[go: nahoru, domu]

1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras	August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 *    {engebret|bergner}@us.ibm.com
9 *
10 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 *  Grant Likely.
14 *
15 *      This program is free software; you can redistribute it and/or
16 *      modify it under the terms of the GNU General Public License
17 *      as published by the Free Software Foundation; either version
18 *      2 of the License, or (at your option) any later version.
19 */
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_allnodes;
36EXPORT_SYMBOL(of_allnodes);
37struct device_node *of_chosen;
38struct device_node *of_aliases;
39struct device_node *of_stdout;
40
41struct kset *of_kset;
42
43/*
44 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
45 * This mutex must be held whenever modifications are being made to the
46 * device tree. The of_{attach,detach}_node() and
47 * of_{add,remove,update}_property() helpers make sure this happens.
48 */
49DEFINE_MUTEX(of_mutex);
50
51/* use when traversing tree through the allnext, child, sibling,
52 * or parent members of struct device_node.
53 */
54DEFINE_RAW_SPINLOCK(devtree_lock);
55
56int of_n_addr_cells(struct device_node *np)
57{
58	const __be32 *ip;
59
60	do {
61		if (np->parent)
62			np = np->parent;
63		ip = of_get_property(np, "#address-cells", NULL);
64		if (ip)
65			return be32_to_cpup(ip);
66	} while (np->parent);
67	/* No #address-cells property for the root node */
68	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69}
70EXPORT_SYMBOL(of_n_addr_cells);
71
72int of_n_size_cells(struct device_node *np)
73{
74	const __be32 *ip;
75
76	do {
77		if (np->parent)
78			np = np->parent;
79		ip = of_get_property(np, "#size-cells", NULL);
80		if (ip)
81			return be32_to_cpup(ip);
82	} while (np->parent);
83	/* No #size-cells property for the root node */
84	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
85}
86EXPORT_SYMBOL(of_n_size_cells);
87
88#ifdef CONFIG_NUMA
89int __weak of_node_to_nid(struct device_node *np)
90{
91	return numa_node_id();
92}
93#endif
94
95#ifndef CONFIG_OF_DYNAMIC
96static void of_node_release(struct kobject *kobj)
97{
98	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
99}
100#endif /* CONFIG_OF_DYNAMIC */
101
102struct kobj_type of_node_ktype = {
103	.release = of_node_release,
104};
105
106static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
107				struct bin_attribute *bin_attr, char *buf,
108				loff_t offset, size_t count)
109{
110	struct property *pp = container_of(bin_attr, struct property, attr);
111	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
112}
113
114static const char *safe_name(struct kobject *kobj, const char *orig_name)
115{
116	const char *name = orig_name;
117	struct kernfs_node *kn;
118	int i = 0;
119
120	/* don't be a hero. After 16 tries give up */
121	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
122		sysfs_put(kn);
123		if (name != orig_name)
124			kfree(name);
125		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
126	}
127
128	if (name != orig_name)
129		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
130			kobject_name(kobj), name);
131	return name;
132}
133
134int __of_add_property_sysfs(struct device_node *np, struct property *pp)
135{
136	int rc;
137
138	/* Important: Don't leak passwords */
139	bool secure = strncmp(pp->name, "security-", 9) == 0;
140
141	if (!IS_ENABLED(CONFIG_SYSFS))
142		return 0;
143
144	if (!of_kset || !of_node_is_attached(np))
145		return 0;
146
147	sysfs_bin_attr_init(&pp->attr);
148	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
149	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
150	pp->attr.size = secure ? 0 : pp->length;
151	pp->attr.read = of_node_property_read;
152
153	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
154	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
155	return rc;
156}
157
158int __of_attach_node_sysfs(struct device_node *np)
159{
160	const char *name;
161	struct property *pp;
162	int rc;
163
164	if (!IS_ENABLED(CONFIG_SYSFS))
165		return 0;
166
167	if (!of_kset)
168		return 0;
169
170	np->kobj.kset = of_kset;
171	if (!np->parent) {
172		/* Nodes without parents are new top level trees */
173		rc = kobject_add(&np->kobj, NULL, "%s",
174				 safe_name(&of_kset->kobj, "base"));
175	} else {
176		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
177		if (!name || !name[0])
178			return -EINVAL;
179
180		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
181	}
182	if (rc)
183		return rc;
184
185	for_each_property_of_node(np, pp)
186		__of_add_property_sysfs(np, pp);
187
188	return 0;
189}
190
191static int __init of_init(void)
192{
193	struct device_node *np;
194
195	/* Create the kset, and register existing nodes */
196	mutex_lock(&of_mutex);
197	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
198	if (!of_kset) {
199		mutex_unlock(&of_mutex);
200		return -ENOMEM;
201	}
202	for_each_of_allnodes(np)
203		__of_attach_node_sysfs(np);
204	mutex_unlock(&of_mutex);
205
206	/* Symlink in /proc as required by userspace ABI */
207	if (of_allnodes)
208		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
209
210	return 0;
211}
212core_initcall(of_init);
213
214static struct property *__of_find_property(const struct device_node *np,
215					   const char *name, int *lenp)
216{
217	struct property *pp;
218
219	if (!np)
220		return NULL;
221
222	for (pp = np->properties; pp; pp = pp->next) {
223		if (of_prop_cmp(pp->name, name) == 0) {
224			if (lenp)
225				*lenp = pp->length;
226			break;
227		}
228	}
229
230	return pp;
231}
232
233struct property *of_find_property(const struct device_node *np,
234				  const char *name,
235				  int *lenp)
236{
237	struct property *pp;
238	unsigned long flags;
239
240	raw_spin_lock_irqsave(&devtree_lock, flags);
241	pp = __of_find_property(np, name, lenp);
242	raw_spin_unlock_irqrestore(&devtree_lock, flags);
243
244	return pp;
245}
246EXPORT_SYMBOL(of_find_property);
247
248/**
249 * of_find_all_nodes - Get next node in global list
250 * @prev:	Previous node or NULL to start iteration
251 *		of_node_put() will be called on it
252 *
253 * Returns a node pointer with refcount incremented, use
254 * of_node_put() on it when done.
255 */
256struct device_node *of_find_all_nodes(struct device_node *prev)
257{
258	struct device_node *np;
259	unsigned long flags;
260
261	raw_spin_lock_irqsave(&devtree_lock, flags);
262	np = prev ? prev->allnext : of_allnodes;
263	for (; np != NULL; np = np->allnext)
264		if (of_node_get(np))
265			break;
266	of_node_put(prev);
267	raw_spin_unlock_irqrestore(&devtree_lock, flags);
268	return np;
269}
270EXPORT_SYMBOL(of_find_all_nodes);
271
272/*
273 * Find a property with a given name for a given node
274 * and return the value.
275 */
276const void *__of_get_property(const struct device_node *np,
277			      const char *name, int *lenp)
278{
279	struct property *pp = __of_find_property(np, name, lenp);
280
281	return pp ? pp->value : NULL;
282}
283
284/*
285 * Find a property with a given name for a given node
286 * and return the value.
287 */
288const void *of_get_property(const struct device_node *np, const char *name,
289			    int *lenp)
290{
291	struct property *pp = of_find_property(np, name, lenp);
292
293	return pp ? pp->value : NULL;
294}
295EXPORT_SYMBOL(of_get_property);
296
297/*
298 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
299 *
300 * @cpu: logical cpu index of a core/thread
301 * @phys_id: physical identifier of a core/thread
302 *
303 * CPU logical to physical index mapping is architecture specific.
304 * However this __weak function provides a default match of physical
305 * id to logical cpu index. phys_id provided here is usually values read
306 * from the device tree which must match the hardware internal registers.
307 *
308 * Returns true if the physical identifier and the logical cpu index
309 * correspond to the same core/thread, false otherwise.
310 */
311bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
312{
313	return (u32)phys_id == cpu;
314}
315
316/**
317 * Checks if the given "prop_name" property holds the physical id of the
318 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
319 * NULL, local thread number within the core is returned in it.
