[go: nahoru, domu]

1/*
2 * Freescale MXS I2C bus driver
3 *
4 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
5 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
6 *
7 * based on a (non-working) driver which was:
8 *
9 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 */
17
18#include <linux/slab.h>
19#include <linux/device.h>
20#include <linux/module.h>
21#include <linux/i2c.h>
22#include <linux/err.h>
23#include <linux/interrupt.h>
24#include <linux/completion.h>
25#include <linux/platform_device.h>
26#include <linux/jiffies.h>
27#include <linux/io.h>
28#include <linux/stmp_device.h>
29#include <linux/of.h>
30#include <linux/of_device.h>
31#include <linux/dma-mapping.h>
32#include <linux/dmaengine.h>
33
34#define DRIVER_NAME "mxs-i2c"
35
36#define MXS_I2C_CTRL0		(0x00)
37#define MXS_I2C_CTRL0_SET	(0x04)
38#define MXS_I2C_CTRL0_CLR	(0x08)
39
40#define MXS_I2C_CTRL0_SFTRST			0x80000000
41#define MXS_I2C_CTRL0_RUN			0x20000000
42#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
43#define MXS_I2C_CTRL0_PIO_MODE			0x01000000
44#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
45#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
46#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
47#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
48#define MXS_I2C_CTRL0_DIRECTION			0x00010000
49#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
50
51#define MXS_I2C_TIMING0		(0x10)
52#define MXS_I2C_TIMING1		(0x20)
53#define MXS_I2C_TIMING2		(0x30)
54
55#define MXS_I2C_CTRL1		(0x40)
56#define MXS_I2C_CTRL1_SET	(0x44)
57#define MXS_I2C_CTRL1_CLR	(0x48)
58
59#define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
60#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
61#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
62#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
63#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
64#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
65#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
66#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
67#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
68
69#define MXS_I2C_STAT		(0x50)
70#define MXS_I2C_STAT_GOT_A_NAK			0x10000000
71#define MXS_I2C_STAT_BUS_BUSY			0x00000800
72#define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
73
74#define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
75
76#define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
77
78#define MXS_I2C_DEBUG0_DMAREQ	0x80000000
79
80#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
81				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
82				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
83				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
84				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
85				 MXS_I2C_CTRL1_SLAVE_IRQ)
86
87
88#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
89				 MXS_I2C_CTRL0_PRE_SEND_START |	\
90				 MXS_I2C_CTRL0_MASTER_MODE |	\
91				 MXS_I2C_CTRL0_DIRECTION |	\
92				 MXS_I2C_CTRL0_XFER_COUNT(1))
93
94#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
95				 MXS_I2C_CTRL0_MASTER_MODE |	\
96				 MXS_I2C_CTRL0_DIRECTION)
97
98#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
99				 MXS_I2C_CTRL0_MASTER_MODE)
100
101enum mxs_i2c_devtype {
102	MXS_I2C_UNKNOWN = 0,
103	MXS_I2C_V1,
104	MXS_I2C_V2,
105};
106
107/**
108 * struct mxs_i2c_dev - per device, private MXS-I2C data
109 *
110 * @dev: driver model device node
111 * @dev_type: distinguish i.MX23/i.MX28 features
112 * @regs: IO registers pointer
113 * @cmd_complete: completion object for transaction wait
114 * @cmd_err: error code for last transaction
115 * @adapter: i2c subsystem adapter node
116 */
117struct mxs_i2c_dev {
118	struct device *dev;
119	enum mxs_i2c_devtype dev_type;
120	void __iomem *regs;
121	struct completion cmd_complete;
122	int cmd_err;
123	struct i2c_adapter adapter;
124
125	uint32_t timing0;
126	uint32_t timing1;
127	uint32_t timing2;
128
129	/* DMA support components */
130	struct dma_chan			*dmach;
131	uint32_t			pio_data[2];
132	uint32_t			addr_data;
133	struct scatterlist		sg_io[2];
134	bool				dma_read;
135};
136
137static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
138{
139	int ret = stmp_reset_block(i2c->regs);
140	if (ret)
141		return ret;
142
143	/*
144	 * Configure timing for the I2C block. The I2C TIMING2 register has to
145	 * be programmed with this particular magic number. The rest is derived
146	 * from the XTAL speed and requested I2C speed.
