[go: nahoru, domu]

1/*
2 * Copyright (C) 1999-2003		Andre Hedrick <andre@linux-ide.org>
3 * Portions Copyright (C) 2001	        Sun Microsystems, Inc.
4 * Portions Copyright (C) 2003		Red Hat Inc
5 * Portions Copyright (C) 2007		Bartlomiej Zolnierkiewicz
6 * Portions Copyright (C) 2005-2009	MontaVista Software, Inc.
7 *
8 * Thanks to HighPoint Technologies for their assistance, and hardware.
9 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10 * donation of an ABit BP6 mainboard, processor, and memory acellerated
11 * development and support.
12 *
13 *
14 * HighPoint has its own drivers (open source except for the RAID part)
15 * available from http://www.highpoint-tech.com/USA_new/service_support.htm
16 * This may be useful to anyone wanting to work on this driver, however  do not
17 * trust  them too much since the code tends to become less and less meaningful
18 * as the time passes... :-/
19 *
20 * Note that final HPT370 support was done by force extraction of GPL.
21 *
22 * - add function for getting/setting power status of drive
23 * - the HPT370's state machine can get confused. reset it before each dma
24 *   xfer to prevent that from happening.
25 * - reset state engine whenever we get an error.
26 * - check for busmaster state at end of dma.
27 * - use new highpoint timings.
28 * - detect bus speed using highpoint register.
29 * - use pll if we don't have a clock table. added a 66MHz table that's
30 *   just 2x the 33MHz table.
31 * - removed turnaround. NOTE: we never want to switch between pll and
32 *   pci clocks as the chip can glitch in those cases. the highpoint
33 *   approved workaround slows everything down too much to be useful. in
34 *   addition, we would have to serialize access to each chip.
35 * 	Adrian Sun <a.sun@sun.com>
36 *
37 * add drive timings for 66MHz PCI bus,
38 * fix ATA Cable signal detection, fix incorrect /proc info
39 * add /proc display for per-drive PIO/DMA/UDMA mode and
40 * per-channel ATA-33/66 Cable detect.
41 * 	Duncan Laurie <void@sun.com>
42 *
43 * fixup /proc output for multiple controllers
44 *	Tim Hockin <thockin@sun.com>
45 *
46 * On hpt366:
47 * Reset the hpt366 on error, reset on dma
48 * Fix disabling Fast Interrupt hpt366.
49 * 	Mike Waychison <crlf@sun.com>
50 *
51 * Added support for 372N clocking and clock switching. The 372N needs
52 * different clocks on read/write. This requires overloading rw_disk and
53 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54 * keeping me sane.
55 *		Alan Cox <alan@lxorguk.ukuu.org.uk>
56 *
57 * - fix the clock turnaround code: it was writing to the wrong ports when
58 *   called for the secondary channel, caching the current clock mode per-
59 *   channel caused the cached register value to get out of sync with the
60 *   actual one, the channels weren't serialized, the turnaround shouldn't
61 *   be done on 66 MHz PCI bus
62 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63 *   does not allow for this speed anyway
64 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65 *   their primary channel is kind of virtual, it isn't tied to any pins)
66 * - fix/remove bad/unused timing tables and use one set of tables for the whole
67 *   HPT37x chip family; save space by introducing the separate transfer mode
68 *   table in which the mode lookup is done
69 * - use f_CNT value saved by  the HighPoint BIOS as reading it directly gives
70 *   the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71 *   read it only from the function 0 of HPT374 chips
72 * - fix the hotswap code:  it caused RESET- to glitch when tristating the bus,
73 *   and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75 *   they tamper with its fields
76 * - pass  to the init_setup handlers a copy of the ide_pci_device_t structure
77 *   since they may tamper with its fields
78 * - prefix the driver startup messages with the real chip name
79 * - claim the extra 240 bytes of I/O space for all chips
80 * - optimize the UltraDMA filtering and the drive list lookup code
81 * - use pci_get_slot() to get to the function 1 of HPT36x/374
82 * - cache offset of the channel's misc. control registers (MCRs) being used
83 *   throughout the driver
84 * - only touch the relevant MCR when detecting the cable type on HPT374's
85 *   function 1
86 * - rename all the register related variables consistently
87 * - move all the interrupt twiddling code from the speedproc handlers into
88 *   init_hwif_hpt366(), also grouping all the DMA related code together there
89 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90 *   separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91 *   when setting an UltraDMA mode
92 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93 *   the best possible one
94 * - clean up DMA timeout handling for HPT370
95 * - switch to using the enumeration type to differ between the numerous chip
96 *   variants, matching PCI device/revision ID with the chip type early, at the
97 *   init_setup stage
98 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99 *   stop duplicating it for each channel by storing the pointer in the pci_dev
100 *   structure: first, at the init_setup stage, point it to a static "template"
101 *   with only the chip type and its specific base DPLL frequency, the highest
102 *   UltraDMA mode, and the chip settings table pointer filled,  then, at the
103 *   init_chipset stage, allocate per-chip instance  and fill it with the rest
104 *   of the necessary information
105 * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106 *   switch  to calculating  PCI clock frequency based on the chip's base DPLL
107 *   frequency
108 * - switch to using the  DPLL clock and enable UltraATA/133 mode by default on
109 *   anything  newer than HPT370/A (except HPT374 that is not capable of this
110 *   mode according to the manual)
111 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112 *   also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113 *   unify HPT36x/37x timing setup code and the speedproc handlers by joining
114 *   the register setting lists into the table indexed by the clock selected
115 * - set the correct hwif->ultra_mask for each individual chip
116 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117 * - stop resetting HPT370's state machine before each DMA transfer as that has
118 *   caused more harm than good
119 *	Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
120 */
121
122#include <linux/types.h>
123#include <linux/module.h>
124#include <linux/kernel.h>
125#include <linux/delay.h>
126#include <linux/blkdev.h>
127#include <linux/interrupt.h>
128#include <linux/pci.h>
129#include <linux/init.h>
130#include <linux/ide.h>
131#include <linux/slab.h>
132
133#include <asm/uaccess.h>
134#include <asm/io.h>
135
136#define DRV_NAME "hpt366"
137
138/* various tuning parameters */
139#undef	HPT_RESET_STATE_ENGINE
140#undef	HPT_DELAY_INTERRUPT
141
142static const char *bad_ata100_5[] = {
143	"IBM-DTLA-307075",
144	"IBM-DTLA-307060",
145	"IBM-DTLA-307045",
146	"IBM-DTLA-307030",
147	"IBM-DTLA-307020",
148	"IBM-DTLA-307015",
149	"IBM-DTLA-305040",
150	"IBM-DTLA-305030",
151	"IBM-DTLA-305020",
152	"IC35L010AVER07-0",
153	"IC35L020AVER07-0",
154	"IC35L030AVER07-0",
155	"IC35L040AVER07-0",
156	"IC35L060AVER07-0",
157	"WDC AC310200R",
158	NULL
159};
160
161static const char *bad_ata66_4[] = {
162	"IBM-DTLA-307075",
163	"IBM-DTLA-307060",
164	"IBM-DTLA-307045",
165	"IBM-DTLA-307030",
166	"IBM-DTLA-307020",
167	"IBM-DTLA-307015",
168	"IBM-DTLA-305040",
169	"IBM-DTLA-305030",
170	"IBM-DTLA-305020",
171	"IC35L010AVER07-0",
172	"IC35L020AVER07-0",
173	"IC35L030AVER07-0",
174	"IC35L040AVER07-0",
175	"IC35L060AVER07-0",
176	"WDC AC310200R",
177	"MAXTOR STM3320620A",
178	NULL
179};
180
181static const char *bad_ata66_3[] = {
182	"WDC AC310200R",
183	NULL
184};
185
186static const char *bad_ata33[] = {
187	"Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
188	"Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
189	"Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
190	"Maxtor 90510D4",
191	"Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
192	"Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
193	"Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
194	NULL
195};
196
197static u8 xfer_speeds[] = {
198	XFER_UDMA_6,
199	XFER_UDMA_5,
200	XFER_UDMA_4,
201	XFER_UDMA_3,
202	XFER_UDMA_2,
203	XFER_UDMA_1,
204	XFER_UDMA_0,
205
206	XFER_MW_DMA_2,
207	XFER_MW_DMA_1,
208	XFER_MW_DMA_0,
209
210	XFER_PIO_4,
211	XFER_PIO_3,
212	XFER_PIO_2,
213	XFER_PIO_1,
214	XFER_PIO_0
215};
216
217/* Key for bus clock timings
218 * 36x   37x
219 * bits  bits
220 * 0:3	 0:3	data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
221 *		cycles = value + 1
222 * 4:7	 4:8	data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
223 *		cycles = value + 1
224 * 8:11  9:12	cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
225 *		register access.