320 */
321static bool __of_find_n_match_cpu_property(struct device_node *cpun,
322			const char *prop_name, int cpu, unsigned int *thread)
323{
324	const __be32 *cell;
325	int ac, prop_len, tid;
326	u64 hwid;
327
328	ac = of_n_addr_cells(cpun);
329	cell = of_get_property(cpun, prop_name, &prop_len);
330	if (!cell || !ac)
331		return false;
332	prop_len /= sizeof(*cell) * ac;
333	for (tid = 0; tid < prop_len; tid++) {
334		hwid = of_read_number(cell, ac);
335		if (arch_match_cpu_phys_id(cpu, hwid)) {
336			if (thread)
337				*thread = tid;
338			return true;
339		}
340		cell += ac;
341	}
342	return false;
343}
344
345/*
346 * arch_find_n_match_cpu_physical_id - See if the given device node is
347 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
348 * else false.  If 'thread' is non-NULL, the local thread number within the
349 * core is returned in it.
350 */
351bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
352					      int cpu, unsigned int *thread)
353{
354	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
355	 * for thread ids on PowerPC. If it doesn't exist fallback to
356	 * standard "reg" property.
357	 */
358	if (IS_ENABLED(CONFIG_PPC) &&
359	    __of_find_n_match_cpu_property(cpun,
360					   "ibm,ppc-interrupt-server#s",
361					   cpu, thread))
362		return true;
363
364	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
365		return true;
366
367	return false;
368}
369
370/**
371 * of_get_cpu_node - Get device node associated with the given logical CPU
372 *
373 * @cpu: CPU number(logical index) for which device node is required
374 * @thread: if not NULL, local thread number within the physical core is
375 *          returned
376 *
377 * The main purpose of this function is to retrieve the device node for the
378 * given logical CPU index. It should be used to initialize the of_node in
379 * cpu device. Once of_node in cpu device is populated, all the further
380 * references can use that instead.
381 *
382 * CPU logical to physical index mapping is architecture specific and is built
383 * before booting secondary cores. This function uses arch_match_cpu_phys_id
384 * which can be overridden by architecture specific implementation.
385 *
386 * Returns a node pointer for the logical cpu if found, else NULL.
387 */
388struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
389{
390	struct device_node *cpun;
391
392	for_each_node_by_type(cpun, "cpu") {
393		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
394			return cpun;
395	}
396	return NULL;
397}
398EXPORT_SYMBOL(of_get_cpu_node);
399
400/**
401 * __of_device_is_compatible() - Check if the node matches given constraints
402 * @device: pointer to node
403 * @compat: required compatible string, NULL or "" for any match
404 * @type: required device_type value, NULL or "" for any match
405 * @name: required node name, NULL or "" for any match
406 *
407 * Checks if the given @compat, @type and @name strings match the
408 * properties of the given @device. A constraints can be skipped by
409 * passing NULL or an empty string as the constraint.
410 *
411 * Returns 0 for no match, and a positive integer on match. The return
412 * value is a relative score with larger values indicating better
413 * matches. The score is weighted for the most specific compatible value
414 * to get the highest score. Matching type is next, followed by matching
415 * name. Practically speaking, this results in the following priority
416 * order for matches:
417 *
418 * 1. specific compatible && type && name
419 * 2. specific compatible && type
420 * 3. specific compatible && name
421 * 4. specific compatible
422 * 5. general compatible && type && name
423 * 6. general compatible && type
424 * 7. general compatible && name
425 * 8. general compatible
426 * 9. type && name
427 * 10. type
428 * 11. name
429 */
430static int __of_device_is_compatible(const struct device_node *device,
431				     const char *compat, const char *type, const char *name)
432{
433	struct property *prop;
434	const char *cp;
435	int index = 0, score = 0;
436
437	/* Compatible match has highest priority */
438	if (compat && compat[0]) {
439		prop = __of_find_property(device, "compatible", NULL);
440		for (cp = of_prop_next_string(prop, NULL); cp;
441		     cp = of_prop_next_string(prop, cp), index++) {
442			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
443				score = INT_MAX/2 - (index << 2);
444				break;
445			}
446		}
447		if (!score)
448			return 0;
449	}
450
451	/* Matching type is better than matching name */
452	if (type && type[0]) {
453		if (!device->type || of_node_cmp(type, device->type))
454			return 0;
455		score += 2;
456	}
457
458	/* Matching name is a bit better than not */
459	if (name && name[0]) {
460		if (!device->name || of_node_cmp(name, device->name))
461			return 0;
462		score++;
463	}
464
465	return score;
466}
467
468/** Checks if the given "compat" string matches one of the strings in
469 * the device's "compatible" property
470 */
471int of_device_is_compatible(const struct device_node *device,
472		const char *compat)
473{
474	unsigned long flags;
475	int res;
476
477	raw_spin_lock_irqsave(&devtree_lock, flags);
478	res = __of_device_is_compatible(device, compat, NULL, NULL);
479	raw_spin_unlock_irqrestore(&devtree_lock, flags);
480	return res;
481}
482EXPORT_SYMBOL(of_device_is_compatible);
483
484/**
485 * of_machine_is_compatible - Test root of device tree for a given compatible value
486 * @compat: compatible string to look for in root node's compatible property.
487 *
488 * Returns true if the root node has the given value in its
489 * compatible property.
490 */
491int of_machine_is_compatible(const char *compat)
492{
493	struct device_node *root;
494	int rc = 0;
495
496	root = of_find_node_by_path("/");
497	if (root) {
498		rc = of_device_is_compatible(root, compat);
499		of_node_put(root);
500	}
501	return rc;
502}
503EXPORT_SYMBOL(of_machine_is_compatible);
504
505/**
506 *  __of_device_is_available - check if a device is available for use
507 *
508 *  @device: Node to check for availability, with locks already held
509 *
510 *  Returns 1 if the status property is absent or set to "okay" or "ok",
511 *  0 otherwise
512 */
513static int __of_device_is_available(const struct device_node *device)
514{
515	const char *status;
516	int statlen;
517
518	if (!device)
519		return 0;
520
521	status = __of_get_property(device, "status", &statlen);
522	if (status == NULL)
523		return 1;
524
525	if (statlen > 0) {
526		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
527			return 1;
528	}
529
530	return 0;
531}
532
533/**
534 *  of_device_is_available - check if a device is available for use
535 *
536 *  @device: Node to check for availability
537 *
538 *  Returns 1 if the status property is absent or set to "okay" or "ok",
539 *  0 otherwise
540 */
541int of_device_is_available(const struct device_node *device)
542{
543	unsigned long flags;
544	int res;
545
546	raw_spin_lock_irqsave(&devtree_lock, flags);
547	res = __of_device_is_available(device);
548	raw_spin_unlock_irqrestore(&devtree_lock, flags);
549	return res;
550
551}
552EXPORT_SYMBOL(of_device_is_available);
553
554/**
555 *	of_get_parent - Get a node's parent if any
556 *	@node:	Node to get parent
557 *
558 *	Returns a node pointer with refcount incremented, use
559 *	of_node_put() on it when done.
560 */
561struct device_node *of_get_parent(const struct device_node *node)
562{
563	struct device_node *np;
564	unsigned long flags;
565
566	if (!node)
567		return NULL;
568
569	raw_spin_lock_irqsave(&devtree_lock, flags);
570	np = of_node_get(node->parent);
571	raw_spin_unlock_irqrestore(&devtree_lock, flags);
572	return np;
573}
574EXPORT_SYMBOL(of_get_parent);
575
576/**
577 *	of_get_next_parent - Iterate to a node's parent
578 *	@node:	Node to get parent of
579 *
580 * 	This is like of_get_parent() except that it drops the
581 * 	refcount on the passed node, making it suitable for iterating
582 * 	through a node's parents.
583 *
584 *	Returns a node pointer with refcount incremented, use
585 *	of_node_put() on it when done.
