[go: nahoru, domu]

1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21
22#define DM_MSG_PREFIX "table"
23
24#define MAX_DEPTH 16
25#define NODE_SIZE L1_CACHE_BYTES
26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29struct dm_table {
30	struct mapped_device *md;
31	unsigned type;
32
33	/* btree table */
34	unsigned int depth;
35	unsigned int counts[MAX_DEPTH];	/* in nodes */
36	sector_t *index[MAX_DEPTH];
37
38	unsigned int num_targets;
39	unsigned int num_allocated;
40	sector_t *highs;
41	struct dm_target *targets;
42
43	struct target_type *immutable_target_type;
44	unsigned integrity_supported:1;
45	unsigned singleton:1;
46
47	/*
48	 * Indicates the rw permissions for the new logical
49	 * device.  This should be a combination of FMODE_READ
50	 * and FMODE_WRITE.
51	 */
52	fmode_t mode;
53
54	/* a list of devices used by this table */
55	struct list_head devices;
56
57	/* events get handed up using this callback */
58	void (*event_fn)(void *);
59	void *event_context;
60
61	struct dm_md_mempools *mempools;
62
63	struct list_head target_callbacks;
64};
65
66/*
67 * Similar to ceiling(log_size(n))
68 */
69static unsigned int int_log(unsigned int n, unsigned int base)
70{
71	int result = 0;
72
73	while (n > 1) {
74		n = dm_div_up(n, base);
75		result++;
76	}
77
78	return result;
79}
80
81/*
82 * Calculate the index of the child node of the n'th node k'th key.
83 */
84static inline unsigned int get_child(unsigned int n, unsigned int k)
85{
86	return (n * CHILDREN_PER_NODE) + k;
87}
88
89/*
90 * Return the n'th node of level l from table t.
91 */
92static inline sector_t *get_node(struct dm_table *t,
93				 unsigned int l, unsigned int n)
94{
95	return t->index[l] + (n * KEYS_PER_NODE);
96}
97
98/*
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
101 */
102static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103{
104	for (; l < t->depth - 1; l++)
105		n = get_child(n, CHILDREN_PER_NODE - 1);
106
107	if (n >= t->counts[l])
108		return (sector_t) - 1;
109
110	return get_node(t, l, n)[KEYS_PER_NODE - 1];
111}
112
113/*
114 * Fills in a level of the btree based on the highs of the level
115 * below it.
116 */
117static int setup_btree_index(unsigned int l, struct dm_table *t)
118{
119	unsigned int n, k;
120	sector_t *node;
121
122	for (n = 0U; n < t->counts[l]; n++) {
123		node = get_node(t, l, n);
124
125		for (k = 0U; k < KEYS_PER_NODE; k++)
126			node[k] = high(t, l + 1, get_child(n, k));
127	}
128
129	return 0;
130}
131
132void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133{
134	unsigned long size;
135	void *addr;
136
137	/*
138	 * Check that we're not going to overflow.
139	 */
140	if (nmemb > (ULONG_MAX / elem_size))
141		return NULL;
142
143	size = nmemb * elem_size;
144	addr = vzalloc(size);
145
146	return addr;
147}
148EXPORT_SYMBOL(dm_vcalloc);
149
150/*
151 * highs, and targets are managed as dynamic arrays during a
152 * table load.
153 */
154static int alloc_targets(struct dm_table *t, unsigned int num)
155{
156	sector_t *n_highs;
157	struct dm_target *n_targets;
158
159	/*
160	 * Allocate both the target array and offset array at once.
161	 * Append an empty entry to catch sectors beyond the end of
162	 * the device.
163	 */
164	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
165					  sizeof(sector_t));
166	if (!n_highs)
167		return -ENOMEM;
168
169	n_targets = (struct dm_target *) (n_highs + num);
170
171	memset(n_highs, -1, sizeof(*n_highs) * num);
172	vfree(t->highs);
173
174	t->num_allocated = num;
175	t->highs = n_highs;
176	t->targets = n_targets;
177
178	return 0;
179}
180
181int dm_table_create(struct dm_table **result, fmode_t mode,
182		    unsigned num_targets, struct mapped_device *md)
183{
184	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
185
186	if (!t)
187		return -ENOMEM;
188
189	INIT_LIST_HEAD(&t->devices);
190	INIT_LIST_HEAD(&t->target_callbacks);
191
192	if (!num_targets)
193		num_targets = KEYS_PER_NODE;
194
195	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
197	if (!num_targets) {
198		kfree(t);
199		return -ENOMEM;
200	}
201
202	if (alloc_targets(t, num_targets)) {
203		kfree(t);
204		return -ENOMEM;
205	}
206
207	t->mode = mode;
208	t->md = md;
209	*result = t;
210	return 0;
211}
212
213static void free_devices(struct list_head *devices, struct mapped_device *md)
214{
215	struct list_head *tmp, *next;
216
217	list_for_each_safe(tmp, next, devices) {
218		struct dm_dev_internal *dd =
219		    list_entry(tmp, struct dm_dev_internal, list);
220		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
221		       dm_device_name(md), dd->dm_dev->name);
222		dm_put_table_device(md, dd->dm_dev);
223		kfree(dd);
224	}
225}
226
227void dm_table_destroy(struct dm_table *t)
228{
229	unsigned int i;
230
231	if (!t)
232		return;
233
234	/* free the indexes */
235	if (t->depth >= 2)
236		vfree(t->index[t->depth - 2]);
237
238	/* free the targets */
239	for (i = 0; i < t->num_targets; i++) {
240		struct dm_target *tgt = t->targets + i;
241
242		if (tgt->type->dtr)
243			tgt->type->dtr(tgt);
244
245		dm_put_target_type(tgt->type);
246	}
247
248	vfree(t->highs);
249
250	/* free the device list */
251	free_devices(&t->devices, t->md);
252
253	dm_free_md_mempools(t->mempools);
254
255	kfree(t);
256}
257
258/*
259 * See if we've already got a device in the list.
