[go: nahoru, domu]

1/*
2 * Copyright (C) 2009 ST-Ericsson SA
3 * Copyright (C) 2009 STMicroelectronics
4 *
5 * I2C master mode controller driver, used in Nomadik 8815
6 * and Ux500 platforms.
7 *
8 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9 * Author: Sachin Verma <sachin.verma@st.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2, as
13 * published by the Free Software Foundation.
14 */
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/amba/bus.h>
18#include <linux/slab.h>
19#include <linux/interrupt.h>
20#include <linux/i2c.h>
21#include <linux/err.h>
22#include <linux/clk.h>
23#include <linux/io.h>
24#include <linux/pm_runtime.h>
25#include <linux/of.h>
26#include <linux/pinctrl/consumer.h>
27
28#define DRIVER_NAME "nmk-i2c"
29
30/* I2C Controller register offsets */
31#define I2C_CR		(0x000)
32#define I2C_SCR		(0x004)
33#define I2C_HSMCR	(0x008)
34#define I2C_MCR		(0x00C)
35#define I2C_TFR		(0x010)
36#define I2C_SR		(0x014)
37#define I2C_RFR		(0x018)
38#define I2C_TFTR	(0x01C)
39#define I2C_RFTR	(0x020)
40#define I2C_DMAR	(0x024)
41#define I2C_BRCR	(0x028)
42#define I2C_IMSCR	(0x02C)
43#define I2C_RISR	(0x030)
44#define I2C_MISR	(0x034)
45#define I2C_ICR		(0x038)
46
47/* Control registers */
48#define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
49#define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
50#define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
51#define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
52#define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
53#define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
54#define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
55#define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
56#define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
57#define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
58#define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
59#define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
60#define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
61
62/* Master controller (MCR) register */
63#define I2C_MCR_OP		(0x1 << 0)	/* Operation */
64#define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
65#define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
66#define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
67#define I2C_MCR_AM		(0x3 << 12)	/* Address type */
68#define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
69#define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
70
71/* Status register (SR) */
72#define I2C_SR_OP		(0x3 << 0)	/* Operation */
73#define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
74#define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
75#define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
76#define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
77
78/* Interrupt mask set/clear (IMSCR) bits */
79#define I2C_IT_TXFE		(0x1 << 0)
80#define I2C_IT_TXFNE		(0x1 << 1)
81#define I2C_IT_TXFF		(0x1 << 2)
82#define I2C_IT_TXFOVR		(0x1 << 3)
83#define I2C_IT_RXFE		(0x1 << 4)
84#define I2C_IT_RXFNF		(0x1 << 5)
85#define I2C_IT_RXFF		(0x1 << 6)
86#define I2C_IT_RFSR		(0x1 << 16)
87#define I2C_IT_RFSE		(0x1 << 17)
88#define I2C_IT_WTSR		(0x1 << 18)
89#define I2C_IT_MTD		(0x1 << 19)
90#define I2C_IT_STD		(0x1 << 20)
91#define I2C_IT_MAL		(0x1 << 24)
92#define I2C_IT_BERR		(0x1 << 25)
93#define I2C_IT_MTDWS		(0x1 << 28)
94
95#define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
96
97/* some bits in ICR are reserved */
98#define I2C_CLEAR_ALL_INTS	0x131f007f
99
100/* first three msb bits are reserved */
101#define IRQ_MASK(mask)		(mask & 0x1fffffff)
102
103/* maximum threshold value */
104#define MAX_I2C_FIFO_THRESHOLD	15
105
106enum i2c_freq_mode {
107	I2C_FREQ_MODE_STANDARD,		/* up to 100 Kb/s */
108	I2C_FREQ_MODE_FAST,		/* up to 400 Kb/s */
109	I2C_FREQ_MODE_HIGH_SPEED,	/* up to 3.4 Mb/s */
110	I2C_FREQ_MODE_FAST_PLUS,	/* up to 1 Mb/s */
111};
112
113/**
114 * struct i2c_vendor_data - per-vendor variations
115 * @has_mtdws: variant has the MTDWS bit
116 * @fifodepth: variant FIFO depth
117 */
118struct i2c_vendor_data {
119	bool has_mtdws;
120	u32 fifodepth;
121};
122
123enum i2c_status {
124	I2C_NOP,
125	I2C_ON_GOING,
126	I2C_OK,
127	I2C_ABORT
128};
129
130/* operation */
131enum i2c_operation {
132	I2C_NO_OPERATION = 0xff,
133	I2C_WRITE = 0x00,
134	I2C_READ = 0x01
135};
136
137/**
138 * struct i2c_nmk_client - client specific data
139 * @slave_adr: 7-bit slave address
140 * @count: no. bytes to be transferred
141 * @buffer: client data buffer
142 * @xfer_bytes: bytes transferred till now
143 * @operation: current I2C operation
144 */
145struct i2c_nmk_client {
146	unsigned short		slave_adr;
147	unsigned long		count;
148	unsigned char		*buffer;
149	unsigned long		xfer_bytes;
150	enum i2c_operation	operation;
151};
152
153/**
154 * struct nmk_i2c_dev - private data structure of the controller.
