[go: nahoru, domu]

1/* hfcsusb.c
2 * mISDN driver for Colognechip HFC-S USB chip
3 *
4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 *
22 * module params
23 *   debug=<n>, default=0, with n=0xHHHHGGGG
24 *      H - l1 driver flags described in hfcsusb.h
25 *      G - common mISDN debug flags described at mISDNhw.h
26 *
27 *   poll=<n>, default 128
28 *     n : burst size of PH_DATA_IND at transparent rx data
29 *
30 * Revision: 0.3.3 (socket), 2008-11-05
31 */
32
33#include <linux/module.h>
34#include <linux/delay.h>
35#include <linux/usb.h>
36#include <linux/mISDNhw.h>
37#include <linux/slab.h>
38#include "hfcsusb.h"
39
40static unsigned int debug;
41static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43static LIST_HEAD(HFClist);
44static DEFINE_RWLOCK(HFClock);
45
46
47MODULE_AUTHOR("Martin Bachem");
48MODULE_LICENSE("GPL");
49module_param(debug, uint, S_IRUGO | S_IWUSR);
50module_param(poll, int, 0);
51
52static int hfcsusb_cnt;
53
54/* some function prototypes */
55static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56static void release_hw(struct hfcsusb *hw);
57static void reset_hfcsusb(struct hfcsusb *hw);
58static void setPortMode(struct hfcsusb *hw);
59static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62static void deactivate_bchannel(struct bchannel *bch);
63static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65/* start next background transfer for control channel */
66static void
67ctrl_start_transfer(struct hfcsusb *hw)
68{
69	if (debug & DBG_HFC_CALL_TRACE)
70		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72	if (hw->ctrl_cnt) {
73		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75		hw->ctrl_urb->transfer_buffer = NULL;
76		hw->ctrl_urb->transfer_buffer_length = 0;
77		hw->ctrl_write.wIndex =
78			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79		hw->ctrl_write.wValue =
80			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83	}
84}
85
86/*
87 * queue a control transfer request to write HFC-S USB
88 * chip register using CTRL resuest queue
89 */
90static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91{
92	struct ctrl_buf *buf;
93
94	if (debug & DBG_HFC_CALL_TRACE)
95		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96		       hw->name, __func__, reg, val);
97
98	spin_lock(&hw->ctrl_lock);
99	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100		spin_unlock(&hw->ctrl_lock);
101		return 1;
102	}
103	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104	buf->hfcs_reg = reg;
105	buf->reg_val = val;
106	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107		hw->ctrl_in_idx = 0;
108	if (++hw->ctrl_cnt == 1)
109		ctrl_start_transfer(hw);
110	spin_unlock(&hw->ctrl_lock);
111
112	return 0;
113}
114
115/* control completion routine handling background control cmds */
116static void
117ctrl_complete(struct urb *urb)
118{
119	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121	if (debug & DBG_HFC_CALL_TRACE)
122		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124	urb->dev = hw->dev;
125	if (hw->ctrl_cnt) {
126		hw->ctrl_cnt--;	/* decrement actual count */
127		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128			hw->ctrl_out_idx = 0;	/* pointer wrap */
129
130		ctrl_start_transfer(hw); /* start next transfer */
131	}
132}
133
134/* handle LED bits   */
135static void
136set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137{
138	if (set_on) {
139		if (led_bits < 0)
140			hw->led_state &= ~abs(led_bits);
141		else
142			hw->led_state |= led_bits;
143	} else {
144		if (led_bits < 0)
145			hw->led_state |= abs(led_bits);
146		else
147			hw->led_state &= ~led_bits;
148	}
149}
150
151/* handle LED requests  */
152static void
153handle_led(struct hfcsusb *hw, int event)
154{
155	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156		hfcsusb_idtab[hw->vend_idx].driver_info;
157	__u8 tmpled;
158
159	if (driver_info->led_scheme == LED_OFF)
160		return;
161	tmpled = hw->led_state;
162
163	switch (event) {
164	case LED_POWER_ON:
165		set_led_bit(hw, driver_info->led_bits[0], 1);
166		set_led_bit(hw, driver_info->led_bits[1], 0);
167		set_led_bit(hw, driver_info->led_bits[2], 0);
168		set_led_bit(hw, driver_info->led_bits[3], 0);
169		break;
170	case LED_POWER_OFF:
171		set_led_bit(hw, driver_info->led_bits[0], 0);
172		set_led_bit(hw, driver_info->led_bits[1], 0);
173		set_led_bit(hw, driver_info->led_bits[2], 0);
174		set_led_bit(hw, driver_info->led_bits[3], 0);
175		break;
176	case LED_S0_ON:
177		set_led_bit(hw, driver_info->led_bits[1], 1);
178		break;
179	case LED_S0_OFF:
180		set_led_bit(hw, driver_info->led_bits[1], 0);
181		break;
182	case LED_B1_ON:
183		set_led_bit(hw, driver_info->led_bits[2], 1);
184		break;
185	case LED_B1_OFF:
186		set_led_bit(hw, driver_info->led_bits[2], 0);
187		break;
188	case LED_B2_ON:
189		set_led_bit(hw, driver_info->led_bits[3], 1);
190		break;
191	case LED_B2_OFF:
192		set_led_bit(hw, driver_info->led_bits[3], 0);
193		break;
194	}
195
196	if (hw->led_state != tmpled) {
197		if (debug & DBG_HFC_CALL_TRACE)
198			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199			       hw->name, __func__,
200			       HFCUSB_P_DATA, hw->led_state);
201
202		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203	}
204}
205
206/*
207 * Layer2 -> Layer 1 Bchannel data
208 */
209static int
210hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211{
212	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
213	struct hfcsusb		*hw = bch->hw;
214	int			ret = -EINVAL;
215	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
216	u_long			flags;
217
218	if (debug & DBG_HFC_CALL_TRACE)
219		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221	switch (hh->prim) {
222	case PH_DATA_REQ:
223		spin_lock_irqsave(&hw->lock, flags);
224		ret = bchannel_senddata(bch, skb);
225		spin_unlock_irqrestore(&hw->lock, flags);
226		if (debug & DBG_HFC_CALL_TRACE)
227			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228			       hw->name, __func__, ret);
229		if (ret > 0)
230			ret = 0;
231		return ret;
232	case PH_ACTIVATE_REQ:
233		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234			hfcsusb_start_endpoint(hw, bch->nr - 1);
235			ret = hfcsusb_setup_bch(bch, ch->protocol);
236		} else
237			ret = 0;
238		if (!ret)
239			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240				    0, NULL, GFP_KERNEL);
241		break;
242	case PH_DEACTIVATE_REQ:
243		deactivate_bchannel(bch);
244		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245			    0, NULL, GFP_KERNEL);
246		ret = 0;
247		break;
248	}
249	if (!ret)
250		dev_kfree_skb(skb);
251	return ret;
252}
253
254/*
255 * send full D/B channel status information
256 * as MPH_INFORMATION_IND
257 */
258static void
259hfcsusb_ph_info(struct hfcsusb *hw)
260{
261	struct ph_info *phi;
262	struct dchannel *dch = &hw->dch;
263	int i;
264
265	phi = kzalloc(sizeof(struct ph_info) +
266		      dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267	phi->dch.ch.protocol = hw->protocol;
268	phi->dch.ch.Flags = dch->Flags;
269	phi->dch.state = dch->state;
270	phi->dch.num_bch = dch->dev.nrbchan;
271	for (i = 0; i < dch->dev.nrbchan; i++) {
272		phi->bch[i].protocol = hw->bch[i].ch.protocol;
273		phi->bch[i].Flags = hw->bch[i].Flags;
274	}
