[go: nahoru, domu]

1/*
2 * Afatech AF9013 demodulator driver
3 *
4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6 *
7 * Thanks to Afatech who kindly provided information.
8 *
9 *    This program is free software; you can redistribute it and/or modify
10 *    it under the terms of the GNU General Public License as published by
11 *    the Free Software Foundation; either version 2 of the License, or
12 *    (at your option) any later version.
13 *
14 *    This program is distributed in the hope that it will be useful,
15 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *    GNU General Public License for more details.
18 *
19 *    You should have received a copy of the GNU General Public License
20 *    along with this program; if not, write to the Free Software
21 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 *
23 */
24
25#include "af9013_priv.h"
26
27/* Max transfer size done by I2C transfer functions */
28#define MAX_XFER_SIZE  64
29
30struct af9013_state {
31	struct i2c_adapter *i2c;
32	struct dvb_frontend fe;
33	struct af9013_config config;
34
35	/* tuner/demod RF and IF AGC limits used for signal strength calc */
36	u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
37	u16 signal_strength;
38	u32 ber;
39	u32 ucblocks;
40	u16 snr;
41	u32 bandwidth_hz;
42	fe_status_t fe_status;
43	unsigned long set_frontend_jiffies;
44	unsigned long read_status_jiffies;
45	bool first_tune;
46	bool i2c_gate_state;
47	unsigned int statistics_step:3;
48	struct delayed_work statistics_work;
49};
50
51/* write multiple registers */
52static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
53	const u8 *val, int len)
54{
55	int ret;
56	u8 buf[MAX_XFER_SIZE];
57	struct i2c_msg msg[1] = {
58		{
59			.addr = priv->config.i2c_addr,
60			.flags = 0,
61			.len = 3 + len,
62			.buf = buf,
63		}
64	};
65
66	if (3 + len > sizeof(buf)) {
67		dev_warn(&priv->i2c->dev,
68			 "%s: i2c wr reg=%04x: len=%d is too big!\n",
69			 KBUILD_MODNAME, reg, len);
70		return -EINVAL;
71	}
72
73	buf[0] = (reg >> 8) & 0xff;
74	buf[1] = (reg >> 0) & 0xff;
75	buf[2] = mbox;
76	memcpy(&buf[3], val, len);
77
78	ret = i2c_transfer(priv->i2c, msg, 1);
79	if (ret == 1) {
80		ret = 0;
81	} else {
82		dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
83				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
84		ret = -EREMOTEIO;
85	}
86	return ret;
87}
88
89/* read multiple registers */
90static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
91	u8 *val, int len)
92{
93	int ret;
94	u8 buf[3];
95	struct i2c_msg msg[2] = {
96		{
97			.addr = priv->config.i2c_addr,
98			.flags = 0,
99			.len = 3,
100			.buf = buf,
101		}, {
102			.addr = priv->config.i2c_addr,
103			.flags = I2C_M_RD,
104			.len = len,
105			.buf = val,
106		}
107	};
108
109	buf[0] = (reg >> 8) & 0xff;
110	buf[1] = (reg >> 0) & 0xff;
111	buf[2] = mbox;
112
113	ret = i2c_transfer(priv->i2c, msg, 2);
114	if (ret == 2) {
115		ret = 0;
116	} else {
117		dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
118				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
119		ret = -EREMOTEIO;
120	}
121	return ret;
122}
123
124/* write multiple registers */
125static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
126	int len)
127{
128	int ret, i;
129	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
130
131	if ((priv->config.ts_mode == AF9013_TS_USB) &&
132		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
133		mbox |= ((len - 1) << 2);
134		ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
135	} else {
136		for (i = 0; i < len; i++) {
137			ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
138			if (ret)
139				goto err;
140		}
141	}
142
143err:
144	return 0;
145}
146
147/* read multiple registers */
148static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
149{
150	int ret, i;
151	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
152
153	if ((priv->config.ts_mode == AF9013_TS_USB) &&
154		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
155		mbox |= ((len - 1) << 2);
156		ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
157	} else {
158		for (i = 0; i < len; i++) {
159			ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
160			if (ret)
161				goto err;
162		}
163	}
164
165err:
166	return 0;
167}
168
169/* write single register */
170static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
171{
172	return af9013_wr_regs(priv, reg, &val, 1);
173}
174
175/* read single register */
176static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