226 * 12:15 13:17	cmd_low_time. Active time of DIOW_/DIOR_ during task file
227 *		register access.
228 * 16:18 18:20	udma_cycle_time. Clock cycles for UDMA xfer.
229 * -	 21	CLK frequency: 0=ATA clock, 1=dual ATA clock.
230 * 19:21 22:24	pre_high_time. Time to initialize the 1st cycle for PIO and
231 *		MW DMA xfer.
232 * 22:24 25:27	cmd_pre_high_time. Time to initialize the 1st PIO cycle for
233 *		task file register access.
234 * 28	 28	UDMA enable.
235 * 29	 29	DMA  enable.
236 * 30	 30	PIO MST enable. If set, the chip is in bus master mode during
237 *		PIO xfer.
238 * 31	 31	FIFO enable.
239 */
240
241static u32 forty_base_hpt36x[] = {
242	/* XFER_UDMA_6 */	0x900fd943,
243	/* XFER_UDMA_5 */	0x900fd943,
244	/* XFER_UDMA_4 */	0x900fd943,
245	/* XFER_UDMA_3 */	0x900ad943,
246	/* XFER_UDMA_2 */	0x900bd943,
247	/* XFER_UDMA_1 */	0x9008d943,
248	/* XFER_UDMA_0 */	0x9008d943,
249
250	/* XFER_MW_DMA_2 */	0xa008d943,
251	/* XFER_MW_DMA_1 */	0xa010d955,
252	/* XFER_MW_DMA_0 */	0xa010d9fc,
253
254	/* XFER_PIO_4 */	0xc008d963,
255	/* XFER_PIO_3 */	0xc010d974,
256	/* XFER_PIO_2 */	0xc010d997,
257	/* XFER_PIO_1 */	0xc010d9c7,
258	/* XFER_PIO_0 */	0xc018d9d9
259};
260
261static u32 thirty_three_base_hpt36x[] = {
262	/* XFER_UDMA_6 */	0x90c9a731,
263	/* XFER_UDMA_5 */	0x90c9a731,
264	/* XFER_UDMA_4 */	0x90c9a731,
265	/* XFER_UDMA_3 */	0x90cfa731,
266	/* XFER_UDMA_2 */	0x90caa731,
267	/* XFER_UDMA_1 */	0x90cba731,
268	/* XFER_UDMA_0 */	0x90c8a731,
269
270	/* XFER_MW_DMA_2 */	0xa0c8a731,
271	/* XFER_MW_DMA_1 */	0xa0c8a732,	/* 0xa0c8a733 */
272	/* XFER_MW_DMA_0 */	0xa0c8a797,
273
274	/* XFER_PIO_4 */	0xc0c8a731,
275	/* XFER_PIO_3 */	0xc0c8a742,
276	/* XFER_PIO_2 */	0xc0d0a753,
277	/* XFER_PIO_1 */	0xc0d0a7a3,	/* 0xc0d0a793 */
278	/* XFER_PIO_0 */	0xc0d0a7aa	/* 0xc0d0a7a7 */
279};
280
281static u32 twenty_five_base_hpt36x[] = {
282	/* XFER_UDMA_6 */	0x90c98521,
283	/* XFER_UDMA_5 */	0x90c98521,
284	/* XFER_UDMA_4 */	0x90c98521,
285	/* XFER_UDMA_3 */	0x90cf8521,
286	/* XFER_UDMA_2 */	0x90cf8521,
287	/* XFER_UDMA_1 */	0x90cb8521,
288	/* XFER_UDMA_0 */	0x90cb8521,
289
290	/* XFER_MW_DMA_2 */	0xa0ca8521,
291	/* XFER_MW_DMA_1 */	0xa0ca8532,
292	/* XFER_MW_DMA_0 */	0xa0ca8575,
293
294	/* XFER_PIO_4 */	0xc0ca8521,
295	/* XFER_PIO_3 */	0xc0ca8532,
296	/* XFER_PIO_2 */	0xc0ca8542,
297	/* XFER_PIO_1 */	0xc0d08572,
298	/* XFER_PIO_0 */	0xc0d08585
299};
300
301/*
302 * The following are the new timing tables with PIO mode data/taskfile transfer
303 * overclocking fixed...
