[go: nahoru, domu]

1/*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/export.h>
13#include <linux/dmaengine.h>
14#include <linux/platform_device.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/log2.h>
18#include <linux/pm.h>
19#include <linux/pm_runtime.h>
20#include <linux/err.h>
21#include <linux/of.h>
22#include <linux/of_dma.h>
23#include <linux/amba/bus.h>
24#include <linux/regulator/consumer.h>
25#include <linux/platform_data/dma-ste-dma40.h>
26
27#include "dmaengine.h"
28#include "ste_dma40_ll.h"
29
30#define D40_NAME "dma40"
31
32#define D40_PHY_CHAN -1
33
34/* For masking out/in 2 bit channel positions */
35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38/* Maximum iterations taken before giving up suspending a channel */
39#define D40_SUSPEND_MAX_IT 500
40
41/* Milliseconds */
42#define DMA40_AUTOSUSPEND_DELAY	100
43
44/* Hardware requirement on LCLA alignment */
45#define LCLA_ALIGNMENT 0x40000
46
47/* Max number of links per event group */
48#define D40_LCLA_LINK_PER_EVENT_GRP 128
49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51/* Max number of logical channels per physical channel */
52#define D40_MAX_LOG_CHAN_PER_PHY 32
53
54/* Attempts before giving up to trying to get pages that are aligned */
55#define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57/* Bit markings for allocation map */
58#define D40_ALLOC_FREE		BIT(31)
59#define D40_ALLOC_PHY		BIT(30)
60#define D40_ALLOC_LOG_FREE	0
61
62#define D40_MEMCPY_MAX_CHANS	8
63
64/* Reserved event lines for memcpy only. */
65#define DB8500_DMA_MEMCPY_EV_0	51
66#define DB8500_DMA_MEMCPY_EV_1	56
67#define DB8500_DMA_MEMCPY_EV_2	57
68#define DB8500_DMA_MEMCPY_EV_3	58
69#define DB8500_DMA_MEMCPY_EV_4	59
70#define DB8500_DMA_MEMCPY_EV_5	60
71
72static int dma40_memcpy_channels[] = {
73	DB8500_DMA_MEMCPY_EV_0,
74	DB8500_DMA_MEMCPY_EV_1,
75	DB8500_DMA_MEMCPY_EV_2,
76	DB8500_DMA_MEMCPY_EV_3,
77	DB8500_DMA_MEMCPY_EV_4,
78	DB8500_DMA_MEMCPY_EV_5,
79};
80
81/* Default configuration for physcial memcpy */
82static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83	.mode = STEDMA40_MODE_PHYSICAL,
84	.dir = DMA_MEM_TO_MEM,
85
86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93};
94
95/* Default configuration for logical memcpy */
96static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97	.mode = STEDMA40_MODE_LOGICAL,
98	.dir = DMA_MEM_TO_MEM,
99
100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107};
108
109/**
110 * enum 40_command - The different commands and/or statuses.
111 *
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116 */
117enum d40_command {
118	D40_DMA_STOP		= 0,
119	D40_DMA_RUN		= 1,
120	D40_DMA_SUSPEND_REQ	= 2,
121	D40_DMA_SUSPENDED	= 3
122};
123
124/*
125 * enum d40_events - The different Event Enables for the event lines.
126 *
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
131 */
132
133enum d40_events {
134	D40_DEACTIVATE_EVENTLINE	= 0,
135	D40_ACTIVATE_EVENTLINE		= 1,
136	D40_SUSPEND_REQ_EVENTLINE	= 2,
137	D40_ROUND_EVENTLINE		= 3
138};
139
140/*
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144 */
145static u32 d40_backup_regs[] = {
146	D40_DREG_LCPA,
147	D40_DREG_LCLA,
148	D40_DREG_PRMSE,
149	D40_DREG_PRMSO,
150	D40_DREG_PRMOE,
151	D40_DREG_PRMOO,
152};
153
154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156/*
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167 */
168static u32 d40_backup_regs_v4a[] = {
169	D40_DREG_PSEG1,
170	D40_DREG_PSEG2,
171	D40_DREG_PSEG3,
172	D40_DREG_PSEG4,
173	D40_DREG_PCEG1,
174	D40_DREG_PCEG2,
175	D40_DREG_PCEG3,
176	D40_DREG_PCEG4,
177	D40_DREG_RSEG1,
178	D40_DREG_RSEG2,
179	D40_DREG_RSEG3,
180	D40_DREG_RSEG4,
181	D40_DREG_RCEG1,
182	D40_DREG_RCEG2,
183	D40_DREG_RCEG3,
184	D40_DREG_RCEG4,
185};
186
187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189static u32 d40_backup_regs_v4b[] = {
190	D40_DREG_CPSEG1,
191	D40_DREG_CPSEG2,
192	D40_DREG_CPSEG3,
193	D40_DREG_CPSEG4,
194	D40_DREG_CPSEG5,
195	D40_DREG_CPCEG1,
196	D40_DREG_CPCEG2,
197	D40_DREG_CPCEG3,
198	D40_DREG_CPCEG4,
199	D40_DREG_CPCEG5,
200	D40_DREG_CRSEG1,
201	D40_DREG_CRSEG2,
202	D40_DREG_CRSEG3,
203	D40_DREG_CRSEG4,
204	D40_DREG_CRSEG5,
205	D40_DREG_CRCEG1,
206	D40_DREG_CRCEG2,
207	D40_DREG_CRCEG3,
208	D40_DREG_CRCEG4,
209	D40_DREG_CRCEG5,
210};
211
212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214static u32 d40_backup_regs_chan[] = {
215	D40_CHAN_REG_SSCFG,
216	D40_CHAN_REG_SSELT,
217	D40_CHAN_REG_SSPTR,
218	D40_CHAN_REG_SSLNK,
219	D40_CHAN_REG_SDCFG,
220	D40_CHAN_REG_SDELT,
221	D40_CHAN_REG_SDPTR,
222	D40_CHAN_REG_SDLNK,
223};
224
225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228/**
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
230 *
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236 */
237struct d40_interrupt_lookup {
238	u32 src;
239	u32 clr;
240	bool is_error;
241	int offset;
242};
243
244
245static struct d40_interrupt_lookup il_v4a[] = {
246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256};
257
258static struct d40_interrupt_lookup il_v4b[] = {
259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271};
272
273/**
274 * struct d40_reg_val - simple lookup struct
275 *
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
278 */
279struct d40_reg_val {
280	unsigned int reg;
281	unsigned int val;
282};
283
284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285	/* Clock every part of the DMA block from start */
286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287
288	/* Interrupts on all logical channels */
289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301};
302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303	/* Clock every part of the DMA block from start */
304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305
306	/* Interrupts on all logical channels */
307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322};
323
324/**
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
326 *
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
334 */
335struct d40_lli_pool {
336	void	*base;
337	int	 size;
338	dma_addr_t	dma_addr;
339	/* Space for dst and src, plus an extra for padding */
340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341};
342
343/**
344 * struct d40_desc - A descriptor is one DMA job.
345 *
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
359 *
360 * This descriptor is used for both logical and physical transfers.
361 */
362struct d40_desc {
363	/* LLI physical */
364	struct d40_phy_lli_bidir	 lli_phy;
365	/* LLI logical */
366	struct d40_log_lli_bidir	 lli_log;
367
368	struct d40_lli_pool		 lli_pool;
369	int				 lli_len;
370	int				 lli_current;
371	int				 lcla_alloc;
372
373	struct dma_async_tx_descriptor	 txd;
374	struct list_head		 node;
375
376	bool				 is_in_client_list;
377	bool				 cyclic;
378};
379
380/**
381 * struct d40_lcla_pool - LCLA pool settings and data.
382 *
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
390 */
391struct d40_lcla_pool {
392	void		*base;
393	dma_addr_t	dma_addr;
394	void		*base_unaligned;
395	int		 pages;
396	spinlock_t	 lock;
397	struct d40_desc	**alloc_map;
398};
399
400/**
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
402 * channels.
403 *
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411 * event line number.
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 */
414struct d40_phy_res {
415	spinlock_t lock;
416	bool	   reserved;
417	int	   num;
418	u32	   allocated_src;
419	u32	   allocated_dst;
420	bool	   use_soft_lli;
421};
422
423struct d40_base;
424
425/**
426 * struct d40_chan - Struct that describes a channel.
427 *
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
431 * and tasklet.
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
453 *
454 * This struct can either "be" a logical or a physical channel.
455 */
456struct d40_chan {
457	spinlock_t			 lock;
458	int				 log_num;
459	int				 pending_tx;
460	bool				 busy;
461	struct d40_phy_res		*phy_chan;
462	struct dma_chan			 chan;
463	struct tasklet_struct		 tasklet;
464	struct list_head		 client;
465	struct list_head		 pending_queue;
466	struct list_head		 active;
467	struct list_head		 done;
468	struct list_head		 queue;
469	struct list_head		 prepare_queue;
470	struct stedma40_chan_cfg	 dma_cfg;
471	bool				 configured;
472	struct d40_base			*base;
473	/* Default register configurations */
474	u32				 src_def_cfg;
475	u32				 dst_def_cfg;
476	struct d40_def_lcsp		 log_def;
477	struct d40_log_lli_full		*lcpa;
478	/* Runtime reconfiguration */
479	dma_addr_t			runtime_addr;
480	enum dma_transfer_direction	runtime_direction;
481};
482
483/**
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485 * controller
486 *
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
499 */
500struct d40_gen_dmac {
501	u32				*backup;
502	u32				 backup_size;
503	u32				 realtime_en;
504	u32				 realtime_clear;
505	u32				 high_prio_en;
506	u32				 high_prio_clear;
507	u32				 interrupt_en;
508	u32				 interrupt_clear;
509	struct d40_interrupt_lookup	*il;
510	u32				 il_size;
511	struct d40_reg_val		*init_reg;
512	u32				 init_reg_size;
513};
514
515/**
516 * struct d40_base - The big global struct, one for each probe'd instance.
517 *
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529 * transfers).
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
534 * num_phy_chans.
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
545 * configuration.
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556 * later
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 * @gen_dmac: the struct for generic registers values to represent u8500/8540
560 * DMA controller
561 */
562struct d40_base {
563	spinlock_t			 interrupt_lock;
564	spinlock_t			 execmd_lock;
565	struct device			 *dev;
566	void __iomem			 *virtbase;
567	u8				  rev:4;
568	struct clk			 *clk;
569	phys_addr_t			  phy_start;
570	resource_size_t			  phy_size;
571	int				  irq;
572	int				  num_memcpy_chans;
573	int				  num_phy_chans;
574	int				  num_log_chans;
575	struct device_dma_parameters	  dma_parms;
576	struct dma_device		  dma_both;
577	struct dma_device		  dma_slave;
578	struct dma_device		  dma_memcpy;
579	struct d40_chan			 *phy_chans;
580	struct d40_chan			 *log_chans;
581	struct d40_chan			**lookup_log_chans;
582	struct d40_chan			**lookup_phy_chans;
583	struct stedma40_platform_data	 *plat_data;
584	struct regulator		 *lcpa_regulator;
585	/* Physical half channels */
586	struct d40_phy_res		 *phy_res;
587	struct d40_lcla_pool		  lcla_pool;
588	void				 *lcpa_base;
589	dma_addr_t			  phy_lcpa;
590	resource_size_t			  lcpa_size;
591	struct kmem_cache		 *desc_slab;
592	u32				  reg_val_backup[BACKUP_REGS_SZ];
593	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594	u32				 *reg_val_backup_chan;
595	u16				  gcc_pwr_off_mask;
596	struct d40_gen_dmac		  gen_dmac;
597};
598
599static struct device *chan2dev(struct d40_chan *d40c)
600{
601	return &d40c->chan.dev->device;
602}
603
604static bool chan_is_physical(struct d40_chan *chan)
605{
606	return chan->log_num == D40_PHY_CHAN;
607}
608
609static bool chan_is_logical(struct d40_chan *chan)
610{
611	return !chan_is_physical(chan);
612}
613
614static void __iomem *chan_base(struct d40_chan *chan)
615{
616	return chan->base->virtbase + D40_DREG_PCBASE +
617	       chan->phy_chan->num * D40_DREG_PCDELTA;
618}
619
620#define d40_err(dev, format, arg...)		\
621	dev_err(dev, "[%s] " format, __func__, ## arg)
622
623#define chan_err(d40c, format, arg...)		\
624	d40_err(chan2dev(d40c), format, ## arg)
625
626static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627			      int lli_len)
628{
629	bool is_log = chan_is_logical(d40c);
630	u32 align;
631	void *base;
632
633	if (is_log)
634		align = sizeof(struct d40_log_lli);
635	else
636		align = sizeof(struct d40_phy_lli);
637
638	if (lli_len == 1) {
639		base = d40d->lli_pool.pre_alloc_lli;
640		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
641		d40d->lli_pool.base = NULL;
642	} else {
643		d40d->lli_pool.size = lli_len * 2 * align;
644
645		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
646		d40d->lli_pool.base = base;
647
648		if (d40d->lli_pool.base == NULL)
649			return -ENOMEM;
650	}
651
652	if (is_log) {
653		d40d->lli_log.src = PTR_ALIGN(base, align);
654		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655
656		d40d->lli_pool.dma_addr = 0;
657	} else {
658		d40d->lli_phy.src = PTR_ALIGN(base, align);
659		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660
661		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
662							 d40d->lli_phy.src,
663							 d40d->lli_pool.size,
664							 DMA_TO_DEVICE);
665
666		if (dma_mapping_error(d40c->base->dev,
667				      d40d->lli_pool.dma_addr)) {
668			kfree(d40d->lli_pool.base);
669			d40d->lli_pool.base = NULL;
670			d40d->lli_pool.dma_addr = 0;
671			return -ENOMEM;
672		}
673	}
674
675	return 0;
676}
677
678static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679{
680	if (d40d->lli_pool.dma_addr)
681		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
682				 d40d->lli_pool.size, DMA_TO_DEVICE);
683
684	kfree(d40d->lli_pool.base);
685	d40d->lli_pool.base = NULL;
686	d40d->lli_pool.size = 0;
687	d40d->lli_log.src = NULL;
688	d40d->lli_log.dst = NULL;
689	d40d->lli_phy.src = NULL;
690	d40d->lli_phy.dst = NULL;
691}
692
693static int d40_lcla_alloc_one(struct d40_chan *d40c,
694			      struct d40_desc *d40d)
695{
696	unsigned long flags;
697	int i;
698	int ret = -EINVAL;
699
700	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
701
702	/*
703	 * Allocate both src and dst at the same time, therefore the half
704	 * start on 1 since 0 can't be used since zero is used as end marker.