275	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276		    sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277		    sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278	kfree(phi);
279}
280
281/*
282 * Layer2 -> Layer 1 Dchannel data
283 */
284static int
285hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286{
287	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
288	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
289	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
290	struct hfcsusb		*hw = dch->hw;
291	int			ret = -EINVAL;
292	u_long			flags;
293
294	switch (hh->prim) {
295	case PH_DATA_REQ:
296		if (debug & DBG_HFC_CALL_TRACE)
297			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298			       hw->name, __func__);
299
300		spin_lock_irqsave(&hw->lock, flags);
301		ret = dchannel_senddata(dch, skb);
302		spin_unlock_irqrestore(&hw->lock, flags);
303		if (ret > 0) {
304			ret = 0;
305			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306		}
307		break;
308
309	case PH_ACTIVATE_REQ:
310		if (debug & DBG_HFC_CALL_TRACE)
311			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312			       hw->name, __func__,
313			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314
315		if (hw->protocol == ISDN_P_NT_S0) {
316			ret = 0;
317			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318				_queue_data(&dch->dev.D,
319					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320					    NULL, GFP_ATOMIC);
321			} else {
322				hfcsusb_ph_command(hw,
323						   HFC_L1_ACTIVATE_NT);
324				test_and_set_bit(FLG_L2_ACTIVATED,
325						 &dch->Flags);
326			}
327		} else {
328			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329			ret = l1_event(dch->l1, hh->prim);
330		}
331		break;
332
333	case PH_DEACTIVATE_REQ:
334		if (debug & DBG_HFC_CALL_TRACE)
335			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336			       hw->name, __func__);
337		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
338
339		if (hw->protocol == ISDN_P_NT_S0) {
340			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
341			spin_lock_irqsave(&hw->lock, flags);
342			skb_queue_purge(&dch->squeue);
343			if (dch->tx_skb) {
344				dev_kfree_skb(dch->tx_skb);
345				dch->tx_skb = NULL;
346			}
347			dch->tx_idx = 0;
348			if (dch->rx_skb) {
349				dev_kfree_skb(dch->rx_skb);
350				dch->rx_skb = NULL;
351			}
352			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
353			spin_unlock_irqrestore(&hw->lock, flags);
354#ifdef FIXME
355			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
356				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
357#endif
358			ret = 0;
359		} else
360			ret = l1_event(dch->l1, hh->prim);
361		break;
362	case MPH_INFORMATION_REQ:
363		hfcsusb_ph_info(hw);
364		ret = 0;
365		break;
366	}
367
368	return ret;
369}
370
371/*
372 * Layer 1 callback function
373 */
374static int
375hfc_l1callback(struct dchannel *dch, u_int cmd)
376{
377	struct hfcsusb *hw = dch->hw;
378
379	if (debug & DBG_HFC_CALL_TRACE)
380		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
381		       hw->name, __func__, cmd);
382
383	switch (cmd) {
384	case INFO3_P8:
385	case INFO3_P10:
386	case HW_RESET_REQ:
387	case HW_POWERUP_REQ:
388		break;
389
390	case HW_DEACT_REQ:
391		skb_queue_purge(&dch->squeue);
392		if (dch->tx_skb) {
393			dev_kfree_skb(dch->tx_skb);
394			dch->tx_skb = NULL;
395		}
396		dch->tx_idx = 0;
397		if (dch->rx_skb) {
398			dev_kfree_skb(dch->rx_skb);
399			dch->rx_skb = NULL;
400		}
401		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
402		break;
403	case PH_ACTIVATE_IND:
404		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
405		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
406			    GFP_ATOMIC);
407		break;
408	case PH_DEACTIVATE_IND:
409		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
410		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
411			    GFP_ATOMIC);
412		break;
413	default:
414		if (dch->debug & DEBUG_HW)
415			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
416			       hw->name, __func__, cmd);
417		return -1;
418	}
419	hfcsusb_ph_info(hw);
420	return 0;
421}
422
423static int
424open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
425	      struct channel_req *rq)
426{
427	int err = 0;
428
429	if (debug & DEBUG_HW_OPEN)
430		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
431		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
432		       __builtin_return_address(0));
433	if (rq->protocol == ISDN_P_NONE)
434		return -EINVAL;
435
436	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
437	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
438	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
439
440	/* E-Channel logging */
441	if (rq->adr.channel == 1) {
442		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
443			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
444			set_bit(FLG_ACTIVE, &hw->ech.Flags);
445			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
446				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
447		} else
448			return -EINVAL;
449	}
450
451	if (!hw->initdone) {
452		hw->protocol = rq->protocol;
453		if (rq->protocol == ISDN_P_TE_S0) {
454			err = create_l1(&hw->dch, hfc_l1callback);
455			if (err)
456				return err;
457		}
458		setPortMode(hw);
459		ch->protocol = rq->protocol;
460		hw->initdone = 1;
461	} else {
462		if (rq->protocol != ch->protocol)
463			return -EPROTONOSUPPORT;
464	}
465
466	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
467	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
468		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
469			    0, NULL, GFP_KERNEL);
470	rq->ch = ch;
471	if (!try_module_get(THIS_MODULE))
472		printk(KERN_WARNING "%s: %s: cannot get module\n",
473		       hw->name, __func__);
474	return 0;
475}
476
477static int
478open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
479{
480	struct bchannel		*bch;
481
482	if (rq->adr.channel == 0 || rq->adr.channel > 2)
483		return -EINVAL;
484	if (rq->protocol == ISDN_P_NONE)
485		return -EINVAL;
486
487	if (debug & DBG_HFC_CALL_TRACE)
488		printk(KERN_DEBUG "%s: %s B%i\n",
489		       hw->name, __func__, rq->adr.channel);
490
491	bch = &hw->bch[rq->adr.channel - 1];
492	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
493		return -EBUSY; /* b-channel can be only open once */
494	bch->ch.protocol = rq->protocol;
495	rq->ch = &bch->ch;
496
497	if (!try_module_get(THIS_MODULE))
498		printk(KERN_WARNING "%s: %s:cannot get module\n",
499		       hw->name, __func__);
500	return 0;
501}
502
503static int
504channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
505{
506	int ret = 0;
507
508	if (debug & DBG_HFC_CALL_TRACE)
509		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
510		       hw->name, __func__, (cq->op), (cq->channel));
511
512	switch (cq->op) {
513	case MISDN_CTRL_GETOP:
514		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
515			MISDN_CTRL_DISCONNECT;
516		break;
517	default:
518		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
519		       hw->name, __func__, cq->op);
520		ret = -EINVAL;
521		break;
522	}
523	return ret;
524}
525
526/*
527 * device control function
528 */
529static int
530hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
