[go: nahoru, domu]

1/*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 *	Eric Anholt <eric@anholt.net>
19 */
20
21#include <linux/i2c.h>
22
23#include <drm/drmP.h>
24#include "framebuffer.h"
25#include "psb_drv.h"
26#include "psb_intel_drv.h"
27#include "psb_intel_reg.h"
28#include "gma_display.h"
29#include "power.h"
30
31#define INTEL_LIMIT_I9XX_SDVO_DAC   0
32#define INTEL_LIMIT_I9XX_LVDS	    1
33
34static const struct gma_limit_t psb_intel_limits[] = {
35	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
36	 .dot = {.min = 20000, .max = 400000},
37	 .vco = {.min = 1400000, .max = 2800000},
38	 .n = {.min = 1, .max = 6},
39	 .m = {.min = 70, .max = 120},
40	 .m1 = {.min = 8, .max = 18},
41	 .m2 = {.min = 3, .max = 7},
42	 .p = {.min = 5, .max = 80},
43	 .p1 = {.min = 1, .max = 8},
44	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
45	 .find_pll = gma_find_best_pll,
46	 },
47	{			/* INTEL_LIMIT_I9XX_LVDS */
48	 .dot = {.min = 20000, .max = 400000},
49	 .vco = {.min = 1400000, .max = 2800000},
50	 .n = {.min = 1, .max = 6},
51	 .m = {.min = 70, .max = 120},
52	 .m1 = {.min = 8, .max = 18},
53	 .m2 = {.min = 3, .max = 7},
54	 .p = {.min = 7, .max = 98},
55	 .p1 = {.min = 1, .max = 8},
56	 /* The single-channel range is 25-112Mhz, and dual-channel
57	  * is 80-224Mhz.  Prefer single channel as much as possible.
58	  */
59	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
60	 .find_pll = gma_find_best_pll,
61	 },
62};
63
64static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
65						 int refclk)
66{
67	const struct gma_limit_t *limit;
68
69	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
70		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
71	else
72		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
73	return limit;
74}
75
76static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
77{
78	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
79	clock->p = clock->p1 * clock->p2;
80	clock->vco = refclk * clock->m / (clock->n + 2);
81	clock->dot = clock->vco / clock->p;
82}
83
84/**
85 * Return the pipe currently connected to the panel fitter,
86 * or -1 if the panel fitter is not present or not in use
87 */
88static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
89{
90	u32 pfit_control;
91
92	pfit_control = REG_READ(PFIT_CONTROL);
93
94	/* See if the panel fitter is in use */
95	if ((pfit_control & PFIT_ENABLE) == 0)
96		return -1;
97	/* Must be on PIPE 1 for PSB */
98	return 1;
99}
100
101static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
102			       struct drm_display_mode *mode,
103			       struct drm_display_mode *adjusted_mode,
104			       int x, int y,
105			       struct drm_framebuffer *old_fb)
106{
107	struct drm_device *dev = crtc->dev;
108	struct drm_psb_private *dev_priv = dev->dev_private;
109	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
110	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
111	int pipe = gma_crtc->pipe;
112	const struct psb_offset *map = &dev_priv->regmap[pipe];
113	int refclk;
114	struct gma_clock_t clock;
115	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
116	bool ok, is_sdvo = false;
117	bool is_lvds = false, is_tv = false;
118	struct drm_mode_config *mode_config = &dev->mode_config;
119	struct drm_connector *connector;
120	const struct gma_limit_t *limit;
121
122	/* No scan out no play */
123	if (crtc->primary->fb == NULL) {
124		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
125		return 0;
126	}
127
128	list_for_each_entry(connector, &mode_config->connector_list, head) {
129		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
130
131		if (!connector->encoder
132		    || connector->encoder->crtc != crtc)
133			continue;
134
135		switch (gma_encoder->type) {
136		case INTEL_OUTPUT_LVDS:
137			is_lvds = true;
138			break;
139		case INTEL_OUTPUT_SDVO:
140			is_sdvo = true;
141			break;
142		case INTEL_OUTPUT_TVOUT:
143			is_tv = true;
144			break;
145		}
146	}
147
148	refclk = 96000;
149
150	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
151