586 */
587struct device_node *of_get_next_parent(struct device_node *node)
588{
589	struct device_node *parent;
590	unsigned long flags;
591
592	if (!node)
593		return NULL;
594
595	raw_spin_lock_irqsave(&devtree_lock, flags);
596	parent = of_node_get(node->parent);
597	of_node_put(node);
598	raw_spin_unlock_irqrestore(&devtree_lock, flags);
599	return parent;
600}
601EXPORT_SYMBOL(of_get_next_parent);
602
603static struct device_node *__of_get_next_child(const struct device_node *node,
604						struct device_node *prev)
605{
606	struct device_node *next;
607
608	if (!node)
609		return NULL;
610
611	next = prev ? prev->sibling : node->child;
612	for (; next; next = next->sibling)
613		if (of_node_get(next))
614			break;
615	of_node_put(prev);
616	return next;
617}
618#define __for_each_child_of_node(parent, child) \
619	for (child = __of_get_next_child(parent, NULL); child != NULL; \
620	     child = __of_get_next_child(parent, child))
621
622/**
623 *	of_get_next_child - Iterate a node childs
624 *	@node:	parent node
625 *	@prev:	previous child of the parent node, or NULL to get first
626 *
627 *	Returns a node pointer with refcount incremented, use
628 *	of_node_put() on it when done.
629 */
630struct device_node *of_get_next_child(const struct device_node *node,
631	struct device_node *prev)
632{
633	struct device_node *next;
634	unsigned long flags;
635
636	raw_spin_lock_irqsave(&devtree_lock, flags);
637	next = __of_get_next_child(node, prev);
638	raw_spin_unlock_irqrestore(&devtree_lock, flags);
639	return next;
640}
641EXPORT_SYMBOL(of_get_next_child);
642
643/**
644 *	of_get_next_available_child - Find the next available child node
645 *	@node:	parent node
646 *	@prev:	previous child of the parent node, or NULL to get first
647 *
648 *      This function is like of_get_next_child(), except that it
649 *      automatically skips any disabled nodes (i.e. status = "disabled").
650 */
651struct device_node *of_get_next_available_child(const struct device_node *node,
652	struct device_node *prev)
653{
654	struct device_node *next;
655	unsigned long flags;
656
657	if (!node)
658		return NULL;
659
660	raw_spin_lock_irqsave(&devtree_lock, flags);
661	next = prev ? prev->sibling : node->child;
662	for (; next; next = next->sibling) {
663		if (!__of_device_is_available(next))
664			continue;
665		if (of_node_get(next))
666			break;
667	}
668	of_node_put(prev);
669	raw_spin_unlock_irqrestore(&devtree_lock, flags);
670	return next;
671}
672EXPORT_SYMBOL(of_get_next_available_child);
673
674/**
675 *	of_get_child_by_name - Find the child node by name for a given parent
676 *	@node:	parent node
677 *	@name:	child name to look for.
678 *
679 *      This function looks for child node for given matching name
680 *
681 *	Returns a node pointer if found, with refcount incremented, use
682 *	of_node_put() on it when done.
683 *	Returns NULL if node is not found.
684 */
685struct device_node *of_get_child_by_name(const struct device_node *node,
686				const char *name)
687{
688	struct device_node *child;
689
690	for_each_child_of_node(node, child)
691		if (child->name && (of_node_cmp(child->name, name) == 0))
692			break;
693	return child;
694}
695EXPORT_SYMBOL(of_get_child_by_name);
696
697static struct device_node *__of_find_node_by_path(struct device_node *parent,
698						const char *path)
699{
700	struct device_node *child;
701	int len = strchrnul(path, '/') - path;
702
703	if (!len)
704		return NULL;
705
706	__for_each_child_of_node(parent, child) {
707		const char *name = strrchr(child->full_name, '/');
708		if (WARN(!name, "malformed device_node %s\n", child->full_name))
709			continue;
710		name++;
711		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
712			return child;
713	}
714	return NULL;
715}
716
717/**
718 *	of_find_node_by_path - Find a node matching a full OF path
719 *	@path: Either the full path to match, or if the path does not
720 *	       start with '/', the name of a property of the /aliases
721 *	       node (an alias).  In the case of an alias, the node
722 *	       matching the alias' value will be returned.
723 *
724 *	Valid paths:
725 *		/foo/bar	Full path
726 *		foo		Valid alias
727 *		foo/bar		Valid alias + relative path
728 *
729 *	Returns a node pointer with refcount incremented, use
730 *	of_node_put() on it when done.
731 */
732struct device_node *of_find_node_by_path(const char *path)
733{
734	struct device_node *np = NULL;
735	struct property *pp;
736	unsigned long flags;
737
738	if (strcmp(path, "/") == 0)
739		return of_node_get(of_allnodes);
740
741	/* The path could begin with an alias */
742	if (*path != '/') {
743		char *p = strchrnul(path, '/');
744		int len = p - path;
745
746		/* of_aliases must not be NULL */
747		if (!of_aliases)
748			return NULL;
749
750		for_each_property_of_node(of_aliases, pp) {
751			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
752				np = of_find_node_by_path(pp->value);
753				break;
754			}
755		}
756		if (!np)
757			return NULL;
758		path = p;
759	}
760
761	/* Step down the tree matching path components */
762	raw_spin_lock_irqsave(&devtree_lock, flags);
763	if (!np)
764		np = of_node_get(of_allnodes);
765	while (np && *path == '/') {
766		path++; /* Increment past '/' delimiter */
767		np = __of_find_node_by_path(np, path);
768		path = strchrnul(path, '/');
769	}
770	raw_spin_unlock_irqrestore(&devtree_lock, flags);
771	return np;
772}
773EXPORT_SYMBOL(of_find_node_by_path);
774
775/**
776 *	of_find_node_by_name - Find a node by its "name" property
777 *	@from:	The node to start searching from or NULL, the node
778 *		you pass will not be searched, only the next one
779 *		will; typically, you pass what the previous call
780 *		returned. of_node_put() will be called on it
781 *	@name:	The name string to match against
782 *
783 *	Returns a node pointer with refcount incremented, use
784 *	of_node_put() on it when done.
785 */
786struct device_node *of_find_node_by_name(struct device_node *from,
787	const char *name)
788{
789	struct device_node *np;
790	unsigned long flags;
791
792	raw_spin_lock_irqsave(&devtree_lock, flags);
793	np = from ? from->allnext : of_allnodes;
794	for (; np; np = np->allnext)
795		if (np->name && (of_node_cmp(np->name, name) == 0)
796		    && of_node_get(np))
797			break;
798	of_node_put(from);
799	raw_spin_unlock_irqrestore(&devtree_lock, flags);
800	return np;
801}
802EXPORT_SYMBOL(of_find_node_by_name);
803
804/**
805 *	of_find_node_by_type - Find a node by its "device_type" property
806 *	@from:	The node to start searching from, or NULL to start searching
807 *		the entire device tree. The node you pass will not be
808 *		searched, only the next one will; typically, you pass
809 *		what the previous call returned. of_node_put() will be
810 *		called on from for you.
811 *	@type:	The type string to match against
812 *
813 *	Returns a node pointer with refcount incremented, use
814 *	of_node_put() on it when done.
815 */
816struct device_node *of_find_node_by_type(struct device_node *from,
817	const char *type)
818{
819	struct device_node *np;
820	unsigned long flags;
821
822	raw_spin_lock_irqsave(&devtree_lock, flags);
823	np = from ? from->allnext : of_allnodes;
824	for (; np; np = np->allnext)
825		if (np->type && (of_node_cmp(np->type, type) == 0)
826		    && of_node_get(np))
827			break;
828	of_node_put(from);
829	raw_spin_unlock_irqrestore(&devtree_lock, flags);
830	return np;
831}
832EXPORT_SYMBOL(of_find_node_by_type);
833
834/**
835 *	of_find_compatible_node - Find a node based on type and one of the
836 *                                tokens in its "compatible" property
837 *	@from:		The node to start searching from or NULL, the node
838 *			you pass will not be searched, only the next one
839 *			will; typically, you pass what the previous call
840 *			returned. of_node_put() will be called on it
841 *	@type:		The type string to match "device_type" or NULL to ignore
842 *	@compatible:	The string to match to one of the tokens in the device
843 *			"compatible" list.
844 *
845 *	Returns a node pointer with refcount incremented, use
846 *	of_node_put() on it when done.
