	if (timing->pixel_clock) {
2302		newmode = drm_mode_detailed(closure->connector->dev,
2303					    closure->edid, timing,
2304					    closure->quirks);
2305		if (!newmode)
2306			return;
2307
2308		if (closure->preferred)
2309			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2310
2311		drm_mode_probed_add(closure->connector, newmode);
2312		closure->modes++;
2313		closure->preferred = 0;
2314	}
2315}
2316
2317/*
2318 * add_detailed_modes - Add modes from detailed timings
2319 * @connector: attached connector
2320 * @edid: EDID block to scan
2321 * @quirks: quirks to apply
2322 */
2323static int
2324add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2325		   u32 quirks)
2326{
2327	struct detailed_mode_closure closure = {
2328		connector,
2329		edid,
2330		1,
2331		quirks,
2332		0
2333	};
2334
2335	if (closure.preferred && !version_greater(edid, 1, 3))
2336		closure.preferred =
2337		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2338
2339	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2340
2341	return closure.modes;
2342}
2343
2344#define AUDIO_BLOCK	0x01
2345#define VIDEO_BLOCK     0x02
2346#define VENDOR_BLOCK    0x03
2347#define SPEAKER_BLOCK	0x04
2348#define VIDEO_CAPABILITY_BLOCK	0x07
2349#define EDID_BASIC_AUDIO	(1 << 6)
2350#define EDID_CEA_YCRCB444	(1 << 5)
2351#define EDID_CEA_YCRCB422	(1 << 4)
2352#define EDID_CEA_VCDB_QS	(1 << 6)
2353
2354/*
2355 * Search EDID for CEA extension block.
2356 */
2357static u8 *drm_find_cea_extension(struct edid *edid)
2358{
2359	u8 *edid_ext = NULL;
2360	int i;
2361
2362	/* No EDID or EDID extensions */
2363	if (edid == NULL || edid->extensions == 0)
2364		return NULL;
2365
2366	/* Find CEA extension */
2367	for (i = 0; i < edid->extensions; i++) {
2368		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2369		if (edid_ext[0] == CEA_EXT)
2370			break;
2371	}
2372
2373	if (i == edid->extensions)
2374		return NULL;
2375
2376	return edid_ext;
2377}
2378
2379/*
2380 * Calculate the alternate clock for the CEA mode
2381 * (60Hz vs. 59.94Hz etc.)
2382 */
2383static unsigned int
2384cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2385{
2386	unsigned int clock = cea_mode->clock;
2387
2388	if (cea_mode->vrefresh % 6 != 0)
2389		return clock;
2390
2391	/*
2392	 * edid_cea_modes contains the 59.94Hz
2393	 * variant for 240 and 480 line modes,
2394	 * and the 60Hz variant otherwise.
2395	 */
2396	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2397		clock = clock * 1001 / 1000;
2398	else
2399		clock = DIV_ROUND_UP(clock * 1000, 1001);
2400
2401	return clock;
2402}
2403
2404/**
2405 * drm_match_cea_mode - look for a CEA mode matching given mode
2406 * @to_match: display mode
2407 *
2408 * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2409 * mode.
2410 */
2411u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2412{
2413	u8 mode;
2414
2415	if (!to_match->clock)
2416		return 0;
2417
2418	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2419		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2420		unsigned int clock1, clock2;
2421
2422		/* Check both 60Hz and 59.94Hz */
2423		clock1 = cea_mode->clock;
2424		clock2 = cea_mode_alternate_clock(cea_mode);
2425
2426		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2427		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2428		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2429			return mode + 1;
2430	}
2431	return 0;
2432}
2433EXPORT_SYMBOL(drm_match_cea_mode);
2434
2435/*
2436 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2437 * specific block).
2438 *
2439 * It's almost like cea_mode_alternate_clock(), we just need to add an
2440 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2441 * one.
2442 */
2443static unsigned int
2444hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2445{
2446	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2447		return hdmi_mode->clock;
2448
2449	return cea_mode_alternate_clock(hdmi_mode);
2450}
2451
2452/*
2453 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2454 * @to_match: display mode
2455 *
2456 * An HDMI mode is one defined in the HDMI vendor specific block.
