[go: nahoru, domu]

1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
37struct drm_i915_file_private;
38
39typedef uint32_t gen6_gtt_pte_t;
40typedef uint64_t gen8_gtt_pte_t;
41typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
45#define I915_PPGTT_PT_ENTRIES		(PAGE_SIZE / sizeof(gen6_gtt_pte_t))
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC		(2 << 1)
51#define GEN6_PTE_UNCACHED		(1 << 1)
52#define GEN6_PTE_VALID			(1 << 0)
53
54#define GEN6_PPGTT_PD_ENTRIES		512
55#define GEN6_PD_SIZE			(GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
56#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
57#define GEN6_PDE_VALID			(1 << 0)
58
59#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
60
61#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
62#define BYT_PTE_WRITEABLE		(1 << 1)
63
64/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
65 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
66 */
67#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
68					 (((bits) & 0x8) << (11 - 3)))
69#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
70#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
71#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
72#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
73#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
74#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
75#define HSW_PTE_UNCACHED		(0)
76#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
77#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
78
79/* GEN8 legacy style address is defined as a 3 level page table:
80 * 31:30 | 29:21 | 20:12 |  11:0
81 * PDPE  |  PDE  |  PTE  | offset
82 * The difference as compared to normal x86 3 level page table is the PDPEs are
83 * programmed via register.
84 */
85#define GEN8_PDPE_SHIFT			30
86#define GEN8_PDPE_MASK			0x3
87#define GEN8_PDE_SHIFT			21
88#define GEN8_PDE_MASK			0x1ff
89#define GEN8_PTE_SHIFT			12
90#define GEN8_PTE_MASK			0x1ff
91#define GEN8_LEGACY_PDPS		4
92#define GEN8_PTES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_gtt_pte_t))
93#define GEN8_PDES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
94
95#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
96#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
97#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
98#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
99
100#define CHV_PPAT_SNOOP			(1<<6)
101#define GEN8_PPAT_AGE(x)		(x<<4)
102#define GEN8_PPAT_LLCeLLC		(3<<2)
103#define GEN8_PPAT_LLCELLC		(2<<2)
104#define GEN8_PPAT_LLC			(1<<2)
105#define GEN8_PPAT_WB			(3<<0)
106#define GEN8_PPAT_WT			(2<<0)
107#define GEN8_PPAT_WC			(1<<0)
108#define GEN8_PPAT_UC			(0<<0)
109#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
110#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
111
112enum i915_cache_level;
113/**
114 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
115 * VMA's presence cannot be guaranteed before binding, or after unbinding the
116 * object into/from the address space.
117 *
118 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
119 * will always be <= an objects lifetime. So object refcounting should cover us.
120 */
121struct i915_vma {
122	struct drm_mm_node node;
123	struct drm_i915_gem_object *obj;
124	struct i915_address_space *vm;
125
126	/** This object's place on the active/inactive lists */
127	struct list_head mm_list;
128
129	struct list_head vma_link; /* Link in the object's VMA list */
130
131	/** This vma's place in the batchbuffer or on the eviction list */
132	struct list_head exec_list;
133
134	/**
135	 * Used for performing relocations during execbuffer insertion.
136	 */
137	struct hlist_node exec_node;
138	unsigned long exec_handle;
139	struct drm_i915_gem_exec_object2 *exec_entry;
140
141	/**
142	 * How many users have pinned this object in GTT space. The following
143	 * users can each hold at most one reference: pwrite/pread, pin_ioctl
144	 * (via user_pin_count), execbuffer (objects are not allowed multiple
145	 * times for the same batchbuffer), and the framebuffer code. When
146	 * switching/pageflipping, the framebuffer code has at most two buffers
147	 * pinned per crtc.
148	 *
149	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
150	 * bits with absolutely no headroom. So use 4 bits. */
151	unsigned int pin_count:4;
152#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
153
154	/** Unmap an object from an address space. This usually consists of
155	 * setting the valid PTE entries to a reserved scratch page. */
156	void (*unbind_vma)(struct i915_vma *vma);
157	/* Map an object into an address space with the given cache flags. */
158#define GLOBAL_BIND (1<<0)
159#define PTE_READ_ONLY (1<<1)
160	void (*bind_vma)(struct i915_vma *vma,
161			 enum i915_cache_level cache_level,
162			 u32 flags);
163};
164
165struct i915_address_space {
166	struct drm_mm mm;
167	struct drm_device *dev;
168	struct list_head global_link;
169	unsigned long start;		/* Start offset always 0 for dri2 */
170	size_t total;		/* size addr space maps (ex. 2GB for ggtt) */
171
172	struct {
173		dma_addr_t addr;
174		struct page *page;
175	} scratch;
176
177	/**
178	 * List of objects currently involved in rendering.