847 */
848struct device_node *of_find_compatible_node(struct device_node *from,
849	const char *type, const char *compatible)
850{
851	struct device_node *np;
852	unsigned long flags;
853
854	raw_spin_lock_irqsave(&devtree_lock, flags);
855	np = from ? from->allnext : of_allnodes;
856	for (; np; np = np->allnext) {
857		if (__of_device_is_compatible(np, compatible, type, NULL) &&
858		    of_node_get(np))
859			break;
860	}
861	of_node_put(from);
862	raw_spin_unlock_irqrestore(&devtree_lock, flags);
863	return np;
864}
865EXPORT_SYMBOL(of_find_compatible_node);
866
867/**
868 *	of_find_node_with_property - Find a node which has a property with
869 *                                   the given name.
870 *	@from:		The node to start searching from or NULL, the node
871 *			you pass will not be searched, only the next one
872 *			will; typically, you pass what the previous call
873 *			returned. of_node_put() will be called on it
874 *	@prop_name:	The name of the property to look for.
875 *
876 *	Returns a node pointer with refcount incremented, use
877 *	of_node_put() on it when done.
878 */
879struct device_node *of_find_node_with_property(struct device_node *from,
880	const char *prop_name)
881{
882	struct device_node *np;
883	struct property *pp;
884	unsigned long flags;
885
886	raw_spin_lock_irqsave(&devtree_lock, flags);
887	np = from ? from->allnext : of_allnodes;
888	for (; np; np = np->allnext) {
889		for (pp = np->properties; pp; pp = pp->next) {
890			if (of_prop_cmp(pp->name, prop_name) == 0) {
891				of_node_get(np);
892				goto out;
893			}
894		}
895	}
896out:
897	of_node_put(from);
898	raw_spin_unlock_irqrestore(&devtree_lock, flags);
899	return np;
900}
901EXPORT_SYMBOL(of_find_node_with_property);
902
903static
904const struct of_device_id *__of_match_node(const struct of_device_id *matches,
905					   const struct device_node *node)
906{
907	const struct of_device_id *best_match = NULL;
908	int score, best_score = 0;
909
910	if (!matches)
911		return NULL;
912
913	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
914		score = __of_device_is_compatible(node, matches->compatible,
915						  matches->type, matches->name);
916		if (score > best_score) {
917			best_match = matches;
918			best_score = score;
919		}
920	}
921
922	return best_match;
923}
924
925/**
926 * of_match_node - Tell if an device_node has a matching of_match structure
927 *	@matches:	array of of device match structures to search in
928 *	@node:		the of device structure to match against
929 *
930 *	Low level utility function used by device matching.
931 */
932const struct of_device_id *of_match_node(const struct of_device_id *matches,
933					 const struct device_node *node)
934{
935	const struct of_device_id *match;
936	unsigned long flags;
937
938	raw_spin_lock_irqsave(&devtree_lock, flags);
939	match = __of_match_node(matches, node);
940	raw_spin_unlock_irqrestore(&devtree_lock, flags);
941	return match;
942}
943EXPORT_SYMBOL(of_match_node);
944
945/**
946 *	of_find_matching_node_and_match - Find a node based on an of_device_id
947 *					  match table.
948 *	@from:		The node to start searching from or NULL, the node
949 *			you pass will not be searched, only the next one
950 *			will; typically, you pass what the previous call
951 *			returned. of_node_put() will be called on it
952 *	@matches:	array of of device match structures to search in
953 *	@match		Updated to point at the matches entry which matched
954 *
955 *	Returns a node pointer with refcount incremented, use
956 *	of_node_put() on it when done.
957 */
958struct device_node *of_find_matching_node_and_match(struct device_node *from,
959					const struct of_device_id *matches,
960					const struct of_device_id **match)
961{
962	struct device_node *np;
963	const struct of_device_id *m;
964	unsigned long flags;
965
966	if (match)
967		*match = NULL;
968
969	raw_spin_lock_irqsave(&devtree_lock, flags);
970	np = from ? from->allnext : of_allnodes;
971	for (; np; np = np->allnext) {
972		m = __of_match_node(matches, np);
973		if (m && of_node_get(np)) {
974			if (match)
975				*match = m;
976			break;
977		}
978	}
979	of_node_put(from);
980	raw_spin_unlock_irqrestore(&devtree_lock, flags);
981	return np;
982}
983EXPORT_SYMBOL(of_find_matching_node_and_match);
984
985/**
986 * of_modalias_node - Lookup appropriate modalias for a device node
987 * @node:	pointer to a device tree node
988 * @modalias:	Pointer to buffer that modalias value will be copied into
989 * @len:	Length of modalias value
990 *
991 * Based on the value of the compatible property, this routine will attempt
992 * to choose an appropriate modalias value for a particular device tree node.
993 * It does this by stripping the manufacturer prefix (as delimited by a ',')
994 * from the first entry in the compatible list property.
995 *
996 * This routine returns 0 on success, <0 on failure.
997 */
998int of_modalias_node(struct device_node *node, char *modalias, int len)
999{
1000	const char *compatible, *p;
1001	int cplen;
1002
1003	compatible = of_get_property(node, "compatible", &cplen);
1004	if (!compatible || strlen(compatible) > cplen)
1005		return -ENODEV;
1006	p = strchr(compatible, ',');
1007	strlcpy(modalias, p ? p + 1 : compatible, len);
1008	return 0;
1009}
1010EXPORT_SYMBOL_GPL(of_modalias_node);
1011
1012/**
1013 * of_find_node_by_phandle - Find a node given a phandle
1014 * @handle:	phandle of the node to find
1015 *
1016 * Returns a node pointer with refcount incremented, use
1017 * of_node_put() on it when done.
1018 */
1019struct device_node *of_find_node_by_phandle(phandle handle)
1020{
1021	struct device_node *np;
1022	unsigned long flags;
1023
1024	if (!handle)
1025		return NULL;
1026
1027	raw_spin_lock_irqsave(&devtree_lock, flags);
1028	for (np = of_allnodes; np; np = np->allnext)
1029		if (np->phandle == handle)
1030			break;
1031	of_node_get(np);
1032	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1033	return np;
1034}
1035EXPORT_SYMBOL(of_find_node_by_phandle);
1036
1037/**
1038 * of_property_count_elems_of_size - Count the number of elements in a property
1039 *
1040 * @np:		device node from which the property value is to be read.
1041 * @propname:	name of the property to be searched.
1042 * @elem_size:	size of the individual element
1043 *
1044 * Search for a property in a device node and count the number of elements of
1045 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1046 * property does not exist or its length does not match a multiple of elem_size
1047 * and -ENODATA if the property does not have a value.
1048 */
1049int of_property_count_elems_of_size(const struct device_node *np,
1050				const char *propname, int elem_size)
1051{
1052	struct property *prop = of_find_property(np, propname, NULL);
1053
1054	if (!prop)
1055		return -EINVAL;
1056	if (!prop->value)
1057		return -ENODATA;
1058
1059	if (prop->length % elem_size != 0) {
1060		pr_err("size of %s in node %s is not a multiple of %d\n",
1061		       propname, np->full_name, elem_size);
1062		return -EINVAL;
1063	}
1064
1065	return prop->length / elem_size;
1066}
1067EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1068
1069/**
1070 * of_find_property_value_of_size
1071 *
1072 * @np:		device node from which the property value is to be read.
1073 * @propname:	name of the property to be searched.
1074 * @len:	requested length of property value
1075 *
1076 * Search for a property in a device node and valid the requested size.
1077 * Returns the property value on success, -EINVAL if the property does not
1078 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1079 * property data isn't large enough.
1080 *
1081 */
1082static void *of_find_property_value_of_size(const struct device_node *np,
1083			const char *propname, u32 len)
1084{
1085	struct property *prop = of_find_property(np, propname, NULL);
1086
1087	if (!prop)
1088		return ERR_PTR(-EINVAL);
1089	if (!prop->value)
1090		return ERR_PTR(-ENODATA);
1091	if (len > prop->length)
1092		return ERR_PTR(-EOVERFLOW);
1093
1094	return prop->value;
1095}
1096
1097/**
1098 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1099 *
1100 * @np:		device node from which the property value is to be read.
1101 * @propname:	name of the property to be searched.
