[go: nahoru, domu]

1/*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "writeback.h"
13
14#include <linux/delay.h>
15#include <linux/freezer.h>
16#include <linux/kthread.h>
17#include <trace/events/bcache.h>
18
19/* Rate limiting */
20
21static void __update_writeback_rate(struct cached_dev *dc)
22{
23	struct cache_set *c = dc->disk.c;
24	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
25	uint64_t cache_dirty_target =
26		div_u64(cache_sectors * dc->writeback_percent, 100);
27
28	int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
29				   c->cached_dev_sectors);
30
31	/* PD controller */
32
33	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
34	int64_t derivative = dirty - dc->disk.sectors_dirty_last;
35	int64_t proportional = dirty - target;
36	int64_t change;
37
38	dc->disk.sectors_dirty_last = dirty;
39
40	/* Scale to sectors per second */
41
42	proportional *= dc->writeback_rate_update_seconds;
43	proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
44
45	derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
46
47	derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
48			      (dc->writeback_rate_d_term /
49			       dc->writeback_rate_update_seconds) ?: 1, 0);
50
51	derivative *= dc->writeback_rate_d_term;
52	derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
53
54	change = proportional + derivative;
55
56	/* Don't increase writeback rate if the device isn't keeping up */
57	if (change > 0 &&
58	    time_after64(local_clock(),
59			 dc->writeback_rate.next + NSEC_PER_MSEC))
60		change = 0;
61
62	dc->writeback_rate.rate =
63		clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
64			1, NSEC_PER_MSEC);
65
66	dc->writeback_rate_proportional = proportional;
67	dc->writeback_rate_derivative = derivative;
68	dc->writeback_rate_change = change;
69	dc->writeback_rate_target = target;
70}
71
72static void update_writeback_rate(struct work_struct *work)
73{
74	struct cached_dev *dc = container_of(to_delayed_work(work),
75					     struct cached_dev,
76					     writeback_rate_update);
77
78	down_read(&dc->writeback_lock);
79
80	if (atomic_read(&dc->has_dirty) &&
81	    dc->writeback_percent)
82		__update_writeback_rate(dc);
83
84	up_read(&dc->writeback_lock);
85
86	schedule_delayed_work(&dc->writeback_rate_update,
87			      dc->writeback_rate_update_seconds * HZ);
88}
89
90static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
91{
92	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
93	    !dc->writeback_percent)
94		return 0;
95
96	return bch_next_delay(&dc->writeback_rate, sectors);
97}
98
99struct dirty_io {
100	struct closure		cl;
101	struct cached_dev	*dc;
102	struct bio		bio;
103};
104
105static void dirty_init(struct keybuf_key *w)
106{
107	struct dirty_io *io = w->private;
108	struct bio *bio = &io->bio;
109
110	bio_init(bio);
111	if (!io->dc->writeback_percent)
112		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
113
114	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
115	bio->bi_max_vecs	= DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
116	bio->bi_private		= w;
117	bio->bi_io_vec		= bio->bi_inline_vecs;
118	bch_bio_map(bio, NULL);
119}
120
121static void dirty_io_destructor(struct closure *cl)
122{
123	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
124	kfree(io);
125}
126
127static void write_dirty_finish(struct closure *cl)
128{
129	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
130	struct keybuf_key *w = io->bio.bi_private;
131	struct cached_dev *dc = io->dc;
132	struct bio_vec *bv;
133	int i;
134
135	bio_for_each_segment_all(bv, &io->bio, i)
136		__free_page(bv->bv_page);
137
138	/* This is kind of a dumb way of signalling errors. */
139	if (KEY_DIRTY(&w->key)) {
140		int ret;
141		unsigned i;
142		struct keylist keys;
143
144		bch_keylist_init(&keys);
145
146		bkey_copy(keys.top, &w->key);
147		SET_KEY_DIRTY(keys.top, false);
148		bch_keylist_push(&keys);
149
150		for (i = 0; i < KEY_PTRS(&w->key); i++)
151			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
152
153		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
154
155		if (ret)
156			trace_bcache_writeback_collision(&w->key);
157
158		atomic_long_inc(ret
159				? &dc->disk.c->writeback_keys_failed
160				: &dc->disk.c->writeback_keys_done);
161	}
162
163	bch_keybuf_del(&dc->writeback_keys, w);
164	up(&dc->in_flight);
165
166	closure_return_with_destructor(cl, dirty_io_destructor);