2457 *
2458 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2459 */
2460static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2461{
2462	u8 mode;
2463
2464	if (!to_match->clock)
2465		return 0;
2466
2467	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2468		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2469		unsigned int clock1, clock2;
2470
2471		/* Make sure to also match alternate clocks */
2472		clock1 = hdmi_mode->clock;
2473		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2474
2475		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2476		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2477		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2478			return mode + 1;
2479	}
2480	return 0;
2481}
2482
2483static int
2484add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2485{
2486	struct drm_device *dev = connector->dev;
2487	struct drm_display_mode *mode, *tmp;
2488	LIST_HEAD(list);
2489	int modes = 0;
2490
2491	/* Don't add CEA modes if the CEA extension block is missing */
2492	if (!drm_find_cea_extension(edid))
2493		return 0;
2494
2495	/*
2496	 * Go through all probed modes and create a new mode
2497	 * with the alternate clock for certain CEA modes.
2498	 */
2499	list_for_each_entry(mode, &connector->probed_modes, head) {
2500		const struct drm_display_mode *cea_mode = NULL;
2501		struct drm_display_mode *newmode;
2502		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2503		unsigned int clock1, clock2;
2504
2505		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2506			cea_mode = &edid_cea_modes[mode_idx];
2507			clock2 = cea_mode_alternate_clock(cea_mode);
2508		} else {
2509			mode_idx = drm_match_hdmi_mode(mode) - 1;
2510			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2511				cea_mode = &edid_4k_modes[mode_idx];
2512				clock2 = hdmi_mode_alternate_clock(cea_mode);
2513			}
2514		}
2515
2516		if (!cea_mode)
2517			continue;
2518
2519		clock1 = cea_mode->clock;
2520
2521		if (clock1 == clock2)
2522			continue;
2523
2524		if (mode->clock != clock1 && mode->clock != clock2)
2525			continue;
2526
2527		newmode = drm_mode_duplicate(dev, cea_mode);
2528		if (!newmode)
2529			continue;
2530
2531		/* Carry over the stereo flags */
2532		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2533
2534		/*
2535		 * The current mode could be either variant. Make
2536		 * sure to pick the "other" clock for the new mode.
2537		 */
2538		if (mode->clock != clock1)
2539			newmode->clock = clock1;
2540		else
2541			newmode->clock = clock2;
2542
2543		list_add_tail(&newmode->head, &list);
2544	}
2545
2546	list_for_each_entry_safe(mode, tmp, &list, head) {
2547		list_del(&mode->head);
2548		drm_mode_probed_add(connector, mode);
2549		modes++;
2550	}
2551
2552	return modes;
2553}
2554
2555static int
2556do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2557{
2558	struct drm_device *dev = connector->dev;
2559	const u8 *mode;
2560	u8 cea_mode;
2561	int modes = 0;
2562
2563	for (mode = db; mode < db + len; mode++) {
2564		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2565		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2566			struct drm_display_mode *newmode;
2567			newmode = drm_mode_duplicate(dev,
2568						     &edid_cea_modes[cea_mode]);
2569			if (newmode) {
2570				newmode->vrefresh = 0;
2571				drm_mode_probed_add(connector, newmode);
2572				modes++;
2573			}
2574		}
2575	}
2576
2577	return modes;
2578}
2579
2580struct stereo_mandatory_mode {
2581	int width, height, vrefresh;
2582	unsigned int flags;
2583};
2584
2585static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2586	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2587	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2588	{ 1920, 1080, 50,
2589	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2590	{ 1920, 1080, 60,
2591	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2592	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2593	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2594	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2595	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2596};
2597
2598static bool
2599stereo_match_mandatory(const struct drm_display_mode *mode,
2600		       const struct stereo_mandatory_mode *stereo_mode)
2601{
2602	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2603
2604	return mode->hdisplay == stereo_mode->width &&