531{
532	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
533	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
534	struct hfcsusb		*hw = dch->hw;
535	struct channel_req	*rq;
536	int			err = 0;
537
538	if (dch->debug & DEBUG_HW)
539		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
540		       hw->name, __func__, cmd, arg);
541	switch (cmd) {
542	case OPEN_CHANNEL:
543		rq = arg;
544		if ((rq->protocol == ISDN_P_TE_S0) ||
545		    (rq->protocol == ISDN_P_NT_S0))
546			err = open_dchannel(hw, ch, rq);
547		else
548			err = open_bchannel(hw, rq);
549		if (!err)
550			hw->open++;
551		break;
552	case CLOSE_CHANNEL:
553		hw->open--;
554		if (debug & DEBUG_HW_OPEN)
555			printk(KERN_DEBUG
556			       "%s: %s: dev(%d) close from %p (open %d)\n",
557			       hw->name, __func__, hw->dch.dev.id,
558			       __builtin_return_address(0), hw->open);
559		if (!hw->open) {
560			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
561			if (hw->fifos[HFCUSB_PCM_RX].pipe)
562				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
563			handle_led(hw, LED_POWER_ON);
564		}
565		module_put(THIS_MODULE);
566		break;
567	case CONTROL_CHANNEL:
568		err = channel_ctrl(hw, arg);
569		break;
570	default:
571		if (dch->debug & DEBUG_HW)
572			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
573			       hw->name, __func__, cmd);
574		return -EINVAL;
575	}
576	return err;
577}
578
579/*
580 * S0 TE state change event handler
581 */
582static void
583ph_state_te(struct dchannel *dch)
584{
585	struct hfcsusb *hw = dch->hw;
586
587	if (debug & DEBUG_HW) {
588		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
589			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
590			       HFC_TE_LAYER1_STATES[dch->state]);
591		else
592			printk(KERN_DEBUG "%s: %s: TE F%d\n",
593			       hw->name, __func__, dch->state);
594	}
595
596	switch (dch->state) {
597	case 0:
598		l1_event(dch->l1, HW_RESET_IND);
599		break;
600	case 3:
601		l1_event(dch->l1, HW_DEACT_IND);
602		break;
603	case 5:
604	case 8:
605		l1_event(dch->l1, ANYSIGNAL);
606		break;
607	case 6:
608		l1_event(dch->l1, INFO2);
609		break;
610	case 7:
611		l1_event(dch->l1, INFO4_P8);
612		break;
613	}
614	if (dch->state == 7)
615		handle_led(hw, LED_S0_ON);
616	else
617		handle_led(hw, LED_S0_OFF);
618}
619
620/*
621 * S0 NT state change event handler
622 */
623static void
624ph_state_nt(struct dchannel *dch)
625{
626	struct hfcsusb *hw = dch->hw;
627
628	if (debug & DEBUG_HW) {
629		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
630			printk(KERN_DEBUG "%s: %s: %s\n",
631			       hw->name, __func__,
632			       HFC_NT_LAYER1_STATES[dch->state]);
633
634		else
635			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
636			       hw->name, __func__, dch->state);
637	}
638
639	switch (dch->state) {
640	case (1):
641		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
642		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
643		hw->nt_timer = 0;
644		hw->timers &= ~NT_ACTIVATION_TIMER;
645		handle_led(hw, LED_S0_OFF);
646		break;
647
648	case (2):
649		if (hw->nt_timer < 0) {
650			hw->nt_timer = 0;
651			hw->timers &= ~NT_ACTIVATION_TIMER;
652			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
653		} else {
654			hw->timers |= NT_ACTIVATION_TIMER;
655			hw->nt_timer = NT_T1_COUNT;
656			/* allow G2 -> G3 transition */
657			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
658		}
659		break;
660	case (3):
661		hw->nt_timer = 0;
662		hw->timers &= ~NT_ACTIVATION_TIMER;
663		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
664		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
665			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
666		handle_led(hw, LED_S0_ON);
667		break;
668	case (4):
669		hw->nt_timer = 0;
670		hw->timers &= ~NT_ACTIVATION_TIMER;
671		break;
672	default:
673		break;
674	}
675	hfcsusb_ph_info(hw);
676}
677
678static void
679ph_state(struct dchannel *dch)
680{
681	struct hfcsusb *hw = dch->hw;
682
683	if (hw->protocol == ISDN_P_NT_S0)
684		ph_state_nt(dch);
685	else if (hw->protocol == ISDN_P_TE_S0)
686		ph_state_te(dch);
687}
688
689/*
690 * disable/enable BChannel for desired protocoll
691 */
692static int
693hfcsusb_setup_bch(struct bchannel *bch, int protocol)
694{
695	struct hfcsusb *hw = bch->hw;
696	__u8 conhdlc, sctrl, sctrl_r;
697
698	if (debug & DEBUG_HW)
699		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
700		       hw->name, __func__, bch->state, protocol,
701		       bch->nr);
702
703	/* setup val for CON_HDLC */
704	conhdlc = 0;
705	if (protocol > ISDN_P_NONE)
706		conhdlc = 8;	/* enable FIFO */
707
708	switch (protocol) {
709	case (-1):	/* used for init */
710		bch->state = -1;
711		/* fall through */
712	case (ISDN_P_NONE):
713		if (bch->state == ISDN_P_NONE)
714			return 0; /* already in idle state */
715		bch->state = ISDN_P_NONE;
716		clear_bit(FLG_HDLC, &bch->Flags);
717		clear_bit(FLG_TRANSPARENT, &bch->Flags);
718		break;
719	case (ISDN_P_B_RAW):
720		conhdlc |= 2;
721		bch->state = protocol;
722		set_bit(FLG_TRANSPARENT, &bch->Flags);
723		break;
724	case (ISDN_P_B_HDLC):
725		bch->state = protocol;
726		set_bit(FLG_HDLC, &bch->Flags);
727		break;
728	default:
729		if (debug & DEBUG_HW)
730			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
731			       hw->name, __func__, protocol);
732		return -ENOPROTOOPT;
733	}
734
735	if (protocol >= ISDN_P_NONE) {
736		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
737		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
738		write_reg(hw, HFCUSB_INC_RES_F, 2);
739		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
740		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
741		write_reg(hw, HFCUSB_INC_RES_F, 2);
742
743		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
744		sctrl_r = 0x0;
745		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
746			sctrl |= 1;
747			sctrl_r |= 1;
748		}
749		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
750			sctrl |= 2;
751			sctrl_r |= 2;
752		}
753		write_reg(hw, HFCUSB_SCTRL, sctrl);
754		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
755
756		if (protocol > ISDN_P_NONE)
757			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
758		else
759			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
760				   LED_B2_OFF);
761	}
762	hfcsusb_ph_info(hw);
763	return 0;
764}
765
766static void
767hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
768{
769	if (debug & DEBUG_HW)
770		printk(KERN_DEBUG "%s: %s: %x\n",
771		       hw->name, __func__, command);
772
773	switch (command) {
774	case HFC_L1_ACTIVATE_TE:
775		/* force sending sending INFO1 */
776		write_reg(hw, HFCUSB_STATES, 0x14);
777		/* start l1 activation */
778		write_reg(hw, HFCUSB_STATES, 0x04);
779		break;
780
781	case HFC_L1_FORCE_DEACTIVATE_TE:
782		write_reg(hw, HFCUSB_STATES, 0x10);
783		write_reg(hw, HFCUSB_STATES, 0x03);
784		break;
785
786	case HFC_L1_ACTIVATE_NT:
787		if (hw->dch.state == 3)
788			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
789				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
790		else
791			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
792				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
793		break;
794