167}
168
169static void dirty_endio(struct bio *bio, int error)
170{
171	struct keybuf_key *w = bio->bi_private;
172	struct dirty_io *io = w->private;
173
174	if (error)
175		SET_KEY_DIRTY(&w->key, false);
176
177	closure_put(&io->cl);
178}
179
180static void write_dirty(struct closure *cl)
181{
182	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
183	struct keybuf_key *w = io->bio.bi_private;
184
185	dirty_init(w);
186	io->bio.bi_rw		= WRITE;
187	io->bio.bi_iter.bi_sector = KEY_START(&w->key);
188	io->bio.bi_bdev		= io->dc->bdev;
189	io->bio.bi_end_io	= dirty_endio;
190
191	closure_bio_submit(&io->bio, cl, &io->dc->disk);
192
193	continue_at(cl, write_dirty_finish, system_wq);
194}
195
196static void read_dirty_endio(struct bio *bio, int error)
197{
198	struct keybuf_key *w = bio->bi_private;
199	struct dirty_io *io = w->private;
200
201	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
202			    error, "reading dirty data from cache");
203
204	dirty_endio(bio, error);
205}
206
207static void read_dirty_submit(struct closure *cl)
208{
209	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
210
211	closure_bio_submit(&io->bio, cl, &io->dc->disk);
212
213	continue_at(cl, write_dirty, system_wq);
214}
215
216static void read_dirty(struct cached_dev *dc)
217{
218	unsigned delay = 0;
219	struct keybuf_key *w;
220	struct dirty_io *io;
221	struct closure cl;
222
223	closure_init_stack(&cl);
224
225	/*
226	 * XXX: if we error, background writeback just spins. Should use some
227	 * mempools.
228	 */
229
230	while (!kthread_should_stop()) {
231		try_to_freeze();
232
233		w = bch_keybuf_next(&dc->writeback_keys);
234		if (!w)
235			break;
236
237		BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
238
239		if (KEY_START(&w->key) != dc->last_read ||
240		    jiffies_to_msecs(delay) > 50)
241			while (!kthread_should_stop() && delay)
242				delay = schedule_timeout_interruptible(delay);
243
244		dc->last_read	= KEY_OFFSET(&w->key);
245
246		io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
247			     * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
248			     GFP_KERNEL);
249		if (!io)
250			goto err;
251
252		w->private	= io;
253		io->dc		= dc;
254
255		dirty_init(w);
256		io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
257		io->bio.bi_bdev		= PTR_CACHE(dc->disk.c,
258						    &w->key, 0)->bdev;
259		io->bio.bi_rw		= READ;
260		io->bio.bi_end_io	= read_dirty_endio;
261
262		if (bio_alloc_pages(&io->bio, GFP_KERNEL))
263			goto err_free;
264
265		trace_bcache_writeback(&w->key);
266
267		down(&dc->in_flight);
268		closure_call(&io->cl, read_dirty_submit, NULL, &cl);
269
270		delay = writeback_delay(dc, KEY_SIZE(&w->key));
271	}
272
273	if (0) {
274err_free:
275		kfree(w->private);
276err:
277		bch_keybuf_del(&dc->writeback_keys, w);
278	}
279
280	/*
281	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
282	 * freed) before refilling again
283	 */
284	closure_sync(&cl);
285}
286
287/* Scan for dirty data */
288
289void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
290				  uint64_t offset, int nr_sectors)
291{
292	struct bcache_device *d = c->devices[inode];
293	unsigned stripe_offset, stripe, sectors_dirty;
294
295	if (!d)
296		return;
297
298	stripe = offset_to_stripe(d, offset);
299	stripe_offset = offset & (d->stripe_size - 1);
300
301	while (nr_sectors) {
302		int s = min_t(unsigned, abs(nr_sectors),
303			      d->stripe_size - stripe_offset);
304
305		if (nr_sectors < 0)
306			s = -s;
307
308		if (stripe >= d->nr_stripes)
309			return;
310
311		sectors_dirty = atomic_add_return(s,
312					d->stripe_sectors_dirty + stripe);
313		if (sectors_dirty == d->stripe_size)
314			set_bit(stripe, d->full_dirty_stripes);
315		else
316			clear_bit(stripe, d->full_dirty_stripes);
317
318		nr_sectors -= s;
319		stripe_offset = 0;
320		stripe++;
321	}
322}
323
324static bool dirty_pred(struct keybuf *buf, struct bkey *k)
325{
326	return KEY_DIRTY(k);
327}
328
329static void refill_full_stripes(struct cached_dev *dc)
330{
331	struct keybuf *buf = &dc->writeback_keys;
332	unsigned start_stripe, stripe, next_stripe;
333	bool wrapped = false;
334
335	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
336
337	if (stripe >= dc->disk.nr_stripes)
338		stripe = 0;
339
340	start_stripe = stripe;
341
342	while (1) {
343		stripe = find_next_bit(dc->disk.full_dirty_stripes,
344				       dc->disk.nr_stripes, stripe);