179	 *
180	 * Includes buffers having the contents of their GPU caches
181	 * flushed, not necessarily primitives.  last_rendering_seqno
182	 * represents when the rendering involved will be completed.
183	 *
184	 * A reference is held on the buffer while on this list.
185	 */
186	struct list_head active_list;
187
188	/**
189	 * LRU list of objects which are not in the ringbuffer and
190	 * are ready to unbind, but are still in the GTT.
191	 *
192	 * last_rendering_seqno is 0 while an object is in this list.
193	 *
194	 * A reference is not held on the buffer while on this list,
195	 * as merely being GTT-bound shouldn't prevent its being
196	 * freed, and we'll pull it off the list in the free path.
197	 */
198	struct list_head inactive_list;
199
200	/* FIXME: Need a more generic return type */
201	gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
202				     enum i915_cache_level level,
203				     bool valid, u32 flags); /* Create a valid PTE */
204	void (*clear_range)(struct i915_address_space *vm,
205			    uint64_t start,
206			    uint64_t length,
207			    bool use_scratch);
208	void (*insert_entries)(struct i915_address_space *vm,
209			       struct sg_table *st,
210			       uint64_t start,
211			       enum i915_cache_level cache_level, u32 flags);
212	void (*cleanup)(struct i915_address_space *vm);
213};
214
215/* The Graphics Translation Table is the way in which GEN hardware translates a
216 * Graphics Virtual Address into a Physical Address. In addition to the normal
217 * collateral associated with any va->pa translations GEN hardware also has a
218 * portion of the GTT which can be mapped by the CPU and remain both coherent
219 * and correct (in cases like swizzling). That region is referred to as GMADR in
220 * the spec.
221 */
222struct i915_gtt {
223	struct i915_address_space base;
224	size_t stolen_size;		/* Total size of stolen memory */
225
226	unsigned long mappable_end;	/* End offset that we can CPU map */
227	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
228	phys_addr_t mappable_base;	/* PA of our GMADR */
229
230	/** "Graphics Stolen Memory" holds the global PTEs */
231	void __iomem *gsm;
232
233	bool do_idle_maps;
234
235	int mtrr;
236
237	/* global gtt ops */
238	int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
239			  size_t *stolen, phys_addr_t *mappable_base,
240			  unsigned long *mappable_end);
241};
242
243struct i915_hw_ppgtt {
244	struct i915_address_space base;
245	struct kref ref;
246	struct drm_mm_node node;
247	unsigned num_pd_entries;
248	unsigned num_pd_pages; /* gen8+ */
249	union {
250		struct page **pt_pages;
251		struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
252	};
253	struct page *pd_pages;
254	union {
255		uint32_t pd_offset;
256		dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
257	};
258	union {
259		dma_addr_t *pt_dma_addr;
260		dma_addr_t *gen8_pt_dma_addr[4];
261	};
262
263	struct drm_i915_file_private *file_priv;
264
265	int (*enable)(struct i915_hw_ppgtt *ppgtt);
266	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
267			 struct intel_engine_cs *ring);
268	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
269};
270
271int i915_gem_gtt_init(struct drm_device *dev);
272void i915_gem_init_global_gtt(struct drm_device *dev);
273int i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start,
274			      unsigned long mappable_end, unsigned long end);
275void i915_global_gtt_cleanup(struct drm_device *dev);
276
277
278int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
279int i915_ppgtt_init_hw(struct drm_device *dev);
280void i915_ppgtt_release(struct kref *kref);
281struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
282					struct drm_i915_file_private *fpriv);
283static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
284{
285	if (ppgtt)
286		kref_get(&ppgtt->ref);
287}
288static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
289{
290	if (ppgtt)
291		kref_put(&ppgtt->ref, i915_ppgtt_release);
292}
293
294void i915_check_and_clear_faults(struct drm_device *dev);
295void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
296void i915_gem_restore_gtt_mappings(struct drm_device *dev);
297
298int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
299void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
300
301#endif
302