[go: nahoru, domu]

1/*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *      - Redistributions in binary form must reproduce the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer in the documentation and/or other materials
20 *        provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31#ifndef __T4_H__
32#define __T4_H__
33
34#include "t4_hw.h"
35#include "t4_regs.h"
36#include "t4_msg.h"
37#include "t4fw_ri_api.h"
38
39#define T4_MAX_NUM_PD 65536
40#define T4_MAX_MR_SIZE (~0ULL)
41#define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
42#define T4_STAG_UNSET 0xffffffff
43#define T4_FW_MAJ 0
44#define A_PCIE_MA_SYNC 0x30b4
45
46struct t4_status_page {
47	__be32 rsvd1;	/* flit 0 - hw owns */
48	__be16 rsvd2;
49	__be16 qid;
50	__be16 cidx;
51	__be16 pidx;
52	u8 qp_err;	/* flit 1 - sw owns */
53	u8 db_off;
54	u8 pad;
55	u16 host_wq_pidx;
56	u16 host_cidx;
57	u16 host_pidx;
58};
59
60#define T4_EQ_ENTRY_SIZE 64
61
62#define T4_SQ_NUM_SLOTS 5
63#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
64#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
65			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
66#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
67			sizeof(struct fw_ri_immd)))
68#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
69			sizeof(struct fw_ri_rdma_write_wr) - \
70			sizeof(struct fw_ri_immd)))
71#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
72			sizeof(struct fw_ri_rdma_write_wr) - \
73			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
74#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
75			sizeof(struct fw_ri_immd)) & ~31UL)
76#define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
77#define T4_MAX_FR_DSGL 1024
78#define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
79
80static inline int t4_max_fr_depth(int use_dsgl)
81{
82	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
83}
84
85#define T4_RQ_NUM_SLOTS 2
86#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
87#define T4_MAX_RECV_SGE 4
88
89union t4_wr {
90	struct fw_ri_res_wr res;
91	struct fw_ri_wr ri;
92	struct fw_ri_rdma_write_wr write;
93	struct fw_ri_send_wr send;
94	struct fw_ri_rdma_read_wr read;
95	struct fw_ri_bind_mw_wr bind;
96	struct fw_ri_fr_nsmr_wr fr;
97	struct fw_ri_inv_lstag_wr inv;
98	struct t4_status_page status;
99	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
100};
101
102union t4_recv_wr {
103	struct fw_ri_recv_wr recv;
104	struct t4_status_page status;
105	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
106};
107
108static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
109			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
110{
111	wqe->send.opcode = (u8)opcode;
112	wqe->send.flags = flags;
113	wqe->send.wrid = wrid;
114	wqe->send.r1[0] = 0;
115	wqe->send.r1[1] = 0;
116	wqe->send.r1[2] = 0;
117	wqe->send.len16 = len16;
118}
119
120/* CQE/AE status codes */
121#define T4_ERR_SUCCESS                     0x0
122#define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
123						/* STAG is offlimt, being 0, */
124						/* or STAG_key mismatch */
125#define T4_ERR_PDID                        0x2	/* PDID mismatch */
126#define T4_ERR_QPID                        0x3	/* QPID mismatch */
127#define T4_ERR_ACCESS                      0x4	/* Invalid access right */
128#define T4_ERR_WRAP                        0x5	/* Wrap error */
129#define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
130#define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
131						/* shared memory region */
132#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
133						/* shared memory region */
134#define T4_ERR_ECC                         0x9	/* ECC error detected */
135#define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
136						/* reading PSTAG for a MW  */
137						/* Invalidate */
138#define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
139						/* software error */
140#define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
141#define T4_ERR_CRC                         0x10 /* CRC error */
142#define T4_ERR_MARKER                      0x11 /* Marker error */
143#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
144#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
145#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
146#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
147#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
148#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
