[go: nahoru, domu]

lguest_user.c revision a53a35a8b485b9c16b73e5177bddaa4321971199
1/*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest.  For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset.  A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6#include <linux/uaccess.h>
7#include <linux/miscdevice.h>
8#include <linux/fs.h>
9#include "lg.h"
10
11/*L:055 When something happens, the Waker process needs a way to stop the
12 * kernel running the Guest and return to the Launcher.  So the Waker writes
13 * LHREQ_BREAK and the value "1" to /dev/lguest to do this.  Once the Launcher
14 * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
15 * the Waker. */
16static int break_guest_out(struct lguest *lg, const unsigned long __user *input)
17{
18	unsigned long on;
19
20	/* Fetch whether they're turning break on or off. */
21	if (get_user(on, input) != 0)
22		return -EFAULT;
23
24	if (on) {
25		lg->break_out = 1;
26		/* Pop it out of the Guest (may be running on different CPU) */
27		wake_up_process(lg->tsk);
28		/* Wait for them to reset it */
29		return wait_event_interruptible(lg->break_wq, !lg->break_out);
30	} else {
31		lg->break_out = 0;
32		wake_up(&lg->break_wq);
33		return 0;
34	}
35}
36
37/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
38 * number to /dev/lguest. */
39static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
40{
41	unsigned long irq;
42
43	if (get_user(irq, input) != 0)
44		return -EFAULT;
45	if (irq >= LGUEST_IRQS)
46		return -EINVAL;
47	/* Next time the Guest runs, the core code will see if it can deliver
48	 * this interrupt. */
49	set_bit(irq, cpu->irqs_pending);
50	return 0;
51}
52
53/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
54 * from /dev/lguest. */
55static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
56{
57	struct lguest *lg = file->private_data;
58	struct lg_cpu *cpu;
59	unsigned int cpu_id = *o;
60
61	/* You must write LHREQ_INITIALIZE first! */
62	if (!lg)
63		return -EINVAL;
64
65	/* Watch out for arbitrary vcpu indexes! */
66	if (cpu_id >= lg->nr_cpus)
67		return -EINVAL;
68
69	cpu = &lg->cpus[cpu_id];
70
71	/* If you're not the task which owns the Guest, go away. */
72	if (current != lg->tsk)
73		return -EPERM;
74
75	/* If the guest is already dead, we indicate why */
76	if (lg->dead) {
77		size_t len;
78
79		/* lg->dead either contains an error code, or a string. */
80		if (IS_ERR(lg->dead))
81			return PTR_ERR(lg->dead);
82
83		/* We can only return as much as the buffer they read with. */
84		len = min(size, strlen(lg->dead)+1);
85		if (copy_to_user(user, lg->dead, len) != 0)
86			return -EFAULT;
87		return len;
88	}
89
90	/* If we returned from read() last time because the Guest notified,
91	 * clear the flag. */
92	if (lg->pending_notify)
93		lg->pending_notify = 0;
94
95	/* Run the Guest until something interesting happens. */
96	return run_guest(cpu, (unsigned long __user *)user);
97}
98
99static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
100{
101	if (id >= NR_CPUS)
102		return -EINVAL;
103
104	cpu->id = id;
105	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
106	cpu->lg->nr_cpus++;
107	init_clockdev(cpu);
108
109	/* We need a complete page for the Guest registers: they are accessible
110	 * to the Guest and we can only grant it access to whole pages. */
111	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
112	if (!cpu->regs_page)
113		return -ENOMEM;
114
115	/* We actually put the registers at the bottom of the page. */
116	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
117
118	/* Now we initialize the Guest's registers, handing it the start
119	 * address. */
120	lguest_arch_setup_regs(cpu, start_ip);
121
122	return 0;
123}
124
125/*L:020 The initialization write supplies 4 pointer sized (32 or 64 bit)
126 * values (in addition to the LHREQ_INITIALIZE value).  These are:
127 *
128 * base: The start of the Guest-physical memory inside the Launcher memory.
129 *
130 * pfnlimit: The highest (Guest-physical) page number the Guest should be
131 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
132 * this to ensure the Guest can only reach its own memory.
133 *
134 * pgdir: The (Guest-physical) address of the top of the initial Guest
135 * pagetables (which are set up by the Launcher).
136 *
137 * start: The first instruction to execute ("eip" in x86-speak).