260 */
261static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
262{
263	struct dm_dev_internal *dd;
264
265	list_for_each_entry (dd, l, list)
266		if (dd->dm_dev->bdev->bd_dev == dev)
267			return dd;
268
269	return NULL;
270}
271
272/*
273 * If possible, this checks an area of a destination device is invalid.
274 */
275static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
276				  sector_t start, sector_t len, void *data)
277{
278	struct request_queue *q;
279	struct queue_limits *limits = data;
280	struct block_device *bdev = dev->bdev;
281	sector_t dev_size =
282		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
283	unsigned short logical_block_size_sectors =
284		limits->logical_block_size >> SECTOR_SHIFT;
285	char b[BDEVNAME_SIZE];
286
287	/*
288	 * Some devices exist without request functions,
289	 * such as loop devices not yet bound to backing files.
290	 * Forbid the use of such devices.
291	 */
292	q = bdev_get_queue(bdev);
293	if (!q || !q->make_request_fn) {
294		DMWARN("%s: %s is not yet initialised: "
295		       "start=%llu, len=%llu, dev_size=%llu",
296		       dm_device_name(ti->table->md), bdevname(bdev, b),
297		       (unsigned long long)start,
298		       (unsigned long long)len,
299		       (unsigned long long)dev_size);
300		return 1;
301	}
302
303	if (!dev_size)
304		return 0;
305
306	if ((start >= dev_size) || (start + len > dev_size)) {
307		DMWARN("%s: %s too small for target: "
308		       "start=%llu, len=%llu, dev_size=%llu",
309		       dm_device_name(ti->table->md), bdevname(bdev, b),
310		       (unsigned long long)start,
311		       (unsigned long long)len,
312		       (unsigned long long)dev_size);
313		return 1;
314	}
315
316	if (logical_block_size_sectors <= 1)
317		return 0;
318
319	if (start & (logical_block_size_sectors - 1)) {
320		DMWARN("%s: start=%llu not aligned to h/w "
321		       "logical block size %u of %s",
322		       dm_device_name(ti->table->md),
323		       (unsigned long long)start,
324		       limits->logical_block_size, bdevname(bdev, b));
325		return 1;
326	}
327
328	if (len & (logical_block_size_sectors - 1)) {
329		DMWARN("%s: len=%llu not aligned to h/w "
330		       "logical block size %u of %s",
331		       dm_device_name(ti->table->md),
332		       (unsigned long long)len,
333		       limits->logical_block_size, bdevname(bdev, b));
334		return 1;
335	}
336
337	return 0;
338}
339
340/*
341 * This upgrades the mode on an already open dm_dev, being
342 * careful to leave things as they were if we fail to reopen the
343 * device and not to touch the existing bdev field in case
344 * it is accessed concurrently inside dm_table_any_congested().
345 */
346static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
347			struct mapped_device *md)
348{
349	int r;
350	struct dm_dev *old_dev, *new_dev;
351
352	old_dev = dd->dm_dev;
353
354	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
355				dd->dm_dev->mode | new_mode, &new_dev);
356	if (r)
357		return r;
358
359	dd->dm_dev = new_dev;
360	dm_put_table_device(md, old_dev);
361
362	return 0;
363}
364
365/*
366 * Add a device to the list, or just increment the usage count if
367 * it's already present.
368 */
369int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
370		  struct dm_dev **result)
371{
372	int r;
373	dev_t uninitialized_var(dev);
374	struct dm_dev_internal *dd;
375	unsigned int major, minor;
376	struct dm_table *t = ti->table;
377	char dummy;
378
379	BUG_ON(!t);
380
381	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
382		/* Extract the major/minor numbers */
383		dev = MKDEV(major, minor);
384		if (MAJOR(dev) != major || MINOR(dev) != minor)
385			return -EOVERFLOW;
386	} else {
387		/* convert the path to a device */
388		struct block_device *bdev = lookup_bdev(path);
389
390		if (IS_ERR(bdev))
391			return PTR_ERR(bdev);
392		dev = bdev->bd_dev;
393		bdput(bdev);
394	}
395
396	dd = find_device(&t->devices, dev);
397	if (!dd) {
398		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
399		if (!dd)
400			return -ENOMEM;
401
402		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
403			kfree(dd);
404			return r;
405		}
406
407		atomic_set(&dd->count, 0);
408		list_add(&dd->list, &t->devices);
409
410	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
411		r = upgrade_mode(dd, mode, t->md);
412		if (r)
413			return r;
414	}
415	atomic_inc(&dd->count);
416
417	*result = dd->dm_dev;
418	return 0;
419}
420EXPORT_SYMBOL(dm_get_device);
421
422static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
423				sector_t start, sector_t len, void *data)
424{
425	struct queue_limits *limits = data;
426	struct block_device *bdev = dev->bdev;
427	struct request_queue *q = bdev_get_queue(bdev);
428	char b[BDEVNAME_SIZE];
429
430	if (unlikely(!q)) {
431		DMWARN("%s: Cannot set limits for nonexistent device %s",
432		       dm_device_name(ti->table->md), bdevname(bdev, b));
433		return 0;
434	}
435
436	if (bdev_stack_limits(limits, bdev, start) < 0)
437		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
438		       "physical_block_size=%u, logical_block_size=%u, "
439		       "alignment_offset=%u, start=%llu",
440		       dm_device_name(ti->table->md), bdevname(bdev, b),
441		       q->limits.physical_block_size,
442		       q->limits.logical_block_size,
443		       q->limits.alignment_offset,
444		       (unsigned long long) start << SECTOR_SHIFT);
445
446	/*
447	 * Check if merge fn is supported.