149#define T4_ERR_MSN                         0x18 /* MSN error */
150#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
151#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
152						/* or READ_REQ */
153#define T4_ERR_MSN_GAP                     0x1B
154#define T4_ERR_MSN_RANGE                   0x1C
155#define T4_ERR_IRD_OVERFLOW                0x1D
156#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
157						/* software error */
158#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
159						/* mismatch) */
160/*
161 * CQE defs
162 */
163struct t4_cqe {
164	__be32 header;
165	__be32 len;
166	union {
167		struct {
168			__be32 stag;
169			__be32 msn;
170		} rcqe;
171		struct {
172			u32 nada1;
173			u16 nada2;
174			u16 cidx;
175		} scqe;
176		struct {
177			__be32 wrid_hi;
178			__be32 wrid_low;
179		} gen;
180	} u;
181	__be64 reserved;
182	__be64 bits_type_ts;
183};
184
185/* macros for flit 0 of the cqe */
186
187#define S_CQE_QPID        12
188#define M_CQE_QPID        0xFFFFF
189#define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
190#define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
191
192#define S_CQE_SWCQE       11
193#define M_CQE_SWCQE       0x1
194#define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
195#define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
196
197#define S_CQE_STATUS      5
198#define M_CQE_STATUS      0x1F
199#define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
200#define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
201
202#define S_CQE_TYPE        4
203#define M_CQE_TYPE        0x1
204#define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
205#define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
206
207#define S_CQE_OPCODE      0
208#define M_CQE_OPCODE      0xF
209#define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
210#define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
211
212#define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
213#define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
214#define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
215#define SQ_TYPE(x)	  (CQE_TYPE((x)))
216#define RQ_TYPE(x)	  (!CQE_TYPE((x)))
217#define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
218#define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
219
220#define CQE_SEND_OPCODE(x)( \
221	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
222	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
223	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
224	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
225
226#define CQE_LEN(x)        (be32_to_cpu((x)->len))
227
228/* used for RQ completion processing */
229#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
230#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
231
232/* used for SQ completion processing */
233#define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
234
235/* generic accessor macros */
236#define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
237#define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
238
239/* macros for flit 3 of the cqe */
240#define S_CQE_GENBIT	63
241#define M_CQE_GENBIT	0x1
242#define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
243#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
244
245#define S_CQE_OVFBIT	62
246#define M_CQE_OVFBIT	0x1
247#define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
248
249#define S_CQE_IQTYPE	60
250#define M_CQE_IQTYPE	0x3
251#define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
252
253#define M_CQE_TS	0x0fffffffffffffffULL
254#define G_CQE_TS(x)	((x) & M_CQE_TS)
255
256#define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
257#define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
258#define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
259
260struct t4_swsqe {
261	u64			wr_id;
262	struct t4_cqe		cqe;
263	int			read_len;
264	int			opcode;
265	int			complete;
266	int			signaled;
267	u16			idx;
268	int                     flushed;
269	struct timespec         host_ts;
270	u64                     sge_ts;
271};
272
273static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
274{
275#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
276	return pgprot_writecombine(prot);
277#else
278	return pgprot_noncached(prot);
279#endif
280}
281
282enum {
283	T4_SQ_ONCHIP = (1<<0),
284};
285
286struct t4_sq {
287	union t4_wr *queue;
288	dma_addr_t dma_addr;
289	DEFINE_DMA_UNMAP_ADDR(mapping);
290	unsigned long phys_addr;
291	struct t4_swsqe *sw_sq;