304 */
305
306/* This table is taken from the HPT370 data manual rev. 1.02 */
307static u32 thirty_three_base_hpt37x[] = {
308	/* XFER_UDMA_6 */	0x16455031,	/* 0x16655031 ?? */
309	/* XFER_UDMA_5 */	0x16455031,
310	/* XFER_UDMA_4 */	0x16455031,
311	/* XFER_UDMA_3 */	0x166d5031,
312	/* XFER_UDMA_2 */	0x16495031,
313	/* XFER_UDMA_1 */	0x164d5033,
314	/* XFER_UDMA_0 */	0x16515097,
315
316	/* XFER_MW_DMA_2 */	0x26515031,
317	/* XFER_MW_DMA_1 */	0x26515033,
318	/* XFER_MW_DMA_0 */	0x26515097,
319
320	/* XFER_PIO_4 */	0x06515021,
321	/* XFER_PIO_3 */	0x06515022,
322	/* XFER_PIO_2 */	0x06515033,
323	/* XFER_PIO_1 */	0x06915065,
324	/* XFER_PIO_0 */	0x06d1508a
325};
326
327static u32 fifty_base_hpt37x[] = {
328	/* XFER_UDMA_6 */	0x1a861842,
329	/* XFER_UDMA_5 */	0x1a861842,
330	/* XFER_UDMA_4 */	0x1aae1842,
331	/* XFER_UDMA_3 */	0x1a8e1842,
332	/* XFER_UDMA_2 */	0x1a0e1842,
333	/* XFER_UDMA_1 */	0x1a161854,
334	/* XFER_UDMA_0 */	0x1a1a18ea,
335
336	/* XFER_MW_DMA_2 */	0x2a821842,
337	/* XFER_MW_DMA_1 */	0x2a821854,
338	/* XFER_MW_DMA_0 */	0x2a8218ea,
339
340	/* XFER_PIO_4 */	0x0a821842,
341	/* XFER_PIO_3 */	0x0a821843,
342	/* XFER_PIO_2 */	0x0a821855,
343	/* XFER_PIO_1 */	0x0ac218a8,
344	/* XFER_PIO_0 */	0x0b02190c
345};
346
347static u32 sixty_six_base_hpt37x[] = {
348	/* XFER_UDMA_6 */	0x1c86fe62,
349	/* XFER_UDMA_5 */	0x1caefe62,	/* 0x1c8afe62 */
350	/* XFER_UDMA_4 */	0x1c8afe62,
351	/* XFER_UDMA_3 */	0x1c8efe62,
352	/* XFER_UDMA_2 */	0x1c92fe62,
353	/* XFER_UDMA_1 */	0x1c9afe62,
354	/* XFER_UDMA_0 */	0x1c82fe62,
355
356	/* XFER_MW_DMA_2 */	0x2c82fe62,
357	/* XFER_MW_DMA_1 */	0x2c82fe66,
358	/* XFER_MW_DMA_0 */	0x2c82ff2e,
359
360	/* XFER_PIO_4 */	0x0c82fe62,
361	/* XFER_PIO_3 */	0x0c82fe84,
362	/* XFER_PIO_2 */	0x0c82fea6,
363	/* XFER_PIO_1 */	0x0d02ff26,
364	/* XFER_PIO_0 */	0x0d42ff7f
365};
366
367#define HPT371_ALLOW_ATA133_6		1
368#define HPT302_ALLOW_ATA133_6		1
369#define HPT372_ALLOW_ATA133_6		1
370#define HPT370_ALLOW_ATA100_5		0
371#define HPT366_ALLOW_ATA66_4		1
372#define HPT366_ALLOW_ATA66_3		1
373
374/* Supported ATA clock frequencies */
375enum ata_clock {
376	ATA_CLOCK_25MHZ,
377	ATA_CLOCK_33MHZ,
378	ATA_CLOCK_40MHZ,
379	ATA_CLOCK_50MHZ,
380	ATA_CLOCK_66MHZ,
381	NUM_ATA_CLOCKS
382};
383
384struct hpt_timings {
385	u32 pio_mask;
386	u32 dma_mask;
387	u32 ultra_mask;
388	u32 *clock_table[NUM_ATA_CLOCKS];
389};
390
391/*
392 *	Hold all the HighPoint chip information in one place.
393 */
394
395struct hpt_info {
396	char *chip_name;	/* Chip name */
397	u8 chip_type;		/* Chip type */
398	u8 udma_mask;		/* Allowed UltraDMA modes mask. */
399	u8 dpll_clk;		/* DPLL clock in MHz */
400	u8 pci_clk;		/* PCI  clock in MHz */
401	struct hpt_timings *timings; /* Chipset timing data */
402	u8 clock;		/* ATA clock selected */
403};
404
405/* Supported HighPoint chips */
406enum {
407	HPT36x,
408	HPT370,
409	HPT370A,
410	HPT374,
411	HPT372,
412	HPT372A,
413	HPT302,
414	HPT371,
415	HPT372N,
416	HPT302N,
417	HPT371N
418};
419
420static struct hpt_timings hpt36x_timings = {
421	.pio_mask	= 0xc1f8ffff,
422	.dma_mask	= 0x303800ff,
423	.ultra_mask	= 0x30070000,
424	.clock_table	= {
425		[ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
426		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
427		[ATA_CLOCK_40MHZ] = forty_base_hpt36x,
428		[ATA_CLOCK_50MHZ] = NULL,
429		[ATA_CLOCK_66MHZ] = NULL
430	}
431};
432
433static struct hpt_timings hpt37x_timings = {
434	.pio_mask	= 0xcfc3ffff,
435	.dma_mask	= 0x31c001ff,
436	.ultra_mask	= 0x303c0000,
437	.clock_table	= {
438		[ATA_CLOCK_25MHZ] = NULL,
439		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
440		[ATA_CLOCK_40MHZ] = NULL,
441		[ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
442		[ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
443	}
444};
445
446static const struct hpt_info hpt36x = {
447	.chip_name	= "HPT36x",
448	.chip_type	= HPT36x,
449	.udma_mask	= HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
450	.dpll_clk	= 0,	/* no DPLL */
451	.timings	= &hpt36x_timings
452};
453
454static const struct hpt_info hpt370 = {
455	.chip_name	= "HPT370",
456	.chip_type	= HPT370,
457	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
458	.dpll_clk	= 48,
459	.timings	= &hpt37x_timings
460};
461
462static const struct hpt_info hpt370a = {
463	.chip_name	= "HPT370A",
464	.chip_type	= HPT370A,
465	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
466	.dpll_clk	= 48,
467	.timings	= &hpt37x_timings
468};
469
470static const struct hpt_info hpt374 = {
471	.chip_name	= "HPT374",
472	.chip_type	= HPT374,
473	.udma_mask	= ATA_UDMA5,
474	.dpll_clk	= 48,
475	.timings	= &hpt37x_timings
476};
477
478static const struct hpt_info hpt372 = {
479	.chip_name	= "HPT372",
480	.chip_type	= HPT372,
481	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
482	.dpll_clk	= 55,
483	.timings	= &hpt37x_timings
484};
485
486static const struct hpt_info hpt372a = {
487	.chip_name	= "HPT372A",
488	.chip_type	= HPT372A,
489	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
490	.dpll_clk	= 66,
491	.timings	= &hpt37x_timings
492};
493
494static const struct hpt_info hpt302 = {
495	.chip_name	= "HPT302",
496	.chip_type	= HPT302,