448	 * If not we'll force DM to use PAGE_SIZE or
449	 * smaller I/O, just to be safe.
450	 */
451	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
452		blk_limits_max_hw_sectors(limits,
453					  (unsigned int) (PAGE_SIZE >> 9));
454	return 0;
455}
456
457/*
458 * Decrement a device's use count and remove it if necessary.
459 */
460void dm_put_device(struct dm_target *ti, struct dm_dev *d)
461{
462	int found = 0;
463	struct list_head *devices = &ti->table->devices;
464	struct dm_dev_internal *dd;
465
466	list_for_each_entry(dd, devices, list) {
467		if (dd->dm_dev == d) {
468			found = 1;
469			break;
470		}
471	}
472	if (!found) {
473		DMWARN("%s: device %s not in table devices list",
474		       dm_device_name(ti->table->md), d->name);
475		return;
476	}
477	if (atomic_dec_and_test(&dd->count)) {
478		dm_put_table_device(ti->table->md, d);
479		list_del(&dd->list);
480		kfree(dd);
481	}
482}
483EXPORT_SYMBOL(dm_put_device);
484
485/*
486 * Checks to see if the target joins onto the end of the table.
487 */
488static int adjoin(struct dm_table *table, struct dm_target *ti)
489{
490	struct dm_target *prev;
491
492	if (!table->num_targets)
493		return !ti->begin;
494
495	prev = &table->targets[table->num_targets - 1];
496	return (ti->begin == (prev->begin + prev->len));
497}
498
499/*
500 * Used to dynamically allocate the arg array.
501 *
502 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
503 * process messages even if some device is suspended. These messages have a
504 * small fixed number of arguments.
505 *
506 * On the other hand, dm-switch needs to process bulk data using messages and
507 * excessive use of GFP_NOIO could cause trouble.
508 */
509static char **realloc_argv(unsigned *array_size, char **old_argv)
510{
511	char **argv;
512	unsigned new_size;
513	gfp_t gfp;
514
515	if (*array_size) {
516		new_size = *array_size * 2;
517		gfp = GFP_KERNEL;
518	} else {
519		new_size = 8;
520		gfp = GFP_NOIO;
521	}
522	argv = kmalloc(new_size * sizeof(*argv), gfp);
523	if (argv) {
524		memcpy(argv, old_argv, *array_size * sizeof(*argv));
525		*array_size = new_size;
526	}
527
528	kfree(old_argv);
529	return argv;
530}
531
532/*
533 * Destructively splits up the argument list to pass to ctr.
534 */
535int dm_split_args(int *argc, char ***argvp, char *input)
536{
537	char *start, *end = input, *out, **argv = NULL;
538	unsigned array_size = 0;
539
540	*argc = 0;
541
542	if (!input) {
543		*argvp = NULL;
544		return 0;
545	}
546
547	argv = realloc_argv(&array_size, argv);
548	if (!argv)
549		return -ENOMEM;
550
551	while (1) {
552		/* Skip whitespace */
553		start = skip_spaces(end);
554
555		if (!*start)
556			break;	/* success, we hit the end */
557
558		/* 'out' is used to remove any back-quotes */
559		end = out = start;
560		while (*end) {
561			/* Everything apart from '\0' can be quoted */
562			if (*end == '\\' && *(end + 1)) {
563				*out++ = *(end + 1);
564				end += 2;
565				continue;
566			}
567
568			if (isspace(*end))
569				break;	/* end of token */
570
571			*out++ = *end++;
572		}
573
574		/* have we already filled the array ? */
575		if ((*argc + 1) > array_size) {
576			argv = realloc_argv(&array_size, argv);
577			if (!argv)
578				return -ENOMEM;
579		}
580
581		/* we know this is whitespace */
582		if (*end)
583			end++;
584
585		/* terminate the string and put it in the array */
586		*out = '\0';
587		argv[*argc] = start;
588		(*argc)++;
589	}
590
591	*argvp = argv;
592	return 0;
593}
594
595/*
596 * Impose necessary and sufficient conditions on a devices's table such
597 * that any incoming bio which respects its logical_block_size can be
598 * processed successfully.  If it falls across the boundary between
599 * two or more targets, the size of each piece it gets split into must
600 * be compatible with the logical_block_size of the target processing it.
601 */
602static int validate_hardware_logical_block_alignment(struct dm_table *table,
603						 struct queue_limits *limits)
604{
605	/*
606	 * This function uses arithmetic modulo the logical_block_size
607	 * (in units of 512-byte sectors).
608	 */
609	unsigned short device_logical_block_size_sects =
610		limits->logical_block_size >> SECTOR_SHIFT;
611
612	/*
613	 * Offset of the start of the next table entry, mod logical_block_size.
614	 */
615	unsigned short next_target_start = 0;
616
617	/*
618	 * Given an aligned bio that extends beyond the end of a
619	 * target, how many sectors must the next target handle?
620	 */
621	unsigned short remaining = 0;
622
623	struct dm_target *uninitialized_var(ti);
624	struct queue_limits ti_limits;
625	unsigned i = 0;
626
627	/*
628	 * Check each entry in the table in turn.
629	 */
630	while (i < dm_table_get_num_targets(table)) {
631		ti = dm_table_get_target(table, i++);
632
633		blk_set_stacking_limits(&ti_limits);
634
635		/* combine all target devices' limits */
636		if (ti->type->iterate_devices)
637			ti->type->iterate_devices(ti, dm_set_device_limits,
638						  &ti_limits);
639
640		/*
641		 * If the remaining sectors fall entirely within this
642		 * table entry are they compatible with its logical_block_size?