1102 * @index:	index of the u32 in the list of values
1103 * @out_value:	pointer to return value, modified only if no error.
1104 *
1105 * Search for a property in a device node and read nth 32-bit value from
1106 * it. Returns 0 on success, -EINVAL if the property does not exist,
1107 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1108 * property data isn't large enough.
1109 *
1110 * The out_value is modified only if a valid u32 value can be decoded.
1111 */
1112int of_property_read_u32_index(const struct device_node *np,
1113				       const char *propname,
1114				       u32 index, u32 *out_value)
1115{
1116	const u32 *val = of_find_property_value_of_size(np, propname,
1117					((index + 1) * sizeof(*out_value)));
1118
1119	if (IS_ERR(val))
1120		return PTR_ERR(val);
1121
1122	*out_value = be32_to_cpup(((__be32 *)val) + index);
1123	return 0;
1124}
1125EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1126
1127/**
1128 * of_property_read_u8_array - Find and read an array of u8 from a property.
1129 *
1130 * @np:		device node from which the property value is to be read.
1131 * @propname:	name of the property to be searched.
1132 * @out_values:	pointer to return value, modified only if return value is 0.
1133 * @sz:		number of array elements to read
1134 *
1135 * Search for a property in a device node and read 8-bit value(s) from
1136 * it. Returns 0 on success, -EINVAL if the property does not exist,
1137 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1138 * property data isn't large enough.
1139 *
1140 * dts entry of array should be like:
1141 *	property = /bits/ 8 <0x50 0x60 0x70>;
1142 *
1143 * The out_values is modified only if a valid u8 value can be decoded.
1144 */
1145int of_property_read_u8_array(const struct device_node *np,
1146			const char *propname, u8 *out_values, size_t sz)
1147{
1148	const u8 *val = of_find_property_value_of_size(np, propname,
1149						(sz * sizeof(*out_values)));
1150
1151	if (IS_ERR(val))
1152		return PTR_ERR(val);
1153
1154	while (sz--)
1155		*out_values++ = *val++;
1156	return 0;
1157}
1158EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1159
1160/**
1161 * of_property_read_u16_array - Find and read an array of u16 from a property.
1162 *
1163 * @np:		device node from which the property value is to be read.
1164 * @propname:	name of the property to be searched.
1165 * @out_values:	pointer to return value, modified only if return value is 0.
1166 * @sz:		number of array elements to read
1167 *
1168 * Search for a property in a device node and read 16-bit value(s) from
1169 * it. Returns 0 on success, -EINVAL if the property does not exist,
1170 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1171 * property data isn't large enough.
1172 *
1173 * dts entry of array should be like:
1174 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1175 *
1176 * The out_values is modified only if a valid u16 value can be decoded.
1177 */
1178int of_property_read_u16_array(const struct device_node *np,
1179			const char *propname, u16 *out_values, size_t sz)
1180{
1181	const __be16 *val = of_find_property_value_of_size(np, propname,
1182						(sz * sizeof(*out_values)));
1183
1184	if (IS_ERR(val))
1185		return PTR_ERR(val);
1186
1187	while (sz--)
1188		*out_values++ = be16_to_cpup(val++);
1189	return 0;
1190}
1191EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1192
1193/**
1194 * of_property_read_u32_array - Find and read an array of 32 bit integers
1195 * from a property.
1196 *
1197 * @np:		device node from which the property value is to be read.
1198 * @propname:	name of the property to be searched.
1199 * @out_values:	pointer to return value, modified only if return value is 0.
1200 * @sz:		number of array elements to read
1201 *
1202 * Search for a property in a device node and read 32-bit value(s) from
1203 * it. Returns 0 on success, -EINVAL if the property does not exist,
1204 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1205 * property data isn't large enough.
1206 *
1207 * The out_values is modified only if a valid u32 value can be decoded.
1208 */
1209int of_property_read_u32_array(const struct device_node *np,
1210			       const char *propname, u32 *out_values,
1211			       size_t sz)
1212{
1213	const __be32 *val = of_find_property_value_of_size(np, propname,
1214						(sz * sizeof(*out_values)));
1215
1216	if (IS_ERR(val))
1217		return PTR_ERR(val);
1218
1219	while (sz--)
1220		*out_values++ = be32_to_cpup(val++);
1221	return 0;
1222}
1223EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1224
1225/**
1226 * of_property_read_u64 - Find and read a 64 bit integer from a property
1227 * @np:		device node from which the property value is to be read.
1228 * @propname:	name of the property to be searched.
1229 * @out_value:	pointer to return value, modified only if return value is 0.
1230 *
1231 * Search for a property in a device node and read a 64-bit value from
1232 * it. Returns 0 on success, -EINVAL if the property does not exist,
1233 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1234 * property data isn't large enough.
1235 *
1236 * The out_value is modified only if a valid u64 value can be decoded.
1237 */
1238int of_property_read_u64(const struct device_node *np, const char *propname,
1239			 u64 *out_value)
1240{
1241	const __be32 *val = of_find_property_value_of_size(np, propname,
1242						sizeof(*out_value));
1243
1244	if (IS_ERR(val))
1245		return PTR_ERR(val);
1246
1247	*out_value = of_read_number(val, 2);
1248	return 0;
1249}
1250EXPORT_SYMBOL_GPL(of_property_read_u64);
1251
1252/**
1253 * of_property_read_string - Find and read a string from a property
1254 * @np:		device node from which the property value is to be read.
1255 * @propname:	name of the property to be searched.
1256 * @out_string:	pointer to null terminated return string, modified only if
1257 *		return value is 0.
1258 *
1259 * Search for a property in a device tree node and retrieve a null
1260 * terminated string value (pointer to data, not a copy). Returns 0 on
1261 * success, -EINVAL if the property does not exist, -ENODATA if property
1262 * does not have a value, and -EILSEQ if the string is not null-terminated
1263 * within the length of the property data.
1264 *
1265 * The out_string pointer is modified only if a valid string can be decoded.
1266 */
1267int of_property_read_string(struct device_node *np, const char *propname,
1268				const char **out_string)
1269{
1270	struct property *prop = of_find_property(np, propname, NULL);
1271	if (!prop)
1272		return -EINVAL;
1273	if (!prop->value)
1274		return -ENODATA;
1275	if (strnlen(prop->value, prop->length) >= prop->length)
1276		return -EILSEQ;
1277	*out_string = prop->value;
1278	return 0;
1279}
1280EXPORT_SYMBOL_GPL(of_property_read_string);
1281
1282/**
1283 * of_property_match_string() - Find string in a list and return index
1284 * @np: pointer to node containing string list property
1285 * @propname: string list property name
1286 * @string: pointer to string to search for in string list
1287 *
1288 * This function searches a string list property and returns the index
1289 * of a specific string value.
1290 */
1291int of_property_match_string(struct device_node *np, const char *propname,
1292			     const char *string)
1293{
1294	struct property *prop = of_find_property(np, propname, NULL);
1295	size_t l;
1296	int i;
1297	const char *p, *end;
1298
1299	if (!prop)
1300		return -EINVAL;
1301	if (!prop->value)
1302		return -ENODATA;
1303
1304	p = prop->value;
1305	end = p + prop->length;
1306
1307	for (i = 0; p < end; i++, p += l) {
1308		l = strnlen(p, end - p) + 1;
1309		if (p + l > end)
1310			return -EILSEQ;
1311		pr_debug("comparing %s with %s\n", string, p);
1312		if (strcmp(string, p) == 0)
1313			return i; /* Found it; return index */
1314	}
1315	return -ENODATA;
1316}
1317EXPORT_SYMBOL_GPL(of_property_match_string);
1318
1319/**
1320 * of_property_read_string_util() - Utility helper for parsing string properties
1321 * @np:		device node from which the property value is to be read.
1322 * @propname:	name of the property to be searched.
1323 * @out_strs:	output array of string pointers.
1324 * @sz:		number of array elements to read.
1325 * @skip:	Number of strings to skip over at beginning of list.
1326 *
1327 * Don't call this function directly. It is a utility helper for the
1328 * of_property_read_string*() family of functions.