705	 */
706	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
708
709		if (!d40c->base->lcla_pool.alloc_map[idx]) {
710			d40c->base->lcla_pool.alloc_map[idx] = d40d;
711			d40d->lcla_alloc++;
712			ret = i;
713			break;
714		}
715	}
716
717	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
718
719	return ret;
720}
721
722static int d40_lcla_free_all(struct d40_chan *d40c,
723			     struct d40_desc *d40d)
724{
725	unsigned long flags;
726	int i;
727	int ret = -EINVAL;
728
729	if (chan_is_physical(d40c))
730		return 0;
731
732	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
733
734	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
736
737		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
738			d40c->base->lcla_pool.alloc_map[idx] = NULL;
739			d40d->lcla_alloc--;
740			if (d40d->lcla_alloc == 0) {
741				ret = 0;
742				break;
743			}
744		}
745	}
746
747	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
748
749	return ret;
750
751}
752
753static void d40_desc_remove(struct d40_desc *d40d)
754{
755	list_del(&d40d->node);
756}
757
758static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
759{
760	struct d40_desc *desc = NULL;
761
762	if (!list_empty(&d40c->client)) {
763		struct d40_desc *d;
764		struct d40_desc *_d;
765
766		list_for_each_entry_safe(d, _d, &d40c->client, node) {
767			if (async_tx_test_ack(&d->txd)) {
768				d40_desc_remove(d);
769				desc = d;
770				memset(desc, 0, sizeof(*desc));
771				break;
772			}
773		}
774	}
775
776	if (!desc)
777		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
778
779	if (desc)
780		INIT_LIST_HEAD(&desc->node);
781
782	return desc;
783}
784
785static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
786{
787
788	d40_pool_lli_free(d40c, d40d);
789	d40_lcla_free_all(d40c, d40d);
790	kmem_cache_free(d40c->base->desc_slab, d40d);
791}
792
793static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
794{
795	list_add_tail(&desc->node, &d40c->active);
796}
797
798static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
799{
800	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
801	struct d40_phy_lli *lli_src = desc->lli_phy.src;
802	void __iomem *base = chan_base(chan);
803
804	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
805	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
806	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
807	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
808
809	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
810	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
811	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
812	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
813}
814
815static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
816{
817	list_add_tail(&desc->node, &d40c->done);
818}
819
820static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821{
822	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
823	struct d40_log_lli_bidir *lli = &desc->lli_log;
824	int lli_current = desc->lli_current;
825	int lli_len = desc->lli_len;
826	bool cyclic = desc->cyclic;
827	int curr_lcla = -EINVAL;
828	int first_lcla = 0;
829	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
830	bool linkback;
831
832	/*
833	 * We may have partially running cyclic transfers, in case we did't get
834	 * enough LCLA entries.
835	 */
836	linkback = cyclic && lli_current == 0;
837
838	/*
839	 * For linkback, we need one LCLA even with only one link, because we
840	 * can't link back to the one in LCPA space
841	 */
842	if (linkback || (lli_len - lli_current > 1)) {
843		/*
844		 * If the channel is expected to use only soft_lli don't
845		 * allocate a lcla. This is to avoid a HW issue that exists
846		 * in some controller during a peripheral to memory transfer
847		 * that uses linked lists.
848		 */
849		if (!(chan->phy_chan->use_soft_lli &&
850			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851			curr_lcla = d40_lcla_alloc_one(chan, desc);
852
853		first_lcla = curr_lcla;
854	}
855
856	/*
857	 * For linkback, we normally load the LCPA in the loop since we need to
858	 * link it to the second LCLA and not the first.  However, if we
859	 * couldn't even get a first LCLA, then we have to run in LCPA and
860	 * reload manually.
861	 */
862	if (!linkback || curr_lcla == -EINVAL) {
863		unsigned int flags = 0;
864
865		if (curr_lcla == -EINVAL)
866			flags |= LLI_TERM_INT;
867
868		d40_log_lli_lcpa_write(chan->lcpa,
869				       &lli->dst[lli_current],
870				       &lli->src[lli_current],
871				       curr_lcla,
872				       flags);
873		lli_current++;
874	}
875
876	if (curr_lcla < 0)
877		goto out;
878
879	for (; lli_current < lli_len; lli_current++) {
880		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
881					   8 * curr_lcla * 2;
882		struct d40_log_lli *lcla = pool->base + lcla_offset;
883		unsigned int flags = 0;
884		int next_lcla;
885
886		if (lli_current + 1 < lli_len)
887			next_lcla = d40_lcla_alloc_one(chan, desc);
888		else
889			next_lcla = linkback ? first_lcla : -EINVAL;
890
891		if (cyclic || next_lcla == -EINVAL)
892			flags |= LLI_TERM_INT;
893
894		if (linkback && curr_lcla == first_lcla) {
895			/* First link goes in both LCPA and LCLA */
896			d40_log_lli_lcpa_write(chan->lcpa,
897					       &lli->dst[lli_current],
898					       &lli->src[lli_current],
899					       next_lcla, flags);
900		}
901
902		/*
903		 * One unused LCLA in the cyclic case if the very first
904		 * next_lcla fails...
905		 */
906		d40_log_lli_lcla_write(lcla,
907				       &lli->dst[lli_current],
908				       &lli->src[lli_current],
909				       next_lcla, flags);
910
911		/*
912		 * Cache maintenance is not needed if lcla is
913		 * mapped in esram
914		 */
915		if (!use_esram_lcla) {
916			dma_sync_single_range_for_device(chan->base->dev,
917						pool->dma_addr, lcla_offset,
918						2 * sizeof(struct d40_log_lli),
919						DMA_TO_DEVICE);
920		}
921		curr_lcla = next_lcla;
922
923		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924			lli_current++;
925			break;
926		}
927	}
928
929out:
930	desc->lli_current = lli_current;
931}
932
933static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
934{
935	if (chan_is_physical(d40c)) {
936		d40_phy_lli_load(d40c, d40d);
937		d40d->lli_current = d40d->lli_len;
938	} else
939		d40_log_lli_to_lcxa(d40c, d40d);
940}
941
942static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
943{
944	struct d40_desc *d;
945
946	if (list_empty(&d40c->active))
947		return NULL;
948
949	d = list_first_entry(&d40c->active,
950			     struct d40_desc,
951			     node);
952	return d;
953}
954
955/* remove desc from current queue and add it to the pending_queue */
956static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
957{
958	d40_desc_remove(desc);
959	desc->is_in_client_list = false;
960	list_add_tail(&desc->node, &d40c->pending_queue);
961}
962
963static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
964{
965	struct d40_desc *d;
966
967	if (list_empty(&d40c->pending_queue))
968		return NULL;
969
970	d = list_first_entry(&d40c->pending_queue,
971			     struct d40_desc,
972			     node);
973	return d;
974}
975
976static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
977{
978	struct d40_desc *d;
979
980	if (list_empty(&d40c->queue))
981		return NULL;
982
983	d = list_first_entry(&d40c->queue,
984			     struct d40_desc,
985			     node);
986	return d;
987}
988
989static struct d40_desc *d40_first_done(struct d40_chan *d40c)
990{
991	if (list_empty(&d40c->done))
992		return NULL;
993
994	return list_first_entry(&d40c->done, struct d40_desc, node);
995}
996
997static int d40_psize_2_burst_size(bool is_log, int psize)
998{
999	if (is_log) {
1000		if (psize == STEDMA40_PSIZE_LOG_1)
1001			return 1;
1002	} else {
1003		if (psize == STEDMA40_PSIZE_PHY_1)
1004			return 1;
1005	}
1006
1007	return 2 << psize;
1008}
1009
1010/*
1011 * The dma only supports transmitting packages up to
1012 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1013 *
1014 * Calculate the total number of dma elements required to send the entire sg list.
1015 */
1016static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1017{
1018	int dmalen;
1019	u32 max_w = max(data_width1, data_width2);
1020	u32 min_w = min(data_width1, data_width2);
1021	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1022
1023	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1024		seg_max -= max_w;
1025
1026	if (!IS_ALIGNED(size, max_w))
1027		return -EINVAL;
1028
1029	if (size <= seg_max)
1030		dmalen = 1;
1031	else {
1032		dmalen = size / seg_max;
1033		if (dmalen * seg_max < size)
1034			dmalen++;
1035	}
1036	return dmalen;
1037}
1038
1039static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1040			   u32 data_width1, u32 data_width2)
1041{
1042	struct scatterlist *sg;
1043	int i;
1044	int len = 0;
1045	int ret;
1046
1047	for_each_sg(sgl, sg, sg_len, i) {
1048		ret = d40_size_2_dmalen(sg_dma_len(sg),
1049					data_width1, data_width2);
1050		if (ret < 0)
1051			return ret;
1052		len += ret;
1053	}
1054	return len;
1055}
1056
1057static int __d40_execute_command_phy(struct d40_chan *d40c,
1058				     enum d40_command command)
1059{
1060	u32 status;
1061	int i;
1062	void __iomem *active_reg;
1063	int ret = 0;
1064	unsigned long flags;
1065	u32 wmask;
1066
1067	if (command == D40_DMA_STOP) {
1068		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1069		if (ret)
1070			return ret;
1071	}
1072
1073	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1074
1075	if (d40c->phy_chan->num % 2 == 0)
1076		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1077	else
1078		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1079
1080	if (command == D40_DMA_SUSPEND_REQ) {
1081		status = (readl(active_reg) &
1082			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1083			D40_CHAN_POS(d40c->phy_chan->num);
1084
1085		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1086			goto done;
1087	}
1088
1089	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1090	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1091	       active_reg);
1092
1093	if (command == D40_DMA_SUSPEND_REQ) {
1094
1095		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1096			status = (readl(active_reg) &
1097				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1098				D40_CHAN_POS(d40c->phy_chan->num);
1099
1100			cpu_relax();
1101			/*
1102			 * Reduce the number of bus accesses while
1103			 * waiting for the DMA to suspend.