497	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
498	.dpll_clk	= 66,
499	.timings	= &hpt37x_timings
500};
501
502static const struct hpt_info hpt371 = {
503	.chip_name	= "HPT371",
504	.chip_type	= HPT371,
505	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
506	.dpll_clk	= 66,
507	.timings	= &hpt37x_timings
508};
509
510static const struct hpt_info hpt372n = {
511	.chip_name	= "HPT372N",
512	.chip_type	= HPT372N,
513	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
514	.dpll_clk	= 77,
515	.timings	= &hpt37x_timings
516};
517
518static const struct hpt_info hpt302n = {
519	.chip_name	= "HPT302N",
520	.chip_type	= HPT302N,
521	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
522	.dpll_clk	= 77,
523	.timings	= &hpt37x_timings
524};
525
526static const struct hpt_info hpt371n = {
527	.chip_name	= "HPT371N",
528	.chip_type	= HPT371N,
529	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
530	.dpll_clk	= 77,
531	.timings	= &hpt37x_timings
532};
533
534static int check_in_drive_list(ide_drive_t *drive, const char **list)
535{
536	char *m = (char *)&drive->id[ATA_ID_PROD];
537
538	while (*list)
539		if (!strcmp(*list++, m))
540			return 1;
541	return 0;
542}
543
544static struct hpt_info *hpt3xx_get_info(struct device *dev)
545{
546	struct ide_host *host	= dev_get_drvdata(dev);
547	struct hpt_info *info	= (struct hpt_info *)host->host_priv;
548
549	return dev == host->dev[1] ? info + 1 : info;
550}
551
552/*
553 * The Marvell bridge chips used on the HighPoint SATA cards do not seem
554 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
555 */
556
557static u8 hpt3xx_udma_filter(ide_drive_t *drive)
558{
559	ide_hwif_t *hwif	= drive->hwif;
560	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
561	u8 mask 		= hwif->ultra_mask;
562
563	switch (info->chip_type) {
564	case HPT36x:
565		if (!HPT366_ALLOW_ATA66_4 ||
566		    check_in_drive_list(drive, bad_ata66_4))
567			mask = ATA_UDMA3;
568
569		if (!HPT366_ALLOW_ATA66_3 ||
570		    check_in_drive_list(drive, bad_ata66_3))
571			mask = ATA_UDMA2;
572		break;
573	case HPT370:
574		if (!HPT370_ALLOW_ATA100_5 ||
575		    check_in_drive_list(drive, bad_ata100_5))
576			mask = ATA_UDMA4;
577		break;
578	case HPT370A:
579		if (!HPT370_ALLOW_ATA100_5 ||
580		    check_in_drive_list(drive, bad_ata100_5))
581			return ATA_UDMA4;
582	case HPT372 :
583	case HPT372A:
584	case HPT372N:
585	case HPT374 :
586		if (ata_id_is_sata(drive->id))
587			mask &= ~0x0e;
588		/* Fall thru */
589	default:
590		return mask;
591	}
592
593	return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
594}
595
596static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
597{
598	ide_hwif_t *hwif	= drive->hwif;
599	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
600
601	switch (info->chip_type) {
602	case HPT372 :
603	case HPT372A:
604	case HPT372N:
605	case HPT374 :
606		if (ata_id_is_sata(drive->id))
607			return 0x00;
608		/* Fall thru */
609	default:
610		return 0x07;
611	}
612}
613
614static u32 get_speed_setting(u8 speed, struct hpt_info *info)
615{
616	int i;
617
618	/*
619	 * Lookup the transfer mode table to get the index into
620	 * the timing table.
621	 *
622	 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
623	 */
624	for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
625		if (xfer_speeds[i] == speed)
626			break;
627
628	return info->timings->clock_table[info->clock][i];
629}
630
631static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
632{
633	struct pci_dev *dev	= to_pci_dev(hwif->dev);
634	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
635	struct hpt_timings *t	= info->timings;
636	u8  itr_addr		= 0x40 + (drive->dn * 4);
637	u32 old_itr		= 0;
638	const u8 speed		= drive->dma_mode;
639	u32 new_itr		= get_speed_setting(speed, info);
640	u32 itr_mask		= speed < XFER_MW_DMA_0 ? t->pio_mask :
641				 (speed < XFER_UDMA_0   ? t->dma_mask :
642							  t->ultra_mask);
643
644	pci_read_config_dword(dev, itr_addr, &old_itr);
645	new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
646	/*
647	 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
648	 * to avoid problems handling I/O errors later
649	 */
650	new_itr &= ~0xc0000000;
651
652	pci_write_config_dword(dev, itr_addr, new_itr);
653}
654
655static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
656{
657	drive->dma_mode = drive->pio_mode;
658	hpt3xx_set_mode(hwif, drive);
659}
660
661static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
662{
663	ide_hwif_t *hwif	= drive->hwif;
664	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
665	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
666
667	if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
668		return;
669
670	if (info->chip_type >= HPT370) {
671		u8 scr1 = 0;
672
673		pci_read_config_byte(dev, 0x5a, &scr1);
674		if (((scr1 & 0x10) >> 4) != mask) {
675			if (mask)
676				scr1 |=  0x10;
677			else
678				scr1 &= ~0x10;
679			pci_write_config_byte(dev, 0x5a, scr1);
680		}
681	} else if (mask)
682		disable_irq(hwif->irq);
683	else
684		enable_irq(hwif->irq);
685}
686
687/*
688 * This is specific to the HPT366 UDMA chipset
689 * by HighPoint|Triones Technologies, Inc.