795	case HFC_L1_DEACTIVATE_NT:
796		write_reg(hw, HFCUSB_STATES,
797			  HFCUSB_DO_ACTION);
798		break;
799	}
800}
801
802/*
803 * Layer 1 B-channel hardware access
804 */
805static int
806channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
807{
808	return mISDN_ctrl_bchannel(bch, cq);
809}
810
811/* collect data from incoming interrupt or isochron USB data */
812static void
813hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
814		 int finish)
815{
816	struct hfcsusb	*hw = fifo->hw;
817	struct sk_buff	*rx_skb = NULL;
818	int		maxlen = 0;
819	int		fifon = fifo->fifonum;
820	int		i;
821	int		hdlc = 0;
822
823	if (debug & DBG_HFC_CALL_TRACE)
824		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825		       "dch(%p) bch(%p) ech(%p)\n",
826		       hw->name, __func__, fifon, len,
827		       fifo->dch, fifo->bch, fifo->ech);
828
829	if (!len)
830		return;
831
832	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833		printk(KERN_DEBUG "%s: %s: undefined channel\n",
834		       hw->name, __func__);
835		return;
836	}
837
838	spin_lock(&hw->lock);
839	if (fifo->dch) {
840		rx_skb = fifo->dch->rx_skb;
841		maxlen = fifo->dch->maxlen;
842		hdlc = 1;
843	}
844	if (fifo->bch) {
845		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846			fifo->bch->dropcnt += len;
847			spin_unlock(&hw->lock);
848			return;
849		}
850		maxlen = bchannel_get_rxbuf(fifo->bch, len);
851		rx_skb = fifo->bch->rx_skb;
852		if (maxlen < 0) {
853			if (rx_skb)
854				skb_trim(rx_skb, 0);
855			pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856				   hw->name, fifo->bch->nr, len);
857			spin_unlock(&hw->lock);
858			return;
859		}
860		maxlen = fifo->bch->maxlen;
861		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
862	}
863	if (fifo->ech) {
864		rx_skb = fifo->ech->rx_skb;
865		maxlen = fifo->ech->maxlen;
866		hdlc = 1;
867	}
868
869	if (fifo->dch || fifo->ech) {
870		if (!rx_skb) {
871			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872			if (rx_skb) {
873				if (fifo->dch)
874					fifo->dch->rx_skb = rx_skb;
875				if (fifo->ech)
876					fifo->ech->rx_skb = rx_skb;
877				skb_trim(rx_skb, 0);
878			} else {
879				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880				       hw->name, __func__);
881				spin_unlock(&hw->lock);
882				return;
883			}
884		}
885		/* D/E-Channel SKB range check */
886		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888			       "for fifo(%d) HFCUSB_D_RX\n",
889			       hw->name, __func__, fifon);
890			skb_trim(rx_skb, 0);
891			spin_unlock(&hw->lock);
892			return;
893		}
894	}
895
896	memcpy(skb_put(rx_skb, len), data, len);
897
898	if (hdlc) {
899		/* we have a complete hdlc packet */
900		if (finish) {
901			if ((rx_skb->len > 3) &&
902			    (!(rx_skb->data[rx_skb->len - 1]))) {
903				if (debug & DBG_HFC_FIFO_VERBOSE) {
904					printk(KERN_DEBUG "%s: %s: fifon(%i)"
905					       " new RX len(%i): ",
906					       hw->name, __func__, fifon,
907					       rx_skb->len);
908					i = 0;
909					while (i < rx_skb->len)
910						printk("%02x ",
911						       rx_skb->data[i++]);
912					printk("\n");
913				}
914
915				/* remove CRC & status */
916				skb_trim(rx_skb, rx_skb->len - 3);
917
918				if (fifo->dch)
919					recv_Dchannel(fifo->dch);
920				if (fifo->bch)
921					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
922						      0);
923				if (fifo->ech)
924					recv_Echannel(fifo->ech,
925						      &hw->dch);
926			} else {
927				if (debug & DBG_HFC_FIFO_VERBOSE) {
928					printk(KERN_DEBUG
929					       "%s: CRC or minlen ERROR fifon(%i) "
930					       "RX len(%i): ",
931					       hw->name, fifon, rx_skb->len);
932					i = 0;
933					while (i < rx_skb->len)
934						printk("%02x ",
935						       rx_skb->data[i++]);
936					printk("\n");
937				}
938				skb_trim(rx_skb, 0);
939			}
940		}
941	} else {
942		/* deliver transparent data to layer2 */
943		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
944	}
945	spin_unlock(&hw->lock);
946}
947
948static void
949fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950	      void *buf, int num_packets, int packet_size, int interval,
951	      usb_complete_t complete, void *context)
952{
953	int k;
954
955	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956			  complete, context);
957
958	urb->number_of_packets = num_packets;
959	urb->transfer_flags = URB_ISO_ASAP;
960	urb->actual_length = 0;
961	urb->interval = interval;
962
963	for (k = 0; k < num_packets; k++) {
964		urb->iso_frame_desc[k].offset = packet_size * k;
965		urb->iso_frame_desc[k].length = packet_size;
966		urb->iso_frame_desc[k].actual_length = 0;
967	}
968}
969
970/* receive completion routine for all ISO tx fifos   */
971static void
972rx_iso_complete(struct urb *urb)
973{
974	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976	struct hfcsusb *hw = fifo->hw;
977	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978		status, iso_status, i;
979	__u8 *buf;
980	static __u8 eof[8];
981	__u8 s0_state;
982
983	fifon = fifo->fifonum;
984	status = urb->status;
985
986	spin_lock(&hw->lock);
987	if (fifo->stop_gracefull) {
988		fifo->stop_gracefull = 0;
989		fifo->active = 0;
990		spin_unlock(&hw->lock);
991		return;
992	}
993	spin_unlock(&hw->lock);
994
995	/*
996	 * ISO transfer only partially completed,
997	 * look at individual frame status for details
998	 */
999	if (status == -EXDEV) {
1000		if (debug & DEBUG_HW)
1001			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1002			       "urb->status %d, fifonum %d\n",
1003			       hw->name, __func__,  status, fifon);
1004
1005		/* clear status, so go on with ISO transfers */
1006		status = 0;
1007	}
1008
1009	s0_state = 0;
1010	if (fifo->active && !status) {
1011		num_isoc_packets = iso_packets[fifon];
1012		maxlen = fifo->usb_packet_maxlen;
1013
1014		for (k = 0; k < num_isoc_packets; ++k) {
1015			len = urb->iso_frame_desc[k].actual_length;
1016			offset = urb->iso_frame_desc[k].offset;
1017			buf = context_iso_urb->buffer + offset;
1018			iso_status = urb->iso_frame_desc[k].status;
1019
1020			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1021				printk(KERN_DEBUG "%s: %s: "
1022				       "ISO packet %i, status: %i\n",
1023				       hw->name, __func__, k, iso_status);
1024			}
1025
1026			/* USB data log for every D ISO in */
1027			if ((fifon == HFCUSB_D_RX) &&
1028			    (debug & DBG_HFC_USB_VERBOSE)) {
1029				printk(KERN_DEBUG
1030				       "%s: %s: %d (%d/%d) len(%d) ",
1031				       hw->name, __func__, urb->start_frame,
1032				       k, num_isoc_packets - 1,
1033				       len);
1034				for (i = 0; i < len; i++)
1035					printk("%x ", buf[i]);
1036				printk("\n");
1037			}
1038
1039			if (!iso_status) {
1040				if (fifo->last_urblen != maxlen) {
1041					/*
1042					 * save fifo fill-level threshold bits
1043					 * to use them later in TX ISO URB
1044					 * completions
1045					 */
1046					hw->threshold_mask = buf[1];
1047
1048					if (fifon == HFCUSB_D_RX)
1049						s0_state = (buf[0] >> 4);
1050
1051					eof[fifon] = buf[0] & 1;
1052					if (len > 2)
1053						hfcsusb_rx_frame(fifo, buf + 2,
1054								 len - 2, (len < maxlen)
1055								 ? eof[fifon] : 0);
1056				} else
1057					hfcsusb_rx_frame(fifo, buf, len,
1058							 (len < maxlen) ?