1104			 */
1105			udelay(3);
1106
1107			if (status == D40_DMA_STOP ||
1108			    status == D40_DMA_SUSPENDED)
1109				break;
1110		}
1111
1112		if (i == D40_SUSPEND_MAX_IT) {
1113			chan_err(d40c,
1114				"unable to suspend the chl %d (log: %d) status %x\n",
1115				d40c->phy_chan->num, d40c->log_num,
1116				status);
1117			dump_stack();
1118			ret = -EBUSY;
1119		}
1120
1121	}
1122done:
1123	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1124	return ret;
1125}
1126
1127static void d40_term_all(struct d40_chan *d40c)
1128{
1129	struct d40_desc *d40d;
1130	struct d40_desc *_d;
1131
1132	/* Release completed descriptors */
1133	while ((d40d = d40_first_done(d40c))) {
1134		d40_desc_remove(d40d);
1135		d40_desc_free(d40c, d40d);
1136	}
1137
1138	/* Release active descriptors */
1139	while ((d40d = d40_first_active_get(d40c))) {
1140		d40_desc_remove(d40d);
1141		d40_desc_free(d40c, d40d);
1142	}
1143
1144	/* Release queued descriptors waiting for transfer */
1145	while ((d40d = d40_first_queued(d40c))) {
1146		d40_desc_remove(d40d);
1147		d40_desc_free(d40c, d40d);
1148	}
1149
1150	/* Release pending descriptors */
1151	while ((d40d = d40_first_pending(d40c))) {
1152		d40_desc_remove(d40d);
1153		d40_desc_free(d40c, d40d);
1154	}
1155
1156	/* Release client owned descriptors */
1157	if (!list_empty(&d40c->client))
1158		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1159			d40_desc_remove(d40d);
1160			d40_desc_free(d40c, d40d);
1161		}
1162
1163	/* Release descriptors in prepare queue */
1164	if (!list_empty(&d40c->prepare_queue))
1165		list_for_each_entry_safe(d40d, _d,
1166					 &d40c->prepare_queue, node) {
1167			d40_desc_remove(d40d);
1168			d40_desc_free(d40c, d40d);
1169		}
1170
1171	d40c->pending_tx = 0;
1172}
1173
1174static void __d40_config_set_event(struct d40_chan *d40c,
1175				   enum d40_events event_type, u32 event,
1176				   int reg)
1177{
1178	void __iomem *addr = chan_base(d40c) + reg;
1179	int tries;
1180	u32 status;
1181
1182	switch (event_type) {
1183
1184	case D40_DEACTIVATE_EVENTLINE:
1185
1186		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1187		       | ~D40_EVENTLINE_MASK(event), addr);
1188		break;
1189
1190	case D40_SUSPEND_REQ_EVENTLINE:
1191		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1192			  D40_EVENTLINE_POS(event);
1193
1194		if (status == D40_DEACTIVATE_EVENTLINE ||
1195		    status == D40_SUSPEND_REQ_EVENTLINE)
1196			break;
1197
1198		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1199		       | ~D40_EVENTLINE_MASK(event), addr);
1200
1201		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1202
1203			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1204				  D40_EVENTLINE_POS(event);
1205
1206			cpu_relax();
1207			/*
1208			 * Reduce the number of bus accesses while
1209			 * waiting for the DMA to suspend.
1210			 */
1211			udelay(3);
1212
1213			if (status == D40_DEACTIVATE_EVENTLINE)
1214				break;
1215		}
1216
1217		if (tries == D40_SUSPEND_MAX_IT) {
1218			chan_err(d40c,
1219				"unable to stop the event_line chl %d (log: %d)"
1220				"status %x\n", d40c->phy_chan->num,
1221				 d40c->log_num, status);
1222		}
1223		break;
1224
1225	case D40_ACTIVATE_EVENTLINE:
1226	/*
1227	 * The hardware sometimes doesn't register the enable when src and dst
1228	 * event lines are active on the same logical channel.  Retry to ensure
1229	 * it does.  Usually only one retry is sufficient.
1230	 */
1231		tries = 100;
1232		while (--tries) {
1233			writel((D40_ACTIVATE_EVENTLINE <<
1234				D40_EVENTLINE_POS(event)) |
1235				~D40_EVENTLINE_MASK(event), addr);
1236
1237			if (readl(addr) & D40_EVENTLINE_MASK(event))
1238				break;
1239		}
1240
1241		if (tries != 99)
1242			dev_dbg(chan2dev(d40c),
1243				"[%s] workaround enable S%cLNK (%d tries)\n",
1244				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1245				100 - tries);
1246
1247		WARN_ON(!tries);
1248		break;
1249
1250	case D40_ROUND_EVENTLINE:
1251		BUG();
1252		break;
1253
1254	}
1255}
1256
1257static void d40_config_set_event(struct d40_chan *d40c,
1258				 enum d40_events event_type)
1259{
1260	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1261
1262	/* Enable event line connected to device (or memcpy) */
1263	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1264	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1265		__d40_config_set_event(d40c, event_type, event,
1266				       D40_CHAN_REG_SSLNK);
1267
1268	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1269		__d40_config_set_event(d40c, event_type, event,
1270				       D40_CHAN_REG_SDLNK);
1271}
1272
1273static u32 d40_chan_has_events(struct d40_chan *d40c)
1274{
1275	void __iomem *chanbase = chan_base(d40c);
1276	u32 val;
1277
1278	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1279	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1280
1281	return val;
1282}
1283
1284static int
1285__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1286{
1287	unsigned long flags;
1288	int ret = 0;
1289	u32 active_status;
1290	void __iomem *active_reg;
1291
1292	if (d40c->phy_chan->num % 2 == 0)
1293		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1294	else
1295		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1296
1297
1298	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1299
1300	switch (command) {
1301	case D40_DMA_STOP:
1302	case D40_DMA_SUSPEND_REQ:
1303
1304		active_status = (readl(active_reg) &
1305				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1306				 D40_CHAN_POS(d40c->phy_chan->num);
1307
1308		if (active_status == D40_DMA_RUN)
1309			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1310		else
1311			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1312
1313		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1314			ret = __d40_execute_command_phy(d40c, command);
1315
1316		break;
1317
1318	case D40_DMA_RUN:
1319
1320		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1321		ret = __d40_execute_command_phy(d40c, command);
1322		break;
1323
1324	case D40_DMA_SUSPENDED:
1325		BUG();
1326		break;
1327	}
1328
1329	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1330	return ret;
1331}
1332
1333static int d40_channel_execute_command(struct d40_chan *d40c,
1334				       enum d40_command command)
1335{
1336	if (chan_is_logical(d40c))
1337		return __d40_execute_command_log(d40c, command);
1338	else
1339		return __d40_execute_command_phy(d40c, command);
1340}
1341
1342static u32 d40_get_prmo(struct d40_chan *d40c)
1343{
1344	static const unsigned int phy_map[] = {
1345		[STEDMA40_PCHAN_BASIC_MODE]
1346			= D40_DREG_PRMO_PCHAN_BASIC,
1347		[STEDMA40_PCHAN_MODULO_MODE]
1348			= D40_DREG_PRMO_PCHAN_MODULO,
1349		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1350			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1351	};
1352	static const unsigned int log_map[] = {
1353		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1354			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1355		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1356			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1357		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1358			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1359	};
1360
1361	if (chan_is_physical(d40c))
1362		return phy_map[d40c->dma_cfg.mode_opt];
1363	else
1364		return log_map[d40c->dma_cfg.mode_opt];
1365}
1366
1367static void d40_config_write(struct d40_chan *d40c)
1368{
1369	u32 addr_base;
1370	u32 var;
1371
1372	/* Odd addresses are even addresses + 4 */
1373	addr_base = (d40c->phy_chan->num % 2) * 4;
1374	/* Setup channel mode to logical or physical */
1375	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1376		D40_CHAN_POS(d40c->phy_chan->num);
1377	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1378
1379	/* Setup operational mode option register */
1380	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1381
1382	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1383
1384	if (chan_is_logical(d40c)) {
1385		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1386			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1387		void __iomem *chanbase = chan_base(d40c);
1388
1389		/* Set default config for CFG reg */
1390		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1391		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1392
1393		/* Set LIDX for lcla */
1394		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1395		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1396
1397		/* Clear LNK which will be used by d40_chan_has_events() */
1398		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1399		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1400	}
1401}
1402
1403static u32 d40_residue(struct d40_chan *d40c)
1404{
1405	u32 num_elt;
1406
1407	if (chan_is_logical(d40c))
1408		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1409			>> D40_MEM_LCSP2_ECNT_POS;
1410	else {
1411		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1412		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1413			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1414	}
1415
1416	return num_elt * d40c->dma_cfg.dst_info.data_width;
1417}
1418
1419static bool d40_tx_is_linked(struct d40_chan *d40c)
1420{
1421	bool is_link;
1422
1423	if (chan_is_logical(d40c))
1424		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1425	else
1426		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1427			  & D40_SREG_LNK_PHYS_LNK_MASK;
1428
1429	return is_link;
1430}
1431
1432static int d40_pause(struct d40_chan *d40c)
1433{
1434	int res = 0;
1435	unsigned long flags;
1436
1437	if (!d40c->busy)
1438		return 0;
1439
1440	spin_lock_irqsave(&d40c->lock, flags);
1441	pm_runtime_get_sync(d40c->base->dev);
1442
1443	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1444
1445	pm_runtime_mark_last_busy(d40c->base->dev);
1446	pm_runtime_put_autosuspend(d40c->base->dev);
1447	spin_unlock_irqrestore(&d40c->lock, flags);
1448	return res;
1449}
1450
1451static int d40_resume(struct d40_chan *d40c)
1452{
1453	int res = 0;
1454	unsigned long flags;
1455
1456	if (!d40c->busy)
1457		return 0;
1458
1459	spin_lock_irqsave(&d40c->lock, flags);
1460	pm_runtime_get_sync(d40c->base->dev);
1461
1462	/* If bytes left to transfer or linked tx resume job */
1463	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1464		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1465
1466	pm_runtime_mark_last_busy(d40c->base->dev);
1467	pm_runtime_put_autosuspend(d40c->base->dev);
1468	spin_unlock_irqrestore(&d40c->lock, flags);
1469	return res;
1470}
1471
1472static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1473{
1474	struct d40_chan *d40c = container_of(tx->chan,
1475					     struct d40_chan,
1476					     chan);
1477	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1478	unsigned long flags;
1479	dma_cookie_t cookie;
1480
1481	spin_lock_irqsave(&d40c->lock, flags);
1482	cookie = dma_cookie_assign(tx);
1483	d40_desc_queue(d40c, d40d);
1484	spin_unlock_irqrestore(&d40c->lock, flags);
1485
1486	return cookie;
1487}
1488
1489static int d40_start(struct d40_chan *d40c)
1490{
1491	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1492}
1493
1494static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1495{
1496	struct d40_desc *d40d;
1497	int err;
1498
1499	/* Start queued jobs, if any */
1500	d40d = d40_first_queued(d40c);
1501
1502	if (d40d != NULL) {
1503		if (!d40c->busy) {
1504			d40c->busy = true;
1505			pm_runtime_get_sync(d40c->base->dev);
1506		}
1507
1508		/* Remove from queue */
1509		d40_desc_remove(d40d);
1510
1511		/* Add to active queue */
1512		d40_desc_submit(d40c, d40d);
1513
1514		/* Initiate DMA job */
1515		d40_desc_load(d40c, d40d);
1516
1517		/* Start dma job */
1518		err = d40_start(d40c);
1519
1520		if (err)
1521			return NULL;
1522	}
1523
1524	return d40d;
1525}
1526
1527/* called from interrupt context */
1528static void dma_tc_handle(struct d40_chan *d40c)
1529{
1530	struct d40_desc *d40d;
1531
1532	/* Get first active entry from list */
1533	d40d = d40_first_active_get(d40c);
1534
1535	if (d40d == NULL)
1536		return;
1537
1538	if (d40d->cyclic) {
1539		/*
1540		 * If this was a paritially loaded list, we need to reloaded
1541		 * it, and only when the list is completed.  We need to check
1542		 * for done because the interrupt will hit for every link, and
1543		 * not just the last one.
1544		 */
1545		if (d40d->lli_current < d40d->lli_len
1546		    && !d40_tx_is_linked(d40c)
1547		    && !d40_residue(d40c)) {
1548			d40_lcla_free_all(d40c, d40d);
1549			d40_desc_load(d40c, d40d);
1550			(void) d40_start(d40c);
1551
1552			if (d40d->lli_current == d40d->lli_len)
1553				d40d->lli_current = 0;
1554		}
1555	} else {
1556		d40_lcla_free_all(d40c, d40d);
1557
1558		if (d40d->lli_current < d40d->lli_len) {
1559			d40_desc_load(d40c, d40d);
1560			/* Start dma job */
1561			(void) d40_start(d40c);
1562			return;
1563		}
1564
1565		if (d40_queue_start(d40c) == NULL) {
1566			d40c->busy = false;
1567
1568			pm_runtime_mark_last_busy(d40c->base->dev);
1569			pm_runtime_put_autosuspend(d40c->base->dev);
1570		}
1571
1572		d40_desc_remove(d40d);
1573		d40_desc_done(d40c, d40d);
1574	}
1575
1576	d40c->pending_tx++;
1577	tasklet_schedule(&d40c->tasklet);
1578
1579}
1580
1581static void dma_tasklet(unsigned long data)
1582{
1583	struct d40_chan *d40c = (struct d40_chan *) data;
1584	struct d40_desc *d40d;
1585	unsigned long flags;
1586	bool callback_active;
1587	dma_async_tx_callback callback;
1588	void *callback_param;
1589
1590	spin_lock_irqsave(&d40c->lock, flags);
1591
1592	/* Get first entry from the done list */
1593	d40d = d40_first_done(d40c);
1594	if (d40d == NULL) {
1595		/* Check if we have reached here for cyclic job */
1596		d40d = d40_first_active_get(d40c);
1597		if (d40d == NULL || !d40d->cyclic)
1598			goto err;
1599	}
1600
1601	if (!d40d->cyclic)
1602		dma_cookie_complete(&d40d->txd);
1603
1604	/*
1605	 * If terminating a channel pending_tx is set to zero.