1329 */
1330int of_property_read_string_helper(struct device_node *np, const char *propname,
1331				   const char **out_strs, size_t sz, int skip)
1332{
1333	struct property *prop = of_find_property(np, propname, NULL);
1334	int l = 0, i = 0;
1335	const char *p, *end;
1336
1337	if (!prop)
1338		return -EINVAL;
1339	if (!prop->value)
1340		return -ENODATA;
1341	p = prop->value;
1342	end = p + prop->length;
1343
1344	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1345		l = strnlen(p, end - p) + 1;
1346		if (p + l > end)
1347			return -EILSEQ;
1348		if (out_strs && i >= skip)
1349			*out_strs++ = p;
1350	}
1351	i -= skip;
1352	return i <= 0 ? -ENODATA : i;
1353}
1354EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1355
1356void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1357{
1358	int i;
1359	printk("%s %s", msg, of_node_full_name(args->np));
1360	for (i = 0; i < args->args_count; i++)
1361		printk(i ? ",%08x" : ":%08x", args->args[i]);
1362	printk("\n");
1363}
1364
1365static int __of_parse_phandle_with_args(const struct device_node *np,
1366					const char *list_name,
1367					const char *cells_name,
1368					int cell_count, int index,
1369					struct of_phandle_args *out_args)
1370{
1371	const __be32 *list, *list_end;
1372	int rc = 0, size, cur_index = 0;
1373	uint32_t count = 0;
1374	struct device_node *node = NULL;
1375	phandle phandle;
1376
1377	/* Retrieve the phandle list property */
1378	list = of_get_property(np, list_name, &size);
1379	if (!list)
1380		return -ENOENT;
1381	list_end = list + size / sizeof(*list);
1382
1383	/* Loop over the phandles until all the requested entry is found */
1384	while (list < list_end) {
1385		rc = -EINVAL;
1386		count = 0;
1387
1388		/*
1389		 * If phandle is 0, then it is an empty entry with no
1390		 * arguments.  Skip forward to the next entry.
1391		 */
1392		phandle = be32_to_cpup(list++);
1393		if (phandle) {
1394			/*
1395			 * Find the provider node and parse the #*-cells
1396			 * property to determine the argument length.
1397			 *
1398			 * This is not needed if the cell count is hard-coded
1399			 * (i.e. cells_name not set, but cell_count is set),
1400			 * except when we're going to return the found node
1401			 * below.
1402			 */
1403			if (cells_name || cur_index == index) {
1404				node = of_find_node_by_phandle(phandle);
1405				if (!node) {
1406					pr_err("%s: could not find phandle\n",
1407						np->full_name);
1408					goto err;
1409				}
1410			}
1411
1412			if (cells_name) {
1413				if (of_property_read_u32(node, cells_name,
1414							 &count)) {
1415					pr_err("%s: could not get %s for %s\n",
1416						np->full_name, cells_name,
1417						node->full_name);
1418					goto err;
1419				}
1420			} else {
1421				count = cell_count;
1422			}
1423
1424			/*
1425			 * Make sure that the arguments actually fit in the
1426			 * remaining property data length
1427			 */
1428			if (list + count > list_end) {
1429				pr_err("%s: arguments longer than property\n",
1430					 np->full_name);
1431				goto err;
1432			}
1433		}
1434
1435		/*
1436		 * All of the error cases above bail out of the loop, so at
1437		 * this point, the parsing is successful. If the requested
1438		 * index matches, then fill the out_args structure and return,
1439		 * or return -ENOENT for an empty entry.
1440		 */
1441		rc = -ENOENT;
1442		if (cur_index == index) {
1443			if (!phandle)
1444				goto err;
1445
1446			if (out_args) {
1447				int i;
1448				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1449					count = MAX_PHANDLE_ARGS;
1450				out_args->np = node;
1451				out_args->args_count = count;
1452				for (i = 0; i < count; i++)
1453					out_args->args[i] = be32_to_cpup(list++);
1454			} else {
1455				of_node_put(node);
1456			}
1457
1458			/* Found it! return success */
1459			return 0;
1460		}
1461
1462		of_node_put(node);
1463		node = NULL;
1464		list += count;
1465		cur_index++;
1466	}
1467
1468	/*
1469	 * Unlock node before returning result; will be one of:
1470	 * -ENOENT : index is for empty phandle
1471	 * -EINVAL : parsing error on data
1472	 * [1..n]  : Number of phandle (count mode; when index = -1)
1473	 */
1474	rc = index < 0 ? cur_index : -ENOENT;
1475 err:
1476	if (node)
1477		of_node_put(node);
1478	return rc;
1479}
1480
1481/**
1482 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1483 * @np: Pointer to device node holding phandle property
1484 * @phandle_name: Name of property holding a phandle value
1485 * @index: For properties holding a table of phandles, this is the index into
1486 *         the table
1487 *
1488 * Returns the device_node pointer with refcount incremented.  Use
1489 * of_node_put() on it when done.
1490 */
1491struct device_node *of_parse_phandle(const struct device_node *np,
1492				     const char *phandle_name, int index)
1493{
1494	struct of_phandle_args args;
1495
1496	if (index < 0)
1497		return NULL;
1498
1499	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1500					 index, &args))
1501		return NULL;
1502
1503	return args.np;
1504}
1505EXPORT_SYMBOL(of_parse_phandle);
1506
1507/**
1508 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1509 * @np:		pointer to a device tree node containing a list
1510 * @list_name:	property name that contains a list
1511 * @cells_name:	property name that specifies phandles' arguments count
1512 * @index:	index of a phandle to parse out
1513 * @out_args:	optional pointer to output arguments structure (will be filled)
1514 *
1515 * This function is useful to parse lists of phandles and their arguments.
1516 * Returns 0 on success and fills out_args, on error returns appropriate
1517 * errno value.
1518 *
1519 * Caller is responsible to call of_node_put() on the returned out_args->node
1520 * pointer.
1521 *
1522 * Example:
1523 *
1524 * phandle1: node1 {
1525 * 	#list-cells = <2>;
1526 * }
1527 *
1528 * phandle2: node2 {
1529 * 	#list-cells = <1>;
1530 * }
1531 *
1532 * node3 {
1533 * 	list = <&phandle1 1 2 &phandle2 3>;
1534 * }
1535 *
1536 * To get a device_node of the `node2' node you may call this:
1537 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1538 */
1539int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1540				const char *cells_name, int index,
1541				struct of_phandle_args *out_args)
1542{
1543	if (index < 0)
1544		return -EINVAL;
1545	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1546					    index, out_args);
1547}
1548EXPORT_SYMBOL(of_parse_phandle_with_args);
1549
1550/**
1551 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1552 * @np:		pointer to a device tree node containing a list
1553 * @list_name:	property name that contains a list
1554 * @cell_count: number of argument cells following the phandle
1555 * @index:	index of a phandle to parse out
1556 * @out_args:	optional pointer to output arguments structure (will be filled)
1557 *
1558 * This function is useful to parse lists of phandles and their arguments.
1559 * Returns 0 on success and fills out_args, on error returns appropriate
1560 * errno value.
1561 *
1562 * Caller is responsible to call of_node_put() on the returned out_args->node
1563 * pointer.
1564 *
1565 * Example:
1566 *
1567 * phandle1: node1 {
1568 * }
1569 *
1570 * phandle2: node2 {
1571 * }
1572 *
1573 * node3 {
1574 * 	list = <&phandle1 0 2 &phandle2 2 3>;
1575 * }
1576 *
1577 * To get a device_node of the `node2' node you may call this:
1578 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1579 */
1580int of_parse_phandle_with_fixed_args(const struct device_node *np,
1581				const char *list_name, int cell_count,
1582				int index, struct of_phandle_args *out_args)
1583{
1584	if (index < 0)
1585		return -EINVAL;
1586	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1587					   index, out_args);
1588}
1589EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1590
1591/**
1592 * of_count_phandle_with_args() - Find the number of phandles references in a property
1593 * @np:		pointer to a device tree node containing a list
1594 * @list_name:	property name that contains a list
1595 * @cells_name:	property name that specifies phandles' arguments count
1596 *
1597 * Returns the number of phandle + argument tuples within a property. It
1598 * is a typical pattern to encode a list of phandle and variable
1599 * arguments into a single property. The number of arguments is encoded
1600 * by a property in the phandle-target node. For example, a gpios
1601 * property would contain a list of GPIO specifies consisting of a
1602 * phandle and 1 or more arguments. The number of arguments are
1603 * determined by the #gpio-cells property in the node pointed to by the
1604 * phandle.