690 */
691static void hpt366_dma_lost_irq(ide_drive_t *drive)
692{
693	struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
694	u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
695
696	pci_read_config_byte(dev, 0x50, &mcr1);
697	pci_read_config_byte(dev, 0x52, &mcr3);
698	pci_read_config_byte(dev, 0x5a, &scr1);
699	printk("%s: (%s)  mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
700		drive->name, __func__, mcr1, mcr3, scr1);
701	if (scr1 & 0x10)
702		pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
703	ide_dma_lost_irq(drive);
704}
705
706static void hpt370_clear_engine(ide_drive_t *drive)
707{
708	ide_hwif_t *hwif = drive->hwif;
709	struct pci_dev *dev = to_pci_dev(hwif->dev);
710
711	pci_write_config_byte(dev, hwif->select_data, 0x37);
712	udelay(10);
713}
714
715static void hpt370_irq_timeout(ide_drive_t *drive)
716{
717	ide_hwif_t *hwif	= drive->hwif;
718	struct pci_dev *dev	= to_pci_dev(hwif->dev);
719	u16 bfifo		= 0;
720	u8  dma_cmd;
721
722	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
723	printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
724
725	/* get DMA command mode */
726	dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
727	/* stop DMA */
728	outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
729	hpt370_clear_engine(drive);
730}
731
732static void hpt370_dma_start(ide_drive_t *drive)
733{
734#ifdef HPT_RESET_STATE_ENGINE
735	hpt370_clear_engine(drive);
736#endif
737	ide_dma_start(drive);
738}
739
740static int hpt370_dma_end(ide_drive_t *drive)
741{
742	ide_hwif_t *hwif	= drive->hwif;
743	u8  dma_stat		= inb(hwif->dma_base + ATA_DMA_STATUS);
744
745	if (dma_stat & ATA_DMA_ACTIVE) {
746		/* wait a little */
747		udelay(20);
748		dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
749		if (dma_stat & ATA_DMA_ACTIVE)
750			hpt370_irq_timeout(drive);
751	}
752	return ide_dma_end(drive);
753}
754
755/* returns 1 if DMA IRQ issued, 0 otherwise */
756static int hpt374_dma_test_irq(ide_drive_t *drive)
757{
758	ide_hwif_t *hwif	= drive->hwif;
759	struct pci_dev *dev	= to_pci_dev(hwif->dev);
760	u16 bfifo		= 0;
761	u8  dma_stat;
762
763	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
764	if (bfifo & 0x1FF) {
765//		printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
766		return 0;
767	}
768
769	dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
770	/* return 1 if INTR asserted */
771	if (dma_stat & ATA_DMA_INTR)
772		return 1;
773
774	return 0;
775}
776
777static int hpt374_dma_end(ide_drive_t *drive)
778{
779	ide_hwif_t *hwif	= drive->hwif;
780	struct pci_dev *dev	= to_pci_dev(hwif->dev);
781	u8 mcr	= 0, mcr_addr	= hwif->select_data;
782	u8 bwsr = 0, mask	= hwif->channel ? 0x02 : 0x01;
783
784	pci_read_config_byte(dev, 0x6a, &bwsr);
785	pci_read_config_byte(dev, mcr_addr, &mcr);
786	if (bwsr & mask)
787		pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
788	return ide_dma_end(drive);
789}
790
791/**
792 *	hpt3xxn_set_clock	-	perform clock switching dance
793 *	@hwif: hwif to switch
794 *	@mode: clocking mode (0x21 for write, 0x23 otherwise)
795 *
796 *	Switch the DPLL clock on the HPT3xxN devices. This is a	right mess.
797 */
798
799static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
800{
801	unsigned long base = hwif->extra_base;
802	u8 scr2 = inb(base + 0x6b);
803
804	if ((scr2 & 0x7f) == mode)
805		return;
806
807	/* Tristate the bus */
808	outb(0x80, base + 0x63);
809	outb(0x80, base + 0x67);
810
811	/* Switch clock and reset channels */
812	outb(mode, base + 0x6b);
813	outb(0xc0, base + 0x69);
814
815	/*
816	 * Reset the state machines.
817	 * NOTE: avoid accidentally enabling the disabled channels.
818	 */
819	outb(inb(base + 0x60) | 0x32, base + 0x60);
820	outb(inb(base + 0x64) | 0x32, base + 0x64);
821
822	/* Complete reset */
823	outb(0x00, base + 0x69);
824
825	/* Reconnect channels to bus */
826	outb(0x00, base + 0x63);
827	outb(0x00, base + 0x67);
828}
829
830/**
831 *	hpt3xxn_rw_disk		-	prepare for I/O
832 *	@drive: drive for command
833 *	@rq: block request structure
834 *
835 *	This is called when a disk I/O is issued to HPT3xxN.
836 *	We need it because of the clock switching.
837 */
838
839static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
840{
841	hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
842}
843
844/**
845 *	hpt37x_calibrate_dpll	-	calibrate the DPLL
846 *	@dev: PCI device
847 *
848 *	Perform a calibration cycle on the DPLL.
849 *	Returns 1 if this succeeds
850 */
851static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
852{
853	u32 dpll = (f_high << 16) | f_low | 0x100;
854	u8  scr2;
855	int i;
856
857	pci_write_config_dword(dev, 0x5c, dpll);
858
859	/* Wait for oscillator ready */
860	for(i = 0; i < 0x5000; ++i) {
861		udelay(50);
862		pci_read_config_byte(dev, 0x5b, &scr2);
863		if (scr2 & 0x80)
864			break;
865	}
866	/* See if it stays ready (we'll just bail out if it's not yet) */
867	for(i = 0; i < 0x1000; ++i) {
868		pci_read_config_byte(dev, 0x5b, &scr2);
869		/* DPLL destabilized? */
870		if(!(scr2 & 0x80))
871			return 0;
872	}
873	/* Turn off tuning, we have the DPLL set */
874	pci_read_config_dword (dev, 0x5c, &dpll);
875	pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
876	return 1;
877}
878
879static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
880{
881	struct ide_host *host	= pci_get_drvdata(dev);
882	struct hpt_info *info	= host->host_priv + (&dev->dev == host->dev[1]);
883	u8  chip_type		= info->chip_type;
884	u8  new_mcr, old_mcr	= 0;
885
886	/*
887	 * Disable the "fast interrupt" prediction.  Don't hold off
888	 * on interrupts. (== 0x01 despite what the docs say)
889	 */
890	pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
891
892	if (chip_type >= HPT374)
893		new_mcr = old_mcr & ~0x07;
894	else if (chip_type >= HPT370) {
895		new_mcr = old_mcr;
896		new_mcr &= ~0x02;
897#ifdef HPT_DELAY_INTERRUPT
898		new_mcr &= ~0x01;
899#else
900		new_mcr |=  0x01;
901#endif
902	} else					/* HPT366 and HPT368  */
903		new_mcr = old_mcr & ~0x80;
904
905	if (new_mcr != old_mcr)
906		pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
907}
908
909static int init_chipset_hpt366(struct pci_dev *dev)
910{
911	unsigned long io_base	= pci_resource_start(dev, 4);
912	struct hpt_info *info	= hpt3xx_get_info(&dev->dev);
913	const char *name	= DRV_NAME;
914	u8 pci_clk,  dpll_clk	= 0;	/* PCI and DPLL clock in MHz */
915	u8 chip_type;
916	enum ata_clock	clock;
917
918	chip_type = info->chip_type;
919
920	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
921	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
922	pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
923	pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
924
925	/*
926	 * First, try to estimate the PCI clock frequency...
927	 */
928	if (chip_type >= HPT370) {
929		u8  scr1  = 0;
930		u16 f_cnt = 0;
931		u32 temp  = 0;
932
933		/* Interrupt force enable. */
934		pci_read_config_byte(dev, 0x5a, &scr1);
935		if (scr1 & 0x10)
936			pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
937
938		/*
939		 * HighPoint does this for HPT372A.
940		 * NOTE: This register is only writeable via I/O space.