1606	 * This prevents any finished active jobs to return to the client.
1607	 */
1608	if (d40c->pending_tx == 0) {
1609		spin_unlock_irqrestore(&d40c->lock, flags);
1610		return;
1611	}
1612
1613	/* Callback to client */
1614	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1615	callback = d40d->txd.callback;
1616	callback_param = d40d->txd.callback_param;
1617
1618	if (!d40d->cyclic) {
1619		if (async_tx_test_ack(&d40d->txd)) {
1620			d40_desc_remove(d40d);
1621			d40_desc_free(d40c, d40d);
1622		} else if (!d40d->is_in_client_list) {
1623			d40_desc_remove(d40d);
1624			d40_lcla_free_all(d40c, d40d);
1625			list_add_tail(&d40d->node, &d40c->client);
1626			d40d->is_in_client_list = true;
1627		}
1628	}
1629
1630	d40c->pending_tx--;
1631
1632	if (d40c->pending_tx)
1633		tasklet_schedule(&d40c->tasklet);
1634
1635	spin_unlock_irqrestore(&d40c->lock, flags);
1636
1637	if (callback_active && callback)
1638		callback(callback_param);
1639
1640	return;
1641
1642err:
1643	/* Rescue manouver if receiving double interrupts */
1644	if (d40c->pending_tx > 0)
1645		d40c->pending_tx--;
1646	spin_unlock_irqrestore(&d40c->lock, flags);
1647}
1648
1649static irqreturn_t d40_handle_interrupt(int irq, void *data)
1650{
1651	int i;
1652	u32 idx;
1653	u32 row;
1654	long chan = -1;
1655	struct d40_chan *d40c;
1656	unsigned long flags;
1657	struct d40_base *base = data;
1658	u32 regs[base->gen_dmac.il_size];
1659	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1660	u32 il_size = base->gen_dmac.il_size;
1661
1662	spin_lock_irqsave(&base->interrupt_lock, flags);
1663
1664	/* Read interrupt status of both logical and physical channels */
1665	for (i = 0; i < il_size; i++)
1666		regs[i] = readl(base->virtbase + il[i].src);
1667
1668	for (;;) {
1669
1670		chan = find_next_bit((unsigned long *)regs,
1671				     BITS_PER_LONG * il_size, chan + 1);
1672
1673		/* No more set bits found? */
1674		if (chan == BITS_PER_LONG * il_size)
1675			break;
1676
1677		row = chan / BITS_PER_LONG;
1678		idx = chan & (BITS_PER_LONG - 1);
1679
1680		if (il[row].offset == D40_PHY_CHAN)
1681			d40c = base->lookup_phy_chans[idx];
1682		else
1683			d40c = base->lookup_log_chans[il[row].offset + idx];
1684
1685		if (!d40c) {
1686			/*
1687			 * No error because this can happen if something else
1688			 * in the system is using the channel.
1689			 */
1690			continue;
1691		}
1692
1693		/* ACK interrupt */
1694		writel(BIT(idx), base->virtbase + il[row].clr);
1695
1696		spin_lock(&d40c->lock);
1697
1698		if (!il[row].is_error)
1699			dma_tc_handle(d40c);
1700		else
1701			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1702				chan, il[row].offset, idx);
1703
1704		spin_unlock(&d40c->lock);
1705	}
1706
1707	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1708
1709	return IRQ_HANDLED;
1710}
1711
1712static int d40_validate_conf(struct d40_chan *d40c,
1713			     struct stedma40_chan_cfg *conf)
1714{
1715	int res = 0;
1716	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1717
1718	if (!conf->dir) {
1719		chan_err(d40c, "Invalid direction.\n");
1720		res = -EINVAL;
1721	}
1722
1723	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1724	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1725	    (conf->dev_type < 0)) {
1726		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1727		res = -EINVAL;
1728	}
1729
1730	if (conf->dir == DMA_DEV_TO_DEV) {
1731		/*
1732		 * DMAC HW supports it. Will be added to this driver,
1733		 * in case any dma client requires it.
1734		 */
1735		chan_err(d40c, "periph to periph not supported\n");
1736		res = -EINVAL;
1737	}
1738
1739	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1740	    conf->src_info.data_width !=
1741	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1742	    conf->dst_info.data_width) {
1743		/*
1744		 * The DMAC hardware only supports
1745		 * src (burst x width) == dst (burst x width)
1746		 */
1747
1748		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1749		res = -EINVAL;
1750	}
1751
1752	return res;
1753}
1754
1755static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1756			       bool is_src, int log_event_line, bool is_log,
1757			       bool *first_user)
1758{
1759	unsigned long flags;
1760	spin_lock_irqsave(&phy->lock, flags);
1761
1762	*first_user = ((phy->allocated_src | phy->allocated_dst)
1763			== D40_ALLOC_FREE);
1764
1765	if (!is_log) {
1766		/* Physical interrupts are masked per physical full channel */
1767		if (phy->allocated_src == D40_ALLOC_FREE &&
1768		    phy->allocated_dst == D40_ALLOC_FREE) {
1769			phy->allocated_dst = D40_ALLOC_PHY;
1770			phy->allocated_src = D40_ALLOC_PHY;
1771			goto found;
1772		} else
1773			goto not_found;
1774	}
1775
1776	/* Logical channel */
1777	if (is_src) {
1778		if (phy->allocated_src == D40_ALLOC_PHY)
1779			goto not_found;
1780
1781		if (phy->allocated_src == D40_ALLOC_FREE)
1782			phy->allocated_src = D40_ALLOC_LOG_FREE;
1783
1784		if (!(phy->allocated_src & BIT(log_event_line))) {
1785			phy->allocated_src |= BIT(log_event_line);
1786			goto found;
1787		} else
1788			goto not_found;
1789	} else {
1790		if (phy->allocated_dst == D40_ALLOC_PHY)
1791			goto not_found;
1792
1793		if (phy->allocated_dst == D40_ALLOC_FREE)
1794			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1795
1796		if (!(phy->allocated_dst & BIT(log_event_line))) {
1797			phy->allocated_dst |= BIT(log_event_line);
1798			goto found;
1799		} else
1800			goto not_found;
1801	}
1802
1803not_found:
1804	spin_unlock_irqrestore(&phy->lock, flags);
1805	return false;
1806found:
1807	spin_unlock_irqrestore(&phy->lock, flags);
1808	return true;
1809}
1810
1811static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1812			       int log_event_line)
1813{
1814	unsigned long flags;
1815	bool is_free = false;
1816
1817	spin_lock_irqsave(&phy->lock, flags);
1818	if (!log_event_line) {
1819		phy->allocated_dst = D40_ALLOC_FREE;
1820		phy->allocated_src = D40_ALLOC_FREE;
1821		is_free = true;
1822		goto out;
1823	}
1824
1825	/* Logical channel */
1826	if (is_src) {
1827		phy->allocated_src &= ~BIT(log_event_line);
1828		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1829			phy->allocated_src = D40_ALLOC_FREE;
1830	} else {
1831		phy->allocated_dst &= ~BIT(log_event_line);
1832		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1833			phy->allocated_dst = D40_ALLOC_FREE;
1834	}
1835
1836	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1837		   D40_ALLOC_FREE);
1838
1839out:
1840	spin_unlock_irqrestore(&phy->lock, flags);
1841
1842	return is_free;
1843}
1844
1845static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1846{
1847	int dev_type = d40c->dma_cfg.dev_type;
1848	int event_group;
1849	int event_line;
1850	struct d40_phy_res *phys;
1851	int i;
1852	int j;
1853	int log_num;
1854	int num_phy_chans;
1855	bool is_src;
1856	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1857
1858	phys = d40c->base->phy_res;
1859	num_phy_chans = d40c->base->num_phy_chans;
1860
1861	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1862		log_num = 2 * dev_type;
1863		is_src = true;
1864	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1865		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1866		/* dst event lines are used for logical memcpy */
1867		log_num = 2 * dev_type + 1;
1868		is_src = false;
1869	} else
1870		return -EINVAL;
1871
1872	event_group = D40_TYPE_TO_GROUP(dev_type);
1873	event_line = D40_TYPE_TO_EVENT(dev_type);
1874
1875	if (!is_log) {
1876		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1877			/* Find physical half channel */
1878			if (d40c->dma_cfg.use_fixed_channel) {
1879				i = d40c->dma_cfg.phy_channel;
1880				if (d40_alloc_mask_set(&phys[i], is_src,
1881						       0, is_log,
1882						       first_phy_user))
1883					goto found_phy;
1884			} else {
1885				for (i = 0; i < num_phy_chans; i++) {
1886					if (d40_alloc_mask_set(&phys[i], is_src,
1887						       0, is_log,
1888						       first_phy_user))
1889						goto found_phy;
1890				}
1891			}
1892		} else
1893			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1894				int phy_num = j  + event_group * 2;
1895				for (i = phy_num; i < phy_num + 2; i++) {
1896					if (d40_alloc_mask_set(&phys[i],
1897							       is_src,
1898							       0,
1899							       is_log,
1900							       first_phy_user))
1901						goto found_phy;
1902				}
1903			}
1904		return -EINVAL;
1905found_phy:
1906		d40c->phy_chan = &phys[i];
1907		d40c->log_num = D40_PHY_CHAN;
1908		goto out;
1909	}
1910	if (dev_type == -1)
1911		return -EINVAL;
1912
1913	/* Find logical channel */
1914	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1915		int phy_num = j + event_group * 2;
1916
1917		if (d40c->dma_cfg.use_fixed_channel) {
1918			i = d40c->dma_cfg.phy_channel;
1919
1920			if ((i != phy_num) && (i != phy_num + 1)) {
1921				dev_err(chan2dev(d40c),
1922					"invalid fixed phy channel %d\n", i);
1923				return -EINVAL;
1924			}
1925
1926			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1927					       is_log, first_phy_user))
1928				goto found_log;
1929
1930			dev_err(chan2dev(d40c),
1931				"could not allocate fixed phy channel %d\n", i);
1932			return -EINVAL;
1933		}
1934
1935		/*
1936		 * Spread logical channels across all available physical rather
1937		 * than pack every logical channel at the first available phy
1938		 * channels.