155 * @vendor: vendor data for this variant.
156 * @adev: parent amba device.
157 * @adap: corresponding I2C adapter.
158 * @irq: interrupt line for the controller.
159 * @virtbase: virtual io memory area.
160 * @clk: hardware i2c block clock.
161 * @cli: holder of client specific data.
162 * @clk_freq: clock frequency for the operation mode
163 * @tft: Tx FIFO Threshold in bytes
164 * @rft: Rx FIFO Threshold in bytes
165 * @timeout Slave response timeout (ms)
166 * @sm: speed mode
167 * @stop: stop condition.
168 * @xfer_complete: acknowledge completion for a I2C message.
169 * @result: controller propogated result.
170 */
171struct nmk_i2c_dev {
172	struct i2c_vendor_data		*vendor;
173	struct amba_device		*adev;
174	struct i2c_adapter		adap;
175	int				irq;
176	void __iomem			*virtbase;
177	struct clk			*clk;
178	struct i2c_nmk_client		cli;
179	u32				clk_freq;
180	unsigned char			tft;
181	unsigned char			rft;
182	int				timeout;
183	enum i2c_freq_mode		sm;
184	int				stop;
185	struct completion		xfer_complete;
186	int				result;
187};
188
189/* controller's abort causes */
190static const char *abort_causes[] = {
191	"no ack received after address transmission",
192	"no ack received during data phase",
193	"ack received after xmission of master code",
194	"master lost arbitration",
195	"slave restarts",
196	"slave reset",
197	"overflow, maxsize is 2047 bytes",
198};
199
200static inline void i2c_set_bit(void __iomem *reg, u32 mask)
201{
202	writel(readl(reg) | mask, reg);
203}
204
205static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
206{
207	writel(readl(reg) & ~mask, reg);
208}
209
210/**
211 * flush_i2c_fifo() - This function flushes the I2C FIFO
212 * @dev: private data of I2C Driver
213 *
214 * This function flushes the I2C Tx and Rx FIFOs. It returns
215 * 0 on successful flushing of FIFO
216 */
217static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
218{
219#define LOOP_ATTEMPTS 10
220	int i;
221	unsigned long timeout;
222
223	/*
224	 * flush the transmit and receive FIFO. The flushing
225	 * operation takes several cycles before to be completed.
226	 * On the completion, the I2C internal logic clears these
227	 * bits, until then no one must access Tx, Rx FIFO and
228	 * should poll on these bits waiting for the completion.