147	 *
148	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
149	 */
150	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
151	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
152	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
153
154	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
155
156	return 0;
157}
158
159static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
160{
161	if (i2c->dma_read) {
162		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
163		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
164	} else {
165		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
166	}
167}
168
169static void mxs_i2c_dma_irq_callback(void *param)
170{
171	struct mxs_i2c_dev *i2c = param;
172
173	complete(&i2c->cmd_complete);
174	mxs_i2c_dma_finish(i2c);
175}
176
177static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
178			struct i2c_msg *msg, uint32_t flags)
179{
180	struct dma_async_tx_descriptor *desc;
181	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
182
183	if (msg->flags & I2C_M_RD) {
184		i2c->dma_read = 1;
185		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;
186
187		/*
188		 * SELECT command.
189		 */
190
191		/* Queue the PIO register write transfer. */
192		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
193		desc = dmaengine_prep_slave_sg(i2c->dmach,
194					(struct scatterlist *)&i2c->pio_data[0],
195					1, DMA_TRANS_NONE, 0);
196		if (!desc) {
197			dev_err(i2c->dev,
198				"Failed to get PIO reg. write descriptor.\n");
199			goto select_init_pio_fail;
200		}
201
202		/* Queue the DMA data transfer. */
203		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
204		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
205		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
206					DMA_MEM_TO_DEV,
207					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
208		if (!desc) {
209			dev_err(i2c->dev,
210				"Failed to get DMA data write descriptor.\n");
211			goto select_init_dma_fail;
212		}
213
214		/*
215		 * READ command.
216		 */
217
218		/* Queue the PIO register write transfer. */
219		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
220				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
221		desc = dmaengine_prep_slave_sg(i2c->dmach,
222					(struct scatterlist *)&i2c->pio_data[1],
223					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
224		if (!desc) {
225			dev_err(i2c->dev,
226				"Failed to get PIO reg. write descriptor.\n");
227			goto select_init_dma_fail;
228		}
229
230		/* Queue the DMA data transfer. */
231		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
232		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
233		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
234					DMA_DEV_TO_MEM,
235					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
236		if (!desc) {
237			dev_err(i2c->dev,
238				"Failed to get DMA data write descriptor.\n");
239			goto read_init_dma_fail;
240		}
241	} else {
242		i2c->dma_read = 0;
243		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;
244
245		/*
246		 * WRITE command.
247		 */
248
249		/* Queue the PIO register write transfer. */
250		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
251				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
252		desc = dmaengine_prep_slave_sg(i2c->dmach,
253					(struct scatterlist *)&i2c->pio_data[0],
254					1, DMA_TRANS_NONE, 0);
255		if (!desc) {
256			dev_err(i2c->dev,
257				"Failed to get PIO reg. write descriptor.\n");
258			goto write_init_pio_fail;
259		}
260
261		/* Queue the DMA data transfer. */
262		sg_init_table(i2c->sg_io, 2);
263		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
264		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
265		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
266		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
267					DMA_MEM_TO_DEV,
268					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
269		if (!desc) {
270			dev_err(i2c->dev,
271				"Failed to get DMA data write descriptor.\n");
272			goto write_init_dma_fail;
273		}
274	}
275
276	/*
277	 * The last descriptor must have this callback,
278	 * to finish the DMA transaction.
279	 */
280	desc->callback = mxs_i2c_dma_irq_callback;
281	desc->callback_param = i2c;
282
283	/* Start the transfer. */
284	dmaengine_submit(desc);
285	dma_async_issue_pending(i2c->dmach);
286	return 0;
287
288/* Read failpath. */
289read_init_dma_fail:
290	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
291select_init_dma_fail:
292	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
293select_init_pio_fail:
294	dmaengine_terminate_all(i2c->dmach);
295	return -EINVAL;
296
297/* Write failpath. */
298write_init_dma_fail:
299	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
300write_init_pio_fail:
301	dmaengine_terminate_all(i2c->dmach);
302	return -EINVAL;
303}
304
305static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
306{
307	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
308
309	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
310		if (readl(i2c->regs + MXS_I2C_CTRL1) &
311				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
312			return -ENXIO;
313		if (time_after(jiffies, timeout))
314			return -ETIMEDOUT;
315		cond_resched();
316	}
317
318	return 0;
319}
320
321static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
322{
323	u32 state;
324
325	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
326
327	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
328		i2c->cmd_err = -ENXIO;
329	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
330			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
331			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
332			  MXS_I2C_CTRL1_SLAVE_IRQ))
333		i2c->cmd_err = -EIO;
334
335	return i2c->cmd_err;
336}
337
338static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
339{
340	u32 reg;
341
342	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
343
344	/* readback makes sure the write is latched into hardware */
345	reg = readl(i2c->regs + MXS_I2C_CTRL0);
346	reg |= MXS_I2C_CTRL0_RUN;
347	writel(reg, i2c->regs + MXS_I2C_CTRL0);
348}
349
350/*
351 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
352 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
353 * must be written during PIO mode operation. First, the CTRL0 register has
354 * to be programmed with all the necessary bits but the RUN bit. Then the
355 * payload has to be written into the DATA register. Finally, the transmission
356 * is executed by setting the RUN bit in CTRL0.
