[go: nahoru, domu]

lguest_user.c revision 2e04ef76916d1e29a077ea9d0f2003c8fd86724d
1/*P:200
2 * This contains all the /dev/lguest code, whereby the userspace launcher
3 * controls and communicates with the Guest.  For example, the first write will
4 * tell us the Guest's memory layout, pagetable, entry point and kernel address
5 * offset.  A read will run the Guest until something happens, such as a signal
6 * or the Guest doing a NOTIFY out to the Launcher.
7:*/
8#include <linux/uaccess.h>
9#include <linux/miscdevice.h>
10#include <linux/fs.h>
11#include <linux/sched.h>
12#include <linux/eventfd.h>
13#include <linux/file.h>
14#include "lg.h"
15
16bool send_notify_to_eventfd(struct lg_cpu *cpu)
17{
18	unsigned int i;
19	struct lg_eventfd_map *map;
20
21	/* lg->eventfds is RCU-protected */
22	rcu_read_lock();
23	map = rcu_dereference(cpu->lg->eventfds);
24	for (i = 0; i < map->num; i++) {
25		if (map->map[i].addr == cpu->pending_notify) {
26			eventfd_signal(map->map[i].event, 1);
27			cpu->pending_notify = 0;
28			break;
29		}
30	}
31	rcu_read_unlock();
32	return cpu->pending_notify == 0;
33}
34
35static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
36{
37	struct lg_eventfd_map *new, *old = lg->eventfds;
38
39	if (!addr)
40		return -EINVAL;
41
42	/*
43	 * Replace the old array with the new one, carefully: others can
44	 * be accessing it at the same time.
45	 */
46	new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
47		      GFP_KERNEL);
48	if (!new)
49		return -ENOMEM;
50
51	/* First make identical copy. */
52	memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
53	new->num = old->num;
54
55	/* Now append new entry. */
56	new->map[new->num].addr = addr;
57	new->map[new->num].event = eventfd_ctx_fdget(fd);
58	if (IS_ERR(new->map[new->num].event)) {
59		int err =  PTR_ERR(new->map[new->num].event);
60		kfree(new);
61		return err;
62	}
63	new->num++;
64
65	/* Now put new one in place. */
66	rcu_assign_pointer(lg->eventfds, new);
67
68	/*
69	 * We're not in a big hurry.  Wait until noone's looking at old
70	 * version, then delete it.
71	 */
72	synchronize_rcu();
73	kfree(old);
74
75	return 0;
76}
77
78static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
79{
80	unsigned long addr, fd;
81	int err;
82
83	if (get_user(addr, input) != 0)
84		return -EFAULT;
85	input++;
86	if (get_user(fd, input) != 0)
87		return -EFAULT;
88
89	mutex_lock(&lguest_lock);
90	err = add_eventfd(lg, addr, fd);
91	mutex_unlock(&lguest_lock);
92
93	return err;
94}
95
96/*L:050
97 * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
98 * number to /dev/lguest.
99 */
100static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
101{
102	unsigned long irq;
103
104	if (get_user(irq, input) != 0)
105		return -EFAULT;
106	if (irq >= LGUEST_IRQS)
107		return -EINVAL;
108
109	set_interrupt(cpu, irq);
110	return 0;
111}
112
113/*L:040
114 * Once our Guest is initialized, the Launcher makes it run by reading
115 * from /dev/lguest.
116 */
117static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
118{
119	struct lguest *lg = file->private_data;
120	struct lg_cpu *cpu;
121	unsigned int cpu_id = *o;
122
123	/* You must write LHREQ_INITIALIZE first! */
124	if (!lg)
125		return -EINVAL;
126
127	/* Watch out for arbitrary vcpu indexes! */
128	if (cpu_id >= lg->nr_cpus)
129		return -EINVAL;
130
131	cpu = &lg->cpus[cpu_id];
132
133	/* If you're not the task which owns the Guest, go away. */
134	if (current != cpu->tsk)
135		return -EPERM;
136
137	/* If the Guest is already dead, we indicate why */
138	if (lg->dead) {
139		size_t len;
140
141		/* lg->dead either contains an error code, or a string. */
142		if (IS_ERR(lg->dead))
143			return PTR_ERR(lg->dead);
144
145		/* We can only return as much as the buffer they read with. */
146		len = min(size, strlen(lg->dead)+1);
147		if (copy_to_user(user, lg->dead, len) != 0)
148			return -EFAULT;
149		return len;
150	}
151
152	/*
153	 * If we returned from read() last time because the Guest sent I/O,
154	 * clear the flag.