2605	       mode->vdisplay == stereo_mode->height &&
2606	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2607	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2608}
2609
2610static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2611{
2612	struct drm_device *dev = connector->dev;
2613	const struct drm_display_mode *mode;
2614	struct list_head stereo_modes;
2615	int modes = 0, i;
2616
2617	INIT_LIST_HEAD(&stereo_modes);
2618
2619	list_for_each_entry(mode, &connector->probed_modes, head) {
2620		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2621			const struct stereo_mandatory_mode *mandatory;
2622			struct drm_display_mode *new_mode;
2623
2624			if (!stereo_match_mandatory(mode,
2625						    &stereo_mandatory_modes[i]))
2626				continue;
2627
2628			mandatory = &stereo_mandatory_modes[i];
2629			new_mode = drm_mode_duplicate(dev, mode);
2630			if (!new_mode)
2631				continue;
2632
2633			new_mode->flags |= mandatory->flags;
2634			list_add_tail(&new_mode->head, &stereo_modes);
2635			modes++;
2636		}
2637	}
2638
2639	list_splice_tail(&stereo_modes, &connector->probed_modes);
2640
2641	return modes;
2642}
2643
2644static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2645{
2646	struct drm_device *dev = connector->dev;
2647	struct drm_display_mode *newmode;
2648
2649	vic--; /* VICs start at 1 */
2650	if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2651		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2652		return 0;
2653	}
2654
2655	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2656	if (!newmode)
2657		return 0;
2658
2659	drm_mode_probed_add(connector, newmode);
2660
2661	return 1;
2662}
2663
2664static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2665			       const u8 *video_db, u8 video_len, u8 video_index)
2666{
2667	struct drm_device *dev = connector->dev;
2668	struct drm_display_mode *newmode;
2669	int modes = 0;
2670	u8 cea_mode;
2671
2672	if (video_db == NULL || video_index > video_len)
2673		return 0;
2674
2675	/* CEA modes are numbered 1..127 */
2676	cea_mode = (video_db[video_index] & 127) - 1;
2677	if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2678		return 0;
2679
2680	if (structure & (1 << 0)) {
2681		newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2682		if (newmode) {
2683			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2684			drm_mode_probed_add(connector, newmode);
2685			modes++;
2686		}
2687	}
2688	if (structure & (1 << 6)) {
2689		newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2690		if (newmode) {
2691			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2692			drm_mode_probed_add(connector, newmode);
2693			modes++;
2694		}
2695	}
2696	if (structure & (1 << 8)) {
2697		newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2698		if (newmode) {
2699			newmode->flags = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2700			drm_mode_probed_add(connector, newmode);
2701			modes++;
2702		}
2703	}
2704
2705	return modes;
2706}
2707
2708/*
2709 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2710 * @connector: connector corresponding to the HDMI sink
2711 * @db: start of the CEA vendor specific block
2712 * @len: length of the CEA block payload, ie. one can access up to db[len]
2713 *
2714 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2715 * also adds the stereo 3d modes when applicable.
2716 */
2717static int
2718do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2719		   const u8 *video_db, u8 video_len)
2720{
2721	int modes = 0, offset = 0, i, multi_present = 0;
2722	u8 vic_len, hdmi_3d_len = 0;
2723	u16 mask;
2724	u16 structure_all;
2725
2726	if (len < 8)
2727		goto out;
2728
2729	/* no HDMI_Video_Present */
2730	if (!(db[8] & (1 << 5)))
2731		goto out;
2732
2733	/* Latency_Fields_Present */
2734	if (db[8] & (1 << 7))
2735		offset += 2;
2736
2737	/* I_Latency_Fields_Present */
2738	if (db[8] & (1 << 6))
2739		offset += 2;
2740
2741	/* the declared length is not long enough for the 2 first bytes
2742	 * of additional video format capabilities */
2743	if (len < (8 + offset + 2))
2744		goto out;
2745
2746	/* 3D_Present */
2747	offset++;
2748	if (db[8 + offset] & (1 << 7)) {
2749		modes += add_hdmi_mandatory_stereo_modes(connector);
2750
2751		/* 3D_Multi_present */
2752		multi_present = (db[8 + offset] & 0x60) >> 5;
2753	}
2754
2755	offset++;
