[go: nahoru, domu]

lguest_user.c revision a6c372de6e4b9a8188b66badcee3e3792eccdd26
1/*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest.  For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset.  A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6#include <linux/uaccess.h>
7#include <linux/miscdevice.h>
8#include <linux/fs.h>
9#include <linux/sched.h>
10#include "lg.h"
11
12/*L:055 When something happens, the Waker process needs a way to stop the
13 * kernel running the Guest and return to the Launcher.  So the Waker writes
14 * LHREQ_BREAK and the value "1" to /dev/lguest to do this.  Once the Launcher
15 * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
16 * the Waker. */
17static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
18{
19	unsigned long on;
20
21	/* Fetch whether they're turning break on or off. */
22	if (get_user(on, input) != 0)
23		return -EFAULT;
24
25	if (on) {
26		cpu->break_out = 1;
27		if (!wake_up_process(cpu->tsk))
28			kick_process(cpu->tsk);
29		/* Wait for them to reset it */
30		return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
31	} else {
32		cpu->break_out = 0;
33		wake_up(&cpu->break_wq);
34		return 0;
35	}
36}
37
38/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
39 * number to /dev/lguest. */
40static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
41{
42	unsigned long irq;
43
44	if (get_user(irq, input) != 0)
45		return -EFAULT;
46	if (irq >= LGUEST_IRQS)
47		return -EINVAL;
48	/* Next time the Guest runs, the core code will see if it can deliver
49	 * this interrupt. */
50	set_bit(irq, cpu->irqs_pending);
51	return 0;
52}
53
54/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
55 * from /dev/lguest. */
56static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
57{
58	struct lguest *lg = file->private_data;
59	struct lg_cpu *cpu;
60	unsigned int cpu_id = *o;
61
62	/* You must write LHREQ_INITIALIZE first! */
63	if (!lg)
64		return -EINVAL;
65
66	/* Watch out for arbitrary vcpu indexes! */
67	if (cpu_id >= lg->nr_cpus)
68		return -EINVAL;
69
70	cpu = &lg->cpus[cpu_id];
71
72	/* If you're not the task which owns the Guest, go away. */
73	if (current != cpu->tsk)
74		return -EPERM;
75
76	/* If the Guest is already dead, we indicate why */
77	if (lg->dead) {
78		size_t len;
79
80		/* lg->dead either contains an error code, or a string. */
81		if (IS_ERR(lg->dead))
82			return PTR_ERR(lg->dead);
83
84		/* We can only return as much as the buffer they read with. */
85		len = min(size, strlen(lg->dead)+1);
86		if (copy_to_user(user, lg->dead, len) != 0)
87			return -EFAULT;
88		return len;
89	}
90
91	/* If we returned from read() last time because the Guest sent I/O,
92	 * clear the flag. */
93	if (cpu->pending_notify)
94		cpu->pending_notify = 0;
95
96	/* Run the Guest until something interesting happens. */
97	return run_guest(cpu, (unsigned long __user *)user);
98}
99
100/*L:025 This actually initializes a CPU.  For the moment, a Guest is only
101 * uniprocessor, so "id" is always 0. */
102static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
103{
104	/* We have a limited number the number of CPUs in the lguest struct. */
105	if (id >= ARRAY_SIZE(cpu->lg->cpus))
106		return -EINVAL;
107
108	/* Set up this CPU's id, and pointer back to the lguest struct. */
109	cpu->id = id;
110	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
111	cpu->lg->nr_cpus++;
112
113	/* Each CPU has a timer it can set. */
114	init_clockdev(cpu);
115
116	/* We need a complete page for the Guest registers: they are accessible
117	 * to the Guest and we can only grant it access to whole pages. */
118	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
119	if (!cpu->regs_page)
120		return -ENOMEM;
121
122	/* We actually put the registers at the bottom of the page. */
123	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
124
125	/* Now we initialize the Guest's registers, handing it the start
126	 * address. */
127	lguest_arch_setup_regs(cpu, start_ip);
128
129	/* Initialize the queue for the Waker to wait on */
130	init_waitqueue_head(&cpu->break_wq);
131
132	/* We keep a pointer to the Launcher task (ie. current task) for when
133	 * other Guests want to wake this one (eg. console input). */
134	cpu->tsk = current;
135
136	/* We need to keep a pointer to the Launcher's memory map, because if
137	 * the Launcher dies we need to clean it up.  If we don't keep a
138	 * reference, it is destroyed before close() is called. */
139	cpu->mm = get_task_mm(cpu->tsk);
140
141	/* We remember which CPU's pages this Guest used last, for optimization
142	 * when the same Guest runs on the same CPU twice. */
143	cpu->last_pages = NULL;
144
145	/* No error == success. */
146	return 0;
147}
148
149/*L:020 The initialization write supplies 3 pointer sized (32 or 64 bit)
150 * values (in addition to the LHREQ_INITIALIZE value).  These are:
151 *
152 * base: The start of the Guest-physical memory inside the Launcher memory.