357 */
358static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
359					  u32 data)
360{
361	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
362
363	if (i2c->dev_type == MXS_I2C_V1)
364		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
365
366	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
367	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
368}
369
370static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
371			struct i2c_msg *msg, uint32_t flags)
372{
373	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
374	uint32_t addr_data = msg->addr << 1;
375	uint32_t data = 0;
376	int i, ret, xlen = 0, xmit = 0;
377	uint32_t start;
378
379	/* Mute IRQs coming from this block. */
380	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
381
382	/*
383	 * MX23 idea:
384	 * - Enable CTRL0::PIO_MODE (1 << 24)
385	 * - Enable CTRL1::ACK_MODE (1 << 27)
386	 *
387	 * WARNING! The MX23 is broken in some way, even if it claims
388	 * to support PIO, when we try to transfer any amount of data
389	 * that is not aligned to 4 bytes, the DMA engine will have
390	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
391	 * transfer. This in turn will mess up the next transfer as
392	 * the block it emit one byte write onto the bus terminated
393	 * with a NAK+STOP. A possible workaround is to reset the IP
394	 * block after every PIO transmission, which might just work.
395	 *
396	 * NOTE: The CTRL0::PIO_MODE description is important, since
397	 * it outlines how the PIO mode is really supposed to work.
398	 */
399	if (msg->flags & I2C_M_RD) {
400		/*
401		 * PIO READ transfer:
402		 *
403		 * This transfer MUST be limited to 4 bytes maximum. It is not
404		 * possible to transfer more than four bytes via PIO, since we
405		 * can not in any way make sure we can read the data from the
406		 * DATA register fast enough. Besides, the RX FIFO is only four
407		 * bytes deep, thus we can only really read up to four bytes at
408		 * time. Finally, there is no bit indicating us that new data
409		 * arrived at the FIFO and can thus be fetched from the DATA
410		 * register.
411		 */
412		BUG_ON(msg->len > 4);
413
414		addr_data |= I2C_SMBUS_READ;
415
416		/* SELECT command. */
417		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
418					      addr_data);
419
420		ret = mxs_i2c_pio_wait_xfer_end(i2c);
421		if (ret) {
422			dev_err(i2c->dev,
423				"PIO: Failed to send SELECT command!\n");
424			goto cleanup;
425		}
426
427		/* READ command. */
428		mxs_i2c_pio_trigger_cmd(i2c,
429					MXS_CMD_I2C_READ | flags |
430					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
431
432		ret = mxs_i2c_pio_wait_xfer_end(i2c);
433		if (ret) {
434			dev_err(i2c->dev,
435				"PIO: Failed to send READ command!\n");
436			goto cleanup;
437		}
438
439		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
440		for (i = 0; i < msg->len; i++) {
441			msg->buf[i] = data & 0xff;
442			data >>= 8;
443		}
444	} else {
445		/*
446		 * PIO WRITE transfer:
447		 *
448		 * The code below implements clock stretching to circumvent
449		 * the possibility of kernel not being able to supply data
450		 * fast enough. It is possible to transfer arbitrary amount
451		 * of data using PIO write.
452		 */
453		addr_data |= I2C_SMBUS_WRITE;
454
455		/*
456		 * The LSB of data buffer is the first byte blasted across
457		 * the bus. Higher order bytes follow. Thus the following
458		 * filling schematic.
