[go: nahoru, domu]

lguest_user.c revision 74dbf719ed3c49687dab507967ebab9189e91ab0
1/*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest.  For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset.  A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6#include <linux/uaccess.h>
7#include <linux/miscdevice.h>
8#include <linux/fs.h>
9#include <linux/sched.h>
10#include "lg.h"
11
12/*L:055 When something happens, the Waker process needs a way to stop the
13 * kernel running the Guest and return to the Launcher.  So the Waker writes
14 * LHREQ_BREAK and the value "1" to /dev/lguest to do this.  Once the Launcher
15 * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
16 * the Waker. */
17static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
18{
19	unsigned long on;
20
21	/* Fetch whether they're turning break on or off. */
22	if (get_user(on, input) != 0)
23		return -EFAULT;
24
25	if (on) {
26		cpu->break_out = 1;
27		/* Pop it out of the Guest (may be running on different CPU) */
28		wake_up_process(cpu->tsk);
29		/* Wait for them to reset it */
30		return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
31	} else {
32		cpu->break_out = 0;
33		wake_up(&cpu->break_wq);
34		return 0;
35	}
36}
37
38/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
39 * number to /dev/lguest. */
40static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
41{
42	unsigned long irq;
43
44	if (get_user(irq, input) != 0)
45		return -EFAULT;
46	if (irq >= LGUEST_IRQS)
47		return -EINVAL;
48	/* Next time the Guest runs, the core code will see if it can deliver
49	 * this interrupt. */
50	set_bit(irq, cpu->irqs_pending);
51	return 0;
52}
53
54/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
55 * from /dev/lguest. */
56static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
57{
58	struct lguest *lg = file->private_data;
59	struct lg_cpu *cpu;
60	unsigned int cpu_id = *o;
61
62	/* You must write LHREQ_INITIALIZE first! */
63	if (!lg)
64		return -EINVAL;
65
66	/* Watch out for arbitrary vcpu indexes! */
67	if (cpu_id >= lg->nr_cpus)
68		return -EINVAL;
69
70	cpu = &lg->cpus[cpu_id];
71
72	/* If you're not the task which owns the Guest, go away. */
73	if (current != cpu->tsk)
74		return -EPERM;
75
76	/* If the Guest is already dead, we indicate why */
77	if (lg->dead) {
78		size_t len;
79
80		/* lg->dead either contains an error code, or a string. */
81		if (IS_ERR(lg->dead))
82			return PTR_ERR(lg->dead);
83
84		/* We can only return as much as the buffer they read with. */
85		len = min(size, strlen(lg->dead)+1);
86		if (copy_to_user(user, lg->dead, len) != 0)
87			return -EFAULT;
88		return len;
89	}
90
91	/* If we returned from read() last time because the Guest sent I/O,
92	 * clear the flag. */
93	if (cpu->pending_notify)
94		cpu->pending_notify = 0;
95
96	/* Run the Guest until something interesting happens. */
97	return run_guest(cpu, (unsigned long __user *)user);
98}
99
100/*L:025 This actually initializes a CPU.  For the moment, a Guest is only
101 * uniprocessor, so "id" is always 0. */
102static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
103{
104	/* We have a limited number the number of CPUs in the lguest struct. */
105	if (id >= NR_CPUS)
106		return -EINVAL;
107
108	/* Set up this CPU's id, and pointer back to the lguest struct. */
109	cpu->id = id;
110	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
111	cpu->lg->nr_cpus++;
112
113	/* Each CPU has a timer it can set. */
114	init_clockdev(cpu);
115
116	/* We need a complete page for the Guest registers: they are accessible
117	 * to the Guest and we can only grant it access to whole pages. */
118	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
119	if (!cpu->regs_page)
120		return -ENOMEM;
121
122	/* We actually put the registers at the bottom of the page. */
123	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
124
125	/* Now we initialize the Guest's registers, handing it the start
126	 * address. */
127	lguest_arch_setup_regs(cpu, start_ip);
128
129	/* Initialize the queue for the Waker to wait on */
130	init_waitqueue_head(&cpu->break_wq);
131
132	/* We keep a pointer to the Launcher task (ie. current task) for when
133	 * other Guests want to wake this one (eg. console input). */
134	cpu->tsk = current;
135
136	/* We need to keep a pointer to the Launcher's memory map, because if
137	 * the Launcher dies we need to clean it up.  If we don't keep a
138	 * reference, it is destroyed before close() is called. */
139	cpu->mm = get_task_mm(cpu->tsk);
140
141	/* We remember which CPU's pages this Guest used last, for optimization
142	 * when the same Guest runs on the same CPU twice. */
143	cpu->last_pages = NULL;
144
145	/* No error == success. */
146	return 0;
147}
148
149/*L:020 The initialization write supplies 4 pointer sized (32 or 64 bit)
150 * values (in addition to the LHREQ_INITIALIZE value).  These are:
151 *
152 * base: The start of the Guest-physical memory inside the Launcher memory.