643		 */
644		if (remaining < ti->len &&
645		    remaining & ((ti_limits.logical_block_size >>
646				  SECTOR_SHIFT) - 1))
647			break;	/* Error */
648
649		next_target_start =
650		    (unsigned short) ((next_target_start + ti->len) &
651				      (device_logical_block_size_sects - 1));
652		remaining = next_target_start ?
653		    device_logical_block_size_sects - next_target_start : 0;
654	}
655
656	if (remaining) {
657		DMWARN("%s: table line %u (start sect %llu len %llu) "
658		       "not aligned to h/w logical block size %u",
659		       dm_device_name(table->md), i,
660		       (unsigned long long) ti->begin,
661		       (unsigned long long) ti->len,
662		       limits->logical_block_size);
663		return -EINVAL;
664	}
665
666	return 0;
667}
668
669int dm_table_add_target(struct dm_table *t, const char *type,
670			sector_t start, sector_t len, char *params)
671{
672	int r = -EINVAL, argc;
673	char **argv;
674	struct dm_target *tgt;
675
676	if (t->singleton) {
677		DMERR("%s: target type %s must appear alone in table",
678		      dm_device_name(t->md), t->targets->type->name);
679		return -EINVAL;
680	}
681
682	BUG_ON(t->num_targets >= t->num_allocated);
683
684	tgt = t->targets + t->num_targets;
685	memset(tgt, 0, sizeof(*tgt));
686
687	if (!len) {
688		DMERR("%s: zero-length target", dm_device_name(t->md));
689		return -EINVAL;
690	}
691
692	tgt->type = dm_get_target_type(type);
693	if (!tgt->type) {
694		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
695		      type);
696		return -EINVAL;
697	}
698
699	if (dm_target_needs_singleton(tgt->type)) {
700		if (t->num_targets) {
701			DMERR("%s: target type %s must appear alone in table",
702			      dm_device_name(t->md), type);
703			return -EINVAL;
704		}
705		t->singleton = 1;
706	}
707
708	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
709		DMERR("%s: target type %s may not be included in read-only tables",
710		      dm_device_name(t->md), type);
711		return -EINVAL;
712	}
713
714	if (t->immutable_target_type) {
715		if (t->immutable_target_type != tgt->type) {
716			DMERR("%s: immutable target type %s cannot be mixed with other target types",
717			      dm_device_name(t->md), t->immutable_target_type->name);
718			return -EINVAL;
719		}
720	} else if (dm_target_is_immutable(tgt->type)) {
721		if (t->num_targets) {
722			DMERR("%s: immutable target type %s cannot be mixed with other target types",
723			      dm_device_name(t->md), tgt->type->name);
724			return -EINVAL;
725		}
726		t->immutable_target_type = tgt->type;
727	}
728
729	tgt->table = t;
730	tgt->begin = start;
731	tgt->len = len;
732	tgt->error = "Unknown error";
733
734	/*
735	 * Does this target adjoin the previous one ?
736	 */
737	if (!adjoin(t, tgt)) {
738		tgt->error = "Gap in table";
739		r = -EINVAL;
740		goto bad;
741	}
742
743	r = dm_split_args(&argc, &argv, params);
744	if (r) {
745		tgt->error = "couldn't split parameters (insufficient memory)";
746		goto bad;
747	}
748
749	r = tgt->type->ctr(tgt, argc, argv);
750	kfree(argv);
751	if (r)
752		goto bad;
753
754	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
755
756	if (!tgt->num_discard_bios && tgt->discards_supported)
757		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
758		       dm_device_name(t->md), type);
759
760	return 0;
761
762 bad:
763	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
764	dm_put_target_type(tgt->type);
765	return r;
766}
767
768/*
769 * Target argument parsing helpers.
770 */
771static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
772			     unsigned *value, char **error, unsigned grouped)
773{
774	const char *arg_str = dm_shift_arg(arg_set);
775	char dummy;
776
777	if (!arg_str ||
778	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
779	    (*value < arg->min) ||
780	    (*value > arg->max) ||
781	    (grouped && arg_set->argc < *value)) {
782		*error = arg->error;
783		return -EINVAL;
784	}
785
786	return 0;
787}
788
789int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
790		unsigned *value, char **error)
791{
792	return validate_next_arg(arg, arg_set, value, error, 0);
793}
794EXPORT_SYMBOL(dm_read_arg);
795
796int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
797		      unsigned *value, char **error)
798{
799	return validate_next_arg(arg, arg_set, value, error, 1);
800}
801EXPORT_SYMBOL(dm_read_arg_group);
802
803const char *dm_shift_arg(struct dm_arg_set *as)
804{
805	char *r;
806
807	if (as->argc) {
808		as->argc--;
809		r = *as->argv;
810		as->argv++;
811		return r;
812	}
813
814	return NULL;
815}
816EXPORT_SYMBOL(dm_shift_arg);
817
818void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
819{
820	BUG_ON(as->argc < num_args);
821	as->argc -= num_args;
822	as->argv += num_args;
823}
824EXPORT_SYMBOL(dm_consume_args);
825
826static int dm_table_set_type(struct dm_table *t)
827{
828	unsigned i;
829	unsigned bio_based = 0, request_based = 0, hybrid = 0;
830	struct dm_target *tgt;
831	struct dm_dev_internal *dd;
832	struct list_head *devices;
833	unsigned live_md_type;
834
835	for (i = 0; i < t->num_targets; i++) {
836		tgt = t->targets + i;
837		if (dm_target_hybrid(tgt))
838			hybrid = 1;
839		else if (dm_target_request_based(tgt))
840			request_based = 1;
841		else
842			bio_based = 1;
843
844		if (bio_based && request_based) {
845			DMWARN("Inconsistent table: different target types"
846			       " can't be mixed up");
847			return -EINVAL;
848		}
849	}
850
851	if (hybrid && !bio_based && !request_based) {
852		/*
853		 * The targets can work either way.