1939		 */
1940		if (is_src) {
1941			for (i = phy_num; i < phy_num + 2; i++) {
1942				if (d40_alloc_mask_set(&phys[i], is_src,
1943						       event_line, is_log,
1944						       first_phy_user))
1945					goto found_log;
1946			}
1947		} else {
1948			for (i = phy_num + 1; i >= phy_num; i--) {
1949				if (d40_alloc_mask_set(&phys[i], is_src,
1950						       event_line, is_log,
1951						       first_phy_user))
1952					goto found_log;
1953			}
1954		}
1955	}
1956	return -EINVAL;
1957
1958found_log:
1959	d40c->phy_chan = &phys[i];
1960	d40c->log_num = log_num;
1961out:
1962
1963	if (is_log)
1964		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1965	else
1966		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1967
1968	return 0;
1969
1970}
1971
1972static int d40_config_memcpy(struct d40_chan *d40c)
1973{
1974	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1975
1976	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1977		d40c->dma_cfg = dma40_memcpy_conf_log;
1978		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1979
1980		d40_log_cfg(&d40c->dma_cfg,
1981			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1982
1983	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1984		   dma_has_cap(DMA_SLAVE, cap)) {
1985		d40c->dma_cfg = dma40_memcpy_conf_phy;
1986
1987		/* Generate interrrupt at end of transfer or relink. */
1988		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1989
1990		/* Generate interrupt on error. */
1991		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1992		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1993
1994	} else {
1995		chan_err(d40c, "No memcpy\n");
1996		return -EINVAL;
1997	}
1998
1999	return 0;
2000}
2001
2002static int d40_free_dma(struct d40_chan *d40c)
2003{
2004
2005	int res = 0;
2006	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2007	struct d40_phy_res *phy = d40c->phy_chan;
2008	bool is_src;
2009
2010	/* Terminate all queued and active transfers */
2011	d40_term_all(d40c);
2012
2013	if (phy == NULL) {
2014		chan_err(d40c, "phy == null\n");
2015		return -EINVAL;
2016	}
2017
2018	if (phy->allocated_src == D40_ALLOC_FREE &&
2019	    phy->allocated_dst == D40_ALLOC_FREE) {
2020		chan_err(d40c, "channel already free\n");
2021		return -EINVAL;
2022	}
2023
2024	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2025	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2026		is_src = false;
2027	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2028		is_src = true;
2029	else {
2030		chan_err(d40c, "Unknown direction\n");
2031		return -EINVAL;
2032	}
2033
2034	pm_runtime_get_sync(d40c->base->dev);
2035	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2036	if (res) {
2037		chan_err(d40c, "stop failed\n");
2038		goto out;
2039	}
2040
2041	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2042
2043	if (chan_is_logical(d40c))
2044		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2045	else
2046		d40c->base->lookup_phy_chans[phy->num] = NULL;
2047
2048	if (d40c->busy) {
2049		pm_runtime_mark_last_busy(d40c->base->dev);
2050		pm_runtime_put_autosuspend(d40c->base->dev);
2051	}
2052
2053	d40c->busy = false;
2054	d40c->phy_chan = NULL;
2055	d40c->configured = false;
2056out:
2057
2058	pm_runtime_mark_last_busy(d40c->base->dev);
2059	pm_runtime_put_autosuspend(d40c->base->dev);
2060	return res;
2061}
2062
2063static bool d40_is_paused(struct d40_chan *d40c)
2064{
2065	void __iomem *chanbase = chan_base(d40c);
2066	bool is_paused = false;
2067	unsigned long flags;
2068	void __iomem *active_reg;
2069	u32 status;
2070	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2071
2072	spin_lock_irqsave(&d40c->lock, flags);
2073
2074	if (chan_is_physical(d40c)) {
2075		if (d40c->phy_chan->num % 2 == 0)
2076			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2077		else
2078			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2079
2080		status = (readl(active_reg) &
2081			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2082			D40_CHAN_POS(d40c->phy_chan->num);
2083		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2084			is_paused = true;
2085
2086		goto _exit;
2087	}
2088
2089	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2090	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2091		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2092	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2093		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2094	} else {
2095		chan_err(d40c, "Unknown direction\n");
2096		goto _exit;
2097	}
2098
2099	status = (status & D40_EVENTLINE_MASK(event)) >>
2100		D40_EVENTLINE_POS(event);
2101
2102	if (status != D40_DMA_RUN)
2103		is_paused = true;
2104_exit:
2105	spin_unlock_irqrestore(&d40c->lock, flags);
2106	return is_paused;
2107
2108}
2109
2110static u32 stedma40_residue(struct dma_chan *chan)
2111{
2112	struct d40_chan *d40c =
2113		container_of(chan, struct d40_chan, chan);
2114	u32 bytes_left;
2115	unsigned long flags;
2116
2117	spin_lock_irqsave(&d40c->lock, flags);
2118	bytes_left = d40_residue(d40c);
2119	spin_unlock_irqrestore(&d40c->lock, flags);
2120
2121	return bytes_left;
2122}
2123
2124static int
2125d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2126		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2127		unsigned int sg_len, dma_addr_t src_dev_addr,
2128		dma_addr_t dst_dev_addr)
2129{
2130	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2131	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2132	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2133	int ret;
2134
2135	ret = d40_log_sg_to_lli(sg_src, sg_len,
2136				src_dev_addr,
2137				desc->lli_log.src,
2138				chan->log_def.lcsp1,
2139				src_info->data_width,
2140				dst_info->data_width);
2141
2142	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2143				dst_dev_addr,
2144				desc->lli_log.dst,
2145				chan->log_def.lcsp3,
2146				dst_info->data_width,
2147				src_info->data_width);
2148
2149	return ret < 0 ? ret : 0;
2150}
2151
2152static int
2153d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2154		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2155		unsigned int sg_len, dma_addr_t src_dev_addr,
2156		dma_addr_t dst_dev_addr)
2157{
2158	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2159	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2160	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2161	unsigned long flags = 0;
2162	int ret;
2163
2164	if (desc->cyclic)
2165		flags |= LLI_CYCLIC | LLI_TERM_INT;
2166
2167	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2168				desc->lli_phy.src,
2169				virt_to_phys(desc->lli_phy.src),
2170				chan->src_def_cfg,
2171				src_info, dst_info, flags);
2172
2173	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2174				desc->lli_phy.dst,
2175				virt_to_phys(desc->lli_phy.dst),
2176				chan->dst_def_cfg,
2177				dst_info, src_info, flags);
2178
2179	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2180				   desc->lli_pool.size, DMA_TO_DEVICE);
2181
2182	return ret < 0 ? ret : 0;
2183}
2184
2185static struct d40_desc *
2186d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2187	      unsigned int sg_len, unsigned long dma_flags)
2188{
2189	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2190	struct d40_desc *desc;
2191	int ret;
2192
2193	desc = d40_desc_get(chan);
2194	if (!desc)
2195		return NULL;
2196
2197	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2198					cfg->dst_info.data_width);
2199	if (desc->lli_len < 0) {
2200		chan_err(chan, "Unaligned size\n");
2201		goto err;
2202	}
2203
2204	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2205	if (ret < 0) {
2206		chan_err(chan, "Could not allocate lli\n");
2207		goto err;
2208	}
2209
2210	desc->lli_current = 0;
2211	desc->txd.flags = dma_flags;
2212	desc->txd.tx_submit = d40_tx_submit;
2213
2214	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2215
2216	return desc;
2217
2218err:
2219	d40_desc_free(chan, desc);
2220	return NULL;
2221}
2222
2223static struct dma_async_tx_descriptor *
2224d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2225	    struct scatterlist *sg_dst, unsigned int sg_len,
2226	    enum dma_transfer_direction direction, unsigned long dma_flags)
2227{
2228	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2229	dma_addr_t src_dev_addr = 0;
2230	dma_addr_t dst_dev_addr = 0;
2231	struct d40_desc *desc;
2232	unsigned long flags;
2233	int ret;
2234
2235	if (!chan->phy_chan) {
2236		chan_err(chan, "Cannot prepare unallocated channel\n");
2237		return NULL;
2238	}
2239
2240	spin_lock_irqsave(&chan->lock, flags);
2241
2242	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2243	if (desc == NULL)
2244		goto err;
2245
2246	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2247		desc->cyclic = true;
2248
2249	if (direction == DMA_DEV_TO_MEM)
2250		src_dev_addr = chan->runtime_addr;
2251	else if (direction == DMA_MEM_TO_DEV)
2252		dst_dev_addr = chan->runtime_addr;
2253
2254	if (chan_is_logical(chan))
2255		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2256				      sg_len, src_dev_addr, dst_dev_addr);
2257	else
2258		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2259				      sg_len, src_dev_addr, dst_dev_addr);
2260
2261	if (ret) {
2262		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2263			 chan_is_logical(chan) ? "log" : "phy", ret);
2264		goto err;
2265	}
2266
2267	/*
2268	 * add descriptor to the prepare queue in order to be able
2269	 * to free them later in terminate_all
2270	 */
2271	list_add_tail(&desc->node, &chan->prepare_queue);
2272
2273	spin_unlock_irqrestore(&chan->lock, flags);
2274
2275	return &desc->txd;
2276
2277err:
2278	if (desc)
2279		d40_desc_free(chan, desc);
2280	spin_unlock_irqrestore(&chan->lock, flags);
2281	return NULL;
2282}
2283
2284bool stedma40_filter(struct dma_chan *chan, void *data)
2285{
2286	struct stedma40_chan_cfg *info = data;
2287	struct d40_chan *d40c =
2288		container_of(chan, struct d40_chan, chan);
2289	int err;
2290
2291	if (data) {
2292		err = d40_validate_conf(d40c, info);
2293		if (!err)
2294			d40c->dma_cfg = *info;
2295	} else
2296		err = d40_config_memcpy(d40c);
2297
2298	if (!err)
2299		d40c->configured = true;
2300
2301	return err == 0;
2302}
2303EXPORT_SYMBOL(stedma40_filter);
2304
2305static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2306{
2307	bool realtime = d40c->dma_cfg.realtime;
2308	bool highprio = d40c->dma_cfg.high_priority;
2309	u32 rtreg;
2310	u32 event = D40_TYPE_TO_EVENT(dev_type);
2311	u32 group = D40_TYPE_TO_GROUP(dev_type);
2312	u32 bit = BIT(event);
2313	u32 prioreg;
2314	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2315
2316	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2317	/*
2318	 * Due to a hardware bug, in some cases a logical channel triggered by
2319	 * a high priority destination event line can generate extra packet
2320	 * transactions.
2321	 *
2322	 * The workaround is to not set the high priority level for the
2323	 * destination event lines that trigger logical channels.
2324	 */
2325	if (!src && chan_is_logical(d40c))
2326		highprio = false;
2327
2328	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2329
2330	/* Destination event lines are stored in the upper halfword */
2331	if (!src)
2332		bit <<= 16;
2333
2334	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2335	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2336}
2337
2338static void d40_set_prio_realtime(struct d40_chan *d40c)
2339{
2340	if (d40c->base->rev < 3)
2341		return;
2342
2343	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2344	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2345		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2346
2347	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2348	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2349		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2350}
2351
2352#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2353#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2354#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2355#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2356#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2357
2358static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2359				  struct of_dma *ofdma)
2360{
2361	struct stedma40_chan_cfg cfg;
2362	dma_cap_mask_t cap;
2363	u32 flags;
2364
2365	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2366
2367	dma_cap_zero(cap);
2368	dma_cap_set(DMA_SLAVE, cap);
2369
2370	cfg.dev_type = dma_spec->args[0];
2371	flags = dma_spec->args[2];
2372
2373	switch (D40_DT_FLAGS_MODE(flags)) {
2374	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2375	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2376	}
2377
2378	switch (D40_DT_FLAGS_DIR(flags)) {
2379	case 0:
2380		cfg.dir = DMA_MEM_TO_DEV;
2381		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2382		break;
2383	case 1:
2384		cfg.dir = DMA_DEV_TO_MEM;
2385		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2386		break;
2387	}
2388
2389	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2390		cfg.phy_channel = dma_spec->args[1];
2391		cfg.use_fixed_channel = true;
2392	}
2393
2394	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2395		cfg.high_priority = true;
2396
2397	return dma_request_channel(cap, stedma40_filter, &cfg);
2398}
2399
2400/* DMA ENGINE functions */
2401static int d40_alloc_chan_resources(struct dma_chan *chan)
2402{
2403	int err;
2404	unsigned long flags;
2405	struct d40_chan *d40c =
2406		container_of(chan, struct d40_chan, chan);
2407	bool is_free_phy;
2408	spin_lock_irqsave(&d40c->lock, flags);
2409
2410	dma_cookie_init(chan);
2411
2412	/* If no dma configuration is set use default configuration (memcpy) */
2413	if (!d40c->configured) {
2414		err = d40_config_memcpy(d40c);
2415		if (err) {
2416			chan_err(d40c, "Failed to configure memcpy channel\n");
2417			goto fail;
2418		}
2419	}
2420
2421	err = d40_allocate_channel(d40c, &is_free_phy);
2422	if (err) {
2423		chan_err(d40c, "Failed to allocate channel\n");
2424		d40c->configured = false;
2425		goto fail;
2426	}
2427
2428	pm_runtime_get_sync(d40c->base->dev);
2429
2430	d40_set_prio_realtime(d40c);
2431
2432	if (chan_is_logical(d40c)) {
2433		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2434			d40c->lcpa = d40c->base->lcpa_base +
2435				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2436		else
2437			d40c->lcpa = d40c->base->lcpa_base +
2438				d40c->dma_cfg.dev_type *
2439				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2440
2441		/* Unmask the Global Interrupt Mask. */
2442		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2443		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2444	}
2445
2446	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2447		 chan_is_logical(d40c) ? "logical" : "physical",
2448		 d40c->phy_chan->num,
2449		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2450
2451
2452	/*
2453	 * Only write channel configuration to the DMA if the physical
2454	 * resource is free. In case of multiple logical channels
2455	 * on the same physical resource, only the first write is necessary.