2756	vic_len = db[8 + offset] >> 5;
2757	hdmi_3d_len = db[8 + offset] & 0x1f;
2758
2759	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2760		u8 vic;
2761
2762		vic = db[9 + offset + i];
2763		modes += add_hdmi_mode(connector, vic);
2764	}
2765	offset += 1 + vic_len;
2766
2767	if (!(multi_present == 1 || multi_present == 2))
2768		goto out;
2769
2770	if ((multi_present == 1 && len < (9 + offset)) ||
2771	    (multi_present == 2 && len < (11 + offset)))
2772		goto out;
2773
2774	if ((multi_present == 1 && hdmi_3d_len < 2) ||
2775	    (multi_present == 2 && hdmi_3d_len < 4))
2776		goto out;
2777
2778	/* 3D_Structure_ALL */
2779	structure_all = (db[8 + offset] << 8) | db[9 + offset];
2780
2781	/* check if 3D_MASK is present */
2782	if (multi_present == 2)
2783		mask = (db[10 + offset] << 8) | db[11 + offset];
2784	else
2785		mask = 0xffff;
2786
2787	for (i = 0; i < 16; i++) {
2788		if (mask & (1 << i))
2789			modes += add_3d_struct_modes(connector,
2790						     structure_all,
2791						     video_db,
2792						     video_len, i);
2793	}
2794
2795out:
2796	return modes;
2797}
2798
2799static int
2800cea_db_payload_len(const u8 *db)
2801{
2802	return db[0] & 0x1f;
2803}
2804
2805static int
2806cea_db_tag(const u8 *db)
2807{
2808	return db[0] >> 5;
2809}
2810
2811static int
2812cea_revision(const u8 *cea)
2813{
2814	return cea[1];
2815}
2816
2817static int
2818cea_db_offsets(const u8 *cea, int *start, int *end)
2819{
2820	/* Data block offset in CEA extension block */
2821	*start = 4;
2822	*end = cea[2];
2823	if (*end == 0)
2824		*end = 127;
2825	if (*end < 4 || *end > 127)
2826		return -ERANGE;
2827	return 0;
2828}
2829
2830static bool cea_db_is_hdmi_vsdb(const u8 *db)
2831{
2832	int hdmi_id;
2833
2834	if (cea_db_tag(db) != VENDOR_BLOCK)
2835		return false;
2836
2837	if (cea_db_payload_len(db) < 5)
2838		return false;
2839
2840	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2841
2842	return hdmi_id == HDMI_IEEE_OUI;
2843}
2844
2845#define for_each_cea_db(cea, i, start, end) \
2846	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2847
2848static int
2849add_cea_modes(struct drm_connector *connector, struct edid *edid)
2850{
2851	const u8 *cea = drm_find_cea_extension(edid);
2852	const u8 *db, *hdmi = NULL, *video = NULL;
2853	u8 dbl, hdmi_len, video_len = 0;
2854	int modes = 0;
2855
2856	if (cea && cea_revision(cea) >= 3) {
2857		int i, start, end;
2858
2859		if (cea_db_offsets(cea, &start, &end))
2860			return 0;
2861
2862		for_each_cea_db(cea, i, start, end) {
2863			db = &cea[i];
2864			dbl = cea_db_payload_len(db);
2865
2866			if (cea_db_tag(db) == VIDEO_BLOCK) {
2867				video = db + 1;
2868				video_len = dbl;
2869				modes += do_cea_modes(connector, video, dbl);
2870			}
2871			else if (cea_db_is_hdmi_vsdb(db)) {
2872				hdmi = db;
2873				hdmi_len = dbl;
2874			}
2875		}
2876	}
2877
2878	/*
2879	 * We parse the HDMI VSDB after having added the cea modes as we will
2880	 * be patching their flags when the sink supports stereo 3D.
2881	 */
2882	if (hdmi)
2883		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
2884					    video_len);
2885
2886	return modes;
2887}
2888
2889static void
2890parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2891{
2892	u8 len = cea_db_payload_len(db);
2893
2894	if (len >= 6) {
2895		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2896		connector->dvi_dual = db[6] & 1;
2897	}
2898	if (len >= 7)
2899		connector->max_tmds_clock = db[7] * 5;
2900	if (len >= 8) {
2901		connector->latency_present[0] = db[8] >> 7;
2902		connector->latency_present[1] = (db[8] >> 6) & 1;
2903	}
2904	if (len >= 9)
2905		connector->video_latency[0] = db[9];
2906	if (len >= 10)
2907		connector->audio_latency[0] = db[10];
2908	if (len >= 11)
2909		connector->video_latency[1] = db[11];
2910	if (len >= 12)
2911		connector->audio_latency[1] = db[12];
2912
2913	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2914		    "max TMDS clock %d, "
2915		    "latency present %d %d, "
2916		    "video latency %d %d, "
2917		    "audio latency %d %d\n",
2918		    connector->dvi_dual,
2919		    connector->max_tmds_clock,
2920	      (int) connector->latency_present[0],
2921	      (int) connector->latency_present[1],
2922		    connector->video_latency[0],
2923		    connector->video_latency[1],
2924		    connector->audio_latency[0],
2925		    connector->audio_latency[1]);
2926}