153 *
154 * pfnlimit: The highest (Guest-physical) page number the Guest should be
155 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
156 * this to ensure the Guest can only reach its own memory.
157 *
158 * pgdir: The (Guest-physical) address of the top of the initial Guest
159 * pagetables (which are set up by the Launcher).
160 *
161 * start: The first instruction to execute ("eip" in x86-speak).
162 */
163static int initialize(struct file *file, const unsigned long __user *input)
164{
165	/* "struct lguest" contains everything we (the Host) know about a
166	 * Guest. */
167	struct lguest *lg;
168	int err;
169	unsigned long args[4];
170
171	/* We grab the Big Lguest lock, which protects against multiple
172	 * simultaneous initializations. */
173	mutex_lock(&lguest_lock);
174	/* You can't initialize twice!  Close the device and start again... */
175	if (file->private_data) {
176		err = -EBUSY;
177		goto unlock;
178	}
179
180	if (copy_from_user(args, input, sizeof(args)) != 0) {
181		err = -EFAULT;
182		goto unlock;
183	}
184
185	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
186	if (!lg) {
187		err = -ENOMEM;
188		goto unlock;
189	}
190
191	/* Populate the easy fields of our "struct lguest" */
192	lg->mem_base = (void __user *)args[0];
193	lg->pfn_limit = args[1];
194
195	/* This is the first cpu (cpu 0) and it will start booting at args[3] */
196	err = lg_cpu_start(&lg->cpus[0], 0, args[3]);
197	if (err)
198		goto release_guest;
199
200	/* Initialize the Guest's shadow page tables, using the toplevel
201	 * address the Launcher gave us.  This allocates memory, so can fail. */
202	err = init_guest_pagetable(lg, args[2]);
203	if (err)
204		goto free_regs;
205
206	/* We keep our "struct lguest" in the file's private_data. */
207	file->private_data = lg;
208
209	mutex_unlock(&lguest_lock);
210
211	/* And because this is a write() call, we return the length used. */
212	return sizeof(args);
213
214free_regs:
215	/* FIXME: This should be in free_vcpu */
216	free_page(lg->cpus[0].regs_page);
217release_guest:
218	kfree(lg);
219unlock:
220	mutex_unlock(&lguest_lock);
221	return err;
222}
223
224/*L:010 The first operation the Launcher does must be a write.  All writes
225 * start with an unsigned long number: for the first write this must be
226 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
227 * writes of other values to send interrupts.