2456	 */
2457	if (is_free_phy)
2458		d40_config_write(d40c);
2459fail:
2460	pm_runtime_mark_last_busy(d40c->base->dev);
2461	pm_runtime_put_autosuspend(d40c->base->dev);
2462	spin_unlock_irqrestore(&d40c->lock, flags);
2463	return err;
2464}
2465
2466static void d40_free_chan_resources(struct dma_chan *chan)
2467{
2468	struct d40_chan *d40c =
2469		container_of(chan, struct d40_chan, chan);
2470	int err;
2471	unsigned long flags;
2472
2473	if (d40c->phy_chan == NULL) {
2474		chan_err(d40c, "Cannot free unallocated channel\n");
2475		return;
2476	}
2477
2478	spin_lock_irqsave(&d40c->lock, flags);
2479
2480	err = d40_free_dma(d40c);
2481
2482	if (err)
2483		chan_err(d40c, "Failed to free channel\n");
2484	spin_unlock_irqrestore(&d40c->lock, flags);
2485}
2486
2487static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2488						       dma_addr_t dst,
2489						       dma_addr_t src,
2490						       size_t size,
2491						       unsigned long dma_flags)
2492{
2493	struct scatterlist dst_sg;
2494	struct scatterlist src_sg;
2495
2496	sg_init_table(&dst_sg, 1);
2497	sg_init_table(&src_sg, 1);
2498
2499	sg_dma_address(&dst_sg) = dst;
2500	sg_dma_address(&src_sg) = src;
2501
2502	sg_dma_len(&dst_sg) = size;
2503	sg_dma_len(&src_sg) = size;
2504
2505	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2506}
2507
2508static struct dma_async_tx_descriptor *
2509d40_prep_memcpy_sg(struct dma_chan *chan,
2510		   struct scatterlist *dst_sg, unsigned int dst_nents,
2511		   struct scatterlist *src_sg, unsigned int src_nents,
2512		   unsigned long dma_flags)
2513{
2514	if (dst_nents != src_nents)
2515		return NULL;
2516
2517	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2518}
2519
2520static struct dma_async_tx_descriptor *
2521d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2522		  unsigned int sg_len, enum dma_transfer_direction direction,
2523		  unsigned long dma_flags, void *context)
2524{
2525	if (!is_slave_direction(direction))
2526		return NULL;
2527
2528	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2529}
2530
2531static struct dma_async_tx_descriptor *
2532dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2533		     size_t buf_len, size_t period_len,
2534		     enum dma_transfer_direction direction, unsigned long flags)
2535{
2536	unsigned int periods = buf_len / period_len;
2537	struct dma_async_tx_descriptor *txd;
2538	struct scatterlist *sg;
2539	int i;
2540
2541	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2542	if (!sg)
2543		return NULL;
2544
2545	for (i = 0; i < periods; i++) {
2546		sg_dma_address(&sg[i]) = dma_addr;
2547		sg_dma_len(&sg[i]) = period_len;
2548		dma_addr += period_len;
2549	}
2550
2551	sg[periods].offset = 0;
2552	sg_dma_len(&sg[periods]) = 0;
2553	sg[periods].page_link =
2554		((unsigned long)sg | 0x01) & ~0x02;
2555
2556	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2557			  DMA_PREP_INTERRUPT);
2558
2559	kfree(sg);
2560
2561	return txd;
2562}
2563
2564static enum dma_status d40_tx_status(struct dma_chan *chan,
2565				     dma_cookie_t cookie,
2566				     struct dma_tx_state *txstate)
2567{
2568	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2569	enum dma_status ret;
2570
2571	if (d40c->phy_chan == NULL) {
2572		chan_err(d40c, "Cannot read status of unallocated channel\n");
2573		return -EINVAL;
2574	}
2575
2576	ret = dma_cookie_status(chan, cookie, txstate);
2577	if (ret != DMA_COMPLETE)
2578		dma_set_residue(txstate, stedma40_residue(chan));
2579
2580	if (d40_is_paused(d40c))
2581		ret = DMA_PAUSED;
2582
2583	return ret;
2584}
2585
2586static void d40_issue_pending(struct dma_chan *chan)
2587{
2588	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2589	unsigned long flags;
2590
2591	if (d40c->phy_chan == NULL) {
2592		chan_err(d40c, "Channel is not allocated!\n");
2593		return;
2594	}
2595
2596	spin_lock_irqsave(&d40c->lock, flags);
2597
2598	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2599
2600	/* Busy means that queued jobs are already being processed */
2601	if (!d40c->busy)
2602		(void) d40_queue_start(d40c);
2603
2604	spin_unlock_irqrestore(&d40c->lock, flags);
2605}
2606
2607static void d40_terminate_all(struct dma_chan *chan)
2608{
2609	unsigned long flags;
2610	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2611	int ret;
2612
2613	spin_lock_irqsave(&d40c->lock, flags);
2614
2615	pm_runtime_get_sync(d40c->base->dev);
2616	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2617	if (ret)
2618		chan_err(d40c, "Failed to stop channel\n");
2619
2620	d40_term_all(d40c);
2621	pm_runtime_mark_last_busy(d40c->base->dev);
2622	pm_runtime_put_autosuspend(d40c->base->dev);
2623	if (d40c->busy) {
2624		pm_runtime_mark_last_busy(d40c->base->dev);
2625		pm_runtime_put_autosuspend(d40c->base->dev);
2626	}
2627	d40c->busy = false;
2628
2629	spin_unlock_irqrestore(&d40c->lock, flags);
2630}
2631
2632static int
2633dma40_config_to_halfchannel(struct d40_chan *d40c,
2634			    struct stedma40_half_channel_info *info,
2635			    u32 maxburst)
2636{
2637	int psize;
2638
2639	if (chan_is_logical(d40c)) {
2640		if (maxburst >= 16)
2641			psize = STEDMA40_PSIZE_LOG_16;
2642		else if (maxburst >= 8)
2643			psize = STEDMA40_PSIZE_LOG_8;
2644		else if (maxburst >= 4)
2645			psize = STEDMA40_PSIZE_LOG_4;
2646		else
2647			psize = STEDMA40_PSIZE_LOG_1;
2648	} else {
2649		if (maxburst >= 16)
2650			psize = STEDMA40_PSIZE_PHY_16;
2651		else if (maxburst >= 8)
2652			psize = STEDMA40_PSIZE_PHY_8;
2653		else if (maxburst >= 4)
2654			psize = STEDMA40_PSIZE_PHY_4;
2655		else
2656			psize = STEDMA40_PSIZE_PHY_1;
2657	}
2658
2659	info->psize = psize;
2660	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2661
2662	return 0;
2663}
2664
2665/* Runtime reconfiguration extension */
2666static int d40_set_runtime_config(struct dma_chan *chan,
2667				  struct dma_slave_config *config)
2668{
2669	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2670	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2671	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2672	dma_addr_t config_addr;
2673	u32 src_maxburst, dst_maxburst;
2674	int ret;
2675
2676	src_addr_width = config->src_addr_width;
2677	src_maxburst = config->src_maxburst;
2678	dst_addr_width = config->dst_addr_width;
2679	dst_maxburst = config->dst_maxburst;
2680
2681	if (config->direction == DMA_DEV_TO_MEM) {
2682		config_addr = config->src_addr;
2683
2684		if (cfg->dir != DMA_DEV_TO_MEM)
2685			dev_dbg(d40c->base->dev,
2686				"channel was not configured for peripheral "
2687				"to memory transfer (%d) overriding\n",
2688				cfg->dir);
2689		cfg->dir = DMA_DEV_TO_MEM;
2690
2691		/* Configure the memory side */
2692		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2693			dst_addr_width = src_addr_width;
2694		if (dst_maxburst == 0)
2695			dst_maxburst = src_maxburst;
2696
2697	} else if (config->direction == DMA_MEM_TO_DEV) {
2698		config_addr = config->dst_addr;
2699
2700		if (cfg->dir != DMA_MEM_TO_DEV)
2701			dev_dbg(d40c->base->dev,
2702				"channel was not configured for memory "
2703				"to peripheral transfer (%d) overriding\n",
2704				cfg->dir);
2705		cfg->dir = DMA_MEM_TO_DEV;
2706
2707		/* Configure the memory side */
2708		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2709			src_addr_width = dst_addr_width;
2710		if (src_maxburst == 0)
2711			src_maxburst = dst_maxburst;
2712	} else {
2713		dev_err(d40c->base->dev,
2714			"unrecognized channel direction %d\n",
2715			config->direction);
2716		return -EINVAL;
2717	}
2718
2719	if (config_addr <= 0) {
2720		dev_err(d40c->base->dev, "no address supplied\n");
2721		return -EINVAL;
2722	}
2723
2724	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2725		dev_err(d40c->base->dev,
2726			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2727			src_maxburst,
2728			src_addr_width,
2729			dst_maxburst,
2730			dst_addr_width);
2731		return -EINVAL;
2732	}
2733
2734	if (src_maxburst > 16) {
2735		src_maxburst = 16;
2736		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2737	} else if (dst_maxburst > 16) {
2738		dst_maxburst = 16;
2739		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2740	}
2741
2742	/* Only valid widths are; 1, 2, 4 and 8. */
2743	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2744	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2745	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2746	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2747	    !is_power_of_2(src_addr_width) ||
2748	    !is_power_of_2(dst_addr_width))
2749		return -EINVAL;
2750
2751	cfg->src_info.data_width = src_addr_width;
2752	cfg->dst_info.data_width = dst_addr_width;
2753
2754	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2755					  src_maxburst);
2756	if (ret)
2757		return ret;
2758
2759	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2760					  dst_maxburst);
2761	if (ret)
2762		return ret;
2763
2764	/* Fill in register values */
2765	if (chan_is_logical(d40c))
2766		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2767	else
2768		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2769
2770	/* These settings will take precedence later */
2771	d40c->runtime_addr = config_addr;
2772	d40c->runtime_direction = config->direction;
2773	dev_dbg(d40c->base->dev,
2774		"configured channel %s for %s, data width %d/%d, "
2775		"maxburst %d/%d elements, LE, no flow control\n",
2776		dma_chan_name(chan),
2777		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2778		src_addr_width, dst_addr_width,
2779		src_maxburst, dst_maxburst);
2780
2781	return 0;
2782}
2783
2784static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2785		       unsigned long arg)
2786{
2787	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2788
2789	if (d40c->phy_chan == NULL) {
2790		chan_err(d40c, "Channel is not allocated!\n");
2791		return -EINVAL;
2792	}
2793
2794	switch (cmd) {
2795	case DMA_TERMINATE_ALL:
2796		d40_terminate_all(chan);
2797		return 0;
2798	case DMA_PAUSE:
2799		return d40_pause(d40c);
2800	case DMA_RESUME:
2801		return d40_resume(d40c);
2802	case DMA_SLAVE_CONFIG:
2803		return d40_set_runtime_config(chan,
2804			(struct dma_slave_config *) arg);
2805	default:
2806		break;
2807	}
2808
2809	/* Other commands are unimplemented */
2810	return -ENXIO;
2811}
2812
2813/* Initialization functions */
2814
2815static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2816				 struct d40_chan *chans, int offset,
2817				 int num_chans)
2818{
2819	int i = 0;
2820	struct d40_chan *d40c;
2821
2822	INIT_LIST_HEAD(&dma->channels);
2823
2824	for (i = offset; i < offset + num_chans; i++) {
2825		d40c = &chans[i];
2826		d40c->base = base;
2827		d40c->chan.device = dma;
2828
2829		spin_lock_init(&d40c->lock);
2830
2831		d40c->log_num = D40_PHY_CHAN;
2832
2833		INIT_LIST_HEAD(&d40c->done);
2834		INIT_LIST_HEAD(&d40c->active);
2835		INIT_LIST_HEAD(&d40c->queue);
2836		INIT_LIST_HEAD(&d40c->pending_queue);
2837		INIT_LIST_HEAD(&d40c->client);
2838		INIT_LIST_HEAD(&d40c->prepare_queue);
2839
2840		tasklet_init(&d40c->tasklet, dma_tasklet,
2841			     (unsigned long) d40c);
2842
2843		list_add_tail(&d40c->chan.device_node,
2844			      &dma->channels);
2845	}
2846}
2847
2848static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2849{
2850	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2851		dev->device_prep_slave_sg = d40_prep_slave_sg;
2852
2853	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2854		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2855
2856		/*
2857		 * This controller can only access address at even
2858		 * 32bit boundaries, i.e. 2^2
2859		 */
2860		dev->copy_align = 2;
2861	}
2862
2863	if (dma_has_cap(DMA_SG, dev->cap_mask))
2864		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2865
2866	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2867		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2868
2869	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2870	dev->device_free_chan_resources = d40_free_chan_resources;
2871	dev->device_issue_pending = d40_issue_pending;
2872	dev->device_tx_status = d40_tx_status;
2873	dev->device_control = d40_control;
2874	dev->dev = base->dev;
2875}
2876
2877static int __init d40_dmaengine_init(struct d40_base *base,
2878				     int num_reserved_chans)
2879{
2880	int err ;
2881
2882	d40_chan_init(base, &base->dma_slave, base->log_chans,
2883		      0, base->num_log_chans);
2884
2885	dma_cap_zero(base->dma_slave.cap_mask);
2886	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2887	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2888
2889	d40_ops_init(base, &base->dma_slave);
2890
2891	err = dma_async_device_register(&base->dma_slave);
2892
2893	if (err) {
2894		d40_err(base->dev, "Failed to register slave channels\n");
2895		goto failure1;
2896	}
2897
2898	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2899		      base->num_log_chans, base->num_memcpy_chans);
2900
2901	dma_cap_zero(base->dma_memcpy.cap_mask);
2902	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2903	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2904
2905	d40_ops_init(base, &base->dma_memcpy);
2906
2907	err = dma_async_device_register(&base->dma_memcpy);
2908
2909	if (err) {
2910		d40_err(base->dev,
2911			"Failed to regsiter memcpy only channels\n");
2912		goto failure2;
2913	}
2914
2915	d40_chan_init(base, &base->dma_both, base->phy_chans,
2916		      0, num_reserved_chans);
2917
2918	dma_cap_zero(base->dma_both.cap_mask);
2919	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2920	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2921	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2922	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2923
2924	d40_ops_init(base, &base->dma_both);
2925	err = dma_async_device_register(&base->dma_both);
2926
2927	if (err) {
2928		d40_err(base->dev,
2929			"Failed to register logical and physical capable channels\n");
2930		goto failure3;
2931	}
2932	return 0;
2933failure3:
2934	dma_async_device_unregister(&base->dma_memcpy);
2935failure2:
2936	dma_async_device_unregister(&base->dma_slave);
2937failure1:
2938	return err;
2939}
2940
2941/* Suspend resume functionality */
2942#ifdef CONFIG_PM_SLEEP
2943static int dma40_suspend(struct device *dev)
2944{
2945	struct platform_device *pdev = to_platform_device(dev);
2946	struct d40_base *base = platform_get_drvdata(pdev);
2947	int ret;
2948
2949	ret = pm_runtime_force_suspend(dev);
2950	if (ret)
