[go: nahoru, domu]

lguest_user.c revision 5e232f4f428c4266ba5cdae9f23ba19a0913dcf9
1/*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest.  For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset.  A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6#include <linux/uaccess.h>
7#include <linux/miscdevice.h>
8#include <linux/fs.h>
9#include "lg.h"
10
11/*L:055 When something happens, the Waker process needs a way to stop the
12 * kernel running the Guest and return to the Launcher.  So the Waker writes
13 * LHREQ_BREAK and the value "1" to /dev/lguest to do this.  Once the Launcher
14 * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
15 * the Waker. */
16static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
17{
18	unsigned long on;
19
20	/* Fetch whether they're turning break on or off. */
21	if (get_user(on, input) != 0)
22		return -EFAULT;
23
24	if (on) {
25		cpu->break_out = 1;
26		/* Pop it out of the Guest (may be running on different CPU) */
27		wake_up_process(cpu->tsk);
28		/* Wait for them to reset it */
29		return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
30	} else {
31		cpu->break_out = 0;
32		wake_up(&cpu->break_wq);
33		return 0;
34	}
35}
36
37/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
38 * number to /dev/lguest. */
39static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
40{
41	unsigned long irq;
42
43	if (get_user(irq, input) != 0)
44		return -EFAULT;
45	if (irq >= LGUEST_IRQS)
46		return -EINVAL;
47	/* Next time the Guest runs, the core code will see if it can deliver
48	 * this interrupt. */
49	set_bit(irq, cpu->irqs_pending);
50	return 0;
51}
52
53/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
54 * from /dev/lguest. */
55static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
56{
57	struct lguest *lg = file->private_data;
58	struct lg_cpu *cpu;
59	unsigned int cpu_id = *o;
60
61	/* You must write LHREQ_INITIALIZE first! */
62	if (!lg)
63		return -EINVAL;
64
65	/* Watch out for arbitrary vcpu indexes! */
66	if (cpu_id >= lg->nr_cpus)
67		return -EINVAL;
68
69	cpu = &lg->cpus[cpu_id];
70
71	/* If you're not the task which owns the Guest, go away. */
72	if (current != cpu->tsk)
73		return -EPERM;
74
75	/* If the guest is already dead, we indicate why */
76	if (lg->dead) {
77		size_t len;
78
79		/* lg->dead either contains an error code, or a string. */
80		if (IS_ERR(lg->dead))
81			return PTR_ERR(lg->dead);
82
83		/* We can only return as much as the buffer they read with. */
84		len = min(size, strlen(lg->dead)+1);
85		if (copy_to_user(user, lg->dead, len) != 0)
86			return -EFAULT;
87		return len;
88	}
89
90	/* If we returned from read() last time because the Guest notified,
91	 * clear the flag. */
92	if (cpu->pending_notify)
93		cpu->pending_notify = 0;
94
95	/* Run the Guest until something interesting happens. */
96	return run_guest(cpu, (unsigned long __user *)user);
97}
98
99static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
100{
101	if (id >= NR_CPUS)
102		return -EINVAL;
103
104	cpu->id = id;
105	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
106	cpu->lg->nr_cpus++;
107	init_clockdev(cpu);
108
109	/* We need a complete page for the Guest registers: they are accessible
110	 * to the Guest and we can only grant it access to whole pages. */
111	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
112	if (!cpu->regs_page)
113		return -ENOMEM;
114
115	/* We actually put the registers at the bottom of the page. */
116	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
117
118	/* Now we initialize the Guest's registers, handing it the start
119	 * address. */
120	lguest_arch_setup_regs(cpu, start_ip);
121
122	/* Initialize the queue for the waker to wait on */
123	init_waitqueue_head(&cpu->break_wq);
124
125	/* We keep a pointer to the Launcher task (ie. current task) for when
126	 * other Guests want to wake this one (inter-Guest I/O). */
127	cpu->tsk = current;
128
129	/* We need to keep a pointer to the Launcher's memory map, because if
130	 * the Launcher dies we need to clean it up.  If we don't keep a
131	 * reference, it is destroyed before close() is called. */
132	cpu->mm = get_task_mm(cpu->tsk);
133
134	return 0;
135}
136
137/*L:020 The initialization write supplies 4 pointer sized (32 or 64 bit)
138 * values (in addition to the LHREQ_INITIALIZE value).  These are:
139 *
140 * base: The start of the Guest-physical memory inside the Launcher memory.
141 *
142 * pfnlimit: The highest (Guest-physical) page number the Guest should be
143 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
144 * this to ensure the Guest can only reach its own memory.
145 *
146 * pgdir: The (Guest-physical) address of the top of the initial Guest
147 * pagetables (which are set up by the Launcher).
148 *
149 * start: The first instruction to execute ("eip" in x86-speak).