229	 */
230	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
231
232	for (i = 0; i < LOOP_ATTEMPTS; i++) {
233		timeout = jiffies + dev->adap.timeout;
234
235		while (!time_after(jiffies, timeout)) {
236			if ((readl(dev->virtbase + I2C_CR) &
237				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
238					return 0;
239		}
240	}
241
242	dev_err(&dev->adev->dev,
243		"flushing operation timed out giving up after %d attempts",
244		LOOP_ATTEMPTS);
245
246	return -ETIMEDOUT;
247}
248
249/**
250 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
251 * @dev: private data of I2C Driver
252 */
253static void disable_all_interrupts(struct nmk_i2c_dev *dev)
254{
255	u32 mask = IRQ_MASK(0);
256	writel(mask, dev->virtbase + I2C_IMSCR);
257}
258
259/**
260 * clear_all_interrupts() - Clear all interrupts of I2C Controller
261 * @dev: private data of I2C Driver
262 */
263static void clear_all_interrupts(struct nmk_i2c_dev *dev)
264{
265	u32 mask;
266	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
267	writel(mask, dev->virtbase + I2C_ICR);
268}
269
270/**
271 * init_hw() - initialize the I2C hardware
272 * @dev: private data of I2C Driver
273 */
274static int init_hw(struct nmk_i2c_dev *dev)
275{
276	int stat;
277
278	stat = flush_i2c_fifo(dev);
279	if (stat)
280		goto exit;
281
282	/* disable the controller */
283	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
284
285	disable_all_interrupts(dev);
286
287	clear_all_interrupts(dev);
288
289	dev->cli.operation = I2C_NO_OPERATION;
290
291exit:
292	return stat;
293}
294
295/* enable peripheral, master mode operation */
296#define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
297
298/**
299 * load_i2c_mcr_reg() - load the MCR register
300 * @dev: private data of controller
301 * @flags: message flags
302 */
303static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
304{
305	u32 mcr = 0;
306	unsigned short slave_adr_3msb_bits;
307
308	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
309
310	if (unlikely(flags & I2C_M_TEN)) {
311		/* 10-bit address transaction */
312		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
313		/*
314		 * Get the top 3 bits.
315		 * EA10 represents extended address in MCR. This includes
316		 * the extension (MSB bits) of the 7 bit address loaded
317		 * in A7
318		 */
319		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
320
321		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
322	} else {
323		/* 7-bit address transaction */
324		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
325	}
326
327	/* start byte procedure not applied */
328	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
329
330	/* check the operation, master read/write? */
331	if (dev->cli.operation == I2C_WRITE)
332		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
333	else
334		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
335
336	/* stop or repeated start? */
337	if (dev->stop)
338		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
339	else
340		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
341
342	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
343
344	return mcr;
345}
346
347/**
348 * setup_i2c_controller() - setup the controller
349 * @dev: private data of controller
350 */
351static void setup_i2c_controller(struct nmk_i2c_dev *dev)
352{
353	u32 brcr1, brcr2;
354	u32 i2c_clk, div;
355	u32 ns;
356	u16 slsu;
357
358	writel(0x0, dev->virtbase + I2C_CR);
359	writel(0x0, dev->virtbase + I2C_HSMCR);
360	writel(0x0, dev->virtbase + I2C_TFTR);
361	writel(0x0, dev->virtbase + I2C_RFTR);
362	writel(0x0, dev->virtbase + I2C_DMAR);
363
364	i2c_clk = clk_get_rate(dev->clk);
365
366	/*
367	 * set the slsu:
368	 *
369	 * slsu defines the data setup time after SCL clock
370	 * stretching in terms of i2c clk cycles + 1 (zero means
371	 * "wait one cycle"), the needed setup time for the three
372	 * modes are 250ns, 100ns, 10ns respectively.
373	 *
374	 * As the time for one cycle T in nanoseconds is
375	 * T = (1/f) * 1000000000 =>
376	 * slsu = cycles / (1000000000 / f) + 1
377	 */
378	ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
379	switch (dev->sm) {
380	case I2C_FREQ_MODE_FAST:
381	case I2C_FREQ_MODE_FAST_PLUS:
382		slsu = DIV_ROUND_UP(100, ns); /* Fast */
383		break;
384	case I2C_FREQ_MODE_HIGH_SPEED:
385		slsu = DIV_ROUND_UP(10, ns); /* High */
386		break;
387	case I2C_FREQ_MODE_STANDARD:
388	default:
389		slsu = DIV_ROUND_UP(250, ns); /* Standard */
390		break;
391	}
392	slsu += 1;
393
394	dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu);
395	writel(slsu << 16, dev->virtbase + I2C_SCR);
396
397	/*
398	 * The spec says, in case of std. mode the divider is
399	 * 2 whereas it is 3 for fast and fastplus mode of
400	 * operation. TODO - high speed support.
401	 */
402	div = (dev->clk_freq > 100000) ? 3 : 2;
403
404	/*
405	 * generate the mask for baud rate counters. The controller
406	 * has two baud rate counters. One is used for High speed
407	 * operation, and the other is for std, fast mode, fast mode
408	 * plus operation. Currently we do not supprt high speed mode
409	 * so set brcr1 to 0.