459		 */
460
461		data = addr_data << 24;
462
463		/* Start the transfer with START condition. */
464		start = MXS_I2C_CTRL0_PRE_SEND_START;
465
466		/* If the transfer is long, use clock stretching. */
467		if (msg->len > 3)
468			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
469
470		for (i = 0; i < msg->len; i++) {
471			data >>= 8;
472			data |= (msg->buf[i] << 24);
473
474			xmit = 0;
475
476			/* This is the last transfer of the message. */
477			if (i + 1 == msg->len) {
478				/* Add optional STOP flag. */
479				start |= flags;
480				/* Remove RETAIN_CLOCK bit. */
481				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
482				xmit = 1;
483			}
484
485			/* Four bytes are ready in the "data" variable. */
486			if ((i & 3) == 2)
487				xmit = 1;
488
489			/* Nothing interesting happened, continue stuffing. */
490			if (!xmit)
491				continue;
492
493			/*
494			 * Compute the size of the transfer and shift the
495			 * data accordingly.
496			 *
497			 * i = (4k + 0) .... xlen = 2
498			 * i = (4k + 1) .... xlen = 3
499			 * i = (4k + 2) .... xlen = 4
500			 * i = (4k + 3) .... xlen = 1
501			 */
502
503			if ((i % 4) == 3)
504				xlen = 1;
505			else
506				xlen = (i % 4) + 2;
507
508			data >>= (4 - xlen) * 8;
509
510			dev_dbg(i2c->dev,
511				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
512				xlen, i, msg->len,
513				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
514				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
515				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
516
517			writel(MXS_I2C_DEBUG0_DMAREQ,
518			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
519
520			mxs_i2c_pio_trigger_write_cmd(i2c,
521				start | MXS_I2C_CTRL0_MASTER_MODE |
522				MXS_I2C_CTRL0_DIRECTION |
523				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
524
525			/* The START condition is sent only once. */
526			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
527
528			/* Wait for the end of the transfer. */
529			ret = mxs_i2c_pio_wait_xfer_end(i2c);
530			if (ret) {
531				dev_err(i2c->dev,
532					"PIO: Failed to finish WRITE cmd!\n");
533				break;
534			}
535
536			/* Check NAK here. */
537			ret = readl(i2c->regs + MXS_I2C_STAT) &
538				    MXS_I2C_STAT_GOT_A_NAK;
539			if (ret) {
540				ret = -ENXIO;
541				goto cleanup;
542			}
543		}
544	}
545
546	/* make sure we capture any occurred error into cmd_err */
547	ret = mxs_i2c_pio_check_error_state(i2c);
548
549cleanup:
550	/* Clear any dangling IRQs and re-enable interrupts. */
551	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
552	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
553
554	/* Clear the PIO_MODE on i.MX23 */
555	if (i2c->dev_type == MXS_I2C_V1)
556		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
557
558	return ret;
559}
560
561/*
562 * Low level master read/write transaction.
563 */
564static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
565				int stop)
566{
567	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
568	int ret;
569	int flags;
570	int use_pio = 0;
571
572	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
573
574	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
575		msg->addr, msg->len, msg->flags, stop);
576
577	if (msg->len == 0)
578		return -EINVAL;
579
580	/*
581	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
582	 * 4 bytes of length. The write transfer is not limited as it can use
583	 * clock stretching to avoid FIFO underruns.
584	 */
585	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
586		use_pio = 1;
587	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
588		use_pio = 1;
589
590	i2c->cmd_err = 0;
591	if (use_pio) {
592		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
593		/* No need to reset the block if NAK was received. */
594		if (ret && (ret != -ENXIO))
595			mxs_i2c_reset(i2c);
596	} else {
597		reinit_completion(&i2c->cmd_complete);
598		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
599		if (ret)
600			return ret;
601
602		ret = wait_for_completion_timeout(&i2c->cmd_complete,
603						msecs_to_jiffies(1000));
604		if (ret == 0)
605			goto timeout;
606
607		ret = i2c->cmd_err;
608	}
609
610	if (ret == -ENXIO) {
611		/*
612		 * If the transfer fails with a NAK from the slave the
613		 * controller halts until it gets told to return to idle state.
614		 */
615		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
616		       i2c->regs + MXS_I2C_CTRL1_SET);
617	}
618
619	/*
620	 * WARNING!