1059							 eof[fifon] : 0);
1060				fifo->last_urblen = len;
1061			}
1062		}
1063
1064		/* signal S0 layer1 state change */
1065		if ((s0_state) && (hw->initdone) &&
1066		    (s0_state != hw->dch.state)) {
1067			hw->dch.state = s0_state;
1068			schedule_event(&hw->dch, FLG_PHCHANGE);
1069		}
1070
1071		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1072			      context_iso_urb->buffer, num_isoc_packets,
1073			      fifo->usb_packet_maxlen, fifo->intervall,
1074			      (usb_complete_t)rx_iso_complete, urb->context);
1075		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1076		if (errcode < 0) {
1077			if (debug & DEBUG_HW)
1078				printk(KERN_DEBUG "%s: %s: error submitting "
1079				       "ISO URB: %d\n",
1080				       hw->name, __func__, errcode);
1081		}
1082	} else {
1083		if (status && (debug & DBG_HFC_URB_INFO))
1084			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1085			       "urb->status %d, fifonum %d\n",
1086			       hw->name, __func__, status, fifon);
1087	}
1088}
1089
1090/* receive completion routine for all interrupt rx fifos */
1091static void
1092rx_int_complete(struct urb *urb)
1093{
1094	int len, status, i;
1095	__u8 *buf, maxlen, fifon;
1096	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1097	struct hfcsusb *hw = fifo->hw;
1098	static __u8 eof[8];
1099
1100	spin_lock(&hw->lock);
1101	if (fifo->stop_gracefull) {
1102		fifo->stop_gracefull = 0;
1103		fifo->active = 0;
1104		spin_unlock(&hw->lock);
1105		return;
1106	}
1107	spin_unlock(&hw->lock);
1108
1109	fifon = fifo->fifonum;
1110	if ((!fifo->active) || (urb->status)) {
1111		if (debug & DBG_HFC_URB_ERROR)
1112			printk(KERN_DEBUG
1113			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1114			       hw->name, __func__, fifon, urb->status);
1115
1116		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1117		return;
1118	}
1119	len = urb->actual_length;
1120	buf = fifo->buffer;
1121	maxlen = fifo->usb_packet_maxlen;
1122
1123	/* USB data log for every D INT in */
1124	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1125		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1126		       hw->name, __func__, len);
1127		for (i = 0; i < len; i++)
1128			printk("%02x ", buf[i]);
1129		printk("\n");
1130	}
1131
1132	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1133		/* the threshold mask is in the 2nd status byte */
1134		hw->threshold_mask = buf[1];
1135
1136		/* signal S0 layer1 state change */
1137		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1138			hw->dch.state = (buf[0] >> 4);
1139			schedule_event(&hw->dch, FLG_PHCHANGE);
1140		}
1141
1142		eof[fifon] = buf[0] & 1;
1143		/* if we have more than the 2 status bytes -> collect data */
1144		if (len > 2)
1145			hfcsusb_rx_frame(fifo, buf + 2,
1146					 urb->actual_length - 2,
1147					 (len < maxlen) ? eof[fifon] : 0);
1148	} else {
1149		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1150				 (len < maxlen) ? eof[fifon] : 0);
1151	}
1152	fifo->last_urblen = urb->actual_length;
1153
1154	status = usb_submit_urb(urb, GFP_ATOMIC);
1155	if (status) {
1156		if (debug & DEBUG_HW)
1157			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1158			       hw->name, __func__);
1159	}
1160}
1161
1162/* transmit completion routine for all ISO tx fifos */
1163static void
1164tx_iso_complete(struct urb *urb)
1165{
1166	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1167	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1168	struct hfcsusb *hw = fifo->hw;
1169	struct sk_buff *tx_skb;
1170	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1171		errcode, hdlc, i;
1172	int *tx_idx;
1173	int frame_complete, fifon, status, fillempty = 0;
1174	__u8 threshbit, *p;
1175
1176	spin_lock(&hw->lock);
1177	if (fifo->stop_gracefull) {
1178		fifo->stop_gracefull = 0;
1179		fifo->active = 0;
1180		spin_unlock(&hw->lock);
1181		return;
1182	}
1183
1184	if (fifo->dch) {
1185		tx_skb = fifo->dch->tx_skb;
1186		tx_idx = &fifo->dch->tx_idx;
1187		hdlc = 1;
1188	} else if (fifo->bch) {
1189		tx_skb = fifo->bch->tx_skb;
1190		tx_idx = &fifo->bch->tx_idx;
1191		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1192		if (!tx_skb && !hdlc &&
1193		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1194			fillempty = 1;
1195	} else {
1196		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1197		       hw->name, __func__);
1198		spin_unlock(&hw->lock);
1199		return;
1200	}
1201
1202	fifon = fifo->fifonum;
1203	status = urb->status;
1204
1205	tx_offset = 0;
1206
1207	/*
1208	 * ISO transfer only partially completed,
1209	 * look at individual frame status for details
1210	 */
1211	if (status == -EXDEV) {
1212		if (debug & DBG_HFC_URB_ERROR)
1213			printk(KERN_DEBUG "%s: %s: "
1214			       "-EXDEV (%i) fifon (%d)\n",
1215			       hw->name, __func__, status, fifon);
1216
1217		/* clear status, so go on with ISO transfers */
1218		status = 0;
1219	}
1220
1221	if (fifo->active && !status) {
1222		/* is FifoFull-threshold set for our channel? */
1223		threshbit = (hw->threshold_mask & (1 << fifon));
1224		num_isoc_packets = iso_packets[fifon];
1225
1226		/* predict dataflow to avoid fifo overflow */
1227		if (fifon >= HFCUSB_D_TX)
1228			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1229		else
1230			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1231		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1232			      context_iso_urb->buffer, num_isoc_packets,
1233			      fifo->usb_packet_maxlen, fifo->intervall,
1234			      (usb_complete_t)tx_iso_complete, urb->context);
1235		memset(context_iso_urb->buffer, 0,
1236		       sizeof(context_iso_urb->buffer));
1237		frame_complete = 0;
1238
1239		for (k = 0; k < num_isoc_packets; ++k) {
1240			/* analyze tx success of previous ISO packets */
1241			if (debug & DBG_HFC_URB_ERROR) {
1242				errcode = urb->iso_frame_desc[k].status;
1243				if (errcode) {
1244					printk(KERN_DEBUG "%s: %s: "
1245					       "ISO packet %i, status: %i\n",
1246					       hw->name, __func__, k, errcode);
1247				}
1248			}
1249
1250			/* Generate next ISO Packets */
1251			if (tx_skb)
1252				remain = tx_skb->len - *tx_idx;
1253			else if (fillempty)
1254				remain = 15; /* > not complete */
1255			else
1256				remain = 0;
1257
1258			if (remain > 0) {
1259				fifo->bit_line -= sink;
1260				current_len = (0 - fifo->bit_line) / 8;
1261				if (current_len > 14)
1262					current_len = 14;
1263				if (current_len < 0)
1264					current_len = 0;
1265				if (remain < current_len)
1266					current_len = remain;
1267
1268				/* how much bit do we put on the line? */
1269				fifo->bit_line += current_len * 8;
1270
1271				context_iso_urb->buffer[tx_offset] = 0;
1272				if (current_len == remain) {
1273					if (hdlc) {
1274						/* signal frame completion */
1275						context_iso_urb->
1276							buffer[tx_offset] = 1;
1277						/* add 2 byte flags and 16bit
1278						 * CRC at end of ISDN frame */
1279						fifo->bit_line += 32;
1280					}
1281					frame_complete = 1;
1282				}
1283
1284				/* copy tx data to iso-urb buffer */
1285				p = context_iso_urb->buffer + tx_offset + 1;
1286				if (fillempty) {
1287					memset(p, fifo->bch->fill[0],
1288					       current_len);
1289				} else {
1290					memcpy(p, (tx_skb->data + *tx_idx),
1291					       current_len);
1292					*tx_idx += current_len;
1293				}
1294				urb->iso_frame_desc[k].offset = tx_offset;
1295				urb->iso_frame_desc[k].length = current_len + 1;
1296
1297				/* USB data log for every D ISO out */
1298				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1299				    (debug & DBG_HFC_USB_VERBOSE)) {
1300					printk(KERN_DEBUG
1301					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1302					       hw->name, __func__,
1303					       k, num_isoc_packets - 1,
1304					       urb->iso_frame_desc[k].offset,
1305					       urb->iso_frame_desc[k].length);
1306
1307					for (i = urb->iso_frame_desc[k].offset;
1308					     i < (urb->iso_frame_desc[k].offset
1309						  + urb->iso_frame_desc[k].length);
1310					     i++)
1311						printk("%x ",
1312						       context_iso_urb->buffer[i]);
1313
1314					printk(" skb->len(%i) tx-idx(%d)\n",
1315					       tx_skb->len, *tx_idx);
1316				}
1317
1318				tx_offset += (current_len + 1);
1319			} else {
1320				urb->iso_frame_desc[k].offset = tx_offset++;
1321				urb->iso_frame_desc[k].length = 1;
1322				/* we lower data margin every msec */