854		 * Determine the type from the live device.
855		 * Default to bio-based if device is new.
856		 */
857		live_md_type = dm_get_md_type(t->md);
858		if (live_md_type == DM_TYPE_REQUEST_BASED)
859			request_based = 1;
860		else
861			bio_based = 1;
862	}
863
864	if (bio_based) {
865		/* We must use this table as bio-based */
866		t->type = DM_TYPE_BIO_BASED;
867		return 0;
868	}
869
870	BUG_ON(!request_based); /* No targets in this table */
871
872	/* Non-request-stackable devices can't be used for request-based dm */
873	devices = dm_table_get_devices(t);
874	list_for_each_entry(dd, devices, list) {
875		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev->bdev))) {
876			DMWARN("table load rejected: including"
877			       " non-request-stackable devices");
878			return -EINVAL;
879		}
880	}
881
882	/*
883	 * Request-based dm supports only tables that have a single target now.
884	 * To support multiple targets, request splitting support is needed,
885	 * and that needs lots of changes in the block-layer.
886	 * (e.g. request completion process for partial completion.)
887	 */
888	if (t->num_targets > 1) {
889		DMWARN("Request-based dm doesn't support multiple targets yet");
890		return -EINVAL;
891	}
892
893	t->type = DM_TYPE_REQUEST_BASED;
894
895	return 0;
896}
897
898unsigned dm_table_get_type(struct dm_table *t)
899{
900	return t->type;
901}
902
903struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
904{
905	return t->immutable_target_type;
906}
907
908bool dm_table_request_based(struct dm_table *t)
909{
910	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
911}
912
913static int dm_table_alloc_md_mempools(struct dm_table *t)
914{
915	unsigned type = dm_table_get_type(t);
916	unsigned per_bio_data_size = 0;
917	struct dm_target *tgt;
918	unsigned i;
919
920	if (unlikely(type == DM_TYPE_NONE)) {
921		DMWARN("no table type is set, can't allocate mempools");
922		return -EINVAL;
923	}
924
925	if (type == DM_TYPE_BIO_BASED)
926		for (i = 0; i < t->num_targets; i++) {
927			tgt = t->targets + i;
928			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
929		}
930
931	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
932	if (!t->mempools)
933		return -ENOMEM;
934
935	return 0;
936}
937
938void dm_table_free_md_mempools(struct dm_table *t)
939{
940	dm_free_md_mempools(t->mempools);
941	t->mempools = NULL;
942}
943
944struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
945{
946	return t->mempools;
947}
948
949static int setup_indexes(struct dm_table *t)
950{
951	int i;
952	unsigned int total = 0;
953	sector_t *indexes;
954
955	/* allocate the space for *all* the indexes */
956	for (i = t->depth - 2; i >= 0; i--) {
957		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
958		total += t->counts[i];
959	}
960
961	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
962	if (!indexes)
963		return -ENOMEM;
964
965	/* set up internal nodes, bottom-up */
966	for (i = t->depth - 2; i >= 0; i--) {
967		t->index[i] = indexes;
968		indexes += (KEYS_PER_NODE * t->counts[i]);
969		setup_btree_index(i, t);
970	}
971
972	return 0;
973}
974
975/*
976 * Builds the btree to index the map.
977 */
978static int dm_table_build_index(struct dm_table *t)
979{
980	int r = 0;
981	unsigned int leaf_nodes;
982
983	/* how many indexes will the btree have ? */
984	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
985	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
986
987	/* leaf layer has already been set up */
988	t->counts[t->depth - 1] = leaf_nodes;
989	t->index[t->depth - 1] = t->highs;
990
991	if (t->depth >= 2)
992		r = setup_indexes(t);
993
994	return r;
995}
996
997/*
998 * Get a disk whose integrity profile reflects the table's profile.
999 * If %match_all is true, all devices' profiles must match.
1000 * If %match_all is false, all devices must at least have an
1001 * allocated integrity profile; but uninitialized is ok.
1002 * Returns NULL if integrity support was inconsistent or unavailable.
1003 */
1004static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1005						    bool match_all)
1006{
1007	struct list_head *devices = dm_table_get_devices(t);
1008	struct dm_dev_internal *dd = NULL;
1009	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1010
1011	list_for_each_entry(dd, devices, list) {
1012		template_disk = dd->dm_dev->bdev->bd_disk;
1013		if (!blk_get_integrity(template_disk))
1014			goto no_integrity;
1015		if (!match_all && !blk_integrity_is_initialized(template_disk))
1016			continue; /* skip uninitialized profiles */
1017		else if (prev_disk &&
1018			 blk_integrity_compare(prev_disk, template_disk) < 0)
1019			goto no_integrity;
1020		prev_disk = template_disk;
1021	}
1022
1023	return template_disk;
1024
1025no_integrity:
1026	if (prev_disk)
1027		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1028		       dm_device_name(t->md),
1029		       prev_disk->disk_name,
1030		       template_disk->disk_name);
1031	return NULL;
1032}
1033
1034/*
1035 * Register the mapped device for blk_integrity support if
1036 * the underlying devices have an integrity profile.  But all devices
1037 * may not have matching profiles (checking all devices isn't reliable
1038 * during table load because this table may use other DM device(s) which
1039 * must be resumed before they will have an initialized integity profile).