410	 */
411	brcr1 = 0 << 16;
412	brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff;
413
414	/* set the baud rate counter register */
415	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
416
417	/*
418	 * set the speed mode. Currently we support
419	 * only standard and fast mode of operation
420	 * TODO - support for fast mode plus (up to 1Mb/s)
421	 * and high speed (up to 3.4 Mb/s)
422	 */
423	if (dev->sm > I2C_FREQ_MODE_FAST) {
424		dev_err(&dev->adev->dev,
425			"do not support this mode defaulting to std. mode\n");
426		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
427		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
428		writel(I2C_FREQ_MODE_STANDARD << 4,
429				dev->virtbase + I2C_CR);
430	}
431	writel(dev->sm << 4, dev->virtbase + I2C_CR);
432
433	/* set the Tx and Rx FIFO threshold */
434	writel(dev->tft, dev->virtbase + I2C_TFTR);
435	writel(dev->rft, dev->virtbase + I2C_RFTR);
436}
437
438/**
439 * read_i2c() - Read from I2C client device
440 * @dev: private data of I2C Driver
441 * @flags: message flags
442 *
443 * This function reads from i2c client device when controller is in
444 * master mode. There is a completion timeout. If there is no transfer
445 * before timeout error is returned.
446 */
447static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
448{
449	u32 status = 0;
450	u32 mcr, irq_mask;
451	int timeout;
452
453	mcr = load_i2c_mcr_reg(dev, flags);
454	writel(mcr, dev->virtbase + I2C_MCR);
455
456	/* load the current CR value */
457	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
458			dev->virtbase + I2C_CR);
459
460	/* enable the controller */
461	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
462
463	init_completion(&dev->xfer_complete);
464
465	/* enable interrupts by setting the mask */
466	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
467			I2C_IT_MAL | I2C_IT_BERR);
468
469	if (dev->stop || !dev->vendor->has_mtdws)
470		irq_mask |= I2C_IT_MTD;
471	else
472		irq_mask |= I2C_IT_MTDWS;
473
474	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
475
476	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
477			dev->virtbase + I2C_IMSCR);
478
479	timeout = wait_for_completion_timeout(
480		&dev->xfer_complete, dev->adap.timeout);
481
482	if (timeout == 0) {
483		/* Controller timed out */
484		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
485				dev->cli.slave_adr);
486		status = -ETIMEDOUT;
487	}
488	return status;
489}
490
491static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
492{
493	int count;
494
495	for (count = (no_bytes - 2);
496			(count > 0) &&
497			(dev->cli.count != 0);
498			count--) {
499		/* write to the Tx FIFO */
500		writeb(*dev->cli.buffer,
501			dev->virtbase + I2C_TFR);
502		dev->cli.buffer++;
503		dev->cli.count--;
504		dev->cli.xfer_bytes++;
505	}
506
507}
508
509/**
510 * write_i2c() - Write data to I2C client.
511 * @dev: private data of I2C Driver
512 * @flags: message flags
513 *
514 * This function writes data to I2C client
515 */
516static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
517{
518	u32 status = 0;
519	u32 mcr, irq_mask;
520	int timeout;
521
522	mcr = load_i2c_mcr_reg(dev, flags);
523
524	writel(mcr, dev->virtbase + I2C_MCR);
525
526	/* load the current CR value */
527	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
528			dev->virtbase + I2C_CR);
529
530	/* enable the controller */
531	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
532
533	init_completion(&dev->xfer_complete);
534
535	/* enable interrupts by settings the masks */
536	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
537
538	/* Fill the TX FIFO with transmit data */
539	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
540
541	if (dev->cli.count != 0)
542		irq_mask |= I2C_IT_TXFNE;
543
544	/*
545	 * check if we want to transfer a single or multiple bytes, if so
546	 * set the MTDWS bit (Master Transaction Done Without Stop)
547	 * to start repeated start operation
548	 */
549	if (dev->stop || !dev->vendor->has_mtdws)
550		irq_mask |= I2C_IT_MTD;
551	else
552		irq_mask |= I2C_IT_MTDWS;
553
554	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
555
556	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
557			dev->virtbase + I2C_IMSCR);
558
559	timeout = wait_for_completion_timeout(
560		&dev->xfer_complete, dev->adap.timeout);
561
562	if (timeout == 0) {
563		/* Controller timed out */
564		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
565				dev->cli.slave_adr);
566		status = -ETIMEDOUT;
567	}
568
569	return status;
570}
571
572/**
573 * nmk_i2c_xfer_one() - transmit a single I2C message
574 * @dev: device with a message encoded into it
575 * @flags: message flags
576 */
577static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
578{
579	int status;
580
581	if (flags & I2C_M_RD) {
582		/* read operation */
583		dev->cli.operation = I2C_READ;
584		status = read_i2c(dev, flags);
585	} else {
586		/* write operation */
587		dev->cli.operation = I2C_WRITE;
588		status = write_i2c(dev, flags);
589	}
590
591	if (status || (dev->result)) {
592		u32 i2c_sr;
593		u32 cause;
594
595		i2c_sr = readl(dev->virtbase + I2C_SR);
596		/*
597		 * Check if the controller I2C operation status
598		 * is set to ABORT(11b).