621	 * The i.MX23 is strange. After each and every operation, it's I2C IP
622	 * block must be reset, otherwise the IP block will misbehave. This can
623	 * be observed on the bus by the block sending out one single byte onto
624	 * the bus. In case such an error happens, bit 27 will be set in the
625	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
626	 * and is marked as "TBD" instead. To reset this bit to a correct state,
627	 * reset the whole block. Since the block reset does not take long, do
628	 * reset the block after every transfer to play safe.
629	 */
630	if (i2c->dev_type == MXS_I2C_V1)
631		mxs_i2c_reset(i2c);
632
633	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
634
635	return ret;
636
637timeout:
638	dev_dbg(i2c->dev, "Timeout!\n");
639	mxs_i2c_dma_finish(i2c);
640	ret = mxs_i2c_reset(i2c);
641	if (ret)
642		return ret;
643
644	return -ETIMEDOUT;
645}
646
647static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
648			int num)
649{
650	int i;
651	int err;
652
653	for (i = 0; i < num; i++) {
654		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
655		if (err)
656			return err;
657	}
658
659	return num;
660}
661
662static u32 mxs_i2c_func(struct i2c_adapter *adap)
663{
664	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
665}
666
667static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
668{
669	struct mxs_i2c_dev *i2c = dev_id;
670	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
671
672	if (!stat)
673		return IRQ_NONE;
674
675	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
676		i2c->cmd_err = -ENXIO;
677	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
678		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
679		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
680		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
681		i2c->cmd_err = -EIO;
682
683	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
684
685	return IRQ_HANDLED;
686}
687
688static const struct i2c_algorithm mxs_i2c_algo = {
689	.master_xfer = mxs_i2c_xfer,
690	.functionality = mxs_i2c_func,
691};
692
693static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
694{
695	/* The I2C block clock runs at 24MHz */
696	const uint32_t clk = 24000000;
697	uint32_t divider;
698	uint16_t high_count, low_count, rcv_count, xmit_count;
699	uint32_t bus_free, leadin;
700	struct device *dev = i2c->dev;
701
702	divider = DIV_ROUND_UP(clk, speed);
703
704	if (divider < 25) {
705		/*
706		 * limit the divider, so that min(low_count, high_count)
707		 * is >= 1
708		 */
709		divider = 25;
710		dev_warn(dev,
711			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
712			speed / 1000, speed % 1000,
713			clk / divider / 1000, clk / divider % 1000);
714	} else if (divider > 1897) {
715		/*
716		 * limit the divider, so that max(low_count, high_count)
717		 * cannot exceed 1023
718		 */
719		divider = 1897;
720		dev_warn(dev,
721			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
722			speed / 1000, speed % 1000,
723			clk / divider / 1000, clk / divider % 1000);
724	}
725
726	/*
727	 * The I2C spec specifies the following timing data:
728	 *                          standard mode  fast mode Bitfield name
729	 * tLOW (SCL LOW period)     4700 ns        1300 ns
730	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
731	 * tSU;DAT (data setup time)  250 ns         100 ns
732	 * tHD;STA (START hold time) 4000 ns         600 ns
733	 * tBUF (bus free time)      4700 ns        1300 ns
734	 *
735	 * The hardware (of the i.MX28 at least) seems to add 2 additional
736	 * clock cycles to the low_count and 7 cycles to the high_count.
737	 * This is compensated for by subtracting the respective constants
738	 * from the values written to the timing registers.