177{
178	return af9013_rd_regs(priv, reg, val, 1);
179}
180
181static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
182	u8 len)
183{
184	u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
185	return af9013_wr_regs_i2c(state, mbox, reg, val, len);
186}
187
188static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
189	int len, u8 val)
190{
191	int ret;
192	u8 tmp, mask;
193
194	/* no need for read if whole reg is written */
195	if (len != 8) {
196		ret = af9013_rd_reg(state, reg, &tmp);
197		if (ret)
198			return ret;
199
200		mask = (0xff >> (8 - len)) << pos;
201		val <<= pos;
202		tmp &= ~mask;
203		val |= tmp;
204	}
205
206	return af9013_wr_reg(state, reg, val);
207}
208
209static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
210	int len, u8 *val)
211{
212	int ret;
213	u8 tmp;
214
215	ret = af9013_rd_reg(state, reg, &tmp);
216	if (ret)
217		return ret;
218
219	*val = (tmp >> pos);
220	*val &= (0xff >> (8 - len));
221
222	return 0;
223}
224
225static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
226{
227	int ret;
228	u8 pos;
229	u16 addr;
230
231	dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
232			__func__, gpio, gpioval);
233
234	/*
235	 * GPIO0 & GPIO1 0xd735
236	 * GPIO2 & GPIO3 0xd736
237	 */
238
239	switch (gpio) {
240	case 0:
241	case 1:
242		addr = 0xd735;
243		break;
244	case 2:
245	case 3:
246		addr = 0xd736;
247		break;
248
249	default:
250		dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
251				KBUILD_MODNAME, gpio);
252		ret = -EINVAL;
253		goto err;
254	}
255
256	switch (gpio) {
257	case 0:
258	case 2:
259		pos = 0;
260		break;
261	case 1:
262	case 3:
263	default:
264		pos = 4;
265		break;
266	}
267
268	ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
269	if (ret)
270		goto err;
271
272	return ret;
273err:
274	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
275	return ret;
276}
277
278static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
279{
280	u32 r = 0, c = 0, i;
281
282	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
283
284	if (a > b) {
285		c = a / b;
286		a = a - c * b;
287	}
288
289	for (i = 0; i < x; i++) {
290		if (a >= b) {
291			r += 1;
292			a -= b;
293		}
294		a <<= 1;
295		r <<= 1;
296	}
297	r = (c << (u32)x) + r;
298
299	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
300			__func__, a, b, x, r, r);
301
302	return r;
303}
304
305static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
306{
307	int ret, i;
308	u8 tmp;
309
310	dev_dbg(&state->i2c->dev, "%s: ", __func__, onoff);
311
312	/* enable reset */
313	ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
314	if (ret)
315		goto err;
316
317	/* start reset mechanism */
318	ret = af9013_wr_reg(state, 0xaeff, 1);
319	if (ret)
320		goto err;
321
322	/* wait reset performs */
323	for (i = 0; i < 150; i++) {
324		ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
325		if (ret)
326			goto err;
327
328		if (tmp)
329			break; /* reset done */
330
331		usleep_range(5000, 25000);
332	}
333
334	if (!tmp)
335		return -ETIMEDOUT;
336
337	if (onoff) {
338		/* clear reset */
339		ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
340		if (ret)
341			goto err;
342
343		/* disable reset */
344		ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
345
346		/* power on */
347		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
348	} else {
349		/* power off */
350		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
351	}
352
353	return ret;
354err:
355	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
356	return ret;
357}
358
359static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
360{
361	struct af9013_state *state = fe->demodulator_priv;
362	int ret;
363
364	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
365
366	/* reset and start BER counter */
367	ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
368	if (ret)
369		goto err;
370
371	return ret;
372err:
373	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
374	return ret;
375}
376
377static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
378{
379	struct af9013_state *state = fe->demodulator_priv;
380	int ret;
381	u8 buf[5];
382
383	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
384
385	/* check if error bit count is ready */
386	ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
387	if (ret)
388		goto err;
389
390	if (!buf[0]) {
391		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
392		return 0;
393	}
394
395	ret = af9013_rd_regs(state, 0xd387, buf, 5);