1040 * Stacked DM devices force a 2 stage integrity profile validation:
1041 * 1 - during load, validate all initialized integrity profiles match
1042 * 2 - during resume, validate all integrity profiles match
1043 */
1044static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1045{
1046	struct gendisk *template_disk = NULL;
1047
1048	template_disk = dm_table_get_integrity_disk(t, false);
1049	if (!template_disk)
1050		return 0;
1051
1052	if (!blk_integrity_is_initialized(dm_disk(md))) {
1053		t->integrity_supported = 1;
1054		return blk_integrity_register(dm_disk(md), NULL);
1055	}
1056
1057	/*
1058	 * If DM device already has an initalized integrity
1059	 * profile the new profile should not conflict.
1060	 */
1061	if (blk_integrity_is_initialized(template_disk) &&
1062	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1063		DMWARN("%s: conflict with existing integrity profile: "
1064		       "%s profile mismatch",
1065		       dm_device_name(t->md),
1066		       template_disk->disk_name);
1067		return 1;
1068	}
1069
1070	/* Preserve existing initialized integrity profile */
1071	t->integrity_supported = 1;
1072	return 0;
1073}
1074
1075/*
1076 * Prepares the table for use by building the indices,
1077 * setting the type, and allocating mempools.
1078 */
1079int dm_table_complete(struct dm_table *t)
1080{
1081	int r;
1082
1083	r = dm_table_set_type(t);
1084	if (r) {
1085		DMERR("unable to set table type");
1086		return r;
1087	}
1088
1089	r = dm_table_build_index(t);
1090	if (r) {
1091		DMERR("unable to build btrees");
1092		return r;
1093	}
1094
1095	r = dm_table_prealloc_integrity(t, t->md);
1096	if (r) {
1097		DMERR("could not register integrity profile.");
1098		return r;
1099	}
1100
1101	r = dm_table_alloc_md_mempools(t);
1102	if (r)
1103		DMERR("unable to allocate mempools");
1104
1105	return r;
1106}
1107
1108static DEFINE_MUTEX(_event_lock);
1109void dm_table_event_callback(struct dm_table *t,
1110			     void (*fn)(void *), void *context)
1111{
1112	mutex_lock(&_event_lock);
1113	t->event_fn = fn;
1114	t->event_context = context;
1115	mutex_unlock(&_event_lock);
1116}
1117
1118void dm_table_event(struct dm_table *t)
1119{
1120	/*
1121	 * You can no longer call dm_table_event() from interrupt
1122	 * context, use a bottom half instead.
1123	 */
1124	BUG_ON(in_interrupt());
1125
1126	mutex_lock(&_event_lock);
1127	if (t->event_fn)
1128		t->event_fn(t->event_context);
1129	mutex_unlock(&_event_lock);
1130}
1131EXPORT_SYMBOL(dm_table_event);
1132
1133sector_t dm_table_get_size(struct dm_table *t)
1134{
1135	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1136}
1137EXPORT_SYMBOL(dm_table_get_size);
1138
1139struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1140{
1141	if (index >= t->num_targets)
1142		return NULL;
1143
1144	return t->targets + index;
1145}
1146
1147/*
1148 * Search the btree for the correct target.
1149 *
1150 * Caller should check returned pointer with dm_target_is_valid()
1151 * to trap I/O beyond end of device.
1152 */
1153struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1154{
1155	unsigned int l, n = 0, k = 0;
1156	sector_t *node;
1157
1158	for (l = 0; l < t->depth; l++) {
1159		n = get_child(n, k);
1160		node = get_node(t, l, n);
1161
1162		for (k = 0; k < KEYS_PER_NODE; k++)
1163			if (node[k] >= sector)
1164				break;
1165	}
1166
1167	return &t->targets[(KEYS_PER_NODE * n) + k];
1168}
1169
1170static int count_device(struct dm_target *ti, struct dm_dev *dev,
1171			sector_t start, sector_t len, void *data)
1172{
1173	unsigned *num_devices = data;
1174
1175	(*num_devices)++;
1176
1177	return 0;
1178}
1179
1180/*
1181 * Check whether a table has no data devices attached using each
1182 * target's iterate_devices method.
1183 * Returns false if the result is unknown because a target doesn't
1184 * support iterate_devices.
1185 */
1186bool dm_table_has_no_data_devices(struct dm_table *table)
1187{
1188	struct dm_target *uninitialized_var(ti);
1189	unsigned i = 0, num_devices = 0;
1190
1191	while (i < dm_table_get_num_targets(table)) {
1192		ti = dm_table_get_target(table, i++);
1193
1194		if (!ti->type->iterate_devices)
1195			return false;
1196
1197		ti->type->iterate_devices(ti, count_device, &num_devices);
1198		if (num_devices)
1199			return false;
1200	}
1201
1202	return true;
1203}
1204
1205/*
1206 * Establish the new table's queue_limits and validate them.
1207 */
1208int dm_calculate_queue_limits(struct dm_table *table,
1209			      struct queue_limits *limits)
1210{
1211	struct dm_target *uninitialized_var(ti);
1212	struct queue_limits ti_limits;
1213	unsigned i = 0;
1214
1215	blk_set_stacking_limits(limits);
1216
1217	while (i < dm_table_get_num_targets(table)) {
1218		blk_set_stacking_limits(&ti_limits);
1219
1220		ti = dm_table_get_target(table, i++);
1221
1222		if (!ti->type->iterate_devices)
1223			goto combine_limits;
1224
1225		/*
1226		 * Combine queue limits of all the devices this target uses.
1227		 */
1228		ti->type->iterate_devices(ti, dm_set_device_limits,
1229					  &ti_limits);
1230
1231		/* Set I/O hints portion of queue limits */
1232		if (ti->type->io_hints)
1233			ti->type->io_hints(ti, &ti_limits);
1234
1235		/*
1236		 * Check each device area is consistent with the target's
1237		 * overall queue limits.
1238		 */
1239		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1240					      &ti_limits))
1241			return -EINVAL;
1242
1243combine_limits:
1244		/*
1245		 * Merge this target's queue limits into the overall limits
1246		 * for the table.