138 */
139static int initialize(struct file *file, const unsigned long __user *input)
140{
141	/* "struct lguest" contains everything we (the Host) know about a
142	 * Guest. */
143	struct lguest *lg;
144	int err;
145	unsigned long args[4];
146
147	/* We grab the Big Lguest lock, which protects against multiple
148	 * simultaneous initializations. */
149	mutex_lock(&lguest_lock);
150	/* You can't initialize twice!  Close the device and start again... */
151	if (file->private_data) {
152		err = -EBUSY;
153		goto unlock;
154	}
155
156	if (copy_from_user(args, input, sizeof(args)) != 0) {
157		err = -EFAULT;
158		goto unlock;
159	}
160
161	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
162	if (!lg) {
163		err = -ENOMEM;
164		goto unlock;
165	}
166
167	/* Populate the easy fields of our "struct lguest" */
168	lg->mem_base = (void __user *)(long)args[0];
169	lg->pfn_limit = args[1];
170
171	/* This is the first cpu */
172	err = lg_cpu_start(&lg->cpus[0], 0, args[3]);
173	if (err)
174		goto release_guest;
175
176	/* Initialize the Guest's shadow page tables, using the toplevel
177	 * address the Launcher gave us.  This allocates memory, so can
178	 * fail. */
179	err = init_guest_pagetable(lg, args[2]);
180	if (err)
181		goto free_regs;
182
183	/* We keep a pointer to the Launcher task (ie. current task) for when
184	 * other Guests want to wake this one (inter-Guest I/O). */
185	lg->tsk = current;
186	/* We need to keep a pointer to the Launcher's memory map, because if
187	 * the Launcher dies we need to clean it up.  If we don't keep a
188	 * reference, it is destroyed before close() is called. */
189	lg->mm = get_task_mm(lg->tsk);
190
191	/* Initialize the queue for the waker to wait on */
192	init_waitqueue_head(&lg->break_wq);
193
194	/* We remember which CPU's pages this Guest used last, for optimization
195	 * when the same Guest runs on the same CPU twice. */
196	lg->last_pages = NULL;
197
198	/* We keep our "struct lguest" in the file's private_data. */
199	file->private_data = lg;
200
201	mutex_unlock(&lguest_lock);
202
203	/* And because this is a write() call, we return the length used. */
204	return sizeof(args);
205
206free_regs:
207	/* FIXME: This should be in free_vcpu */
208	free_page(lg->cpus[0].regs_page);
209release_guest:
210	kfree(lg);
211unlock:
212	mutex_unlock(&lguest_lock);
213	return err;
214}
215
216/*L:010 The first operation the Launcher does must be a write.  All writes
217 * start with an unsigned long number: for the first write this must be
218 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
219 * writes of other values to send interrupts. */
220static ssize_t write(struct file *file, const char __user *in,
221		     size_t size, loff_t *off)
222{
223	/* Once the guest is initialized, we hold the "struct lguest" in the
224	 * file private data. */
225	struct lguest *lg = file->private_data;
226	const unsigned long __user *input = (const unsigned long __user *)in;
227	unsigned long req;
228	struct lg_cpu *uninitialized_var(cpu);
229	unsigned int cpu_id = *off;
230
231	if (get_user(req, input) != 0)
232		return -EFAULT;
233	input++;
234
235	/* If you haven't initialized, you must do that first. */
236	if (req != LHREQ_INITIALIZE) {
237		if (!lg || (cpu_id >= lg->nr_cpus))
238			return -EINVAL;
239		cpu = &lg->cpus[cpu_id];
240		if (!cpu)
241			return -EINVAL;
242	}
243
244	/* Once the Guest is dead, all you can do is read() why it died. */
245	if (lg && lg->dead)
246		return -ENOENT;
247
248	/* If you're not the task which owns the Guest, you can only break */
249	if (lg && current != lg->tsk && req != LHREQ_BREAK)
250		return -EPERM;
251
252	switch (req) {
253	case LHREQ_INITIALIZE:
254		return initialize(file, input);
255	case LHREQ_IRQ:
256		return user_send_irq(cpu, input);
257	case LHREQ_BREAK:
258		return break_guest_out(lg, input);
259	default:
260		return -EINVAL;
261	}
262}
263
264/*L:060 The final piece of interface code is the close() routine.  It reverses
265 * everything done in initialize().  This is usually called because the
266 * Launcher exited.
267 *
268 * Note that the close routine returns 0 or a negative error number: it can't
269 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
270 * letting them do it. :*/
271static int close(struct inode *inode, struct file *file)
272{
273	struct lguest *lg = file->private_data;
274	unsigned int i;
275
276	/* If we never successfully initialized, there's nothing to clean up */
277	if (!lg)
278		return 0;
279
280	/* We need the big lock, to protect from inter-guest I/O and other
281	 * Launchers initializing guests. */
282	mutex_lock(&lguest_lock);
283	for (i = 0; i < lg->nr_cpus; i++) {
284		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
285		hrtimer_cancel(&lg->cpus[i].hrt);
286		/* We can free up the register page we allocated. */
287		free_page(lg->cpus[i].regs_page);
288	}
289	/* Free up the shadow page tables for the Guest. */
290	free_guest_pagetable(lg);
291	/* Now all the memory cleanups are done, it's safe to release the
292	 * Launcher's memory management structure. */
293	mmput(lg->mm);
294	/* If lg->dead doesn't contain an error code it will be NULL or a
295	 * kmalloc()ed string, either of which is ok to hand to kfree(). */
296	if (!IS_ERR(lg->dead))
297		kfree(lg->dead);
298	/* We clear the entire structure, which also marks it as free for the
299	 * next user. */
300	memset(lg, 0, sizeof(*lg));
301	/* Release lock and exit. */
302	mutex_unlock(&lguest_lock);
303
304	return 0;
305}
306
307/*L:000
308 * Welcome to our journey through the Launcher!
309 *
310 * The Launcher is the Host userspace program which sets up, runs and services
311 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
312 * doing things are inaccurate: the Launcher does all the device handling for
313 * the Guest, but the Guest can't know that.
314 *
315 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
316 * shall see more of that later.
317 *
318 * We begin our understanding with the Host kernel interface which the Launcher
319 * uses: reading and writing a character device called /dev/lguest.  All the
320 * work happens in the read(), write() and close() routines: */
321static struct file_operations lguest_fops = {
322	.owner	 = THIS_MODULE,
323	.release = close,
324	.write	 = write,
325	.read	 = read,
326};
327
328/* This is a textbook example of a "misc" character device.  Populate a "struct
329 * miscdevice" and register it with misc_register(). */
330static struct miscdevice lguest_dev = {
331	.minor	= MISC_DYNAMIC_MINOR,
332	.name	= "lguest",
333	.fops	= &lguest_fops,
334};
335
336int __init lguest_device_init(void)
337{
338	return misc_register(&lguest_dev);
339}
340
341void __exit lguest_device_remove(void)
342{
343	misc_deregister(&lguest_dev);
344}
345