2927
2928static void
2929monitor_name(struct detailed_timing *t, void *data)
2930{
2931	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2932		*(u8 **)data = t->data.other_data.data.str.str;
2933}
2934
2935/**
2936 * drm_edid_to_eld - build ELD from EDID
2937 * @connector: connector corresponding to the HDMI/DP sink
2938 * @edid: EDID to parse
2939 *
2940 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2941 * Some ELD fields are left to the graphics driver caller:
2942 * - Conn_Type
2943 * - HDCP
2944 * - Port_ID
2945 */
2946void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2947{
2948	uint8_t *eld = connector->eld;
2949	u8 *cea;
2950	u8 *name;
2951	u8 *db;
2952	int sad_count = 0;
2953	int mnl;
2954	int dbl;
2955
2956	memset(eld, 0, sizeof(connector->eld));
2957
2958	cea = drm_find_cea_extension(edid);
2959	if (!cea) {
2960		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2961		return;
2962	}
2963
2964	name = NULL;
2965	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2966	for (mnl = 0; name && mnl < 13; mnl++) {
2967		if (name[mnl] == 0x0a)
2968			break;
2969		eld[20 + mnl] = name[mnl];
2970	}
2971	eld[4] = (cea[1] << 5) | mnl;
2972	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2973
2974	eld[0] = 2 << 3;		/* ELD version: 2 */
2975
2976	eld[16] = edid->mfg_id[0];
2977	eld[17] = edid->mfg_id[1];
2978	eld[18] = edid->prod_code[0];
2979	eld[19] = edid->prod_code[1];
2980
2981	if (cea_revision(cea) >= 3) {
2982		int i, start, end;
2983
2984		if (cea_db_offsets(cea, &start, &end)) {
2985			start = 0;
2986			end = 0;
2987		}
2988
2989		for_each_cea_db(cea, i, start, end) {
2990			db = &cea[i];
2991			dbl = cea_db_payload_len(db);
2992
2993			switch (cea_db_tag(db)) {
2994			case AUDIO_BLOCK:
2995				/* Audio Data Block, contains SADs */
2996				sad_count = dbl / 3;
2997				if (dbl >= 1)
2998					memcpy(eld + 20 + mnl, &db[1], dbl);
2999				break;
3000			case SPEAKER_BLOCK:
3001				/* Speaker Allocation Data Block */
3002				if (dbl >= 1)
3003					eld[7] = db[1];
3004				break;
3005			case VENDOR_BLOCK:
3006				/* HDMI Vendor-Specific Data Block */
3007				if (cea_db_is_hdmi_vsdb(db))
3008					parse_hdmi_vsdb(connector, db);
3009				break;
3010			default:
3011				break;
3012			}
3013		}
3014	}
3015	eld[5] |= sad_count << 4;
3016	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
3017
3018	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3019}
3020EXPORT_SYMBOL(drm_edid_to_eld);
3021
3022/**
3023 * drm_edid_to_sad - extracts SADs from EDID
3024 * @edid: EDID to parse
3025 * @sads: pointer that will be set to the extracted SADs
3026 *
3027 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3028 * Note: returned pointer needs to be kfreed
3029 *
3030 * Return number of found SADs or negative number on error.
3031 */
3032int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3033{
3034	int count = 0;
3035	int i, start, end, dbl;
3036	u8 *cea;
3037
3038	cea = drm_find_cea_extension(edid);
3039	if (!cea) {
3040		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3041		return -ENOENT;
3042	}
3043
3044	if (cea_revision(cea) < 3) {
3045		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3046		return -ENOTSUPP;
3047	}
3048
3049	if (cea_db_offsets(cea, &start, &end)) {
3050		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3051		return -EPROTO;
3052	}
3053
3054	for_each_cea_db(cea, i, start, end) {
3055		u8 *db = &cea[i];
3056
3057		if (cea_db_tag(db) == AUDIO_BLOCK) {
3058			int j;
3059			dbl = cea_db_payload_len(db);
3060
3061			count = dbl / 3; /* SAD is 3B */
3062			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3063			if (!*sads)
3064				return -ENOMEM;
3065			for (j = 0; j < count; j++) {
3066				u8 *sad = &db[1 + j * 3];
3067
3068				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3069				(*sads)[j].channels = sad[0] & 0x7;
3070				(*sads)[j].freq = sad[1] & 0x7F;
3071				(*sads)[j].byte2 = sad[2];
3072			}
3073			break;
3074		}
3075	}
3076
3077	return count;
3078}
3079EXPORT_SYMBOL(drm_edid_to_sad);
3080
3081/**
3082 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3083 * @edid: EDID to parse
3084 * @sadb: pointer to the speaker block
3085 *
3086 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3087 * Note: returned pointer needs to be kfreed
3088 *
3089 * Return number of found Speaker Allocation Blocks or negative number on error.