153 *
154 * pfnlimit: The highest (Guest-physical) page number the Guest should be
155 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
156 * this to ensure the Guest can only reach its own memory.
157 *
158 * start: The first instruction to execute ("eip" in x86-speak).
159 */
160static int initialize(struct file *file, const unsigned long __user *input)
161{
162	/* "struct lguest" contains everything we (the Host) know about a
163	 * Guest. */
164	struct lguest *lg;
165	int err;
166	unsigned long args[3];
167
168	/* We grab the Big Lguest lock, which protects against multiple
169	 * simultaneous initializations. */
170	mutex_lock(&lguest_lock);
171	/* You can't initialize twice!  Close the device and start again... */
172	if (file->private_data) {
173		err = -EBUSY;
174		goto unlock;
175	}
176
177	if (copy_from_user(args, input, sizeof(args)) != 0) {
178		err = -EFAULT;
179		goto unlock;
180	}
181
182	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
183	if (!lg) {
184		err = -ENOMEM;
185		goto unlock;
186	}
187
188	/* Populate the easy fields of our "struct lguest" */
189	lg->mem_base = (void __user *)args[0];
190	lg->pfn_limit = args[1];
191
192	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
193	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
194	if (err)
195		goto release_guest;
196
197	/* Initialize the Guest's shadow page tables, using the toplevel
198	 * address the Launcher gave us.  This allocates memory, so can fail. */
199	err = init_guest_pagetable(lg);
200	if (err)
201		goto free_regs;
202
203	/* We keep our "struct lguest" in the file's private_data. */
204	file->private_data = lg;
205
206	mutex_unlock(&lguest_lock);
207
208	/* And because this is a write() call, we return the length used. */
209	return sizeof(args);
210
211free_regs:
212	/* FIXME: This should be in free_vcpu */
213	free_page(lg->cpus[0].regs_page);
214release_guest:
215	kfree(lg);
216unlock:
217	mutex_unlock(&lguest_lock);
218	return err;
219}
220
221/*L:010 The first operation the Launcher does must be a write.  All writes
222 * start with an unsigned long number: for the first write this must be
223 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
224 * writes of other values to send interrupts.