155	 */
156	if (cpu->pending_notify)
157		cpu->pending_notify = 0;
158
159	/* Run the Guest until something interesting happens. */
160	return run_guest(cpu, (unsigned long __user *)user);
161}
162
163/*L:025
164 * This actually initializes a CPU.  For the moment, a Guest is only
165 * uniprocessor, so "id" is always 0.
166 */
167static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
168{
169	/* We have a limited number the number of CPUs in the lguest struct. */
170	if (id >= ARRAY_SIZE(cpu->lg->cpus))
171		return -EINVAL;
172
173	/* Set up this CPU's id, and pointer back to the lguest struct. */
174	cpu->id = id;
175	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
176	cpu->lg->nr_cpus++;
177
178	/* Each CPU has a timer it can set. */
179	init_clockdev(cpu);
180
181	/*
182	 * We need a complete page for the Guest registers: they are accessible
183	 * to the Guest and we can only grant it access to whole pages.
184	 */
185	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
186	if (!cpu->regs_page)
187		return -ENOMEM;
188
189	/* We actually put the registers at the bottom of the page. */
190	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
191
192	/*
193	 * Now we initialize the Guest's registers, handing it the start
194	 * address.
195	 */
196	lguest_arch_setup_regs(cpu, start_ip);
197
198	/*
199	 * We keep a pointer to the Launcher task (ie. current task) for when
200	 * other Guests want to wake this one (eg. console input).
201	 */
202	cpu->tsk = current;
203
204	/*
205	 * We need to keep a pointer to the Launcher's memory map, because if
206	 * the Launcher dies we need to clean it up.  If we don't keep a
207	 * reference, it is destroyed before close() is called.
208	 */
209	cpu->mm = get_task_mm(cpu->tsk);
210
211	/*
212	 * We remember which CPU's pages this Guest used last, for optimization
213	 * when the same Guest runs on the same CPU twice.
214	 */
215	cpu->last_pages = NULL;
216
217	/* No error == success. */
218	return 0;
219}
220
221/*L:020
222 * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
223 * addition to the LHREQ_INITIALIZE value).  These are:
224 *
225 * base: The start of the Guest-physical memory inside the Launcher memory.
226 *
227 * pfnlimit: The highest (Guest-physical) page number the Guest should be
228 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
229 * this to ensure the Guest can only reach its own memory.
230 *
231 * start: The first instruction to execute ("eip" in x86-speak).
232 */
233static int initialize(struct file *file, const unsigned long __user *input)
234{
235	/* "struct lguest" contains all we (the Host) know about a Guest. */
236	struct lguest *lg;
237	int err;
238	unsigned long args[3];
239
240	/*
241	 * We grab the Big Lguest lock, which protects against multiple
242	 * simultaneous initializations.
243	 */
244	mutex_lock(&lguest_lock);
245	/* You can't initialize twice!  Close the device and start again... */
246	if (file->private_data) {
247		err = -EBUSY;
248		goto unlock;
249	}
250
251	if (copy_from_user(args, input, sizeof(args)) != 0) {
252		err = -EFAULT;
253		goto unlock;
254	}
255
256	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
257	if (!lg) {
258		err = -ENOMEM;
259		goto unlock;
260	}
261
262	lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
263	if (!lg->eventfds) {
264		err = -ENOMEM;
265		goto free_lg;
266	}
267	lg->eventfds->num = 0;
268
269	/* Populate the easy fields of our "struct lguest" */
270	lg->mem_base = (void __user *)args[0];
271	lg->pfn_limit = args[1];
272
273	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
274	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
275	if (err)
276		goto free_eventfds;
277
278	/*
279	 * Initialize the Guest's shadow page tables, using the toplevel
280	 * address the Launcher gave us.  This allocates memory, so can fail.
281	 */
282	err = init_guest_pagetable(lg);
283	if (err)
284		goto free_regs;
285
286	/* We keep our "struct lguest" in the file's private_data. */
287	file->private_data = lg;
288
289	mutex_unlock(&lguest_lock);
290
291	/* And because this is a write() call, we return the length used. */
292	return sizeof(args);
293
294free_regs:
295	/* FIXME: This should be in free_vcpu */
296	free_page(lg->cpus[0].regs_page);
297free_eventfds:
298	kfree(lg->eventfds);
299free_lg:
300	kfree(lg);
301unlock:
302	mutex_unlock(&lguest_lock);
303	return err;
304}
305
306/*L:010
307 * The first operation the Launcher does must be a write.  All writes
308 * start with an unsigned long number: for the first write this must be
309 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
310 * writes of other values to send interrupts.