3090 */
3091int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3092{
3093	int count = 0;
3094	int i, start, end, dbl;
3095	const u8 *cea;
3096
3097	cea = drm_find_cea_extension(edid);
3098	if (!cea) {
3099		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3100		return -ENOENT;
3101	}
3102
3103	if (cea_revision(cea) < 3) {
3104		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3105		return -ENOTSUPP;
3106	}
3107
3108	if (cea_db_offsets(cea, &start, &end)) {
3109		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3110		return -EPROTO;
3111	}
3112
3113	for_each_cea_db(cea, i, start, end) {
3114		const u8 *db = &cea[i];
3115
3116		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3117			dbl = cea_db_payload_len(db);
3118
3119			/* Speaker Allocation Data Block */
3120			if (dbl == 3) {
3121				*sadb = kmalloc(dbl, GFP_KERNEL);
3122				if (!*sadb)
3123					return -ENOMEM;
3124				memcpy(*sadb, &db[1], dbl);
3125				count = dbl;
3126				break;
3127			}
3128		}
3129	}
3130
3131	return count;
3132}
3133EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3134
3135/**
3136 * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3137 * @connector: connector associated with the HDMI/DP sink
3138 * @mode: the display mode
3139 */
3140int drm_av_sync_delay(struct drm_connector *connector,
3141		      struct drm_display_mode *mode)
3142{
3143	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3144	int a, v;
3145
3146	if (!connector->latency_present[0])
3147		return 0;
3148	if (!connector->latency_present[1])
3149		i = 0;
3150
3151	a = connector->audio_latency[i];
3152	v = connector->video_latency[i];
3153
3154	/*
3155	 * HDMI/DP sink doesn't support audio or video?
3156	 */
3157	if (a == 255 || v == 255)
3158		return 0;
3159
3160	/*
3161	 * Convert raw EDID values to millisecond.
3162	 * Treat unknown latency as 0ms.
3163	 */
3164	if (a)
3165		a = min(2 * (a - 1), 500);
3166	if (v)
3167		v = min(2 * (v - 1), 500);
3168
3169	return max(v - a, 0);
3170}
3171EXPORT_SYMBOL(drm_av_sync_delay);
3172
3173/**
3174 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3175 * @encoder: the encoder just changed display mode
3176 * @mode: the adjusted display mode
3177 *
3178 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3179 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3180 */
3181struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3182				     struct drm_display_mode *mode)
3183{
3184	struct drm_connector *connector;
3185	struct drm_device *dev = encoder->dev;
3186
3187	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3188		if (connector->encoder == encoder && connector->eld[0])
3189			return connector;
3190
3191	return NULL;
3192}
3193EXPORT_SYMBOL(drm_select_eld);
3194
3195/**
3196 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3197 * @edid: monitor EDID information
3198 *
3199 * Parse the CEA extension according to CEA-861-B.
3200 * Return true if HDMI, false if not or unknown.
3201 */
3202bool drm_detect_hdmi_monitor(struct edid *edid)
3203{
3204	u8 *edid_ext;
3205	int i;
3206	int start_offset, end_offset;
3207
3208	edid_ext = drm_find_cea_extension(edid);
3209	if (!edid_ext)
3210		return false;
3211
3212	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3213		return false;
3214
3215	/*
3216	 * Because HDMI identifier is in Vendor Specific Block,
3217	 * search it from all data blocks of CEA extension.
3218	 */
3219	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3220		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3221			return true;
3222	}
3223
3224	return false;
3225}
3226EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3227
3228/**
3229 * drm_detect_monitor_audio - check monitor audio capability
3230 *
3231 * Monitor should have CEA extension block.
3232 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3233 * audio' only. If there is any audio extension block and supported
3234 * audio format, assume at least 'basic audio' support, even if 'basic
3235 * audio' is not defined in EDID.
3236 *
3237 */
3238bool drm_detect_monitor_audio(struct edid *edid)
3239{
3240	u8 *edid_ext;
3241	int i, j;
3242	bool has_audio = false;
3243	int start_offset, end_offset;
3244
3245	edid_ext = drm_find_cea_extension(edid);
3246	if (!edid_ext)
3247		goto end;
3248
3249	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3250
3251	if (has_audio) {
3252		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3253		goto end;
3254	}
3255
3256	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3257		goto end;
3258
3259	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3260		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3261			has_audio = true;
3262			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3263				DRM_DEBUG_KMS("CEA audio format %d\n",
3264					      (edid_ext[i + j] >> 3) & 0xf);
3265			goto end;
3266		}
3267	}
3268end:
3269	return has_audio;
3270}
3271EXPORT_SYMBOL(drm_detect_monitor_audio);
3272
3273/**
3274 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3275 *
3276 * Check whether the monitor reports the RGB quantization range selection
3277 * as supported. The AVI infoframe can then be used to inform the monitor
3278 * which quantization range (full or limited) is used.