292	struct t4_swsqe *oldest_read;
293	u64 __iomem *udb;
294	size_t memsize;
295	u32 qid;
296	u16 in_use;
297	u16 size;
298	u16 cidx;
299	u16 pidx;
300	u16 wq_pidx;
301	u16 wq_pidx_inc;
302	u16 flags;
303	short flush_cidx;
304};
305
306struct t4_swrqe {
307	u64 wr_id;
308	struct timespec host_ts;
309	u64 sge_ts;
310};
311
312struct t4_rq {
313	union  t4_recv_wr *queue;
314	dma_addr_t dma_addr;
315	DEFINE_DMA_UNMAP_ADDR(mapping);
316	struct t4_swrqe *sw_rq;
317	u64 __iomem *udb;
318	size_t memsize;
319	u32 qid;
320	u32 msn;
321	u32 rqt_hwaddr;
322	u16 rqt_size;
323	u16 in_use;
324	u16 size;
325	u16 cidx;
326	u16 pidx;
327	u16 wq_pidx;
328	u16 wq_pidx_inc;
329};
330
331struct t4_wq {
332	struct t4_sq sq;
333	struct t4_rq rq;
334	void __iomem *db;
335	void __iomem *gts;
336	struct c4iw_rdev *rdev;
337	int flushed;
338};
339
340static inline int t4_rqes_posted(struct t4_wq *wq)
341{
342	return wq->rq.in_use;
343}
344
345static inline int t4_rq_empty(struct t4_wq *wq)
346{
347	return wq->rq.in_use == 0;
348}
349
350static inline int t4_rq_full(struct t4_wq *wq)
351{
352	return wq->rq.in_use == (wq->rq.size - 1);
353}
354
355static inline u32 t4_rq_avail(struct t4_wq *wq)
356{
357	return wq->rq.size - 1 - wq->rq.in_use;
358}
359
360static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
361{
362	wq->rq.in_use++;
363	if (++wq->rq.pidx == wq->rq.size)
364		wq->rq.pidx = 0;
365	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
366	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
367		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
368}
369
370static inline void t4_rq_consume(struct t4_wq *wq)
371{
372	wq->rq.in_use--;
373	wq->rq.msn++;
374	if (++wq->rq.cidx == wq->rq.size)
375		wq->rq.cidx = 0;
376}
377
378static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
379{
380	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
381}
382
383static inline u16 t4_rq_wq_size(struct t4_wq *wq)
384{
385		return wq->rq.size * T4_RQ_NUM_SLOTS;
386}
387
388static inline int t4_sq_onchip(struct t4_sq *sq)
389{
390	return sq->flags & T4_SQ_ONCHIP;
391}
392
393static inline int t4_sq_empty(struct t4_wq *wq)
394{
395	return wq->sq.in_use == 0;
396}
397
398static inline int t4_sq_full(struct t4_wq *wq)
399{
400	return wq->sq.in_use == (wq->sq.size - 1);
401}
402
403static inline u32 t4_sq_avail(struct t4_wq *wq)
404{
405	return wq->sq.size - 1 - wq->sq.in_use;
406}
407
408static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
409{
410	wq->sq.in_use++;
411	if (++wq->sq.pidx == wq->sq.size)
412		wq->sq.pidx = 0;
413	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
414	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
415		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
416}
417
418static inline void t4_sq_consume(struct t4_wq *wq)
419{
420	BUG_ON(wq->sq.in_use < 1);
421	if (wq->sq.cidx == wq->sq.flush_cidx)
422		wq->sq.flush_cidx = -1;
423	wq->sq.in_use--;
424	if (++wq->sq.cidx == wq->sq.size)
425		wq->sq.cidx = 0;
426}
427
428static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
429{
430	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
431}
432
433static inline u16 t4_sq_wq_size(struct t4_wq *wq)
434{
435		return wq->sq.size * T4_SQ_NUM_SLOTS;
436}
437
438/* This function copies 64 byte coalesced work request to memory
439 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
440 * from the FIFO instead of from Host.
441 */
442static inline void pio_copy(u64 __iomem *dst, u64 *src)
443{
444	int count = 8;
445
446	while (count) {
447		writeq(*src, dst);
448		src++;
449		dst++;
450		count--;
451	}
452}
453
454static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t5,
455				 union t4_wr *wqe)
456{
457
458	/* Flush host queue memory writes. */
459	wmb();
460	if (t5) {
461		if (inc == 1 && wqe) {
462			PDBG("%s: WC wq->sq.pidx = %d\n",
463			     __func__, wq->sq.pidx);
464			pio_copy(wq->sq.udb + 7, (void *)wqe);
465		} else {
466			PDBG("%s: DB wq->sq.pidx = %d\n",
467			     __func__, wq->sq.pidx);
468			writel(PIDX_T5(inc), wq->sq.udb);
469		}
470
471		/* Flush user doorbell area writes. */
472		wmb();
473		return;
474	}
475	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
476}
477
478static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t5,
479				 union t4_recv_wr *wqe)
480{
481
482	/* Flush host queue memory writes. */
483	wmb();
484	if (t5) {
485		if (inc == 1 && wqe) {
486			PDBG("%s: WC wq->rq.pidx = %d\n",
487			     __func__, wq->rq.pidx);
488			pio_copy(wq->rq.udb + 7, (void *)wqe);