1323				fifo->bit_line -= sink;
1324				if (fifo->bit_line < BITLINE_INF)
1325					fifo->bit_line = BITLINE_INF;
1326			}
1327
1328			if (frame_complete) {
1329				frame_complete = 0;
1330
1331				if (debug & DBG_HFC_FIFO_VERBOSE) {
1332					printk(KERN_DEBUG  "%s: %s: "
1333					       "fifon(%i) new TX len(%i): ",
1334					       hw->name, __func__,
1335					       fifon, tx_skb->len);
1336					i = 0;
1337					while (i < tx_skb->len)
1338						printk("%02x ",
1339						       tx_skb->data[i++]);
1340					printk("\n");
1341				}
1342
1343				dev_kfree_skb(tx_skb);
1344				tx_skb = NULL;
1345				if (fifo->dch && get_next_dframe(fifo->dch))
1346					tx_skb = fifo->dch->tx_skb;
1347				else if (fifo->bch &&
1348					 get_next_bframe(fifo->bch))
1349					tx_skb = fifo->bch->tx_skb;
1350			}
1351		}
1352		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1353		if (errcode < 0) {
1354			if (debug & DEBUG_HW)
1355				printk(KERN_DEBUG
1356				       "%s: %s: error submitting ISO URB: %d \n",
1357				       hw->name, __func__, errcode);
1358		}
1359
1360		/*
1361		 * abuse DChannel tx iso completion to trigger NT mode state
1362		 * changes tx_iso_complete is assumed to be called every
1363		 * fifo->intervall (ms)
1364		 */
1365		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1366		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1367			if ((--hw->nt_timer) < 0)
1368				schedule_event(&hw->dch, FLG_PHCHANGE);
1369		}
1370
1371	} else {
1372		if (status && (debug & DBG_HFC_URB_ERROR))
1373			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1374			       "fifonum=%d\n",
1375			       hw->name, __func__,
1376			       symbolic(urb_errlist, status), status, fifon);
1377	}
1378	spin_unlock(&hw->lock);
1379}
1380
1381/*
1382 * allocs urbs and start isoc transfer with two pending urbs to avoid
1383 * gaps in the transfer chain
1384 */
1385static int
1386start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1387		 usb_complete_t complete, int packet_size)
1388{
1389	struct hfcsusb *hw = fifo->hw;
1390	int i, k, errcode;
1391
1392	if (debug)
1393		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1394		       hw->name, __func__, fifo->fifonum);
1395
1396	/* allocate Memory for Iso out Urbs */
1397	for (i = 0; i < 2; i++) {
1398		if (!(fifo->iso[i].urb)) {
1399			fifo->iso[i].urb =
1400				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1401			if (!(fifo->iso[i].urb)) {
1402				printk(KERN_DEBUG
1403				       "%s: %s: alloc urb for fifo %i failed",
1404				       hw->name, __func__, fifo->fifonum);
1405			}
1406			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1407			fifo->iso[i].indx = i;
1408
1409			/* Init the first iso */
1410			if (ISO_BUFFER_SIZE >=
1411			    (fifo->usb_packet_maxlen *
1412			     num_packets_per_urb)) {
1413				fill_isoc_urb(fifo->iso[i].urb,
1414					      fifo->hw->dev, fifo->pipe,
1415					      fifo->iso[i].buffer,
1416					      num_packets_per_urb,
1417					      fifo->usb_packet_maxlen,
1418					      fifo->intervall, complete,
1419					      &fifo->iso[i]);
1420				memset(fifo->iso[i].buffer, 0,
1421				       sizeof(fifo->iso[i].buffer));
1422
1423				for (k = 0; k < num_packets_per_urb; k++) {
1424					fifo->iso[i].urb->
1425						iso_frame_desc[k].offset =
1426						k * packet_size;
1427					fifo->iso[i].urb->
1428						iso_frame_desc[k].length =
1429						packet_size;
1430				}
1431			} else {
1432				printk(KERN_DEBUG
1433				       "%s: %s: ISO Buffer size to small!\n",
1434				       hw->name, __func__);
1435			}
1436		}
1437		fifo->bit_line = BITLINE_INF;
1438
1439		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1440		fifo->active = (errcode >= 0) ? 1 : 0;
1441		fifo->stop_gracefull = 0;
1442		if (errcode < 0) {
1443			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1444			       hw->name, __func__,
1445			       symbolic(urb_errlist, errcode), i);
1446		}
1447	}
1448	return fifo->active;
1449}
1450
1451static void
1452stop_iso_gracefull(struct usb_fifo *fifo)
1453{
1454	struct hfcsusb *hw = fifo->hw;
1455	int i, timeout;
1456	u_long flags;
1457
1458	for (i = 0; i < 2; i++) {
1459		spin_lock_irqsave(&hw->lock, flags);
1460		if (debug)
1461			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1462			       hw->name, __func__, fifo->fifonum, i);
1463		fifo->stop_gracefull = 1;
1464		spin_unlock_irqrestore(&hw->lock, flags);
1465	}
1466
1467	for (i = 0; i < 2; i++) {
1468		timeout = 3;
1469		while (fifo->stop_gracefull && timeout--)
1470			schedule_timeout_interruptible((HZ / 1000) * 16);
1471		if (debug && fifo->stop_gracefull)
1472			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1473			       hw->name, __func__, fifo->fifonum, i);
1474	}
1475}
1476
1477static void
1478stop_int_gracefull(struct usb_fifo *fifo)
1479{
1480	struct hfcsusb *hw = fifo->hw;
1481	int timeout;
1482	u_long flags;
1483
1484	spin_lock_irqsave(&hw->lock, flags);
1485	if (debug)
1486		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1487		       hw->name, __func__, fifo->fifonum);
1488	fifo->stop_gracefull = 1;
1489	spin_unlock_irqrestore(&hw->lock, flags);
1490
1491	timeout = 3;
1492	while (fifo->stop_gracefull && timeout--)
1493		schedule_timeout_interruptible((HZ / 1000) * 3);
1494	if (debug && fifo->stop_gracefull)
1495		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1496		       hw->name, __func__, fifo->fifonum);
1497}
1498
1499/* start the interrupt transfer for the given fifo */
1500static void
1501start_int_fifo(struct usb_fifo *fifo)
1502{
1503	struct hfcsusb *hw = fifo->hw;
1504	int errcode;
1505
1506	if (debug)
1507		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1508		       hw->name, __func__, fifo->fifonum);
1509
1510	if (!fifo->urb) {
1511		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1512		if (!fifo->urb)
1513			return;
1514	}
1515	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1516			 fifo->buffer, fifo->usb_packet_maxlen,
1517			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1518	fifo->active = 1;
1519	fifo->stop_gracefull = 0;
1520	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1521	if (errcode) {
1522		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1523		       hw->name, __func__, errcode);
1524		fifo->active = 0;
1525	}
1526}
1527
1528static void
1529setPortMode(struct hfcsusb *hw)
1530{
1531	if (debug & DEBUG_HW)
1532		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1533		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1534
1535	if (hw->protocol == ISDN_P_TE_S0) {
1536		write_reg(hw, HFCUSB_SCTRL, 0x40);
1537		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1538		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1539		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1540		write_reg(hw, HFCUSB_STATES, 3);
1541	} else {
1542		write_reg(hw, HFCUSB_SCTRL, 0x44);
1543		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1544		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1545		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1546		write_reg(hw, HFCUSB_STATES, 1);
1547	}
1548}
1549
1550static void
1551reset_hfcsusb(struct hfcsusb *hw)
1552{
1553	struct usb_fifo *fifo;
1554	int i;
1555
1556	if (debug & DEBUG_HW)
1557		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1558
1559	/* do Chip reset */
1560	write_reg(hw, HFCUSB_CIRM, 8);
1561
1562	/* aux = output, reset off */
1563	write_reg(hw, HFCUSB_CIRM, 0x10);
1564
1565	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1566	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1567		  ((hw->packet_size / 8) << 4));
1568
1569	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1570	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1571
1572	/* enable PCM/GCI master mode */
1573	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1574	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1575
1576	/* init the fifos */
1577	write_reg(hw, HFCUSB_F_THRES,
1578		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1579
1580	fifo = hw->fifos;
1581	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1582		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1583		fifo[i].max_size =
1584			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1585		fifo[i].last_urblen = 0;
1586
1587		/* set 2 bit for D- & E-channel */
1588		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1589
1590		/* enable all fifos */
1591		if (i == HFCUSB_D_TX)