941		 */
942		if (chip_type == HPT372A)
943			outb(0x0e, io_base + 0x9c);
944
945		/*
946		 * Default to PCI clock. Make sure MA15/16 are set to output
947		 * to prevent drives having problems with 40-pin cables.
948		 */
949		pci_write_config_byte(dev, 0x5b, 0x23);
950
951		/*
952		 * We'll have to read f_CNT value in order to determine
953		 * the PCI clock frequency according to the following ratio:
954		 *
955		 * f_CNT = Fpci * 192 / Fdpll
956		 *
957		 * First try reading the register in which the HighPoint BIOS
958		 * saves f_CNT value before  reprogramming the DPLL from its
959		 * default setting (which differs for the various chips).
960		 *
961		 * NOTE: This register is only accessible via I/O space;
962		 * HPT374 BIOS only saves it for the function 0, so we have to
963		 * always read it from there -- no need to check the result of
964		 * pci_get_slot() for the function 0 as the whole device has
965		 * been already "pinned" (via function 1) in init_setup_hpt374()
966		 */
967		if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
968			struct pci_dev	*dev1 = pci_get_slot(dev->bus,
969							     dev->devfn - 1);
970			unsigned long io_base = pci_resource_start(dev1, 4);
971
972			temp =	inl(io_base + 0x90);
973			pci_dev_put(dev1);
974		} else
975			temp =	inl(io_base + 0x90);
976
977		/*
978		 * In case the signature check fails, we'll have to
979		 * resort to reading the f_CNT register itself in hopes
980		 * that nobody has touched the DPLL yet...
981		 */
982		if ((temp & 0xFFFFF000) != 0xABCDE000) {
983			int i;
984
985			printk(KERN_WARNING "%s %s: no clock data saved by "
986				"BIOS\n", name, pci_name(dev));
987
988			/* Calculate the average value of f_CNT. */
989			for (temp = i = 0; i < 128; i++) {
990				pci_read_config_word(dev, 0x78, &f_cnt);
991				temp += f_cnt & 0x1ff;
992				mdelay(1);
993			}
994			f_cnt = temp / 128;
995		} else
996			f_cnt = temp & 0x1ff;
997
998		dpll_clk = info->dpll_clk;
999		pci_clk  = (f_cnt * dpll_clk) / 192;
1000
1001		/* Clamp PCI clock to bands. */
1002		if (pci_clk < 40)
1003			pci_clk = 33;
1004		else if(pci_clk < 45)
1005			pci_clk = 40;
1006		else if(pci_clk < 55)
1007			pci_clk = 50;
1008		else
1009			pci_clk = 66;
1010
1011		printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1012			"assuming %d MHz PCI\n", name, pci_name(dev),
1013			dpll_clk, f_cnt, pci_clk);
1014	} else {
1015		u32 itr1 = 0;
1016
1017		pci_read_config_dword(dev, 0x40, &itr1);
1018
1019		/* Detect PCI clock by looking at cmd_high_time. */
1020		switch((itr1 >> 8) & 0x07) {
1021			case 0x09:
1022				pci_clk = 40;
1023				break;
1024			case 0x05:
1025				pci_clk = 25;
1026				break;
1027			case 0x07:
1028			default:
1029				pci_clk = 33;
1030				break;
1031		}
1032	}
1033
1034	/* Let's assume we'll use PCI clock for the ATA clock... */
1035	switch (pci_clk) {
1036		case 25:
1037			clock = ATA_CLOCK_25MHZ;
1038			break;
1039		case 33:
1040		default:
1041			clock = ATA_CLOCK_33MHZ;
1042			break;
1043		case 40:
1044			clock = ATA_CLOCK_40MHZ;
1045			break;
1046		case 50:
1047			clock = ATA_CLOCK_50MHZ;
1048			break;
1049		case 66:
1050			clock = ATA_CLOCK_66MHZ;
1051			break;
1052	}
1053
1054	/*
1055	 * Only try the DPLL if we don't have a table for the PCI clock that
1056	 * we are running at for HPT370/A, always use it  for anything newer...
1057	 *
1058	 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1059	 * We also  don't like using  the DPLL because this causes glitches
1060	 * on PRST-/SRST- when the state engine gets reset...
1061	 */
1062	if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1063		u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1064		int adjust;
1065
1066		 /*
1067		  * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1068		  * supported/enabled, use 50 MHz DPLL clock otherwise...
1069		  */
1070		if (info->udma_mask == ATA_UDMA6) {
1071			dpll_clk = 66;
1072			clock = ATA_CLOCK_66MHZ;
1073		} else if (dpll_clk) {	/* HPT36x chips don't have DPLL */
1074			dpll_clk = 50;
1075			clock = ATA_CLOCK_50MHZ;
1076		}
1077
1078		if (info->timings->clock_table[clock] == NULL) {
1079			printk(KERN_ERR "%s %s: unknown bus timing!\n",
1080				name, pci_name(dev));
1081			return -EIO;
1082		}
1083
1084		/* Select the DPLL clock. */
1085		pci_write_config_byte(dev, 0x5b, 0x21);
1086
1087		/*
1088		 * Adjust the DPLL based upon PCI clock, enable it,
1089		 * and wait for stabilization...
1090		 */
1091		f_low = (pci_clk * 48) / dpll_clk;
1092
1093		for (adjust = 0; adjust < 8; adjust++) {
1094			if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1095				break;
1096
1097			/*
1098			 * See if it'll settle at a fractionally different clock
1099			 */
1100			if (adjust & 1)
1101				f_low -= adjust >> 1;
1102			else
1103				f_low += adjust >> 1;
1104		}
1105		if (adjust == 8) {
1106			printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1107				name, pci_name(dev));
1108			return -EIO;
1109		}
1110
1111		printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1112			name, pci_name(dev), dpll_clk);
1113	} else {
1114		/* Mark the fact that we're not using the DPLL. */
1115		dpll_clk = 0;
1116
1117		printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1118			name, pci_name(dev), pci_clk);
1119	}
1120
1121	/* Store the clock frequencies. */
1122	info->dpll_clk	= dpll_clk;
1123	info->pci_clk	= pci_clk;
1124	info->clock	= clock;
1125
1126	if (chip_type >= HPT370) {
1127		u8  mcr1, mcr4;
1128
1129		/*
1130		 * Reset the state engines.
1131		 * NOTE: Avoid accidentally enabling the disabled channels.
1132		 */
1133		pci_read_config_byte (dev, 0x50, &mcr1);
1134		pci_read_config_byte (dev, 0x54, &mcr4);
1135		pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1136		pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1137		udelay(100);
1138	}
1139
1140	/*
1141	 * On  HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1142	 * the MISC. register to stretch the UltraDMA Tss timing.
1143	 * NOTE: This register is only writeable via I/O space.