599		 */
600		if (((i2c_sr >> 2) & 0x3) == 0x3) {
601			/* get the abort cause */
602			cause =	(i2c_sr >> 4) & 0x7;
603			dev_err(&dev->adev->dev, "%s\n",
604				cause >= ARRAY_SIZE(abort_causes) ?
605				"unknown reason" :
606				abort_causes[cause]);
607		}
608
609		(void) init_hw(dev);
610
611		status = status ? status : dev->result;
612	}
613
614	return status;
615}
616
617/**
618 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
619 * @i2c_adap: Adapter pointer to the controller
620 * @msgs: Pointer to data to be written.
621 * @num_msgs: Number of messages to be executed
622 *
623 * This is the function called by the generic kernel i2c_transfer()
624 * or i2c_smbus...() API calls. Note that this code is protected by the
625 * semaphore set in the kernel i2c_transfer() function.
626 *
627 * NOTE:
628 * READ TRANSFER : We impose a restriction of the first message to be the
629 *		index message for any read transaction.
630 *		- a no index is coded as '0',
631 *		- 2byte big endian index is coded as '3'
632 *		!!! msg[0].buf holds the actual index.
633 *		This is compatible with generic messages of smbus emulator
634 *		that send a one byte index.
635 *		eg. a I2C transation to read 2 bytes from index 0
636 *			idx = 0;
637 *			msg[0].addr = client->addr;
638 *			msg[0].flags = 0x0;
639 *			msg[0].len = 1;
640 *			msg[0].buf = &idx;
641 *
642 *			msg[1].addr = client->addr;
643 *			msg[1].flags = I2C_M_RD;
644 *			msg[1].len = 2;
645 *			msg[1].buf = rd_buff
646 *			i2c_transfer(adap, msg, 2);
647 *
648 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
649 *		If you want to emulate an SMBUS write transaction put the
650 *		index as first byte(or first and second) in the payload.
651 *		eg. a I2C transation to write 2 bytes from index 1
652 *			wr_buff[0] = 0x1;
653 *			wr_buff[1] = 0x23;
654 *			wr_buff[2] = 0x46;
655 *			msg[0].flags = 0x0;
656 *			msg[0].len = 3;
657 *			msg[0].buf = wr_buff;
658 *			i2c_transfer(adap, msg, 1);
659 *
660 * To read or write a block of data (multiple bytes) using SMBUS emulation
661 * please use the i2c_smbus_read_i2c_block_data()
662 * or i2c_smbus_write_i2c_block_data() API
663 */
664static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
665		struct i2c_msg msgs[], int num_msgs)
666{
667	int status = 0;
668	int i;
669	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
670	int j;
671
672	pm_runtime_get_sync(&dev->adev->dev);
673
674	/* Attempt three times to send the message queue */
675	for (j = 0; j < 3; j++) {
676		/* setup the i2c controller */
677		setup_i2c_controller(dev);
678
679		for (i = 0; i < num_msgs; i++) {
680			dev->cli.slave_adr	= msgs[i].addr;
681			dev->cli.buffer		= msgs[i].buf;
682			dev->cli.count		= msgs[i].len;
683			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
684			dev->result = 0;
685
686			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
687			if (status != 0)
688				break;
689		}
690		if (status == 0)
691			break;
692	}
693
694	pm_runtime_put_sync(&dev->adev->dev);
695
696	/* return the no. messages processed */
697	if (status)
698		return status;
699	else
700		return num_msgs;
701}
702
703/**
704 * disable_interrupts() - disable the interrupts
705 * @dev: private data of controller
706 * @irq: interrupt number
707 */
708static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
709{
710	irq = IRQ_MASK(irq);
711	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
712			dev->virtbase + I2C_IMSCR);
713	return 0;
714}
715
716/**
717 * i2c_irq_handler() - interrupt routine
718 * @irq: interrupt number
719 * @arg: data passed to the handler
720 *
721 * This is the interrupt handler for the i2c driver. Currently
722 * it handles the major interrupts like Rx & Tx FIFO management
723 * interrupts, master transaction interrupts, arbitration and
724 * bus error interrupts. The rest of the interrupts are treated as
725 * unhandled.