311 *
312 * Note that we overload the "offset" in the /dev/lguest file to indicate what
313 * CPU number we're dealing with.  Currently this is always 0, since we only
314 * support uniprocessor Guests, but you can see the beginnings of SMP support
315 * here.
316 */
317static ssize_t write(struct file *file, const char __user *in,
318		     size_t size, loff_t *off)
319{
320	/*
321	 * Once the Guest is initialized, we hold the "struct lguest" in the
322	 * file private data.
323	 */
324	struct lguest *lg = file->private_data;
325	const unsigned long __user *input = (const unsigned long __user *)in;
326	unsigned long req;
327	struct lg_cpu *uninitialized_var(cpu);
328	unsigned int cpu_id = *off;
329
330	/* The first value tells us what this request is. */
331	if (get_user(req, input) != 0)
332		return -EFAULT;
333	input++;
334
335	/* If you haven't initialized, you must do that first. */
336	if (req != LHREQ_INITIALIZE) {
337		if (!lg || (cpu_id >= lg->nr_cpus))
338			return -EINVAL;
339		cpu = &lg->cpus[cpu_id];
340
341		/* Once the Guest is dead, you can only read() why it died. */
342		if (lg->dead)
343			return -ENOENT;
344	}
345
346	switch (req) {
347	case LHREQ_INITIALIZE:
348		return initialize(file, input);
349	case LHREQ_IRQ:
350		return user_send_irq(cpu, input);
351	case LHREQ_EVENTFD:
352		return attach_eventfd(lg, input);
353	default:
354		return -EINVAL;
355	}
356}
357
358/*L:060
359 * The final piece of interface code is the close() routine.  It reverses
360 * everything done in initialize().  This is usually called because the
361 * Launcher exited.
362 *
363 * Note that the close routine returns 0 or a negative error number: it can't
364 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
365 * letting them do it.
366:*/
367static int close(struct inode *inode, struct file *file)
368{
369	struct lguest *lg = file->private_data;
370	unsigned int i;
371
372	/* If we never successfully initialized, there's nothing to clean up */
373	if (!lg)
374		return 0;
375
376	/*
377	 * We need the big lock, to protect from inter-guest I/O and other
378	 * Launchers initializing guests.
379	 */
380	mutex_lock(&lguest_lock);
381
382	/* Free up the shadow page tables for the Guest. */
383	free_guest_pagetable(lg);
384
385	for (i = 0; i < lg->nr_cpus; i++) {
386		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
387		hrtimer_cancel(&lg->cpus[i].hrt);
388		/* We can free up the register page we allocated. */
389		free_page(lg->cpus[i].regs_page);
390		/*
391		 * Now all the memory cleanups are done, it's safe to release
392		 * the Launcher's memory management structure.
393		 */
394		mmput(lg->cpus[i].mm);
395	}
396
397	/* Release any eventfds they registered. */
398	for (i = 0; i < lg->eventfds->num; i++)
399		eventfd_ctx_put(lg->eventfds->map[i].event);
400	kfree(lg->eventfds);
401
402	/*
403	 * If lg->dead doesn't contain an error code it will be NULL or a
404	 * kmalloc()ed string, either of which is ok to hand to kfree().
405	 */
406	if (!IS_ERR(lg->dead))
407		kfree(lg->dead);
408	/* Free the memory allocated to the lguest_struct */
409	kfree(lg);
410	/* Release lock and exit. */
411	mutex_unlock(&lguest_lock);
412
413	return 0;
414}
415
416/*L:000
417 * Welcome to our journey through the Launcher!
418 *
419 * The Launcher is the Host userspace program which sets up, runs and services
420 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
421 * doing things are inaccurate: the Launcher does all the device handling for
422 * the Guest, but the Guest can't know that.
423 *
424 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
425 * shall see more of that later.
426 *
427 * We begin our understanding with the Host kernel interface which the Launcher
428 * uses: reading and writing a character device called /dev/lguest.  All the
429 * work happens in the read(), write() and close() routines:
430 */
431static struct file_operations lguest_fops = {
432	.owner	 = THIS_MODULE,
433	.release = close,
434	.write	 = write,
435	.read	 = read,
436};
437
438/*
439 * This is a textbook example of a "misc" character device.  Populate a "struct
440 * miscdevice" and register it with misc_register().
441 */
442static struct miscdevice lguest_dev = {
443	.minor	= MISC_DYNAMIC_MINOR,
444	.name	= "lguest",
445	.fops	= &lguest_fops,
446};
447
448int __init lguest_device_init(void)
449{
450	return misc_register(&lguest_dev);
451}
452
453void __exit lguest_device_remove(void)
454{
455	misc_deregister(&lguest_dev);
456}
457