2951		return ret;
2952
2953	if (base->lcpa_regulator)
2954		ret = regulator_disable(base->lcpa_regulator);
2955	return ret;
2956}
2957
2958static int dma40_resume(struct device *dev)
2959{
2960	struct platform_device *pdev = to_platform_device(dev);
2961	struct d40_base *base = platform_get_drvdata(pdev);
2962	int ret = 0;
2963
2964	if (base->lcpa_regulator) {
2965		ret = regulator_enable(base->lcpa_regulator);
2966		if (ret)
2967			return ret;
2968	}
2969
2970	return pm_runtime_force_resume(dev);
2971}
2972#endif
2973
2974#ifdef CONFIG_PM
2975static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2976			 u32 *regaddr, int num, bool save)
2977{
2978	int i;
2979
2980	for (i = 0; i < num; i++) {
2981		void __iomem *addr = baseaddr + regaddr[i];
2982
2983		if (save)
2984			backup[i] = readl_relaxed(addr);
2985		else
2986			writel_relaxed(backup[i], addr);
2987	}
2988}
2989
2990static void d40_save_restore_registers(struct d40_base *base, bool save)
2991{
2992	int i;
2993
2994	/* Save/Restore channel specific registers */
2995	for (i = 0; i < base->num_phy_chans; i++) {
2996		void __iomem *addr;
2997		int idx;
2998
2999		if (base->phy_res[i].reserved)
3000			continue;
3001
3002		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
3003		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
3004
3005		dma40_backup(addr, &base->reg_val_backup_chan[idx],
3006			     d40_backup_regs_chan,
3007			     ARRAY_SIZE(d40_backup_regs_chan),
3008			     save);
3009	}
3010
3011	/* Save/Restore global registers */
3012	dma40_backup(base->virtbase, base->reg_val_backup,
3013		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
3014		     save);
3015
3016	/* Save/Restore registers only existing on dma40 v3 and later */
3017	if (base->gen_dmac.backup)
3018		dma40_backup(base->virtbase, base->reg_val_backup_v4,
3019			     base->gen_dmac.backup,
3020			base->gen_dmac.backup_size,
3021			save);
3022}
3023
3024static int dma40_runtime_suspend(struct device *dev)
3025{
3026	struct platform_device *pdev = to_platform_device(dev);
3027	struct d40_base *base = platform_get_drvdata(pdev);
3028
3029	d40_save_restore_registers(base, true);
3030
3031	/* Don't disable/enable clocks for v1 due to HW bugs */
3032	if (base->rev != 1)
3033		writel_relaxed(base->gcc_pwr_off_mask,
3034			       base->virtbase + D40_DREG_GCC);
3035
3036	return 0;
3037}
3038
3039static int dma40_runtime_resume(struct device *dev)
3040{
3041	struct platform_device *pdev = to_platform_device(dev);
3042	struct d40_base *base = platform_get_drvdata(pdev);
3043
3044	d40_save_restore_registers(base, false);
3045
3046	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3047		       base->virtbase + D40_DREG_GCC);
3048	return 0;
3049}
3050#endif
3051
3052static const struct dev_pm_ops dma40_pm_ops = {
3053	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3054	SET_PM_RUNTIME_PM_OPS(dma40_runtime_suspend,
3055				dma40_runtime_resume,
3056				NULL)
3057};
3058
3059/* Initialization functions. */
3060
3061static int __init d40_phy_res_init(struct d40_base *base)
3062{
3063	int i;
3064	int num_phy_chans_avail = 0;
3065	u32 val[2];
3066	int odd_even_bit = -2;
3067	int gcc = D40_DREG_GCC_ENA;
3068
3069	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3070	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3071
3072	for (i = 0; i < base->num_phy_chans; i++) {
3073		base->phy_res[i].num = i;
3074		odd_even_bit += 2 * ((i % 2) == 0);
3075		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3076			/* Mark security only channels as occupied */
3077			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3078			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3079			base->phy_res[i].reserved = true;
3080			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3081						       D40_DREG_GCC_SRC);
3082			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3083						       D40_DREG_GCC_DST);
3084
3085
3086		} else {
3087			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3088			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3089			base->phy_res[i].reserved = false;
3090			num_phy_chans_avail++;
3091		}
3092		spin_lock_init(&base->phy_res[i].lock);
3093	}
3094
3095	/* Mark disabled channels as occupied */
3096	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3097		int chan = base->plat_data->disabled_channels[i];
3098
3099		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3100		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3101		base->phy_res[chan].reserved = true;
3102		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3103					       D40_DREG_GCC_SRC);
3104		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3105					       D40_DREG_GCC_DST);
3106		num_phy_chans_avail--;
3107	}
3108
3109	/* Mark soft_lli channels */
3110	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3111		int chan = base->plat_data->soft_lli_chans[i];
3112
3113		base->phy_res[chan].use_soft_lli = true;
3114	}
3115
3116	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3117		 num_phy_chans_avail, base->num_phy_chans);
3118
3119	/* Verify settings extended vs standard */
3120	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3121
3122	for (i = 0; i < base->num_phy_chans; i++) {
3123
3124		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3125		    (val[0] & 0x3) != 1)
3126			dev_info(base->dev,
3127				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3128				 __func__, i, val[0] & 0x3);
3129
3130		val[0] = val[0] >> 2;
3131	}
3132
3133	/*
3134	 * To keep things simple, Enable all clocks initially.
3135	 * The clocks will get managed later post channel allocation.
3136	 * The clocks for the event lines on which reserved channels exists
3137	 * are not managed here.
3138	 */
3139	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3140	base->gcc_pwr_off_mask = gcc;
3141
3142	return num_phy_chans_avail;
3143}
3144
3145static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3146{
3147	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3148	struct clk *clk = NULL;
3149	void __iomem *virtbase = NULL;
3150	struct resource *res = NULL;
3151	struct d40_base *base = NULL;
3152	int num_log_chans = 0;
3153	int num_phy_chans;
3154	int num_memcpy_chans;
3155	int clk_ret = -EINVAL;
3156	int i;
3157	u32 pid;
3158	u32 cid;
3159	u8 rev;
3160
3161	clk = clk_get(&pdev->dev, NULL);
3162	if (IS_ERR(clk)) {
3163		d40_err(&pdev->dev, "No matching clock found\n");
3164		goto failure;
3165	}
3166
3167	clk_ret = clk_prepare_enable(clk);
3168	if (clk_ret) {
3169		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3170		goto failure;
3171	}
3172
3173	/* Get IO for DMAC base address */
3174	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3175	if (!res)
3176		goto failure;
3177
3178	if (request_mem_region(res->start, resource_size(res),
3179			       D40_NAME " I/O base") == NULL)
3180		goto failure;
3181
3182	virtbase = ioremap(res->start, resource_size(res));
3183	if (!virtbase)
3184		goto failure;
3185
3186	/* This is just a regular AMBA PrimeCell ID actually */
3187	for (pid = 0, i = 0; i < 4; i++)
3188		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3189			& 255) << (i * 8);
3190	for (cid = 0, i = 0; i < 4; i++)
3191		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3192			& 255) << (i * 8);
3193
3194	if (cid != AMBA_CID) {
3195		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3196		goto failure;
3197	}
3198	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3199		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3200			AMBA_MANF_BITS(pid),
3201			AMBA_VENDOR_ST);
3202		goto failure;
3203	}
3204	/*
3205	 * HW revision:
3206	 * DB8500ed has revision 0
3207	 * ? has revision 1
3208	 * DB8500v1 has revision 2
3209	 * DB8500v2 has revision 3
3210	 * AP9540v1 has revision 4
3211	 * DB8540v1 has revision 4
3212	 */
3213	rev = AMBA_REV_BITS(pid);
3214	if (rev < 2) {
3215		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3216		goto failure;
3217	}
3218
3219	/* The number of physical channels on this HW */
3220	if (plat_data->num_of_phy_chans)
3221		num_phy_chans = plat_data->num_of_phy_chans;
3222	else
3223		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3224
3225	/* The number of channels used for memcpy */
3226	if (plat_data->num_of_memcpy_chans)
3227		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3228	else
3229		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3230
3231	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3232
3233	dev_info(&pdev->dev,
3234		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3235		 rev, &res->start, num_phy_chans, num_log_chans);
3236
3237	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3238		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3239		       sizeof(struct d40_chan), GFP_KERNEL);
3240
3241	if (base == NULL) {
3242		d40_err(&pdev->dev, "Out of memory\n");
3243		goto failure;
3244	}
3245
3246	base->rev = rev;
3247	base->clk = clk;
3248	base->num_memcpy_chans = num_memcpy_chans;
3249	base->num_phy_chans = num_phy_chans;
3250	base->num_log_chans = num_log_chans;
3251	base->phy_start = res->start;
3252	base->phy_size = resource_size(res);
3253	base->virtbase = virtbase;
3254	base->plat_data = plat_data;
3255	base->dev = &pdev->dev;
3256	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3257	base->log_chans = &base->phy_chans[num_phy_chans];
3258
3259	if (base->plat_data->num_of_phy_chans == 14) {
3260		base->gen_dmac.backup = d40_backup_regs_v4b;
3261		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3262		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3263		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3264		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3265		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3266		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3267		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3268		base->gen_dmac.il = il_v4b;
3269		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3270		base->gen_dmac.init_reg = dma_init_reg_v4b;
3271		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3272	} else {
3273		if (base->rev >= 3) {
3274			base->gen_dmac.backup = d40_backup_regs_v4a;
3275			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3276		}
3277		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3278		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3279		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3280		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3281		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3282		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3283		base->gen_dmac.il = il_v4a;
3284		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3285		base->gen_dmac.init_reg = dma_init_reg_v4a;
3286		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3287	}
3288
3289	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3290				GFP_KERNEL);
3291	if (!base->phy_res)
3292		goto failure;
3293
3294	base->lookup_phy_chans = kzalloc(num_phy_chans *
3295					 sizeof(struct d40_chan *),
3296					 GFP_KERNEL);
3297	if (!base->lookup_phy_chans)
3298		goto failure;
3299
3300	base->lookup_log_chans = kzalloc(num_log_chans *
3301					 sizeof(struct d40_chan *),
3302					 GFP_KERNEL);
3303	if (!base->lookup_log_chans)
3304		goto failure;
3305
3306	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3307					    sizeof(d40_backup_regs_chan),
3308					    GFP_KERNEL);
3309	if (!base->reg_val_backup_chan)
3310		goto failure;
3311
3312	base->lcla_pool.alloc_map =
3313		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3314			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3315	if (!base->lcla_pool.alloc_map)
3316		goto failure;
3317
3318	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3319					    0, SLAB_HWCACHE_ALIGN,
3320					    NULL);
3321	if (base->desc_slab == NULL)
3322		goto failure;
3323
3324	return base;
3325
3326failure:
3327	if (!clk_ret)
3328		clk_disable_unprepare(clk);
3329	if (!IS_ERR(clk))
3330		clk_put(clk);
3331	if (virtbase)
3332		iounmap(virtbase);
3333	if (res)
3334		release_mem_region(res->start,
3335				   resource_size(res));
3336	if (virtbase)
3337		iounmap(virtbase);
3338
3339	if (base) {
3340		kfree(base->lcla_pool.alloc_map);
3341		kfree(base->reg_val_backup_chan);
3342		kfree(base->lookup_log_chans);
3343		kfree(base->lookup_phy_chans);
3344		kfree(base->phy_res);
3345		kfree(base);
3346	}
3347
3348	return NULL;
3349}
3350
3351static void __init d40_hw_init(struct d40_base *base)
3352{
3353
3354	int i;
3355	u32 prmseo[2] = {0, 0};
3356	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3357	u32 pcmis = 0;
3358	u32 pcicr = 0;
3359	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3360	u32 reg_size = base->gen_dmac.init_reg_size;
3361
3362	for (i = 0; i < reg_size; i++)
3363		writel(dma_init_reg[i].val,
3364		       base->virtbase + dma_init_reg[i].reg);
3365
3366	/* Configure all our dma channels to default settings */
3367	for (i = 0; i < base->num_phy_chans; i++) {
3368
3369		activeo[i % 2] = activeo[i % 2] << 2;
3370
3371		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3372		    == D40_ALLOC_PHY) {
3373			activeo[i % 2] |= 3;
3374			continue;
3375		}
3376
3377		/* Enable interrupt # */
3378		pcmis = (pcmis << 1) | 1;
3379
3380		/* Clear interrupt # */
3381		pcicr = (pcicr << 1) | 1;
3382
3383		/* Set channel to physical mode */
3384		prmseo[i % 2] = prmseo[i % 2] << 2;
3385		prmseo[i % 2] |= 1;
3386
3387	}
3388
3389	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3390	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3391	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3392	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3393
3394	/* Write which interrupt to enable */
3395	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3396
3397	/* Write which interrupt to clear */
3398	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3399
3400	/* These are __initdata and cannot be accessed after init */
3401	base->gen_dmac.init_reg = NULL;
3402	base->gen_dmac.init_reg_size = 0;
3403}
3404
3405static int __init d40_lcla_allocate(struct d40_base *base)
3406{
3407	struct d40_lcla_pool *pool = &base->lcla_pool;
3408	unsigned long *page_list;
3409	int i, j;
3410	int ret = 0;
3411
3412	/*
3413	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3414	 * To full fill this hardware requirement without wasting 256 kb
3415	 * we allocate pages until we get an aligned one.