726 */
727static irqreturn_t i2c_irq_handler(int irq, void *arg)
728{
729	struct nmk_i2c_dev *dev = arg;
730	u32 tft, rft;
731	u32 count;
732	u32 misr, src;
733
734	/* load Tx FIFO and Rx FIFO threshold values */
735	tft = readl(dev->virtbase + I2C_TFTR);
736	rft = readl(dev->virtbase + I2C_RFTR);
737
738	/* read interrupt status register */
739	misr = readl(dev->virtbase + I2C_MISR);
740
741	src = __ffs(misr);
742	switch ((1 << src)) {
743
744	/* Transmit FIFO nearly empty interrupt */
745	case I2C_IT_TXFNE:
746	{
747		if (dev->cli.operation == I2C_READ) {
748			/*
749			 * in read operation why do we care for writing?
750			 * so disable the Transmit FIFO interrupt
751			 */
752			disable_interrupts(dev, I2C_IT_TXFNE);
753		} else {
754			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
755			/*
756			 * if done, close the transfer by disabling the
757			 * corresponding TXFNE interrupt
758			 */
759			if (dev->cli.count == 0)
760				disable_interrupts(dev,	I2C_IT_TXFNE);
761		}
762	}
763	break;
764
765	/*
766	 * Rx FIFO nearly full interrupt.
767	 * This is set when the numer of entries in Rx FIFO is
768	 * greater or equal than the threshold value programmed
769	 * in RFT
770	 */
771	case I2C_IT_RXFNF:
772		for (count = rft; count > 0; count--) {
773			/* Read the Rx FIFO */
774			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
775			dev->cli.buffer++;
776		}
777		dev->cli.count -= rft;
778		dev->cli.xfer_bytes += rft;
779		break;
780
781	/* Rx FIFO full */
782	case I2C_IT_RXFF:
783		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
784			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
785			dev->cli.buffer++;
786		}
787		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
788		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
789		break;
790
791	/* Master Transaction Done with/without stop */
792	case I2C_IT_MTD:
793	case I2C_IT_MTDWS:
794		if (dev->cli.operation == I2C_READ) {
795			while (!(readl(dev->virtbase + I2C_RISR)
796				 & I2C_IT_RXFE)) {
797				if (dev->cli.count == 0)
798					break;
799				*dev->cli.buffer =
800					readb(dev->virtbase + I2C_RFR);
801				dev->cli.buffer++;
802				dev->cli.count--;
803				dev->cli.xfer_bytes++;
804			}
805		}
806
807		disable_all_interrupts(dev);
808		clear_all_interrupts(dev);
809
810		if (dev->cli.count) {
811			dev->result = -EIO;
812			dev_err(&dev->adev->dev,
813				"%lu bytes still remain to be xfered\n",
814				dev->cli.count);
815			(void) init_hw(dev);
816		}
817		complete(&dev->xfer_complete);
818
819		break;
820
821	/* Master Arbitration lost interrupt */
822	case I2C_IT_MAL:
823		dev->result = -EIO;
824		(void) init_hw(dev);
825
826		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
827		complete(&dev->xfer_complete);
828
829		break;
830
831	/*
832	 * Bus Error interrupt.
833	 * This happens when an unexpected start/stop condition occurs
834	 * during the transaction.
835	 */
836	case I2C_IT_BERR:
837		dev->result = -EIO;
838		/* get the status */
839		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
840			(void) init_hw(dev);
841
842		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
843		complete(&dev->xfer_complete);
844
845		break;
846
847	/*
848	 * Tx FIFO overrun interrupt.
849	 * This is set when a write operation in Tx FIFO is performed and
850	 * the Tx FIFO is full.