152	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
153				 &clock);
154	if (!ok) {
155		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
156			  adjusted_mode->clock, clock.dot);
157		return 0;
158	}
159
160	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
161
162	dpll = DPLL_VGA_MODE_DIS;
163	if (is_lvds) {
164		dpll |= DPLLB_MODE_LVDS;
165		dpll |= DPLL_DVO_HIGH_SPEED;
166	} else
167		dpll |= DPLLB_MODE_DAC_SERIAL;
168	if (is_sdvo) {
169		int sdvo_pixel_multiply =
170			    adjusted_mode->clock / mode->clock;
171		dpll |= DPLL_DVO_HIGH_SPEED;
172		dpll |=
173		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
174	}
175
176	/* compute bitmask from p1 value */
177	dpll |= (1 << (clock.p1 - 1)) << 16;
178	switch (clock.p2) {
179	case 5:
180		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
181		break;
182	case 7:
183		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
184		break;
185	case 10:
186		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
187		break;
188	case 14:
189		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
190		break;
191	}
192
193	if (is_tv) {
194		/* XXX: just matching BIOS for now */
195/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
196		dpll |= 3;
197	}
198	dpll |= PLL_REF_INPUT_DREFCLK;
199
200	/* setup pipeconf */
201	pipeconf = REG_READ(map->conf);
202
203	/* Set up the display plane register */
204	dspcntr = DISPPLANE_GAMMA_ENABLE;
205
206	if (pipe == 0)
207		dspcntr |= DISPPLANE_SEL_PIPE_A;
208	else
209		dspcntr |= DISPPLANE_SEL_PIPE_B;
210
211	dspcntr |= DISPLAY_PLANE_ENABLE;
212	pipeconf |= PIPEACONF_ENABLE;
213	dpll |= DPLL_VCO_ENABLE;
214
215
216	/* Disable the panel fitter if it was on our pipe */
217	if (psb_intel_panel_fitter_pipe(dev) == pipe)
218		REG_WRITE(PFIT_CONTROL, 0);
219
220	drm_mode_debug_printmodeline(mode);
221
222	if (dpll & DPLL_VCO_ENABLE) {
223		REG_WRITE(map->fp0, fp);
224		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
225		REG_READ(map->dpll);
226		udelay(150);
227	}
228
229	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
230	 * This is an exception to the general rule that mode_set doesn't turn
231	 * things on.
232	 */
233	if (is_lvds) {
234		u32 lvds = REG_READ(LVDS);
235
236		lvds &= ~LVDS_PIPEB_SELECT;
237		if (pipe == 1)
238			lvds |= LVDS_PIPEB_SELECT;
239
240		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
241		/* Set the B0-B3 data pairs corresponding to
242		 * whether we're going to
243		 * set the DPLLs for dual-channel mode or not.
244		 */
245		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
246		if (clock.p2 == 7)
247			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
248
249		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
250		 * appropriately here, but we need to look more
251		 * thoroughly into how panels behave in the two modes.
252		 */
253
254		REG_WRITE(LVDS, lvds);
255		REG_READ(LVDS);
256	}
257
258	REG_WRITE(map->fp0, fp);
259	REG_WRITE(map->dpll, dpll);
260	REG_READ(map->dpll);
261	/* Wait for the clocks to stabilize. */
262	udelay(150);
263
264	/* write it again -- the BIOS does, after all */
265	REG_WRITE(map->dpll, dpll);
266
267	REG_READ(map->dpll);
268	/* Wait for the clocks to stabilize. */
269	udelay(150);
270
271	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
272		  ((adjusted_mode->crtc_htotal - 1) << 16));
273	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
274		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
275	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
276		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
277	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
278		  ((adjusted_mode->crtc_vtotal - 1) << 16));
279	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
280		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
281	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
282		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
283	/* pipesrc and dspsize control the size that is scaled from,
284	 * which should always be the user's requested size.