1247		 */
1248		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1249			DMWARN("%s: adding target device "
1250			       "(start sect %llu len %llu) "
1251			       "caused an alignment inconsistency",
1252			       dm_device_name(table->md),
1253			       (unsigned long long) ti->begin,
1254			       (unsigned long long) ti->len);
1255	}
1256
1257	return validate_hardware_logical_block_alignment(table, limits);
1258}
1259
1260/*
1261 * Set the integrity profile for this device if all devices used have
1262 * matching profiles.  We're quite deep in the resume path but still
1263 * don't know if all devices (particularly DM devices this device
1264 * may be stacked on) have matching profiles.  Even if the profiles
1265 * don't match we have no way to fail (to resume) at this point.
1266 */
1267static void dm_table_set_integrity(struct dm_table *t)
1268{
1269	struct gendisk *template_disk = NULL;
1270
1271	if (!blk_get_integrity(dm_disk(t->md)))
1272		return;
1273
1274	template_disk = dm_table_get_integrity_disk(t, true);
1275	if (template_disk)
1276		blk_integrity_register(dm_disk(t->md),
1277				       blk_get_integrity(template_disk));
1278	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1279		DMWARN("%s: device no longer has a valid integrity profile",
1280		       dm_device_name(t->md));
1281	else
1282		DMWARN("%s: unable to establish an integrity profile",
1283		       dm_device_name(t->md));
1284}
1285
1286static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1287				sector_t start, sector_t len, void *data)
1288{
1289	unsigned flush = (*(unsigned *)data);
1290	struct request_queue *q = bdev_get_queue(dev->bdev);
1291
1292	return q && (q->flush_flags & flush);
1293}
1294
1295static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1296{
1297	struct dm_target *ti;
1298	unsigned i = 0;
1299
1300	/*
1301	 * Require at least one underlying device to support flushes.
1302	 * t->devices includes internal dm devices such as mirror logs
1303	 * so we need to use iterate_devices here, which targets
1304	 * supporting flushes must provide.
1305	 */
1306	while (i < dm_table_get_num_targets(t)) {
1307		ti = dm_table_get_target(t, i++);
1308
1309		if (!ti->num_flush_bios)
1310			continue;
1311
1312		if (ti->flush_supported)
1313			return 1;
1314
1315		if (ti->type->iterate_devices &&
1316		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1317			return 1;
1318	}
1319
1320	return 0;
1321}
1322
1323static bool dm_table_discard_zeroes_data(struct dm_table *t)
1324{
1325	struct dm_target *ti;
1326	unsigned i = 0;
1327
1328	/* Ensure that all targets supports discard_zeroes_data. */
1329	while (i < dm_table_get_num_targets(t)) {
1330		ti = dm_table_get_target(t, i++);
1331
1332		if (ti->discard_zeroes_data_unsupported)
1333			return 0;
1334	}
1335
1336	return 1;
1337}
1338
1339static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1340			    sector_t start, sector_t len, void *data)
1341{
1342	struct request_queue *q = bdev_get_queue(dev->bdev);
1343
1344	return q && blk_queue_nonrot(q);
1345}
1346
1347static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1348			     sector_t start, sector_t len, void *data)
1349{
1350	struct request_queue *q = bdev_get_queue(dev->bdev);
1351
1352	return q && !blk_queue_add_random(q);
1353}
1354
1355static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1356				   sector_t start, sector_t len, void *data)
1357{
1358	struct request_queue *q = bdev_get_queue(dev->bdev);
1359
1360	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1361}
1362
1363static bool dm_table_all_devices_attribute(struct dm_table *t,
1364					   iterate_devices_callout_fn func)
1365{
1366	struct dm_target *ti;
1367	unsigned i = 0;
1368
1369	while (i < dm_table_get_num_targets(t)) {
1370		ti = dm_table_get_target(t, i++);
1371
1372		if (!ti->type->iterate_devices ||
1373		    !ti->type->iterate_devices(ti, func, NULL))
1374			return 0;
1375	}
1376
1377	return 1;
1378}
1379
1380static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1381					 sector_t start, sector_t len, void *data)
1382{
1383	struct request_queue *q = bdev_get_queue(dev->bdev);
1384
1385	return q && !q->limits.max_write_same_sectors;
1386}
1387
1388static bool dm_table_supports_write_same(struct dm_table *t)
1389{
1390	struct dm_target *ti;
1391	unsigned i = 0;
1392
1393	while (i < dm_table_get_num_targets(t)) {
1394		ti = dm_table_get_target(t, i++);
1395
1396		if (!ti->num_write_same_bios)
1397			return false;
1398
1399		if (!ti->type->iterate_devices ||
1400		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1401			return false;
1402	}
1403
1404	return true;
1405}
1406
1407static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1408				  sector_t start, sector_t len, void *data)
1409{
1410	struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412	return q && blk_queue_discard(q);
1413}
1414
1415static bool dm_table_supports_discards(struct dm_table *t)
1416{
1417	struct dm_target *ti;
1418	unsigned i = 0;
1419
1420	/*
1421	 * Unless any target used by the table set discards_supported,
1422	 * require at least one underlying device to support discards.
1423	 * t->devices includes internal dm devices such as mirror logs
1424	 * so we need to use iterate_devices here, which targets
1425	 * supporting discard selectively must provide.