851	 */
852	case I2C_IT_TXFOVR:
853		dev->result = -EIO;
854		(void) init_hw(dev);
855
856		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
857		complete(&dev->xfer_complete);
858
859		break;
860
861	/* unhandled interrupts by this driver - TODO*/
862	case I2C_IT_TXFE:
863	case I2C_IT_TXFF:
864	case I2C_IT_RXFE:
865	case I2C_IT_RFSR:
866	case I2C_IT_RFSE:
867	case I2C_IT_WTSR:
868	case I2C_IT_STD:
869		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
870		break;
871	default:
872		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
873		break;
874	}
875
876	return IRQ_HANDLED;
877}
878
879#ifdef CONFIG_PM_SLEEP
880static int nmk_i2c_suspend_late(struct device *dev)
881{
882	int ret;
883
884	ret = pm_runtime_force_suspend(dev);
885	if (ret)
886		return ret;
887
888	pinctrl_pm_select_sleep_state(dev);
889	return 0;
890}
891
892static int nmk_i2c_resume_early(struct device *dev)
893{
894	return pm_runtime_force_resume(dev);
895}
896#endif
897
898#ifdef CONFIG_PM
899static int nmk_i2c_runtime_suspend(struct device *dev)
900{
901	struct amba_device *adev = to_amba_device(dev);
902	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
903
904	clk_disable_unprepare(nmk_i2c->clk);
905	pinctrl_pm_select_idle_state(dev);
906	return 0;
907}
908
909static int nmk_i2c_runtime_resume(struct device *dev)
910{
911	struct amba_device *adev = to_amba_device(dev);
912	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
913	int ret;
914
915	ret = clk_prepare_enable(nmk_i2c->clk);
916	if (ret) {
917		dev_err(dev, "can't prepare_enable clock\n");
918		return ret;
919	}
920
921	pinctrl_pm_select_default_state(dev);
922
923	ret = init_hw(nmk_i2c);
924	if (ret) {
925		clk_disable_unprepare(nmk_i2c->clk);
926		pinctrl_pm_select_idle_state(dev);
927	}
928
929	return ret;
930}
931#endif
932
933static const struct dev_pm_ops nmk_i2c_pm = {
934	SET_LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early)
935	SET_PM_RUNTIME_PM_OPS(nmk_i2c_runtime_suspend,
936			nmk_i2c_runtime_resume,
937			NULL)
938};
939
940static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
941{
942	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
943}
944
945static const struct i2c_algorithm nmk_i2c_algo = {
946	.master_xfer	= nmk_i2c_xfer,
947	.functionality	= nmk_i2c_functionality
948};
949
950static void nmk_i2c_of_probe(struct device_node *np,
951			     struct nmk_i2c_dev *nmk)
952{
953	/* Default to 100 kHz if no frequency is given in the node */
954	if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq))
955		nmk->clk_freq = 100000;
956
957	/* This driver only supports 'standard' and 'fast' modes of operation. */
958	if (nmk->clk_freq <= 100000)
959		nmk->sm = I2C_FREQ_MODE_STANDARD;
960	else
961		nmk->sm = I2C_FREQ_MODE_FAST;
962	nmk->tft = 1; /* Tx FIFO threshold */
963	nmk->rft = 8; /* Rx FIFO threshold */
964	nmk->timeout = 200; /* Slave response timeout(ms) */
965}
966
967static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
968{
969	int ret = 0;
970	struct device_node *np = adev->dev.of_node;
971	struct nmk_i2c_dev	*dev;
972	struct i2c_adapter *adap;
973	struct i2c_vendor_data *vendor = id->data;
974	u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
975
976	dev = devm_kzalloc(&adev->dev, sizeof(struct nmk_i2c_dev), GFP_KERNEL);
977	if (!dev) {
978		dev_err(&adev->dev, "cannot allocate memory\n");
979		ret = -ENOMEM;
980		goto err_no_mem;
981	}
982	dev->vendor = vendor;
983	dev->adev = adev;
984	nmk_i2c_of_probe(np, dev);
985
986	if (dev->tft > max_fifo_threshold) {
987		dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
988			 dev->tft, max_fifo_threshold);
989		dev->tft = max_fifo_threshold;
990	}
991