228 *
229 * Note that we overload the "offset" in the /dev/lguest file to indicate what
230 * CPU number we're dealing with.  Currently this is always 0, since we only
231 * support uniprocessor Guests, but you can see the beginnings of SMP support
232 * here. */
233static ssize_t write(struct file *file, const char __user *in,
234		     size_t size, loff_t *off)
235{
236	/* Once the Guest is initialized, we hold the "struct lguest" in the
237	 * file private data. */
238	struct lguest *lg = file->private_data;
239	const unsigned long __user *input = (const unsigned long __user *)in;
240	unsigned long req;
241	struct lg_cpu *uninitialized_var(cpu);
242	unsigned int cpu_id = *off;
243
244	/* The first value tells us what this request is. */
245	if (get_user(req, input) != 0)
246		return -EFAULT;
247	input++;
248
249	/* If you haven't initialized, you must do that first. */
250	if (req != LHREQ_INITIALIZE) {
251		if (!lg || (cpu_id >= lg->nr_cpus))
252			return -EINVAL;
253		cpu = &lg->cpus[cpu_id];
254		if (!cpu)
255			return -EINVAL;
256
257		/* Once the Guest is dead, you can only read() why it died. */
258		if (lg->dead)
259			return -ENOENT;
260
261		/* If you're not the task which owns the Guest, all you can do
262		 * is break the Launcher out of running the Guest. */
263		if (current != cpu->tsk && req != LHREQ_BREAK)
264			return -EPERM;
265	}
266
267	switch (req) {
268	case LHREQ_INITIALIZE:
269		return initialize(file, input);
270	case LHREQ_IRQ:
271		return user_send_irq(cpu, input);
272	case LHREQ_BREAK:
273		return break_guest_out(cpu, input);
274	default:
275		return -EINVAL;
276	}
277}
278
279/*L:060 The final piece of interface code is the close() routine.  It reverses
280 * everything done in initialize().  This is usually called because the
281 * Launcher exited.
282 *
283 * Note that the close routine returns 0 or a negative error number: it can't
284 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
285 * letting them do it. :*/
286static int close(struct inode *inode, struct file *file)
287{
288	struct lguest *lg = file->private_data;
289	unsigned int i;
290
291	/* If we never successfully initialized, there's nothing to clean up */
292	if (!lg)
293		return 0;
294
295	/* We need the big lock, to protect from inter-guest I/O and other
296	 * Launchers initializing guests. */
297	mutex_lock(&lguest_lock);
298
299	/* Free up the shadow page tables for the Guest. */
300	free_guest_pagetable(lg);
301
302	for (i = 0; i < lg->nr_cpus; i++) {
303		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
304		hrtimer_cancel(&lg->cpus[i].hrt);
305		/* We can free up the register page we allocated. */
306		free_page(lg->cpus[i].regs_page);
307		/* Now all the memory cleanups are done, it's safe to release
308		 * the Launcher's memory management structure. */
309		mmput(lg->cpus[i].mm);
310	}
311	/* If lg->dead doesn't contain an error code it will be NULL or a
312	 * kmalloc()ed string, either of which is ok to hand to kfree(). */
313	if (!IS_ERR(lg->dead))
314		kfree(lg->dead);
315	/* We clear the entire structure, which also marks it as free for the
316	 * next user. */
317	memset(lg, 0, sizeof(*lg));
318	/* Release lock and exit. */
319	mutex_unlock(&lguest_lock);
320
321	return 0;
322}
323
324/*L:000
325 * Welcome to our journey through the Launcher!
326 *
327 * The Launcher is the Host userspace program which sets up, runs and services
328 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
329 * doing things are inaccurate: the Launcher does all the device handling for
330 * the Guest, but the Guest can't know that.
331 *
332 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
333 * shall see more of that later.
334 *
335 * We begin our understanding with the Host kernel interface which the Launcher
336 * uses: reading and writing a character device called /dev/lguest.  All the
337 * work happens in the read(), write() and close() routines: */
338static struct file_operations lguest_fops = {
339	.owner	 = THIS_MODULE,
340	.release = close,
341	.write	 = write,
342	.read	 = read,
343};
344
345/* This is a textbook example of a "misc" character device.  Populate a "struct
346 * miscdevice" and register it with misc_register(). */
347static struct miscdevice lguest_dev = {
348	.minor	= MISC_DYNAMIC_MINOR,
349	.name	= "lguest",
350	.fops	= &lguest_fops,
351};
352
353int __init lguest_device_init(void)
354{
355	return misc_register(&lguest_dev);
356}
357
358void __exit lguest_device_remove(void)
359{
360	misc_deregister(&lguest_dev);
361}
362