1592			write_reg(hw, HFCUSB_CON_HDLC,
1593				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1594		else
1595			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1596		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1597	}
1598
1599	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1600	handle_led(hw, LED_POWER_ON);
1601}
1602
1603/* start USB data pipes dependand on device's endpoint configuration */
1604static void
1605hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1606{
1607	/* quick check if endpoint already running */
1608	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1609		return;
1610	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1611		return;
1612	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1613		return;
1614	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1615		return;
1616
1617	/* start rx endpoints using USB INT IN method */
1618	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1619		start_int_fifo(hw->fifos + channel * 2 + 1);
1620
1621	/* start rx endpoints using USB ISO IN method */
1622	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1623		switch (channel) {
1624		case HFC_CHAN_D:
1625			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1626					 ISOC_PACKETS_D,
1627					 (usb_complete_t)rx_iso_complete,
1628					 16);
1629			break;
1630		case HFC_CHAN_E:
1631			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1632					 ISOC_PACKETS_D,
1633					 (usb_complete_t)rx_iso_complete,
1634					 16);
1635			break;
1636		case HFC_CHAN_B1:
1637			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1638					 ISOC_PACKETS_B,
1639					 (usb_complete_t)rx_iso_complete,
1640					 16);
1641			break;
1642		case HFC_CHAN_B2:
1643			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1644					 ISOC_PACKETS_B,
1645					 (usb_complete_t)rx_iso_complete,
1646					 16);
1647			break;
1648		}
1649	}
1650
1651	/* start tx endpoints using USB ISO OUT method */
1652	switch (channel) {
1653	case HFC_CHAN_D:
1654		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1655				 ISOC_PACKETS_B,
1656				 (usb_complete_t)tx_iso_complete, 1);
1657		break;
1658	case HFC_CHAN_B1:
1659		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1660				 ISOC_PACKETS_D,
1661				 (usb_complete_t)tx_iso_complete, 1);
1662		break;
1663	case HFC_CHAN_B2:
1664		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1665				 ISOC_PACKETS_B,
1666				 (usb_complete_t)tx_iso_complete, 1);
1667		break;
1668	}
1669}
1670
1671/* stop USB data pipes dependand on device's endpoint configuration */
1672static void
1673hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1674{
1675	/* quick check if endpoint currently running */
1676	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1677		return;
1678	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1679		return;
1680	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1681		return;
1682	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1683		return;
1684
1685	/* rx endpoints using USB INT IN method */
1686	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1687		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1688
1689	/* rx endpoints using USB ISO IN method */
1690	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1691		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1692
1693	/* tx endpoints using USB ISO OUT method */
1694	if (channel != HFC_CHAN_E)
1695		stop_iso_gracefull(hw->fifos + channel * 2);
1696}
1697
1698
1699/* Hardware Initialization */
1700static int
1701setup_hfcsusb(struct hfcsusb *hw)
1702{
1703	u_char b;
1704
1705	if (debug & DBG_HFC_CALL_TRACE)
1706		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1707
1708	/* check the chip id */
1709	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1710		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1711		       hw->name, __func__);
1712		return 1;
1713	}
1714	if (b != HFCUSB_CHIPID) {
1715		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1716		       hw->name, __func__, b);
1717		return 1;
1718	}
1719
1720	/* first set the needed config, interface and alternate */
1721	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1722
1723	hw->led_state = 0;
1724
1725	/* init the background machinery for control requests */
1726	hw->ctrl_read.bRequestType = 0xc0;
1727	hw->ctrl_read.bRequest = 1;
1728	hw->ctrl_read.wLength = cpu_to_le16(1);
1729	hw->ctrl_write.bRequestType = 0x40;
1730	hw->ctrl_write.bRequest = 0;
1731	hw->ctrl_write.wLength = 0;
1732	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1733			     (u_char *)&hw->ctrl_write, NULL, 0,
1734			     (usb_complete_t)ctrl_complete, hw);
1735
1736	reset_hfcsusb(hw);
1737	return 0;
1738}
1739
1740static void
1741release_hw(struct hfcsusb *hw)
1742{
1743	if (debug & DBG_HFC_CALL_TRACE)
1744		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1745
1746	/*
1747	 * stop all endpoints gracefully
1748	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1749	 *       signals after calling mISDN_unregister_device()
1750	 */
1751	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1752	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1753	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1754	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1755		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1756	if (hw->protocol == ISDN_P_TE_S0)
1757		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1758
1759	mISDN_unregister_device(&hw->dch.dev);
1760	mISDN_freebchannel(&hw->bch[1]);
1761	mISDN_freebchannel(&hw->bch[0]);
1762	mISDN_freedchannel(&hw->dch);
1763
1764	if (hw->ctrl_urb) {
1765		usb_kill_urb(hw->ctrl_urb);
1766		usb_free_urb(hw->ctrl_urb);
1767		hw->ctrl_urb = NULL;
1768	}
1769
1770	if (hw->intf)
1771		usb_set_intfdata(hw->intf, NULL);
1772	list_del(&hw->list);
1773	kfree(hw);
1774	hw = NULL;
1775}
1776
1777static void
1778deactivate_bchannel(struct bchannel *bch)
1779{
1780	struct hfcsusb *hw = bch->hw;
1781	u_long flags;
1782
1783	if (bch->debug & DEBUG_HW)
1784		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1785		       hw->name, __func__, bch->nr);
1786
1787	spin_lock_irqsave(&hw->lock, flags);
1788	mISDN_clear_bchannel(bch);
1789	spin_unlock_irqrestore(&hw->lock, flags);
1790	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1791	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1792}
1793
1794/*
1795 * Layer 1 B-channel hardware access
1796 */
1797static int
1798hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1799{
1800	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1801	int		ret = -EINVAL;
1802
1803	if (bch->debug & DEBUG_HW)
1804		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1805
1806	switch (cmd) {
1807	case HW_TESTRX_RAW:
1808	case HW_TESTRX_HDLC:
1809	case HW_TESTRX_OFF:
1810		ret = -EINVAL;
1811		break;
1812
1813	case CLOSE_CHANNEL:
1814		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1815		deactivate_bchannel(bch);
1816		ch->protocol = ISDN_P_NONE;
1817		ch->peer = NULL;
1818		module_put(THIS_MODULE);
1819		ret = 0;
1820		break;
1821	case CONTROL_CHANNEL:
1822		ret = channel_bctrl(bch, arg);
1823		break;
1824	default:
1825		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1826		       __func__, cmd);
1827	}
1828	return ret;
1829}
1830
1831static int
1832setup_instance(struct hfcsusb *hw, struct device *parent)
1833{
1834	u_long	flags;
1835	int	err, i;
1836
1837	if (debug & DBG_HFC_CALL_TRACE)
1838		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1839
1840	spin_lock_init(&hw->ctrl_lock);
1841	spin_lock_init(&hw->lock);
1842
1843	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1844	hw->dch.debug = debug & 0xFFFF;
1845	hw->dch.hw = hw;
1846	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1847	hw->dch.dev.D.send = hfcusb_l2l1D;
1848	hw->dch.dev.D.ctrl = hfc_dctrl;
1849
1850	/* enable E-Channel logging */
1851	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1852		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1853
1854	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1855		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1856	hw->dch.dev.nrbchan = 2;
1857	for (i = 0; i < 2; i++) {
1858		hw->bch[i].nr = i + 1;
1859		set_channelmap(i + 1, hw->dch.dev.channelmap);
1860		hw->bch[i].debug = debug;
1861		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1862		hw->bch[i].hw = hw;
1863		hw->bch[i].ch.send = hfcusb_l2l1B;