3279 */
3280bool drm_rgb_quant_range_selectable(struct edid *edid)
3281{
3282	u8 *edid_ext;
3283	int i, start, end;
3284
3285	edid_ext = drm_find_cea_extension(edid);
3286	if (!edid_ext)
3287		return false;
3288
3289	if (cea_db_offsets(edid_ext, &start, &end))
3290		return false;
3291
3292	for_each_cea_db(edid_ext, i, start, end) {
3293		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3294		    cea_db_payload_len(&edid_ext[i]) == 2) {
3295			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3296			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3297		}
3298	}
3299
3300	return false;
3301}
3302EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3303
3304/**
3305 * drm_add_display_info - pull display info out if present
3306 * @edid: EDID data
3307 * @info: display info (attached to connector)
3308 *
3309 * Grab any available display info and stuff it into the drm_display_info
3310 * structure that's part of the connector.  Useful for tracking bpp and
3311 * color spaces.
3312 */
3313static void drm_add_display_info(struct edid *edid,
3314				 struct drm_display_info *info)
3315{
3316	u8 *edid_ext;
3317
3318	info->width_mm = edid->width_cm * 10;
3319	info->height_mm = edid->height_cm * 10;
3320
3321	/* driver figures it out in this case */
3322	info->bpc = 0;
3323	info->color_formats = 0;
3324
3325	if (edid->revision < 3)
3326		return;
3327
3328	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3329		return;
3330
3331	/* Get data from CEA blocks if present */
3332	edid_ext = drm_find_cea_extension(edid);
3333	if (edid_ext) {
3334		info->cea_rev = edid_ext[1];
3335
3336		/* The existence of a CEA block should imply RGB support */
3337		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3338		if (edid_ext[3] & EDID_CEA_YCRCB444)
3339			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3340		if (edid_ext[3] & EDID_CEA_YCRCB422)
3341			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3342	}
3343
3344	/* Only defined for 1.4 with digital displays */
3345	if (edid->revision < 4)
3346		return;
3347
3348	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3349	case DRM_EDID_DIGITAL_DEPTH_6:
3350		info->bpc = 6;
3351		break;
3352	case DRM_EDID_DIGITAL_DEPTH_8:
3353		info->bpc = 8;
3354		break;
3355	case DRM_EDID_DIGITAL_DEPTH_10:
3356		info->bpc = 10;
3357		break;
3358	case DRM_EDID_DIGITAL_DEPTH_12:
3359		info->bpc = 12;
3360		break;
3361	case DRM_EDID_DIGITAL_DEPTH_14:
3362		info->bpc = 14;
3363		break;
3364	case DRM_EDID_DIGITAL_DEPTH_16:
3365		info->bpc = 16;
3366		break;
3367	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3368	default:
3369		info->bpc = 0;
3370		break;
3371	}
3372
3373	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3374	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3375		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3376	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3377		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3378}
3379
3380/**
3381 * drm_add_edid_modes - add modes from EDID data, if available
3382 * @connector: connector we're probing
3383 * @edid: edid data
3384 *
3385 * Add the specified modes to the connector's mode list.
3386 *
3387 * Return number of modes added or 0 if we couldn't find any.
3388 */
3389int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3390{
3391	int num_modes = 0;
3392	u32 quirks;
3393
3394	if (edid == NULL) {
3395		return 0;
3396	}
3397	if (!drm_edid_is_valid(edid)) {
3398		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3399			 drm_get_connector_name(connector));
3400		return 0;
3401	}
3402
3403	quirks = edid_get_quirks(edid);
3404
3405	/*
3406	 * EDID spec says modes should be preferred in this order:
3407	 * - preferred detailed mode
3408	 * - other detailed modes from base block
3409	 * - detailed modes from extension blocks
3410	 * - CVT 3-byte code modes
3411	 * - standard timing codes
3412	 * - established timing codes
3413	 * - modes inferred from GTF or CVT range information
3414	 *
3415	 * We get this pretty much right.
3416	 *
3417	 * XXX order for additional mode types in extension blocks?
3418	 */
3419	num_modes += add_detailed_modes(connector, edid, quirks);
3420	num_modes += add_cvt_modes(connector, edid);
3421	num_modes += add_standard_modes(connector, edid);
3422	num_modes += add_established_modes(connector, edid);
3423	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3424		num_modes += add_inferred_modes(connector, edid);
3425	num_modes += add_cea_modes(connector, edid);
3426	num_modes += add_alternate_cea_modes(connector, edid);
3427
3428	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3429		edid_fixup_preferred(connector, quirks);
3430
3431	drm_add_display_info(edid, &connector->display_info);
3432
3433	return num_modes;
3434}
3435EXPORT_SYMBOL(drm_add_edid_modes);
3436
3437/**
3438 * drm_add_modes_noedid - add modes for the connectors without EDID
3439 * @connector: connector we're probing
3440 * @hdisplay: the horizontal display limit
3441 * @vdisplay: the vertical display limit
3442 *
3443 * Add the specified modes to the connector's mode list. Only when the
3444 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3445 *
3446 * Return number of modes added or 0 if we couldn't find any.