1426	 */
1427	while (i < dm_table_get_num_targets(t)) {
1428		ti = dm_table_get_target(t, i++);
1429
1430		if (!ti->num_discard_bios)
1431			continue;
1432
1433		if (ti->discards_supported)
1434			return 1;
1435
1436		if (ti->type->iterate_devices &&
1437		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1438			return 1;
1439	}
1440
1441	return 0;
1442}
1443
1444void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1445			       struct queue_limits *limits)
1446{
1447	unsigned flush = 0;
1448
1449	/*
1450	 * Copy table's limits to the DM device's request_queue
1451	 */
1452	q->limits = *limits;
1453
1454	if (!dm_table_supports_discards(t))
1455		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1456	else
1457		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1458
1459	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1460		flush |= REQ_FLUSH;
1461		if (dm_table_supports_flush(t, REQ_FUA))
1462			flush |= REQ_FUA;
1463	}
1464	blk_queue_flush(q, flush);
1465
1466	if (!dm_table_discard_zeroes_data(t))
1467		q->limits.discard_zeroes_data = 0;
1468
1469	/* Ensure that all underlying devices are non-rotational. */
1470	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1471		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1472	else
1473		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1474
1475	if (!dm_table_supports_write_same(t))
1476		q->limits.max_write_same_sectors = 0;
1477
1478	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1479		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1480	else
1481		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1482
1483	dm_table_set_integrity(t);
1484
1485	/*
1486	 * Determine whether or not this queue's I/O timings contribute
1487	 * to the entropy pool, Only request-based targets use this.
1488	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1489	 * have it set.
1490	 */
1491	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1492		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1493
1494	/*
1495	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1496	 * visible to other CPUs because, once the flag is set, incoming bios
1497	 * are processed by request-based dm, which refers to the queue
1498	 * settings.
1499	 * Until the flag set, bios are passed to bio-based dm and queued to
1500	 * md->deferred where queue settings are not needed yet.
1501	 * Those bios are passed to request-based dm at the resume time.
1502	 */
1503	smp_mb();
1504	if (dm_table_request_based(t))
1505		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1506}
1507
1508unsigned int dm_table_get_num_targets(struct dm_table *t)
1509{
1510	return t->num_targets;
1511}
1512
1513struct list_head *dm_table_get_devices(struct dm_table *t)
1514{
1515	return &t->devices;
1516}
1517
1518fmode_t dm_table_get_mode(struct dm_table *t)
1519{
1520	return t->mode;
1521}
1522EXPORT_SYMBOL(dm_table_get_mode);
1523
1524static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1525{
1526	int i = t->num_targets;
1527	struct dm_target *ti = t->targets;
1528
1529	while (i--) {
1530		if (postsuspend) {
1531			if (ti->type->postsuspend)
1532				ti->type->postsuspend(ti);
1533		} else if (ti->type->presuspend)
1534			ti->type->presuspend(ti);
1535
1536		ti++;
1537	}
1538}
1539
1540void dm_table_presuspend_targets(struct dm_table *t)
1541{
1542	if (!t)
1543		return;
1544
1545	suspend_targets(t, 0);
1546}
1547
1548void dm_table_postsuspend_targets(struct dm_table *t)
1549{
1550	if (!t)
1551		return;
1552
1553	suspend_targets(t, 1);
1554}
1555
1556int dm_table_resume_targets(struct dm_table *t)
1557{
1558	int i, r = 0;
1559
1560	for (i = 0; i < t->num_targets; i++) {
1561		struct dm_target *ti = t->targets + i;
1562
1563		if (!ti->type->preresume)
1564			continue;
1565
1566		r = ti->type->preresume(ti);
1567		if (r) {
1568			DMERR("%s: %s: preresume failed, error = %d",
1569			      dm_device_name(t->md), ti->type->name, r);
1570			return r;
1571		}
1572	}
1573
1574	for (i = 0; i < t->num_targets; i++) {
1575		struct dm_target *ti = t->targets + i;
1576
1577		if (ti->type->resume)
1578			ti->type->resume(ti);
1579	}
1580
1581	return 0;
1582}
1583
1584void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1585{
1586	list_add(&cb->list, &t->target_callbacks);
1587}
1588EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1589
1590int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1591{
1592	struct dm_dev_internal *dd;
1593	struct list_head *devices = dm_table_get_devices(t);
1594	struct dm_target_callbacks *cb;
1595	int r = 0;
1596
1597	list_for_each_entry(dd, devices, list) {
1598		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1599		char b[BDEVNAME_SIZE];
1600
1601		if (likely(q))
1602			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1603		else
1604			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1605				     dm_device_name(t->md),
1606				     bdevname(dd->dm_dev->bdev, b));
1607	}
1608
1609	list_for_each_entry(cb, &t->target_callbacks, list)
1610		if (cb->congested_fn)
1611			r |= cb->congested_fn(cb, bdi_bits);
1612
1613	return r;
1614}
1615
1616int dm_table_any_busy_target(struct dm_table *t)
1617{
1618	unsigned i;
1619	struct dm_target *ti;
1620
1621	for (i = 0; i < t->num_targets; i++) {
1622		ti = t->targets + i;
1623		if (ti->type->busy && ti->type->busy(ti))
1624			return 1;
1625	}
1626
1627	return 0;
1628}
1629
1630struct mapped_device *dm_table_get_md(struct dm_table *t)
1631{
1632	return t->md;
1633}
1634EXPORT_SYMBOL(dm_table_get_md);
1635
1636void dm_table_run_md_queue_async(struct dm_table *t)
1637{
1638	struct mapped_device *md;
1639	struct request_queue *queue;
1640	unsigned long flags;
1641
1642	if (!dm_table_request_based(t))
1643		return;
1644
1645	md = dm_table_get_md(t);
1646	queue = dm_get_md_queue(md);
1647	if (queue) {
1648		spin_lock_irqsave(queue->queue_lock, flags);
1649		blk_run_queue_async(queue);
1650		spin_unlock_irqrestore(queue->queue_lock, flags);
1651	}
1652}
1653EXPORT_SYMBOL(dm_table_run_md_queue_async);
1654
1655