1864		hw->bch[i].ch.ctrl = hfc_bctrl;
1865		hw->bch[i].ch.nr = i + 1;
1866		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1867	}
1868
1869	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1870	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1871	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1872	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1873	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1874	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1875	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1876	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1877
1878	err = setup_hfcsusb(hw);
1879	if (err)
1880		goto out;
1881
1882	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1883		 hfcsusb_cnt + 1);
1884	printk(KERN_INFO "%s: registered as '%s'\n",
1885	       DRIVER_NAME, hw->name);
1886
1887	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1888	if (err)
1889		goto out;
1890
1891	hfcsusb_cnt++;
1892	write_lock_irqsave(&HFClock, flags);
1893	list_add_tail(&hw->list, &HFClist);
1894	write_unlock_irqrestore(&HFClock, flags);
1895	return 0;
1896
1897out:
1898	mISDN_freebchannel(&hw->bch[1]);
1899	mISDN_freebchannel(&hw->bch[0]);
1900	mISDN_freedchannel(&hw->dch);
1901	kfree(hw);
1902	return err;
1903}
1904
1905static int
1906hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1907{
1908	struct hfcsusb			*hw;
1909	struct usb_device		*dev = interface_to_usbdev(intf);
1910	struct usb_host_interface	*iface = intf->cur_altsetting;
1911	struct usb_host_interface	*iface_used = NULL;
1912	struct usb_host_endpoint	*ep;
1913	struct hfcsusb_vdata		*driver_info;
1914	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1915		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1916		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1917		alt_used = 0;
1918
1919	vend_idx = 0xffff;
1920	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1921		if ((le16_to_cpu(dev->descriptor.idVendor)
1922		     == hfcsusb_idtab[i].idVendor) &&
1923		    (le16_to_cpu(dev->descriptor.idProduct)
1924		     == hfcsusb_idtab[i].idProduct)) {
1925			vend_idx = i;
1926			continue;
1927		}
1928	}
1929
1930	printk(KERN_DEBUG
1931	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1932	       __func__, ifnum, iface->desc.bAlternateSetting,
1933	       intf->minor, vend_idx);
1934
1935	if (vend_idx == 0xffff) {
1936		printk(KERN_WARNING
1937		       "%s: no valid vendor found in USB descriptor\n",
1938		       __func__);
1939		return -EIO;
1940	}
1941	/* if vendor and product ID is OK, start probing alternate settings */
1942	alt_idx = 0;
1943	small_match = -1;
1944
1945	/* default settings */
1946	iso_packet_size = 16;
1947	packet_size = 64;
1948
1949	while (alt_idx < intf->num_altsetting) {
1950		iface = intf->altsetting + alt_idx;
1951		probe_alt_setting = iface->desc.bAlternateSetting;
1952		cfg_used = 0;
1953
1954		while (validconf[cfg_used][0]) {
1955			cfg_found = 1;
1956			vcf = validconf[cfg_used];
1957			ep = iface->endpoint;
1958			memcpy(cmptbl, vcf, 16 * sizeof(int));
1959
1960			/* check for all endpoints in this alternate setting */
1961			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1962				ep_addr = ep->desc.bEndpointAddress;
1963
1964				/* get endpoint base */
1965				idx = ((ep_addr & 0x7f) - 1) * 2;
1966				if (ep_addr & 0x80)
1967					idx++;
1968				attr = ep->desc.bmAttributes;
1969
1970				if (cmptbl[idx] != EP_NOP) {
1971					if (cmptbl[idx] == EP_NUL)
1972						cfg_found = 0;
1973					if (attr == USB_ENDPOINT_XFER_INT
1974					    && cmptbl[idx] == EP_INT)
1975						cmptbl[idx] = EP_NUL;
1976					if (attr == USB_ENDPOINT_XFER_BULK
1977					    && cmptbl[idx] == EP_BLK)
1978						cmptbl[idx] = EP_NUL;
1979					if (attr == USB_ENDPOINT_XFER_ISOC
1980					    && cmptbl[idx] == EP_ISO)
1981						cmptbl[idx] = EP_NUL;
1982
1983					if (attr == USB_ENDPOINT_XFER_INT &&
1984					    ep->desc.bInterval < vcf[17]) {
1985						cfg_found = 0;
1986					}
1987				}
1988				ep++;
1989			}
1990
1991			for (i = 0; i < 16; i++)
1992				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1993					cfg_found = 0;
1994
1995			if (cfg_found) {
1996				if (small_match < cfg_used) {
1997					small_match = cfg_used;
1998					alt_used = probe_alt_setting;
1999					iface_used = iface;
2000				}
2001			}
2002			cfg_used++;
2003		}
2004		alt_idx++;
2005	}	/* (alt_idx < intf->num_altsetting) */
2006
2007	/* not found a valid USB Ta Endpoint config */
2008	if (small_match == -1)
2009		return -EIO;
2010
2011	iface = iface_used;
2012	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2013	if (!hw)
2014		return -ENOMEM;	/* got no mem */
2015	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2016
2017	ep = iface->endpoint;
2018	vcf = validconf[small_match];
2019
2020	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2021		struct usb_fifo *f;
2022
2023		ep_addr = ep->desc.bEndpointAddress;
2024		/* get endpoint base */
2025		idx = ((ep_addr & 0x7f) - 1) * 2;
2026		if (ep_addr & 0x80)
2027			idx++;
2028		f = &hw->fifos[idx & 7];
2029
2030		/* init Endpoints */
2031		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2032			ep++;
2033			continue;
2034		}
2035		switch (ep->desc.bmAttributes) {
2036		case USB_ENDPOINT_XFER_INT:
2037			f->pipe = usb_rcvintpipe(dev,
2038						 ep->desc.bEndpointAddress);
2039			f->usb_transfer_mode = USB_INT;
2040			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2041			break;
2042		case USB_ENDPOINT_XFER_BULK:
2043			if (ep_addr & 0x80)
2044				f->pipe = usb_rcvbulkpipe(dev,
2045							  ep->desc.bEndpointAddress);
2046			else
2047				f->pipe = usb_sndbulkpipe(dev,
2048							  ep->desc.bEndpointAddress);
2049			f->usb_transfer_mode = USB_BULK;
2050			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2051			break;
2052		case USB_ENDPOINT_XFER_ISOC:
2053			if (ep_addr & 0x80)
2054				f->pipe = usb_rcvisocpipe(dev,
2055							  ep->desc.bEndpointAddress);
2056			else
2057				f->pipe = usb_sndisocpipe(dev,
2058							  ep->desc.bEndpointAddress);
2059			f->usb_transfer_mode = USB_ISOC;
2060			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2061			break;
2062		default:
2063			f->pipe = 0;
2064		}
2065
2066		if (f->pipe) {
2067			f->fifonum = idx & 7;
2068			f->hw = hw;
2069			f->usb_packet_maxlen =
2070				le16_to_cpu(ep->desc.wMaxPacketSize);
2071			f->intervall = ep->desc.bInterval;
2072		}
2073		ep++;
2074	}
2075	hw->dev = dev; /* save device */
2076	hw->if_used = ifnum; /* save used interface */
2077	hw->alt_used = alt_used; /* and alternate config */
2078	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2079	hw->cfg_used = vcf[16];	/* store used config */
2080	hw->vend_idx = vend_idx; /* store found vendor */
2081	hw->packet_size = packet_size;
2082	hw->iso_packet_size = iso_packet_size;
2083
2084	/* create the control pipes needed for register access */
2085	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2086	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2087
2088	driver_info = (struct hfcsusb_vdata *)
2089		      hfcsusb_idtab[vend_idx].driver_info;
2090
2091	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2092	if (!hw->ctrl_urb) {
2093		pr_warn("%s: No memory for control urb\n",
2094			driver_info->vend_name);
2095		kfree(hw);
2096		return -ENOMEM;
2097	}
2098
2099	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2100		hw->name, __func__, driver_info->vend_name,
2101		conf_str[small_match], ifnum, alt_used);
2102
2103	if (setup_instance(hw, dev->dev.parent))
2104		return -EIO;
2105
2106	hw->intf = intf;
2107	usb_set_intfdata(hw->intf, hw);
2108	return 0;
2109}
2110
2111/* function called when an active device is removed */
2112static void
2113hfcsusb_disconnect(struct usb_interface *intf)
2114{
2115	struct hfcsusb *hw = usb_get_intfdata(intf);
2116	struct hfcsusb *next;
2117	int cnt = 0;
2118
2119	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2120
2121	handle_led(hw, LED_POWER_OFF);
2122	release_hw(hw);
2123
2124	list_for_each_entry_safe(hw, next, &HFClist, list)
2125		cnt++;
2126	if (!cnt)
2127		hfcsusb_cnt = 0;
2128
2129	usb_set_intfdata(intf, NULL);
2130}
2131
2132static struct usb_driver hfcsusb_drv = {
2133	.name = DRIVER_NAME,
2134	.id_table = hfcsusb_idtab,
2135	.probe = hfcsusb_probe,
2136	.disconnect = hfcsusb_disconnect,
2137	.disable_hub_initiated_lpm = 1,
2138};
2139
2140module_usb_driver(hfcsusb_drv);
2141