396	if (ret)
397		goto err;
398
399	state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
400	state->ucblocks += (buf[4] << 8) | buf[3];
401
402	return ret;
403err:
404	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
405	return ret;
406}
407
408static int af9013_statistics_snr_start(struct dvb_frontend *fe)
409{
410	struct af9013_state *state = fe->demodulator_priv;
411	int ret;
412
413	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
414
415	/* start SNR meas */
416	ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
417	if (ret)
418		goto err;
419
420	return ret;
421err:
422	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
423	return ret;
424}
425
426static int af9013_statistics_snr_result(struct dvb_frontend *fe)
427{
428	struct af9013_state *state = fe->demodulator_priv;
429	int ret, i, len;
430	u8 buf[3], tmp;
431	u32 snr_val;
432	const struct af9013_snr *uninitialized_var(snr_lut);
433
434	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
435
436	/* check if SNR ready */
437	ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
438	if (ret)
439		goto err;
440
441	if (!tmp) {
442		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
443		return 0;
444	}
445
446	/* read value */
447	ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
448	if (ret)
449		goto err;
450
451	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
452
453	/* read current modulation */
454	ret = af9013_rd_reg(state, 0xd3c1, &tmp);
455	if (ret)
456		goto err;
457
458	switch ((tmp >> 6) & 3) {
459	case 0:
460		len = ARRAY_SIZE(qpsk_snr_lut);
461		snr_lut = qpsk_snr_lut;
462		break;
463	case 1:
464		len = ARRAY_SIZE(qam16_snr_lut);
465		snr_lut = qam16_snr_lut;
466		break;
467	case 2:
468		len = ARRAY_SIZE(qam64_snr_lut);
469		snr_lut = qam64_snr_lut;
470		break;
471	default:
472		goto err;
473	}
474
475	for (i = 0; i < len; i++) {
476		tmp = snr_lut[i].snr;
477
478		if (snr_val < snr_lut[i].val)
479			break;
480	}
481	state->snr = tmp * 10; /* dB/10 */
482
483	return ret;
484err:
485	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
486	return ret;
487}
488
489static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
490{
491	struct af9013_state *state = fe->demodulator_priv;
492	int ret = 0;
493	u8 buf[2], rf_gain, if_gain;
494	int signal_strength;
495
496	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
497
498	if (!state->signal_strength_en)
499		return 0;
500
501	ret = af9013_rd_regs(state, 0xd07c, buf, 2);
502	if (ret)
503		goto err;
504
505	rf_gain = buf[0];
506	if_gain = buf[1];
507
508	signal_strength = (0xffff / \
509		(9 * (state->rf_50 + state->if_50) - \
510		11 * (state->rf_80 + state->if_80))) * \
511		(10 * (rf_gain + if_gain) - \
512		11 * (state->rf_80 + state->if_80));
513	if (signal_strength < 0)
514		signal_strength = 0;
515	else if (signal_strength > 0xffff)
516		signal_strength = 0xffff;
517
518	state->signal_strength = signal_strength;
519
520	return ret;
521err:
522	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
523	return ret;
524}
525
526static void af9013_statistics_work(struct work_struct *work)
527{
528	struct af9013_state *state = container_of(work,
529		struct af9013_state, statistics_work.work);
530	unsigned int next_msec;
531
532	/* update only signal strength when demod is not locked */
533	if (!(state->fe_status & FE_HAS_LOCK)) {
534		state->statistics_step = 0;
535		state->ber = 0;
536		state->snr = 0;
537	}
538
539	switch (state->statistics_step) {
540	default:
541		state->statistics_step = 0;
542	case 0:
543		af9013_statistics_signal_strength(&state->fe);
544		state->statistics_step++;
545		next_msec = 300;
546		break;
547	case 1:
548		af9013_statistics_snr_start(&state->fe);
549		state->statistics_step++;
550		next_msec = 200;
551		break;
552	case 2:
553		af9013_statistics_ber_unc_start(&state->fe);
554		state->statistics_step++;
555		next_msec = 1000;
556		break;
557	case 3:
558		af9013_statistics_snr_result(&state->fe);
559		state->statistics_step++;
560		next_msec = 400;
561		break;
562	case 4:
563		af9013_statistics_ber_unc_result(&state->fe);
564		state->statistics_step++;
565		next_msec = 100;
566		break;
567	}
568
569	schedule_delayed_work(&state->statistics_work,
570		msecs_to_jiffies(next_msec));
571}
572
573static int af9013_get_tune_settings(struct dvb_frontend *fe,
574	struct dvb_frontend_tune_settings *fesettings)
575{
576	fesettings->min_delay_ms = 800;
577	fesettings->step_size = 0;
578	fesettings->max_drift = 0;
579
580	return 0;