285	 */
286	REG_WRITE(map->size,
287		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
288	REG_WRITE(map->pos, 0);
289	REG_WRITE(map->src,
290		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
291	REG_WRITE(map->conf, pipeconf);
292	REG_READ(map->conf);
293
294	gma_wait_for_vblank(dev);
295
296	REG_WRITE(map->cntr, dspcntr);
297
298	/* Flush the plane changes */
299	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
300
301	gma_wait_for_vblank(dev);
302
303	return 0;
304}
305
306/* Returns the clock of the currently programmed mode of the given pipe. */
307static int psb_intel_crtc_clock_get(struct drm_device *dev,
308				struct drm_crtc *crtc)
309{
310	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
311	struct drm_psb_private *dev_priv = dev->dev_private;
312	int pipe = gma_crtc->pipe;
313	const struct psb_offset *map = &dev_priv->regmap[pipe];
314	u32 dpll;
315	u32 fp;
316	struct gma_clock_t clock;
317	bool is_lvds;
318	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
319
320	if (gma_power_begin(dev, false)) {
321		dpll = REG_READ(map->dpll);
322		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
323			fp = REG_READ(map->fp0);
324		else
325			fp = REG_READ(map->fp1);
326		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
327		gma_power_end(dev);
328	} else {
329		dpll = p->dpll;
330
331		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
332			fp = p->fp0;
333		else
334		        fp = p->fp1;
335
336		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
337								LVDS_PORT_EN);
338	}
339
340	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
341	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
342	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
343
344	if (is_lvds) {
345		clock.p1 =
346		    ffs((dpll &
347			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
348			DPLL_FPA01_P1_POST_DIV_SHIFT);
349		clock.p2 = 14;
350
351		if ((dpll & PLL_REF_INPUT_MASK) ==
352		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
353			/* XXX: might not be 66MHz */
354			psb_intel_clock(66000, &clock);
355		} else
356			psb_intel_clock(48000, &clock);
357	} else {
358		if (dpll & PLL_P1_DIVIDE_BY_TWO)
359			clock.p1 = 2;
360		else {
361			clock.p1 =
362			    ((dpll &
363			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
364			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
365		}
366		if (dpll & PLL_P2_DIVIDE_BY_4)
367			clock.p2 = 4;
368		else
369			clock.p2 = 2;
370
371		psb_intel_clock(48000, &clock);
372	}
373
374	/* XXX: It would be nice to validate the clocks, but we can't reuse
375	 * i830PllIsValid() because it relies on the xf86_config connector
376	 * configuration being accurate, which it isn't necessarily.
377	 */
378
379	return clock.dot;
380}
381
382/** Returns the currently programmed mode of the given pipe. */
383struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
384					     struct drm_crtc *crtc)
385{
386	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
387	int pipe = gma_crtc->pipe;
388	struct drm_display_mode *mode;
389	int htot;
390	int hsync;
391	int vtot;
392	int vsync;
393	struct drm_psb_private *dev_priv = dev->dev_private;
394	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
395	const struct psb_offset *map = &dev_priv->regmap[pipe];
396
397	if (gma_power_begin(dev, false)) {
398		htot = REG_READ(map->htotal);
399		hsync = REG_READ(map->hsync);
400		vtot = REG_READ(map->vtotal);
401		vsync = REG_READ(map->vsync);
402		gma_power_end(dev);
403	} else {
404		htot = p->htotal;
405		hsync = p->hsync;
406		vtot = p->vtotal;
407		vsync = p->vsync;
408	}
409
410	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
411	if (!mode)
412		return NULL;
413
414	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
415	mode->hdisplay = (htot & 0xffff) + 1;
416	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
417	mode->hsync_start = (hsync & 0xffff) + 1;
418	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
419	mode->vdisplay = (vtot & 0xffff) + 1;
420	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
421	mode->vsync_start = (vsync & 0xffff) + 1;
422	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
423
424	drm_mode_set_name(mode);
425	drm_mode_set_crtcinfo(mode, 0);
426
427	return mode;
428}
429
430const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
431	.dpms = gma_crtc_dpms,
432	.mode_fixup = gma_crtc_mode_fixup,
433	.mode_set = psb_intel_crtc_mode_set,
434	.mode_set_base = gma_pipe_set_base,
435	.prepare = gma_crtc_prepare,
436	.commit = gma_crtc_commit,
437	.disable = gma_crtc_disable,
438};
439
440const struct drm_crtc_funcs psb_intel_crtc_funcs = {
441	.save = gma_crtc_save,
442	.restore = gma_crtc_restore,
443	.cursor_set = gma_crtc_cursor_set,
444	.cursor_move = gma_crtc_cursor_move,
445	.gamma_set = gma_crtc_gamma_set,
446	.set_config = gma_crtc_set_config,
447	.destroy = gma_crtc_destroy,
448};
449
450const struct gma_clock_funcs psb_clock_funcs = {
451	.clock = psb_intel_clock,
452	.limit = psb_intel_limit,
453	.pll_is_valid = gma_pll_is_valid,
454};
455
456/*
457 * Set the default value of cursor control and base register
458 * to zero. This is a workaround for h/w defect on Oaktrail
459 */
460static void psb_intel_cursor_init(struct drm_device *dev,
461				  struct gma_crtc *gma_crtc)
462{
463	struct drm_psb_private *dev_priv = dev->dev_private;
464	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
465	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
466	struct gtt_range *cursor_gt;
467
468	if (dev_priv->ops->cursor_needs_phys) {
469		/* Allocate 4 pages of stolen mem for a hardware cursor. That
470		 * is enough for the 64 x 64 ARGB cursors we support.