3416	 */
3417	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3418			    GFP_KERNEL);
3419
3420	if (!page_list) {
3421		ret = -ENOMEM;
3422		goto failure;
3423	}
3424
3425	/* Calculating how many pages that are required */
3426	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3427
3428	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3429		page_list[i] = __get_free_pages(GFP_KERNEL,
3430						base->lcla_pool.pages);
3431		if (!page_list[i]) {
3432
3433			d40_err(base->dev, "Failed to allocate %d pages.\n",
3434				base->lcla_pool.pages);
3435
3436			for (j = 0; j < i; j++)
3437				free_pages(page_list[j], base->lcla_pool.pages);
3438			goto failure;
3439		}
3440
3441		if ((virt_to_phys((void *)page_list[i]) &
3442		     (LCLA_ALIGNMENT - 1)) == 0)
3443			break;
3444	}
3445
3446	for (j = 0; j < i; j++)
3447		free_pages(page_list[j], base->lcla_pool.pages);
3448
3449	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3450		base->lcla_pool.base = (void *)page_list[i];
3451	} else {
3452		/*
3453		 * After many attempts and no succees with finding the correct
3454		 * alignment, try with allocating a big buffer.
3455		 */
3456		dev_warn(base->dev,
3457			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3458			 __func__, base->lcla_pool.pages);
3459		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3460							 base->num_phy_chans +
3461							 LCLA_ALIGNMENT,
3462							 GFP_KERNEL);
3463		if (!base->lcla_pool.base_unaligned) {
3464			ret = -ENOMEM;
3465			goto failure;
3466		}
3467
3468		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3469						 LCLA_ALIGNMENT);
3470	}
3471
3472	pool->dma_addr = dma_map_single(base->dev, pool->base,
3473					SZ_1K * base->num_phy_chans,
3474					DMA_TO_DEVICE);
3475	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3476		pool->dma_addr = 0;
3477		ret = -ENOMEM;
3478		goto failure;
3479	}
3480
3481	writel(virt_to_phys(base->lcla_pool.base),
3482	       base->virtbase + D40_DREG_LCLA);
3483failure:
3484	kfree(page_list);
3485	return ret;
3486}
3487
3488static int __init d40_of_probe(struct platform_device *pdev,
3489			       struct device_node *np)
3490{
3491	struct stedma40_platform_data *pdata;
3492	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3493	const __be32 *list;
3494
3495	pdata = devm_kzalloc(&pdev->dev,
3496			     sizeof(struct stedma40_platform_data),
3497			     GFP_KERNEL);
3498	if (!pdata)
3499		return -ENOMEM;
3500
3501	/* If absent this value will be obtained from h/w. */
3502	of_property_read_u32(np, "dma-channels", &num_phy);
3503	if (num_phy > 0)
3504		pdata->num_of_phy_chans = num_phy;
3505
3506	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3507	num_memcpy /= sizeof(*list);
3508
3509	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3510		d40_err(&pdev->dev,
3511			"Invalid number of memcpy channels specified (%d)\n",
3512			num_memcpy);
3513		return -EINVAL;
3514	}
3515	pdata->num_of_memcpy_chans = num_memcpy;
3516
3517	of_property_read_u32_array(np, "memcpy-channels",
3518				   dma40_memcpy_channels,
3519				   num_memcpy);
3520
3521	list = of_get_property(np, "disabled-channels", &num_disabled);
3522	num_disabled /= sizeof(*list);
3523
3524	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3525		d40_err(&pdev->dev,
3526			"Invalid number of disabled channels specified (%d)\n",
3527			num_disabled);
3528		return -EINVAL;
3529	}
3530
3531	of_property_read_u32_array(np, "disabled-channels",
3532				   pdata->disabled_channels,
3533				   num_disabled);
3534	pdata->disabled_channels[num_disabled] = -1;
3535
3536	pdev->dev.platform_data = pdata;
3537
3538	return 0;
3539}
3540
3541static int __init d40_probe(struct platform_device *pdev)
3542{
3543	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3544	struct device_node *np = pdev->dev.of_node;
3545	int ret = -ENOENT;
3546	struct d40_base *base = NULL;
3547	struct resource *res = NULL;
3548	int num_reserved_chans;
3549	u32 val;
3550
3551	if (!plat_data) {
3552		if (np) {
3553			if(d40_of_probe(pdev, np)) {
3554				ret = -ENOMEM;
3555				goto failure;
3556			}
3557		} else {
3558			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3559			goto failure;
3560		}
3561	}
3562
3563	base = d40_hw_detect_init(pdev);
3564	if (!base)
3565		goto failure;
3566
3567	num_reserved_chans = d40_phy_res_init(base);
3568
3569	platform_set_drvdata(pdev, base);
3570
3571	spin_lock_init(&base->interrupt_lock);
3572	spin_lock_init(&base->execmd_lock);
3573
3574	/* Get IO for logical channel parameter address */
3575	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3576	if (!res) {
3577		ret = -ENOENT;
3578		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3579		goto failure;
3580	}
3581	base->lcpa_size = resource_size(res);
3582	base->phy_lcpa = res->start;
3583
3584	if (request_mem_region(res->start, resource_size(res),
3585			       D40_NAME " I/O lcpa") == NULL) {
3586		ret = -EBUSY;
3587		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3588		goto failure;
3589	}
3590
3591	/* We make use of ESRAM memory for this. */
3592	val = readl(base->virtbase + D40_DREG_LCPA);
3593	if (res->start != val && val != 0) {
3594		dev_warn(&pdev->dev,
3595			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3596			 __func__, val, &res->start);
3597	} else
3598		writel(res->start, base->virtbase + D40_DREG_LCPA);
3599
3600	base->lcpa_base = ioremap(res->start, resource_size(res));
3601	if (!base->lcpa_base) {
3602		ret = -ENOMEM;
3603		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3604		goto failure;
3605	}
3606	/* If lcla has to be located in ESRAM we don't need to allocate */
3607	if (base->plat_data->use_esram_lcla) {
3608		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3609							"lcla_esram");
3610		if (!res) {
3611			ret = -ENOENT;
3612			d40_err(&pdev->dev,
3613				"No \"lcla_esram\" memory resource\n");
3614			goto failure;
3615		}
3616		base->lcla_pool.base = ioremap(res->start,
3617						resource_size(res));
3618		if (!base->lcla_pool.base) {
3619			ret = -ENOMEM;
3620			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3621			goto failure;
3622		}
3623		writel(res->start, base->virtbase + D40_DREG_LCLA);
3624
3625	} else {
3626		ret = d40_lcla_allocate(base);
3627		if (ret) {
3628			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3629			goto failure;
3630		}
3631	}
3632
3633	spin_lock_init(&base->lcla_pool.lock);
3634
3635	base->irq = platform_get_irq(pdev, 0);
3636
3637	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3638	if (ret) {
3639		d40_err(&pdev->dev, "No IRQ defined\n");
3640		goto failure;
3641	}
3642
3643	if (base->plat_data->use_esram_lcla) {
3644
3645		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3646		if (IS_ERR(base->lcpa_regulator)) {
3647			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3648			ret = PTR_ERR(base->lcpa_regulator);
3649			base->lcpa_regulator = NULL;
3650			goto failure;
3651		}
3652
3653		ret = regulator_enable(base->lcpa_regulator);
3654		if (ret) {
3655			d40_err(&pdev->dev,
3656				"Failed to enable lcpa_regulator\n");
3657			regulator_put(base->lcpa_regulator);
3658			base->lcpa_regulator = NULL;
3659			goto failure;
3660		}
3661	}
3662
3663	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3664
3665	pm_runtime_irq_safe(base->dev);
3666	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3667	pm_runtime_use_autosuspend(base->dev);
3668	pm_runtime_mark_last_busy(base->dev);
3669	pm_runtime_set_active(base->dev);
3670	pm_runtime_enable(base->dev);
3671
3672	ret = d40_dmaengine_init(base, num_reserved_chans);
3673	if (ret)
3674		goto failure;
3675
3676	base->dev->dma_parms = &base->dma_parms;
3677	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3678	if (ret) {
3679		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3680		goto failure;
3681	}
3682
3683	d40_hw_init(base);
3684
3685	if (np) {
3686		ret = of_dma_controller_register(np, d40_xlate, NULL);
3687		if (ret)
3688			dev_err(&pdev->dev,
3689				"could not register of_dma_controller\n");
3690	}
3691
3692	dev_info(base->dev, "initialized\n");
3693	return 0;
3694
3695failure:
3696	if (base) {
3697		if (base->desc_slab)
3698			kmem_cache_destroy(base->desc_slab);
3699		if (base->virtbase)
3700			iounmap(base->virtbase);
3701
3702		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3703			iounmap(base->lcla_pool.base);
3704			base->lcla_pool.base = NULL;
3705		}
3706
3707		if (base->lcla_pool.dma_addr)
3708			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3709					 SZ_1K * base->num_phy_chans,
3710					 DMA_TO_DEVICE);
3711
3712		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3713			free_pages((unsigned long)base->lcla_pool.base,
3714				   base->lcla_pool.pages);
3715
3716		kfree(base->lcla_pool.base_unaligned);
3717
3718		if (base->phy_lcpa)
3719			release_mem_region(base->phy_lcpa,
3720					   base->lcpa_size);
3721		if (base->phy_start)
3722			release_mem_region(base->phy_start,
3723					   base->phy_size);
3724		if (base->clk) {
3725			clk_disable_unprepare(base->clk);
3726			clk_put(base->clk);
3727		}
3728
3729		if (base->lcpa_regulator) {
3730			regulator_disable(base->lcpa_regulator);
3731			regulator_put(base->lcpa_regulator);
3732		}
3733
3734		kfree(base->lcla_pool.alloc_map);
3735		kfree(base->lookup_log_chans);
3736		kfree(base->lookup_phy_chans);
3737		kfree(base->phy_res);
3738		kfree(base);
3739	}
3740
3741	d40_err(&pdev->dev, "probe failed\n");
3742	return ret;
3743}
3744
3745static const struct of_device_id d40_match[] = {
3746        { .compatible = "stericsson,dma40", },
3747        {}
3748};
3749
3750static struct platform_driver d40_driver = {
3751	.driver = {
3752		.owner = THIS_MODULE,
3753		.name  = D40_NAME,
3754		.pm = &dma40_pm_ops,
3755		.of_match_table = d40_match,
3756	},
3757};
3758
3759static int __init stedma40_init(void)
3760{
3761	return platform_driver_probe(&d40_driver, d40_probe);
3762}
3763subsys_initcall(stedma40_init);
3764