150 */
151static int initialize(struct file *file, const unsigned long __user *input)
152{
153	/* "struct lguest" contains everything we (the Host) know about a
154	 * Guest. */
155	struct lguest *lg;
156	int err;
157	unsigned long args[4];
158
159	/* We grab the Big Lguest lock, which protects against multiple
160	 * simultaneous initializations. */
161	mutex_lock(&lguest_lock);
162	/* You can't initialize twice!  Close the device and start again... */
163	if (file->private_data) {
164		err = -EBUSY;
165		goto unlock;
166	}
167
168	if (copy_from_user(args, input, sizeof(args)) != 0) {
169		err = -EFAULT;
170		goto unlock;
171	}
172
173	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
174	if (!lg) {
175		err = -ENOMEM;
176		goto unlock;
177	}
178
179	/* Populate the easy fields of our "struct lguest" */
180	lg->mem_base = (void __user *)(long)args[0];
181	lg->pfn_limit = args[1];
182
183	/* This is the first cpu */
184	err = lg_cpu_start(&lg->cpus[0], 0, args[3]);
185	if (err)
186		goto release_guest;
187
188	/* Initialize the Guest's shadow page tables, using the toplevel
189	 * address the Launcher gave us.  This allocates memory, so can
190	 * fail. */
191	err = init_guest_pagetable(lg, args[2]);
192	if (err)
193		goto free_regs;
194
195	/* We remember which CPU's pages this Guest used last, for optimization
196	 * when the same Guest runs on the same CPU twice. */
197	lg->last_pages = NULL;
198
199	/* We keep our "struct lguest" in the file's private_data. */
200	file->private_data = lg;
201
202	mutex_unlock(&lguest_lock);
203
204	/* And because this is a write() call, we return the length used. */
205	return sizeof(args);
206
207free_regs:
208	/* FIXME: This should be in free_vcpu */
209	free_page(lg->cpus[0].regs_page);
210release_guest:
211	kfree(lg);
212unlock:
213	mutex_unlock(&lguest_lock);
214	return err;
215}
216
217/*L:010 The first operation the Launcher does must be a write.  All writes
218 * start with an unsigned long number: for the first write this must be
219 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
220 * writes of other values to send interrupts. */
221static ssize_t write(struct file *file, const char __user *in,
222		     size_t size, loff_t *off)
223{
224	/* Once the guest is initialized, we hold the "struct lguest" in the
225	 * file private data. */
226	struct lguest *lg = file->private_data;
227	const unsigned long __user *input = (const unsigned long __user *)in;
228	unsigned long req;
229	struct lg_cpu *uninitialized_var(cpu);
230	unsigned int cpu_id = *off;
231
232	if (get_user(req, input) != 0)
233		return -EFAULT;
234	input++;
235
236	/* If you haven't initialized, you must do that first. */
237	if (req != LHREQ_INITIALIZE) {
238		if (!lg || (cpu_id >= lg->nr_cpus))
239			return -EINVAL;
240		cpu = &lg->cpus[cpu_id];
241		if (!cpu)
242			return -EINVAL;
243	}
244
245	/* Once the Guest is dead, all you can do is read() why it died. */
246	if (lg && lg->dead)
247		return -ENOENT;
248
249	/* If you're not the task which owns the Guest, you can only break */
250	if (lg && current != cpu->tsk && req != LHREQ_BREAK)
251		return -EPERM;
252
253	switch (req) {
254	case LHREQ_INITIALIZE:
255		return initialize(file, input);
256	case LHREQ_IRQ:
257		return user_send_irq(cpu, input);
258	case LHREQ_BREAK:
259		return break_guest_out(cpu, input);
260	default:
261		return -EINVAL;
262	}
263}
264
265/*L:060 The final piece of interface code is the close() routine.  It reverses
266 * everything done in initialize().  This is usually called because the
267 * Launcher exited.
268 *
269 * Note that the close routine returns 0 or a negative error number: it can't
270 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
271 * letting them do it. :*/
272static int close(struct inode *inode, struct file *file)
273{
274	struct lguest *lg = file->private_data;
275	unsigned int i;
276
277	/* If we never successfully initialized, there's nothing to clean up */
278	if (!lg)
279		return 0;
280
281	/* We need the big lock, to protect from inter-guest I/O and other
282	 * Launchers initializing guests. */
283	mutex_lock(&lguest_lock);
284
285	/* Free up the shadow page tables for the Guest. */
286	free_guest_pagetable(lg);
287
288	for (i = 0; i < lg->nr_cpus; i++) {
289		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
290		hrtimer_cancel(&lg->cpus[i].hrt);
291		/* We can free up the register page we allocated. */
292		free_page(lg->cpus[i].regs_page);
293		/* Now all the memory cleanups are done, it's safe to release
294		 * the Launcher's memory management structure. */
295		mmput(lg->cpus[i].mm);
296	}
297	/* If lg->dead doesn't contain an error code it will be NULL or a
298	 * kmalloc()ed string, either of which is ok to hand to kfree(). */
299	if (!IS_ERR(lg->dead))
300		kfree(lg->dead);
301	/* We clear the entire structure, which also marks it as free for the
302	 * next user. */
303	memset(lg, 0, sizeof(*lg));
304	/* Release lock and exit. */
305	mutex_unlock(&lguest_lock);
306
307	return 0;
308}
309
310/*L:000
311 * Welcome to our journey through the Launcher!
312 *
313 * The Launcher is the Host userspace program which sets up, runs and services
314 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
315 * doing things are inaccurate: the Launcher does all the device handling for
316 * the Guest, but the Guest can't know that.
317 *
318 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
319 * shall see more of that later.
320 *
321 * We begin our understanding with the Host kernel interface which the Launcher
322 * uses: reading and writing a character device called /dev/lguest.  All the
323 * work happens in the read(), write() and close() routines: */
324static struct file_operations lguest_fops = {
325	.owner	 = THIS_MODULE,
326	.release = close,
327	.write	 = write,
328	.read	 = read,
329};
330
331/* This is a textbook example of a "misc" character device.  Populate a "struct
332 * miscdevice" and register it with misc_register(). */
333static struct miscdevice lguest_dev = {
334	.minor	= MISC_DYNAMIC_MINOR,
335	.name	= "lguest",
336	.fops	= &lguest_fops,
337};
338
339int __init lguest_device_init(void)
340{
341	return misc_register(&lguest_dev);
342}
343
344void __exit lguest_device_remove(void)
345{
346	misc_deregister(&lguest_dev);
347}
348