1605 */
1606int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1607				const char *cells_name)
1608{
1609	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1610					    NULL);
1611}
1612EXPORT_SYMBOL(of_count_phandle_with_args);
1613
1614/**
1615 * __of_add_property - Add a property to a node without lock operations
1616 */
1617int __of_add_property(struct device_node *np, struct property *prop)
1618{
1619	struct property **next;
1620
1621	prop->next = NULL;
1622	next = &np->properties;
1623	while (*next) {
1624		if (strcmp(prop->name, (*next)->name) == 0)
1625			/* duplicate ! don't insert it */
1626			return -EEXIST;
1627
1628		next = &(*next)->next;
1629	}
1630	*next = prop;
1631
1632	return 0;
1633}
1634
1635/**
1636 * of_add_property - Add a property to a node
1637 */
1638int of_add_property(struct device_node *np, struct property *prop)
1639{
1640	unsigned long flags;
1641	int rc;
1642
1643	mutex_lock(&of_mutex);
1644
1645	raw_spin_lock_irqsave(&devtree_lock, flags);
1646	rc = __of_add_property(np, prop);
1647	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1648
1649	if (!rc)
1650		__of_add_property_sysfs(np, prop);
1651
1652	mutex_unlock(&of_mutex);
1653
1654	if (!rc)
1655		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1656
1657	return rc;
1658}
1659
1660int __of_remove_property(struct device_node *np, struct property *prop)
1661{
1662	struct property **next;
1663
1664	for (next = &np->properties; *next; next = &(*next)->next) {
1665		if (*next == prop)
1666			break;
1667	}
1668	if (*next == NULL)
1669		return -ENODEV;
1670
1671	/* found the node */
1672	*next = prop->next;
1673	prop->next = np->deadprops;
1674	np->deadprops = prop;
1675
1676	return 0;
1677}
1678
1679void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1680{
1681	if (!IS_ENABLED(CONFIG_SYSFS))
1682		return;
1683
1684	/* at early boot, bail here and defer setup to of_init() */
1685	if (of_kset && of_node_is_attached(np))
1686		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1687}
1688
1689/**
1690 * of_remove_property - Remove a property from a node.
1691 *
1692 * Note that we don't actually remove it, since we have given out
1693 * who-knows-how-many pointers to the data using get-property.
1694 * Instead we just move the property to the "dead properties"
1695 * list, so it won't be found any more.
1696 */
1697int of_remove_property(struct device_node *np, struct property *prop)
1698{
1699	unsigned long flags;
1700	int rc;
1701
1702	mutex_lock(&of_mutex);
1703
1704	raw_spin_lock_irqsave(&devtree_lock, flags);
1705	rc = __of_remove_property(np, prop);
1706	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1707
1708	if (!rc)
1709		__of_remove_property_sysfs(np, prop);
1710
1711	mutex_unlock(&of_mutex);
1712
1713	if (!rc)
1714		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1715
1716	return rc;
1717}
1718
1719int __of_update_property(struct device_node *np, struct property *newprop,
1720		struct property **oldpropp)
1721{
1722	struct property **next, *oldprop;
1723
1724	for (next = &np->properties; *next; next = &(*next)->next) {
1725		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1726			break;
1727	}
1728	*oldpropp = oldprop = *next;
1729
1730	if (oldprop) {
1731		/* replace the node */
1732		newprop->next = oldprop->next;
1733		*next = newprop;
1734		oldprop->next = np->deadprops;
1735		np->deadprops = oldprop;
1736	} else {
1737		/* new node */
1738		newprop->next = NULL;
1739		*next = newprop;
1740	}
1741
1742	return 0;
1743}
1744
1745void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1746		struct property *oldprop)
1747{
1748	if (!IS_ENABLED(CONFIG_SYSFS))
1749		return;
1750
1751	/* At early boot, bail out and defer setup to of_init() */
1752	if (!of_kset)
1753		return;
1754
1755	if (oldprop)
1756		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1757	__of_add_property_sysfs(np, newprop);
1758}
1759
1760/*
1761 * of_update_property - Update a property in a node, if the property does
1762 * not exist, add it.
1763 *
1764 * Note that we don't actually remove it, since we have given out
1765 * who-knows-how-many pointers to the data using get-property.
1766 * Instead we just move the property to the "dead properties" list,
1767 * and add the new property to the property list
1768 */
1769int of_update_property(struct device_node *np, struct property *newprop)
1770{
1771	struct property *oldprop;
1772	unsigned long flags;
1773	int rc;
1774
1775	if (!newprop->name)
1776		return -EINVAL;
1777
1778	mutex_lock(&of_mutex);
1779
1780	raw_spin_lock_irqsave(&devtree_lock, flags);
1781	rc = __of_update_property(np, newprop, &oldprop);
1782	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1783
1784	if (!rc)
1785		__of_update_property_sysfs(np, newprop, oldprop);
1786
1787	mutex_unlock(&of_mutex);
1788
1789	if (!rc)
1790		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1791
1792	return rc;
1793}
1794
1795static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1796			 int id, const char *stem, int stem_len)
1797{
1798	ap->np = np;
1799	ap->id = id;
1800	strncpy(ap->stem, stem, stem_len);
1801	ap->stem[stem_len] = 0;
1802	list_add_tail(&ap->link, &aliases_lookup);
1803	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1804		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1805}
1806
1807/**
1808 * of_alias_scan - Scan all properties of 'aliases' node
1809 *
1810 * The function scans all the properties of 'aliases' node and populate
1811 * the the global lookup table with the properties.  It returns the
1812 * number of alias_prop found, or error code in error case.
1813 *
1814 * @dt_alloc:	An allocator that provides a virtual address to memory
1815 *		for the resulting tree
1816 */
1817void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1818{
1819	struct property *pp;
1820
1821	of_aliases = of_find_node_by_path("/aliases");
1822	of_chosen = of_find_node_by_path("/chosen");
1823	if (of_chosen == NULL)
1824		of_chosen = of_find_node_by_path("/chosen@0");
1825
1826	if (of_chosen) {
1827		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1828		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1829		if (!name)
1830			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1831		if (IS_ENABLED(CONFIG_PPC) && !name)
1832			name = of_get_property(of_aliases, "stdout", NULL);
1833		if (name)
1834			of_stdout = of_find_node_by_path(name);
1835	}
1836
1837	if (!of_aliases)
1838		return;
1839
1840	for_each_property_of_node(of_aliases, pp) {
1841		const char *start = pp->name;
1842		const char *end = start + strlen(start);
1843		struct device_node *np;
1844		struct alias_prop *ap;
1845		int id, len;
1846
1847		/* Skip those we do not want to proceed */
1848		if (!strcmp(pp->name, "name") ||
1849		    !strcmp(pp->name, "phandle") ||
1850		    !strcmp(pp->name, "linux,phandle"))
1851			continue;
1852
1853		np = of_find_node_by_path(pp->value);
1854		if (!np)
1855			continue;
1856
1857		/* walk the alias backwards to extract the id and work out
1858		 * the 'stem' string */
1859		while (isdigit(*(end-1)) && end > start)
1860			end--;
1861		len = end - start;
1862
1863		if (kstrtoint(end, 10, &id) < 0)
1864			continue;
1865
1866		/* Allocate an alias_prop with enough space for the stem */
1867		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1868		if (!ap)
1869			continue;
1870		memset(ap, 0, sizeof(*ap) + len + 1);
1871		ap->alias = start;
1872		of_alias_add(ap, np, id, start, len);
1873	}
1874}
1875
1876/**
1877 * of_alias_get_id - Get alias id for the given device_node
1878 * @np:		Pointer to the given device_node
1879 * @stem:	Alias stem of the given device_node
1880 *
1881 * The function travels the lookup table to get the alias id for the given
1882 * device_node and alias stem.  It returns the alias id if found.