739	 */
740	if (speed > 100000) {
741		/* fast mode */
742		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
743		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
744		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
745		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
746	} else {
747		/* normal mode */
748		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
749		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
750		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
751		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
752	}
753	rcv_count = high_count * 3 / 8;
754	xmit_count = low_count * 3 / 8;
755
756	dev_dbg(dev,
757		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
758		speed, clk / divider, divider, low_count, high_count,
759		xmit_count, rcv_count, leadin, bus_free);
760
761	low_count -= 2;
762	high_count -= 7;
763	i2c->timing0 = (high_count << 16) | rcv_count;
764	i2c->timing1 = (low_count << 16) | xmit_count;
765	i2c->timing2 = (bus_free << 16 | leadin);
766}
767
768static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
769{
770	uint32_t speed;
771	struct device *dev = i2c->dev;
772	struct device_node *node = dev->of_node;
773	int ret;
774
775	ret = of_property_read_u32(node, "clock-frequency", &speed);
776	if (ret) {
777		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
778		speed = 100000;
779	}
780
781	mxs_i2c_derive_timing(i2c, speed);
782
783	return 0;
784}
785
786static struct platform_device_id mxs_i2c_devtype[] = {
787	{
788		.name = "imx23-i2c",
789		.driver_data = MXS_I2C_V1,
790	}, {
791		.name = "imx28-i2c",
792		.driver_data = MXS_I2C_V2,
793	}, { /* sentinel */ }
794};
795MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);
796
797static const struct of_device_id mxs_i2c_dt_ids[] = {
798	{ .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
799	{ .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
800	{ /* sentinel */ }
801};
802MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
803
804static int mxs_i2c_probe(struct platform_device *pdev)
805{
806	const struct of_device_id *of_id =
807				of_match_device(mxs_i2c_dt_ids, &pdev->dev);
808	struct device *dev = &pdev->dev;
809	struct mxs_i2c_dev *i2c;
810	struct i2c_adapter *adap;
811	struct resource *res;
812	int err, irq;
813
814	i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL);
815	if (!i2c)
816		return -ENOMEM;
817
818	if (of_id) {
819		const struct platform_device_id *device_id = of_id->data;
820		i2c->dev_type = device_id->driver_data;
821	}
822
823	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
824	i2c->regs = devm_ioremap_resource(&pdev->dev, res);
825	if (IS_ERR(i2c->regs))
826		return PTR_ERR(i2c->regs);
827
828	irq = platform_get_irq(pdev, 0);
829	if (irq < 0)
830		return irq;
831
832	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
833	if (err)
834		return err;
835
836	i2c->dev = dev;
837
838	init_completion(&i2c->cmd_complete);
839
840	if (dev->of_node) {
841		err = mxs_i2c_get_ofdata(i2c);
842		if (err)
843			return err;
844	}
845
846	/* Setup the DMA */
847	i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
848	if (!i2c->dmach) {
849		dev_err(dev, "Failed to request dma\n");
850		return -ENODEV;
851	}
852
853	platform_set_drvdata(pdev, i2c);
854
855	/* Do reset to enforce correct startup after pinmuxing */
856	err = mxs_i2c_reset(i2c);
857	if (err)
858		return err;
859
860	adap = &i2c->adapter;
861	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
862	adap->owner = THIS_MODULE;
863	adap->algo = &mxs_i2c_algo;
864	adap->dev.parent = dev;
865	adap->nr = pdev->id;
866	adap->dev.of_node = pdev->dev.of_node;
867	i2c_set_adapdata(adap, i2c);
868	err = i2c_add_numbered_adapter(adap);
869	if (err) {
870		dev_err(dev, "Failed to add adapter (%d)\n", err);
871		writel(MXS_I2C_CTRL0_SFTRST,
872				i2c->regs + MXS_I2C_CTRL0_SET);
873		return err;
874	}
875
876	return 0;
877}
878
879static int mxs_i2c_remove(struct platform_device *pdev)
880{
881	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
882
883	i2c_del_adapter(&i2c->adapter);
884
885	if (i2c->dmach)
886		dma_release_channel(i2c->dmach);
887
888	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
889
890	return 0;
891}
892
893static struct platform_driver mxs_i2c_driver = {
894	.driver = {
895		   .name = DRIVER_NAME,
896		   .owner = THIS_MODULE,
897		   .of_match_table = mxs_i2c_dt_ids,
898		   },
899	.probe = mxs_i2c_probe,
900	.remove = mxs_i2c_remove,
901};
902
903static int __init mxs_i2c_init(void)
904{
905	return platform_driver_register(&mxs_i2c_driver);
906}
907subsys_initcall(mxs_i2c_init);
908
909static void __exit mxs_i2c_exit(void)
910{
911	platform_driver_unregister(&mxs_i2c_driver);
912}
913module_exit(mxs_i2c_exit);
914
915MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
916MODULE_AUTHOR("Wolfram Sang <w.sang@pengutronix.de>");
917MODULE_DESCRIPTION("MXS I2C Bus Driver");
918MODULE_LICENSE("GPL");
919MODULE_ALIAS("platform:" DRIVER_NAME);
920