471		 */
472		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
473						PAGE_SIZE);
474		if (!cursor_gt) {
475			gma_crtc->cursor_gt = NULL;
476			goto out;
477		}
478		gma_crtc->cursor_gt = cursor_gt;
479		gma_crtc->cursor_addr = dev_priv->stolen_base +
480							cursor_gt->offset;
481	} else {
482		gma_crtc->cursor_gt = NULL;
483	}
484
485out:
486	REG_WRITE(control[gma_crtc->pipe], 0);
487	REG_WRITE(base[gma_crtc->pipe], 0);
488}
489
490void psb_intel_crtc_init(struct drm_device *dev, int pipe,
491		     struct psb_intel_mode_device *mode_dev)
492{
493	struct drm_psb_private *dev_priv = dev->dev_private;
494	struct gma_crtc *gma_crtc;
495	int i;
496	uint16_t *r_base, *g_base, *b_base;
497
498	/* We allocate a extra array of drm_connector pointers
499	 * for fbdev after the crtc */
500	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
501			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
502			GFP_KERNEL);
503	if (gma_crtc == NULL)
504		return;
505
506	gma_crtc->crtc_state =
507		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
508	if (!gma_crtc->crtc_state) {
509		dev_err(dev->dev, "Crtc state error: No memory\n");
510		kfree(gma_crtc);
511		return;
512	}
513
514	/* Set the CRTC operations from the chip specific data */
515	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
516
517	/* Set the CRTC clock functions from chip specific data */
518	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
519
520	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
521	gma_crtc->pipe = pipe;
522	gma_crtc->plane = pipe;
523
524	r_base = gma_crtc->base.gamma_store;
525	g_base = r_base + 256;
526	b_base = g_base + 256;
527	for (i = 0; i < 256; i++) {
528		gma_crtc->lut_r[i] = i;
529		gma_crtc->lut_g[i] = i;
530		gma_crtc->lut_b[i] = i;
531		r_base[i] = i << 8;
532		g_base[i] = i << 8;
533		b_base[i] = i << 8;
534
535		gma_crtc->lut_adj[i] = 0;
536	}
537
538	gma_crtc->mode_dev = mode_dev;
539	gma_crtc->cursor_addr = 0;
540
541	drm_crtc_helper_add(&gma_crtc->base,
542						dev_priv->ops->crtc_helper);
543
544	/* Setup the array of drm_connector pointer array */
545	gma_crtc->mode_set.crtc = &gma_crtc->base;
546	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
547	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
548	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
549	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
550	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
551	gma_crtc->mode_set.num_connectors = 0;
552	psb_intel_cursor_init(dev, gma_crtc);
553
554	/* Set to true so that the pipe is forced off on initial config. */
555	gma_crtc->active = true;
556}
557
558struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
559{
560	struct drm_crtc *crtc = NULL;
561
562	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
563		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
564		if (gma_crtc->pipe == pipe)
565			break;
566	}
567	return crtc;
568}
569
570int gma_connector_clones(struct drm_device *dev, int type_mask)
571{
572	int index_mask = 0;
573	struct drm_connector *connector;
574	int entry = 0;
575
576	list_for_each_entry(connector, &dev->mode_config.connector_list,
577			    head) {
578		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
579		if (type_mask & (1 << gma_encoder->type))
580			index_mask |= (1 << entry);
581		entry++;
582	}
583	return index_mask;
584}
585