992	if (dev->rft > max_fifo_threshold) {
993		dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
994			dev->rft, max_fifo_threshold);
995		dev->rft = max_fifo_threshold;
996	}
997
998	amba_set_drvdata(adev, dev);
999
1000	dev->virtbase = devm_ioremap(&adev->dev, adev->res.start,
1001				resource_size(&adev->res));
1002	if (!dev->virtbase) {
1003		ret = -ENOMEM;
1004		goto err_no_mem;
1005	}
1006
1007	dev->irq = adev->irq[0];
1008	ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0,
1009				DRIVER_NAME, dev);
1010	if (ret) {
1011		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1012		goto err_no_mem;
1013	}
1014
1015	pm_suspend_ignore_children(&adev->dev, true);
1016
1017	dev->clk = devm_clk_get(&adev->dev, NULL);
1018	if (IS_ERR(dev->clk)) {
1019		dev_err(&adev->dev, "could not get i2c clock\n");
1020		ret = PTR_ERR(dev->clk);
1021		goto err_no_mem;
1022	}
1023
1024	ret = clk_prepare_enable(dev->clk);
1025	if (ret) {
1026		dev_err(&adev->dev, "can't prepare_enable clock\n");
1027		goto err_no_mem;
1028	}
1029
1030	init_hw(dev);
1031
1032	adap = &dev->adap;
1033	adap->dev.of_node = np;
1034	adap->dev.parent = &adev->dev;
1035	adap->owner = THIS_MODULE;
1036	adap->class = I2C_CLASS_DEPRECATED;
1037	adap->algo = &nmk_i2c_algo;
1038	adap->timeout = msecs_to_jiffies(dev->timeout);
1039	snprintf(adap->name, sizeof(adap->name),
1040		 "Nomadik I2C at %pR", &adev->res);
1041
1042	i2c_set_adapdata(adap, dev);
1043
1044	dev_info(&adev->dev,
1045		 "initialize %s on virtual base %p\n",
1046		 adap->name, dev->virtbase);
1047
1048	ret = i2c_add_adapter(adap);
1049	if (ret) {
1050		dev_err(&adev->dev, "failed to add adapter\n");
1051		goto err_no_adap;
1052	}
1053
1054	pm_runtime_put(&adev->dev);
1055
1056	return 0;
1057
1058 err_no_adap:
1059	clk_disable_unprepare(dev->clk);
1060 err_no_mem:
1061
1062	return ret;
1063}
1064
1065static int nmk_i2c_remove(struct amba_device *adev)
1066{
1067	struct resource *res = &adev->res;
1068	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1069
1070	i2c_del_adapter(&dev->adap);
1071	flush_i2c_fifo(dev);
1072	disable_all_interrupts(dev);
1073	clear_all_interrupts(dev);
1074	/* disable the controller */
1075	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1076	clk_disable_unprepare(dev->clk);
1077	if (res)
1078		release_mem_region(res->start, resource_size(res));
1079
1080	return 0;
1081}
1082
1083static struct i2c_vendor_data vendor_stn8815 = {
1084	.has_mtdws = false,
1085	.fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
1086};
1087
1088static struct i2c_vendor_data vendor_db8500 = {
1089	.has_mtdws = true,
1090	.fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
1091};
1092
1093static struct amba_id nmk_i2c_ids[] = {
1094	{
1095		.id	= 0x00180024,
1096		.mask	= 0x00ffffff,
1097		.data	= &vendor_stn8815,
1098	},
1099	{
1100		.id	= 0x00380024,
1101		.mask	= 0x00ffffff,
1102		.data	= &vendor_db8500,
1103	},
1104	{},
1105};
1106
1107MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1108
1109static struct amba_driver nmk_i2c_driver = {
1110	.drv = {
1111		.owner = THIS_MODULE,
1112		.name = DRIVER_NAME,
1113		.pm = &nmk_i2c_pm,
1114	},
1115	.id_table = nmk_i2c_ids,
1116	.probe = nmk_i2c_probe,
1117	.remove = nmk_i2c_remove,
1118};
1119
1120static int __init nmk_i2c_init(void)
1121{
1122	return amba_driver_register(&nmk_i2c_driver);
1123}
1124
1125static void __exit nmk_i2c_exit(void)
1126{
1127	amba_driver_unregister(&nmk_i2c_driver);
1128}
1129
1130subsys_initcall(nmk_i2c_init);
1131module_exit(nmk_i2c_exit);
1132
1133MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1134MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1135MODULE_LICENSE("GPL");
1136