489		} else {
490			PDBG("%s: DB wq->rq.pidx = %d\n",
491			     __func__, wq->rq.pidx);
492			writel(PIDX_T5(inc), wq->rq.udb);
493		}
494
495		/* Flush user doorbell area writes. */
496		wmb();
497		return;
498	}
499	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
500}
501
502static inline int t4_wq_in_error(struct t4_wq *wq)
503{
504	return wq->rq.queue[wq->rq.size].status.qp_err;
505}
506
507static inline void t4_set_wq_in_error(struct t4_wq *wq)
508{
509	wq->rq.queue[wq->rq.size].status.qp_err = 1;
510}
511
512static inline void t4_disable_wq_db(struct t4_wq *wq)
513{
514	wq->rq.queue[wq->rq.size].status.db_off = 1;
515}
516
517static inline void t4_enable_wq_db(struct t4_wq *wq)
518{
519	wq->rq.queue[wq->rq.size].status.db_off = 0;
520}
521
522static inline int t4_wq_db_enabled(struct t4_wq *wq)
523{
524	return !wq->rq.queue[wq->rq.size].status.db_off;
525}
526
527enum t4_cq_flags {
528	CQ_ARMED	= 1,
529};
530
531struct t4_cq {
532	struct t4_cqe *queue;
533	dma_addr_t dma_addr;
534	DEFINE_DMA_UNMAP_ADDR(mapping);
535	struct t4_cqe *sw_queue;
536	void __iomem *gts;
537	struct c4iw_rdev *rdev;
538	u64 ugts;
539	size_t memsize;
540	__be64 bits_type_ts;
541	u32 cqid;
542	int vector;
543	u16 size; /* including status page */
544	u16 cidx;
545	u16 sw_pidx;
546	u16 sw_cidx;
547	u16 sw_in_use;
548	u16 cidx_inc;
549	u8 gen;
550	u8 error;
551	unsigned long flags;
552};
553
554static inline int t4_clear_cq_armed(struct t4_cq *cq)
555{
556	return test_and_clear_bit(CQ_ARMED, &cq->flags);
557}
558
559static inline int t4_arm_cq(struct t4_cq *cq, int se)
560{
561	u32 val;
562
563	set_bit(CQ_ARMED, &cq->flags);
564	while (cq->cidx_inc > CIDXINC_MASK) {
565		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
566		      INGRESSQID(cq->cqid);
567		writel(val, cq->gts);
568		cq->cidx_inc -= CIDXINC_MASK;
569	}
570	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
571	      INGRESSQID(cq->cqid);
572	writel(val, cq->gts);
573	cq->cidx_inc = 0;
574	return 0;
575}
576
577static inline void t4_swcq_produce(struct t4_cq *cq)
578{
579	cq->sw_in_use++;
580	if (cq->sw_in_use == cq->size) {
581		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
582		cq->error = 1;
583		BUG_ON(1);
584	}
585	if (++cq->sw_pidx == cq->size)
586		cq->sw_pidx = 0;
587}
588
589static inline void t4_swcq_consume(struct t4_cq *cq)
590{
591	BUG_ON(cq->sw_in_use < 1);
592	cq->sw_in_use--;
593	if (++cq->sw_cidx == cq->size)
594		cq->sw_cidx = 0;
595}
596
597static inline void t4_hwcq_consume(struct t4_cq *cq)
598{
599	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
600	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_MASK) {
601		u32 val;
602
603		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
604		      INGRESSQID(cq->cqid);
605		writel(val, cq->gts);
606		cq->cidx_inc = 0;
607	}
608	if (++cq->cidx == cq->size) {
609		cq->cidx = 0;
610		cq->gen ^= 1;
611	}
612}
613
614static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
615{
616	return (CQE_GENBIT(cqe) == cq->gen);
617}
618
619static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
620{
621	int ret;
622	u16 prev_cidx;
623
624	if (cq->cidx == 0)
625		prev_cidx = cq->size - 1;
626	else
627		prev_cidx = cq->cidx - 1;
628
629	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
630		ret = -EOVERFLOW;
631		cq->error = 1;
632		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
633		BUG_ON(1);
634	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
635
636		/* Ensure CQE is flushed to memory */
637		rmb();
638		*cqe = &cq->queue[cq->cidx];
639		ret = 0;
640	} else
641		ret = -ENODATA;
642	return ret;
643}
644
645static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
646{
647	if (cq->sw_in_use == cq->size) {
648		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
649		cq->error = 1;
650		BUG_ON(1);
651		return NULL;
652	}
653	if (cq->sw_in_use)
654		return &cq->sw_queue[cq->sw_cidx];
655	return NULL;
656}
657
658static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
659{
660	int ret = 0;
661
662	if (cq->error)
663		ret = -ENODATA;
664	else if (cq->sw_in_use)
665		*cqe = &cq->sw_queue[cq->sw_cidx];
666	else
667		ret = t4_next_hw_cqe(cq, cqe);
668	return ret;
669}
670
671static inline int t4_cq_in_error(struct t4_cq *cq)
672{
673	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
674}
675
676static inline void t4_set_cq_in_error(struct t4_cq *cq)
677{
678	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
679}
680#endif
681
682struct t4_dev_status_page {
683	u8 db_off;
684};
685