225 *
226 * Note that we overload the "offset" in the /dev/lguest file to indicate what
227 * CPU number we're dealing with.  Currently this is always 0, since we only
228 * support uniprocessor Guests, but you can see the beginnings of SMP support
229 * here. */
230static ssize_t write(struct file *file, const char __user *in,
231		     size_t size, loff_t *off)
232{
233	/* Once the Guest is initialized, we hold the "struct lguest" in the
234	 * file private data. */
235	struct lguest *lg = file->private_data;
236	const unsigned long __user *input = (const unsigned long __user *)in;
237	unsigned long req;
238	struct lg_cpu *uninitialized_var(cpu);
239	unsigned int cpu_id = *off;
240
241	/* The first value tells us what this request is. */
242	if (get_user(req, input) != 0)
243		return -EFAULT;
244	input++;
245
246	/* If you haven't initialized, you must do that first. */
247	if (req != LHREQ_INITIALIZE) {
248		if (!lg || (cpu_id >= lg->nr_cpus))
249			return -EINVAL;
250		cpu = &lg->cpus[cpu_id];
251
252		/* Once the Guest is dead, you can only read() why it died. */
253		if (lg->dead)
254			return -ENOENT;
255
256		/* If you're not the task which owns the Guest, all you can do
257		 * is break the Launcher out of running the Guest. */
258		if (current != cpu->tsk && req != LHREQ_BREAK)
259			return -EPERM;
260	}
261
262	switch (req) {
263	case LHREQ_INITIALIZE:
264		return initialize(file, input);
265	case LHREQ_IRQ:
266		return user_send_irq(cpu, input);
267	case LHREQ_BREAK:
268		return break_guest_out(cpu, input);
269	default:
270		return -EINVAL;
271	}
272}
273
274/*L:060 The final piece of interface code is the close() routine.  It reverses
275 * everything done in initialize().  This is usually called because the
276 * Launcher exited.
277 *
278 * Note that the close routine returns 0 or a negative error number: it can't
279 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
280 * letting them do it. :*/
281static int close(struct inode *inode, struct file *file)
282{
283	struct lguest *lg = file->private_data;
284	unsigned int i;
285
286	/* If we never successfully initialized, there's nothing to clean up */
287	if (!lg)
288		return 0;
289
290	/* We need the big lock, to protect from inter-guest I/O and other
291	 * Launchers initializing guests. */
292	mutex_lock(&lguest_lock);
293
294	/* Free up the shadow page tables for the Guest. */
295	free_guest_pagetable(lg);
296
297	for (i = 0; i < lg->nr_cpus; i++) {
298		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
299		hrtimer_cancel(&lg->cpus[i].hrt);
300		/* We can free up the register page we allocated. */
301		free_page(lg->cpus[i].regs_page);
302		/* Now all the memory cleanups are done, it's safe to release
303		 * the Launcher's memory management structure. */
304		mmput(lg->cpus[i].mm);
305	}
306	/* If lg->dead doesn't contain an error code it will be NULL or a
307	 * kmalloc()ed string, either of which is ok to hand to kfree(). */
308	if (!IS_ERR(lg->dead))
309		kfree(lg->dead);
310	/* Free the memory allocated to the lguest_struct */
311	kfree(lg);
312	/* Release lock and exit. */
313	mutex_unlock(&lguest_lock);
314
315	return 0;
316}
317
318/*L:000
319 * Welcome to our journey through the Launcher!
320 *
321 * The Launcher is the Host userspace program which sets up, runs and services
322 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
323 * doing things are inaccurate: the Launcher does all the device handling for
324 * the Guest, but the Guest can't know that.
325 *
326 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
327 * shall see more of that later.
328 *
329 * We begin our understanding with the Host kernel interface which the Launcher
330 * uses: reading and writing a character device called /dev/lguest.  All the
331 * work happens in the read(), write() and close() routines: */
332static struct file_operations lguest_fops = {
333	.owner	 = THIS_MODULE,
334	.release = close,
335	.write	 = write,
336	.read	 = read,
337};
338
339/* This is a textbook example of a "misc" character device.  Populate a "struct
340 * miscdevice" and register it with misc_register(). */
341static struct miscdevice lguest_dev = {
342	.minor	= MISC_DYNAMIC_MINOR,
343	.name	= "lguest",
344	.fops	= &lguest_fops,
345};
346
347int __init lguest_device_init(void)
348{
349	return misc_register(&lguest_dev);
350}
351
352void __exit lguest_device_remove(void)
353{
354	misc_deregister(&lguest_dev);
355}
356