3447 */
3448int drm_add_modes_noedid(struct drm_connector *connector,
3449			int hdisplay, int vdisplay)
3450{
3451	int i, count, num_modes = 0;
3452	struct drm_display_mode *mode;
3453	struct drm_device *dev = connector->dev;
3454
3455	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3456	if (hdisplay < 0)
3457		hdisplay = 0;
3458	if (vdisplay < 0)
3459		vdisplay = 0;
3460
3461	for (i = 0; i < count; i++) {
3462		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3463		if (hdisplay && vdisplay) {
3464			/*
3465			 * Only when two are valid, they will be used to check
3466			 * whether the mode should be added to the mode list of
3467			 * the connector.
3468			 */
3469			if (ptr->hdisplay > hdisplay ||
3470					ptr->vdisplay > vdisplay)
3471				continue;
3472		}
3473		if (drm_mode_vrefresh(ptr) > 61)
3474			continue;
3475		mode = drm_mode_duplicate(dev, ptr);
3476		if (mode) {
3477			drm_mode_probed_add(connector, mode);
3478			num_modes++;
3479		}
3480	}
3481	return num_modes;
3482}
3483EXPORT_SYMBOL(drm_add_modes_noedid);
3484
3485void drm_set_preferred_mode(struct drm_connector *connector,
3486			   int hpref, int vpref)
3487{
3488	struct drm_display_mode *mode;
3489
3490	list_for_each_entry(mode, &connector->probed_modes, head) {
3491		if (drm_mode_width(mode)  == hpref &&
3492		    drm_mode_height(mode) == vpref)
3493			mode->type |= DRM_MODE_TYPE_PREFERRED;
3494	}
3495}
3496EXPORT_SYMBOL(drm_set_preferred_mode);
3497
3498/**
3499 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3500 *                                              data from a DRM display mode
3501 * @frame: HDMI AVI infoframe
3502 * @mode: DRM display mode
3503 *
3504 * Returns 0 on success or a negative error code on failure.
3505 */
3506int
3507drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3508					 const struct drm_display_mode *mode)
3509{
3510	int err;
3511
3512	if (!frame || !mode)
3513		return -EINVAL;
3514
3515	err = hdmi_avi_infoframe_init(frame);
3516	if (err < 0)
3517		return err;
3518
3519	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3520		frame->pixel_repeat = 1;
3521
3522	frame->video_code = drm_match_cea_mode(mode);
3523
3524	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3525	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3526
3527	return 0;
3528}
3529EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3530
3531static enum hdmi_3d_structure
3532s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3533{
3534	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3535
3536	switch (layout) {
3537	case DRM_MODE_FLAG_3D_FRAME_PACKING:
3538		return HDMI_3D_STRUCTURE_FRAME_PACKING;
3539	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3540		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3541	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3542		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3543	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3544		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3545	case DRM_MODE_FLAG_3D_L_DEPTH:
3546		return HDMI_3D_STRUCTURE_L_DEPTH;
3547	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3548		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3549	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3550		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3551	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3552		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3553	default:
3554		return HDMI_3D_STRUCTURE_INVALID;
3555	}
3556}
3557
3558/**
3559 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3560 * data from a DRM display mode
3561 * @frame: HDMI vendor infoframe
3562 * @mode: DRM display mode
3563 *
3564 * Note that there's is a need to send HDMI vendor infoframes only when using a
3565 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3566 * function will return -EINVAL, error that can be safely ignored.
3567 *
3568 * Returns 0 on success or a negative error code on failure.
3569 */
3570int
3571drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3572					    const struct drm_display_mode *mode)
3573{
3574	int err;
3575	u32 s3d_flags;
3576	u8 vic;
3577
3578	if (!frame || !mode)
3579		return -EINVAL;
3580
3581	vic = drm_match_hdmi_mode(mode);
3582	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3583
3584	if (!vic && !s3d_flags)
3585		return -EINVAL;
3586
3587	if (vic && s3d_flags)
3588		return -EINVAL;
3589
3590	err = hdmi_vendor_infoframe_init(frame);
3591	if (err < 0)
3592		return err;
3593
3594	if (vic)
3595		frame->vic = vic;
3596	else
3597		frame->s3d_struct = s3d_structure_from_display_mode(mode);
3598
3599	return 0;
3600}
3601EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
3602