345
346		if (stripe == dc->disk.nr_stripes)
347			goto next;
348
349		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
350						 dc->disk.nr_stripes, stripe);
351
352		buf->last_scanned = KEY(dc->disk.id,
353					stripe * dc->disk.stripe_size, 0);
354
355		bch_refill_keybuf(dc->disk.c, buf,
356				  &KEY(dc->disk.id,
357				       next_stripe * dc->disk.stripe_size, 0),
358				  dirty_pred);
359
360		if (array_freelist_empty(&buf->freelist))
361			return;
362
363		stripe = next_stripe;
364next:
365		if (wrapped && stripe > start_stripe)
366			return;
367
368		if (stripe == dc->disk.nr_stripes) {
369			stripe = 0;
370			wrapped = true;
371		}
372	}
373}
374
375static bool refill_dirty(struct cached_dev *dc)
376{
377	struct keybuf *buf = &dc->writeback_keys;
378	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
379	bool searched_from_start = false;
380
381	if (dc->partial_stripes_expensive) {
382		refill_full_stripes(dc);
383		if (array_freelist_empty(&buf->freelist))
384			return false;
385	}
386
387	if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
388		buf->last_scanned = KEY(dc->disk.id, 0, 0);
389		searched_from_start = true;
390	}
391
392	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
393
394	return bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start;
395}
396
397static int bch_writeback_thread(void *arg)
398{
399	struct cached_dev *dc = arg;
400	bool searched_full_index;
401
402	while (!kthread_should_stop()) {
403		down_write(&dc->writeback_lock);
404		if (!atomic_read(&dc->has_dirty) ||
405		    (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
406		     !dc->writeback_running)) {
407			up_write(&dc->writeback_lock);
408			set_current_state(TASK_INTERRUPTIBLE);
409
410			if (kthread_should_stop())
411				return 0;
412
413			try_to_freeze();
414			schedule();
415			continue;
416		}
417
418		searched_full_index = refill_dirty(dc);
419
420		if (searched_full_index &&
421		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
422			atomic_set(&dc->has_dirty, 0);
423			cached_dev_put(dc);
424			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
425			bch_write_bdev_super(dc, NULL);
426		}
427
428		up_write(&dc->writeback_lock);
429
430		bch_ratelimit_reset(&dc->writeback_rate);
431		read_dirty(dc);
432
433		if (searched_full_index) {
434			unsigned delay = dc->writeback_delay * HZ;
435
436			while (delay &&
437			       !kthread_should_stop() &&
438			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
439				delay = schedule_timeout_interruptible(delay);
440		}
441	}
442
443	return 0;
444}
445
446/* Init */
447
448struct sectors_dirty_init {
449	struct btree_op	op;
450	unsigned	inode;
451};
452
453static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
454				 struct bkey *k)
455{
456	struct sectors_dirty_init *op = container_of(_op,
457						struct sectors_dirty_init, op);
458	if (KEY_INODE(k) > op->inode)
459		return MAP_DONE;
460
461	if (KEY_DIRTY(k))
462		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
463					     KEY_START(k), KEY_SIZE(k));
464
465	return MAP_CONTINUE;
466}
467
468void bch_sectors_dirty_init(struct cached_dev *dc)
469{
470	struct sectors_dirty_init op;
471
472	bch_btree_op_init(&op.op, -1);
473	op.inode = dc->disk.id;
474
475	bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
476			   sectors_dirty_init_fn, 0);
477
478	dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
479}
480
481void bch_cached_dev_writeback_init(struct cached_dev *dc)
482{
483	sema_init(&dc->in_flight, 64);
484	init_rwsem(&dc->writeback_lock);
485	bch_keybuf_init(&dc->writeback_keys);
486
487	dc->writeback_metadata		= true;
488	dc->writeback_running		= true;
489	dc->writeback_percent		= 10;
490	dc->writeback_delay		= 30;
491	dc->writeback_rate.rate		= 1024;
492
493	dc->writeback_rate_update_seconds = 5;
494	dc->writeback_rate_d_term	= 30;
495	dc->writeback_rate_p_term_inverse = 6000;
496
497	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
498}
499
500int bch_cached_dev_writeback_start(struct cached_dev *dc)
501{
502	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
503					      "bcache_writeback");
504	if (IS_ERR(dc->writeback_thread))
505		return PTR_ERR(dc->writeback_thread);
506
507	schedule_delayed_work(&dc->writeback_rate_update,
508			      dc->writeback_rate_update_seconds * HZ);
509
510	bch_writeback_queue(dc);
511
512	return 0;
513}
514