1144	 */
1145	if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1146		outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1147
1148	hpt3xx_disable_fast_irq(dev, 0x50);
1149	hpt3xx_disable_fast_irq(dev, 0x54);
1150
1151	return 0;
1152}
1153
1154static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1155{
1156	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
1157	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1158	u8 chip_type		= info->chip_type;
1159	u8 scr1 = 0, ata66	= hwif->channel ? 0x01 : 0x02;
1160
1161	/*
1162	 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1163	 * address lines to access an external EEPROM.  To read valid
1164	 * cable detect state the pins must be enabled as inputs.
1165	 */
1166	if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1167		/*
1168		 * HPT374 PCI function 1
1169		 * - set bit 15 of reg 0x52 to enable TCBLID as input
1170		 * - set bit 15 of reg 0x56 to enable FCBLID as input
1171		 */
1172		u8  mcr_addr = hwif->select_data + 2;
1173		u16 mcr;
1174
1175		pci_read_config_word(dev, mcr_addr, &mcr);
1176		pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1177		/* Debounce, then read cable ID register */
1178		udelay(10);
1179		pci_read_config_byte(dev, 0x5a, &scr1);
1180		pci_write_config_word(dev, mcr_addr, mcr);
1181	} else if (chip_type >= HPT370) {
1182		/*
1183		 * HPT370/372 and 374 pcifn 0
1184		 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1185		 */
1186		u8 scr2 = 0;
1187
1188		pci_read_config_byte(dev, 0x5b, &scr2);
1189		pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1190		/* Debounce, then read cable ID register */
1191		udelay(10);
1192		pci_read_config_byte(dev, 0x5a, &scr1);
1193		pci_write_config_byte(dev, 0x5b, scr2);
1194	} else
1195		pci_read_config_byte(dev, 0x5a, &scr1);
1196
1197	return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1198}
1199
1200static void init_hwif_hpt366(ide_hwif_t *hwif)
1201{
1202	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1203	u8  chip_type		= info->chip_type;
1204
1205	/* Cache the channel's MISC. control registers' offset */
1206	hwif->select_data	= hwif->channel ? 0x54 : 0x50;
1207
1208	/*
1209	 * HPT3xxN chips have some complications:
1210	 *
1211	 * - on 33 MHz PCI we must clock switch
1212	 * - on 66 MHz PCI we must NOT use the PCI clock
1213	 */
1214	if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1215		/*
1216		 * Clock is shared between the channels,
1217		 * so we'll have to serialize them... :-(
1218		 */
1219		hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1220		hwif->rw_disk = &hpt3xxn_rw_disk;
1221	}
1222}
1223
1224static int init_dma_hpt366(ide_hwif_t *hwif,
1225				     const struct ide_port_info *d)
1226{
1227	struct pci_dev *dev = to_pci_dev(hwif->dev);
1228	unsigned long flags, base = ide_pci_dma_base(hwif, d);
1229	u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1230
1231	if (base == 0)
1232		return -1;
1233
1234	hwif->dma_base = base;
1235
1236	if (ide_pci_check_simplex(hwif, d) < 0)
1237		return -1;
1238
1239	if (ide_pci_set_master(dev, d->name) < 0)
1240		return -1;
1241
1242	dma_old = inb(base + 2);
1243
1244	local_irq_save(flags);
1245
1246	dma_new = dma_old;
1247	pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1248	pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47,  &slavedma);
1249
1250	if (masterdma & 0x30)	dma_new |= 0x20;
1251	if ( slavedma & 0x30)	dma_new |= 0x40;
1252	if (dma_new != dma_old)
1253		outb(dma_new, base + 2);
1254
1255	local_irq_restore(flags);
1256
1257	printk(KERN_INFO "    %s: BM-DMA at 0x%04lx-0x%04lx\n",
1258			 hwif->name, base, base + 7);
1259
1260	hwif->extra_base = base + (hwif->channel ? 8 : 16);
1261
1262	if (ide_allocate_dma_engine(hwif))
1263		return -1;
1264
1265	return 0;
1266}
1267
1268static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1269{
1270	if (dev2->irq != dev->irq) {
1271		/* FIXME: we need a core pci_set_interrupt() */
1272		dev2->irq = dev->irq;
1273		printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1274			"fixed\n", pci_name(dev2));
1275	}
1276}
1277
1278static void hpt371_init(struct pci_dev *dev)
1279{
1280	u8 mcr1 = 0;
1281
1282	/*
1283	 * HPT371 chips physically have only one channel, the secondary one,
1284	 * but the primary channel registers do exist!  Go figure...
1285	 * So,  we manually disable the non-existing channel here
1286	 * (if the BIOS hasn't done this already).
1287	 */
1288	pci_read_config_byte(dev, 0x50, &mcr1);
1289	if (mcr1 & 0x04)
1290		pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1291}
1292
1293static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1294{
1295	u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1296
1297	/*
1298	 * Now we'll have to force both channels enabled if
1299	 * at least one of them has been enabled by BIOS...
1300	 */
1301	pci_read_config_byte(dev, 0x50, &mcr1);
1302	if (mcr1 & 0x30)
1303		pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1304
1305	pci_read_config_byte(dev,  PCI_INTERRUPT_PIN, &pin1);
1306	pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1307
1308	if (pin1 != pin2 && dev->irq == dev2->irq) {
1309		printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1310			"pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1311		return 1;
1312	}
1313
1314	return 0;
1315}
1316
1317#define IDE_HFLAGS_HPT3XX \
1318	(IDE_HFLAG_NO_ATAPI_DMA | \
1319	 IDE_HFLAG_OFF_BOARD)
1320
1321static const struct ide_port_ops hpt3xx_port_ops = {
1322	.set_pio_mode		= hpt3xx_set_pio_mode,
1323	.set_dma_mode		= hpt3xx_set_mode,
1324	.maskproc		= hpt3xx_maskproc,
1325	.mdma_filter		= hpt3xx_mdma_filter,
1326	.udma_filter		= hpt3xx_udma_filter,
1327	.cable_detect		= hpt3xx_cable_detect,
1328};
1329
1330static const struct ide_dma_ops hpt37x_dma_ops = {
1331	.dma_host_set		= ide_dma_host_set,
1332	.dma_setup		= ide_dma_setup,
1333	.dma_start		= ide_dma_start,
1334	.dma_end		= hpt374_dma_end,
1335	.dma_test_irq		= hpt374_dma_test_irq,
1336	.dma_lost_irq		= ide_dma_lost_irq,
1337	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1338	.dma_sff_read_status	= ide_dma_sff_read_status,
1339};
1340
1341static const struct ide_dma_ops hpt370_dma_ops = {
1342	.dma_host_set		= ide_dma_host_set,
1343	.dma_setup		= ide_dma_setup,
1344	.dma_start		= hpt370_dma_start,
1345	.dma_end		= hpt370_dma_end,
1346	.dma_test_irq		= ide_dma_test_irq,
1347	.dma_lost_irq		= ide_dma_lost_irq,
1348	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1349	.dma_clear		= hpt370_irq_timeout,
1350	.dma_sff_read_status	= ide_dma_sff_read_status,
1351};
1352
1353static const struct ide_dma_ops hpt36x_dma_ops = {
1354	.dma_host_set		= ide_dma_host_set,
1355	.dma_setup		= ide_dma_setup,
1356	.dma_start		= ide_dma_start,
1357	.dma_end		= ide_dma_end,
1358	.dma_test_irq		= ide_dma_test_irq,
1359	.dma_lost_irq		= hpt366_dma_lost_irq,
1360	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1361	.dma_sff_read_status	= ide_dma_sff_read_status,
1362};
1363
1364static const struct ide_port_info hpt366_chipsets[] = {
1365	{	/* 0: HPT36x */
1366		.name		= DRV_NAME,
1367		.init_chipset	= init_chipset_hpt366,
1368		.init_hwif	= init_hwif_hpt366,
1369		.init_dma	= init_dma_hpt366,
1370		/*
1371		 * HPT36x chips have one channel per function and have
1372		 * both channel enable bits located differently and visible
1373		 * to both functions -- really stupid design decision... :-(
1374		 * Bit 4 is for the primary channel, bit 5 for the secondary.