1883 */
1884int of_alias_get_id(struct device_node *np, const char *stem)
1885{
1886	struct alias_prop *app;
1887	int id = -ENODEV;
1888
1889	mutex_lock(&of_mutex);
1890	list_for_each_entry(app, &aliases_lookup, link) {
1891		if (strcmp(app->stem, stem) != 0)
1892			continue;
1893
1894		if (np == app->np) {
1895			id = app->id;
1896			break;
1897		}
1898	}
1899	mutex_unlock(&of_mutex);
1900
1901	return id;
1902}
1903EXPORT_SYMBOL_GPL(of_alias_get_id);
1904
1905const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1906			       u32 *pu)
1907{
1908	const void *curv = cur;
1909
1910	if (!prop)
1911		return NULL;
1912
1913	if (!cur) {
1914		curv = prop->value;
1915		goto out_val;
1916	}
1917
1918	curv += sizeof(*cur);
1919	if (curv >= prop->value + prop->length)
1920		return NULL;
1921
1922out_val:
1923	*pu = be32_to_cpup(curv);
1924	return curv;
1925}
1926EXPORT_SYMBOL_GPL(of_prop_next_u32);
1927
1928const char *of_prop_next_string(struct property *prop, const char *cur)
1929{
1930	const void *curv = cur;
1931
1932	if (!prop)
1933		return NULL;
1934
1935	if (!cur)
1936		return prop->value;
1937
1938	curv += strlen(cur) + 1;
1939	if (curv >= prop->value + prop->length)
1940		return NULL;
1941
1942	return curv;
1943}
1944EXPORT_SYMBOL_GPL(of_prop_next_string);
1945
1946/**
1947 * of_console_check() - Test and setup console for DT setup
1948 * @dn - Pointer to device node
1949 * @name - Name to use for preferred console without index. ex. "ttyS"
1950 * @index - Index to use for preferred console.
1951 *
1952 * Check if the given device node matches the stdout-path property in the
1953 * /chosen node. If it does then register it as the preferred console and return
1954 * TRUE. Otherwise return FALSE.
1955 */
1956bool of_console_check(struct device_node *dn, char *name, int index)
1957{
1958	if (!dn || dn != of_stdout || console_set_on_cmdline)
1959		return false;
1960	return !add_preferred_console(name, index, NULL);
1961}
1962EXPORT_SYMBOL_GPL(of_console_check);
1963
1964/**
1965 *	of_find_next_cache_node - Find a node's subsidiary cache
1966 *	@np:	node of type "cpu" or "cache"
1967 *
1968 *	Returns a node pointer with refcount incremented, use
1969 *	of_node_put() on it when done.  Caller should hold a reference
1970 *	to np.
1971 */
1972struct device_node *of_find_next_cache_node(const struct device_node *np)
1973{
1974	struct device_node *child;
1975	const phandle *handle;
1976
1977	handle = of_get_property(np, "l2-cache", NULL);
1978	if (!handle)
1979		handle = of_get_property(np, "next-level-cache", NULL);
1980
1981	if (handle)
1982		return of_find_node_by_phandle(be32_to_cpup(handle));
1983
1984	/* OF on pmac has nodes instead of properties named "l2-cache"
1985	 * beneath CPU nodes.
1986	 */
1987	if (!strcmp(np->type, "cpu"))
1988		for_each_child_of_node(np, child)
1989			if (!strcmp(child->type, "cache"))
1990				return child;
1991
1992	return NULL;
1993}
1994
1995/**
1996 * of_graph_parse_endpoint() - parse common endpoint node properties
1997 * @node: pointer to endpoint device_node
1998 * @endpoint: pointer to the OF endpoint data structure
1999 *
2000 * The caller should hold a reference to @node.
2001 */
2002int of_graph_parse_endpoint(const struct device_node *node,
2003			    struct of_endpoint *endpoint)
2004{
2005	struct device_node *port_node = of_get_parent(node);
2006
2007	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2008		  __func__, node->full_name);
2009
2010	memset(endpoint, 0, sizeof(*endpoint));
2011
2012	endpoint->local_node = node;
2013	/*
2014	 * It doesn't matter whether the two calls below succeed.
2015	 * If they don't then the default value 0 is used.
2016	 */
2017	of_property_read_u32(port_node, "reg", &endpoint->port);
2018	of_property_read_u32(node, "reg", &endpoint->id);
2019
2020	of_node_put(port_node);
2021
2022	return 0;
2023}
2024EXPORT_SYMBOL(of_graph_parse_endpoint);
2025
2026/**
2027 * of_graph_get_next_endpoint() - get next endpoint node
2028 * @parent: pointer to the parent device node
2029 * @prev: previous endpoint node, or NULL to get first
2030 *
2031 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2032 * of the passed @prev node is not decremented, the caller have to use
2033 * of_node_put() on it when done.
2034 */
2035struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2036					struct device_node *prev)
2037{
2038	struct device_node *endpoint;
2039	struct device_node *port;
2040
2041	if (!parent)
2042		return NULL;
2043
2044	/*
2045	 * Start by locating the port node. If no previous endpoint is specified
2046	 * search for the first port node, otherwise get the previous endpoint
2047	 * parent port node.
2048	 */
2049	if (!prev) {
2050		struct device_node *node;
2051
2052		node = of_get_child_by_name(parent, "ports");
2053		if (node)
2054			parent = node;
2055
2056		port = of_get_child_by_name(parent, "port");
2057		of_node_put(node);
2058
2059		if (!port) {
2060			pr_err("%s(): no port node found in %s\n",
2061			       __func__, parent->full_name);
2062			return NULL;
2063		}
2064	} else {
2065		port = of_get_parent(prev);
2066		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2067			      __func__, prev->full_name))
2068			return NULL;
2069
2070		/*
2071		 * Avoid dropping prev node refcount to 0 when getting the next
2072		 * child below.
2073		 */
2074		of_node_get(prev);
2075	}
2076
2077	while (1) {
2078		/*
2079		 * Now that we have a port node, get the next endpoint by
2080		 * getting the next child. If the previous endpoint is NULL this
2081		 * will return the first child.
2082		 */
2083		endpoint = of_get_next_child(port, prev);
2084		if (endpoint) {
2085			of_node_put(port);
2086			return endpoint;
2087		}
2088
2089		/* No more endpoints under this port, try the next one. */
2090		prev = NULL;
2091
2092		do {
2093			port = of_get_next_child(parent, port);
2094			if (!port)
2095				return NULL;
2096		} while (of_node_cmp(port->name, "port"));
2097	}
2098}
2099EXPORT_SYMBOL(of_graph_get_next_endpoint);
2100
2101/**
2102 * of_graph_get_remote_port_parent() - get remote port's parent node
2103 * @node: pointer to a local endpoint device_node
2104 *
2105 * Return: Remote device node associated with remote endpoint node linked
2106 *	   to @node. Use of_node_put() on it when done.
2107 */
2108struct device_node *of_graph_get_remote_port_parent(
2109			       const struct device_node *node)
2110{
2111	struct device_node *np;
2112	unsigned int depth;
2113
2114	/* Get remote endpoint node. */
2115	np = of_parse_phandle(node, "remote-endpoint", 0);
2116
2117	/* Walk 3 levels up only if there is 'ports' node. */
2118	for (depth = 3; depth && np; depth--) {
2119		np = of_get_next_parent(np);
2120		if (depth == 2 && of_node_cmp(np->name, "ports"))
2121			break;
2122	}
2123	return np;
2124}
2125EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2126
2127/**
2128 * of_graph_get_remote_port() - get remote port node
2129 * @node: pointer to a local endpoint device_node
2130 *
2131 * Return: Remote port node associated with remote endpoint node linked
2132 *	   to @node. Use of_node_put() on it when done.
2133 */
2134struct device_node *of_graph_get_remote_port(const struct device_node *node)
2135{
2136	struct device_node *np;
2137
2138	/* Get remote endpoint node. */
2139	np = of_parse_phandle(node, "remote-endpoint", 0);
2140	if (!np)
2141		return NULL;
2142	return of_get_next_parent(np);
2143}
2144EXPORT_SYMBOL(of_graph_get_remote_port);
2145