1375		 */
1376		.enablebits	= {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1377		.port_ops	= &hpt3xx_port_ops,
1378		.dma_ops	= &hpt36x_dma_ops,
1379		.host_flags	= IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1380		.pio_mask	= ATA_PIO4,
1381		.mwdma_mask	= ATA_MWDMA2,
1382	},
1383	{	/* 1: HPT3xx */
1384		.name		= DRV_NAME,
1385		.init_chipset	= init_chipset_hpt366,
1386		.init_hwif	= init_hwif_hpt366,
1387		.init_dma	= init_dma_hpt366,
1388		.enablebits	= {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1389		.port_ops	= &hpt3xx_port_ops,
1390		.dma_ops	= &hpt37x_dma_ops,
1391		.host_flags	= IDE_HFLAGS_HPT3XX,
1392		.pio_mask	= ATA_PIO4,
1393		.mwdma_mask	= ATA_MWDMA2,
1394	}
1395};
1396
1397/**
1398 *	hpt366_init_one	-	called when an HPT366 is found
1399 *	@dev: the hpt366 device
1400 *	@id: the matching pci id
1401 *
1402 *	Called when the PCI registration layer (or the IDE initialization)
1403 *	finds a device matching our IDE device tables.
1404 */
1405static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1406{
1407	const struct hpt_info *info = NULL;
1408	struct hpt_info *dyn_info;
1409	struct pci_dev *dev2 = NULL;
1410	struct ide_port_info d;
1411	u8 idx = id->driver_data;
1412	u8 rev = dev->revision;
1413	int ret;
1414
1415	if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1416		return -ENODEV;
1417
1418	switch (idx) {
1419	case 0:
1420		if (rev < 3)
1421			info = &hpt36x;
1422		else {
1423			switch (min_t(u8, rev, 6)) {
1424			case 3: info = &hpt370;  break;
1425			case 4: info = &hpt370a; break;
1426			case 5: info = &hpt372;  break;
1427			case 6: info = &hpt372n; break;
1428			}
1429			idx++;
1430		}
1431		break;
1432	case 1:
1433		info = (rev > 1) ? &hpt372n : &hpt372a;
1434		break;
1435	case 2:
1436		info = (rev > 1) ? &hpt302n : &hpt302;
1437		break;
1438	case 3:
1439		hpt371_init(dev);
1440		info = (rev > 1) ? &hpt371n : &hpt371;
1441		break;
1442	case 4:
1443		info = &hpt374;
1444		break;
1445	case 5:
1446		info = &hpt372n;
1447		break;
1448	}
1449
1450	printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1451
1452	d = hpt366_chipsets[min_t(u8, idx, 1)];
1453
1454	d.udma_mask = info->udma_mask;
1455
1456	/* fixup ->dma_ops for HPT370/HPT370A */
1457	if (info == &hpt370 || info == &hpt370a)
1458		d.dma_ops = &hpt370_dma_ops;
1459
1460	if (info == &hpt36x || info == &hpt374)
1461		dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1462
1463	dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1464	if (dyn_info == NULL) {
1465		printk(KERN_ERR "%s %s: out of memory!\n",
1466			d.name, pci_name(dev));
1467		pci_dev_put(dev2);
1468		return -ENOMEM;
1469	}
1470
1471	/*
1472	 * Copy everything from a static "template" structure
1473	 * to just allocated per-chip hpt_info structure.
1474	 */
1475	memcpy(dyn_info, info, sizeof(*dyn_info));
1476
1477	if (dev2) {
1478		memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1479
1480		if (info == &hpt374)
1481			hpt374_init(dev, dev2);
1482		else {
1483			if (hpt36x_init(dev, dev2))
1484				d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1485		}
1486
1487		ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1488		if (ret < 0) {
1489			pci_dev_put(dev2);
1490			kfree(dyn_info);
1491		}
1492		return ret;
1493	}
1494
1495	ret = ide_pci_init_one(dev, &d, dyn_info);
1496	if (ret < 0)
1497		kfree(dyn_info);
1498
1499	return ret;
1500}
1501
1502static void hpt366_remove(struct pci_dev *dev)
1503{
1504	struct ide_host *host = pci_get_drvdata(dev);
1505	struct ide_info *info = host->host_priv;
1506	struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1507
1508	ide_pci_remove(dev);
1509	pci_dev_put(dev2);
1510	kfree(info);
1511}
1512
1513static const struct pci_device_id hpt366_pci_tbl[] = {
1514	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366),  0 },
1515	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372),  1 },
1516	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302),  2 },
1517	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371),  3 },
1518	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374),  4 },
1519	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1520	{ 0, },
1521};
1522MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1523
1524static struct pci_driver hpt366_pci_driver = {
1525	.name		= "HPT366_IDE",
1526	.id_table	= hpt366_pci_tbl,
1527	.probe		= hpt366_init_one,
1528	.remove		= hpt366_remove,
1529	.suspend	= ide_pci_suspend,
1530	.resume		= ide_pci_resume,
1531};
1532
1533static int __init hpt366_ide_init(void)
1534{
1535	return ide_pci_register_driver(&hpt366_pci_driver);
1536}
1537
1538static void __exit hpt366_ide_exit(void)
1539{
1540	pci_unregister_driver(&hpt366_pci_driver);
1541}
1542
1543module_init(hpt366_ide_init);
1544module_exit(hpt366_ide_exit);
1545
1546MODULE_AUTHOR("Andre Hedrick");
1547MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1548MODULE_LICENSE("GPL");
1549