581}
582
583static int af9013_set_frontend(struct dvb_frontend *fe)
584{
585	struct af9013_state *state = fe->demodulator_priv;
586	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
587	int ret, i, sampling_freq;
588	bool auto_mode, spec_inv;
589	u8 buf[6];
590	u32 if_frequency, freq_cw;
591
592	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
593			__func__, c->frequency, c->bandwidth_hz);
594
595	/* program tuner */
596	if (fe->ops.tuner_ops.set_params)
597		fe->ops.tuner_ops.set_params(fe);
598
599	/* program CFOE coefficients */
600	if (c->bandwidth_hz != state->bandwidth_hz) {
601		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
602			if (coeff_lut[i].clock == state->config.clock &&
603				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
604				break;
605			}
606		}
607
608		ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
609			sizeof(coeff_lut[i].val));
610	}
611
612	/* program frequency control */
613	if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
614		/* get used IF frequency */
615		if (fe->ops.tuner_ops.get_if_frequency)
616			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
617		else
618			if_frequency = state->config.if_frequency;
619
620		dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
621				__func__, if_frequency);
622
623		sampling_freq = if_frequency;
624
625		while (sampling_freq > (state->config.clock / 2))
626			sampling_freq -= state->config.clock;
627
628		if (sampling_freq < 0) {
629			sampling_freq *= -1;
630			spec_inv = state->config.spec_inv;
631		} else {
632			spec_inv = !state->config.spec_inv;
633		}
634
635		freq_cw = af9013_div(state, sampling_freq, state->config.clock,
636				23);
637
638		if (spec_inv)
639			freq_cw = 0x800000 - freq_cw;
640
641		buf[0] = (freq_cw >>  0) & 0xff;
642		buf[1] = (freq_cw >>  8) & 0xff;
643		buf[2] = (freq_cw >> 16) & 0x7f;
644
645		freq_cw = 0x800000 - freq_cw;
646
647		buf[3] = (freq_cw >>  0) & 0xff;
648		buf[4] = (freq_cw >>  8) & 0xff;
649		buf[5] = (freq_cw >> 16) & 0x7f;
650
651		ret = af9013_wr_regs(state, 0xd140, buf, 3);
652		if (ret)
653			goto err;
654
655		ret = af9013_wr_regs(state, 0x9be7, buf, 6);
656		if (ret)
657			goto err;
658	}
659
660	/* clear TPS lock flag */
661	ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
662	if (ret)
663		goto err;
664
665	/* clear MPEG2 lock flag */
666	ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
667	if (ret)
668		goto err;
669
670	/* empty channel function */
671	ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
672	if (ret)
673		goto err;
674
675	/* empty DVB-T channel function */
676	ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
677	if (ret)
678		goto err;
679
680	/* transmission parameters */
681	auto_mode = false;
682	memset(buf, 0, 3);
683
684	switch (c->transmission_mode) {
685	case TRANSMISSION_MODE_AUTO:
686		auto_mode = true;
687		break;
688	case TRANSMISSION_MODE_2K:
689		break;
690	case TRANSMISSION_MODE_8K:
691		buf[0] |= (1 << 0);
692		break;
693	default:
694		dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
695				__func__);
696		auto_mode = true;
697	}
698
699	switch (c->guard_interval) {
700	case GUARD_INTERVAL_AUTO:
701		auto_mode = true;
702		break;
703	case GUARD_INTERVAL_1_32:
704		break;
705	case GUARD_INTERVAL_1_16:
706		buf[0] |= (1 << 2);
707		break;
708	case GUARD_INTERVAL_1_8:
709		buf[0] |= (2 << 2);
710		break;
711	case GUARD_INTERVAL_1_4:
712		buf[0] |= (3 << 2);
713		break;
714	default:
715		dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
716				__func__);
717		auto_mode = true;
718	}
719
720	switch (c->hierarchy) {
721	case HIERARCHY_AUTO:
722		auto_mode = true;
723		break;
724	case HIERARCHY_NONE:
725		break;
726	case HIERARCHY_1:
727		buf[0] |= (1 << 4);
728		break;
729	case HIERARCHY_2:
730		buf[0] |= (2 << 4);
731		break;
732	case HIERARCHY_4:
733		buf[0] |= (3 << 4);
734		break;
735	default:
736		dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
737		auto_mode = true;
738	}
739
740	switch (c->modulation) {
741	case QAM_AUTO:
742		auto_mode = true;
743		break;
744	case QPSK:
745		break;
746	case QAM_16:
747		buf[1] |= (1 << 6);
748		break;
749	case QAM_64:
750		buf[1] |= (2 << 6);
751		break;
752	default:
753		dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
754		auto_mode = true;
755	}
756
757	/* Use HP. How and which case we can switch to LP? */
758	buf[1] |= (1 << 4);
759
760	switch (c->code_rate_HP) {
761	case FEC_AUTO:
762		auto_mode = true;
763		break;
764	case FEC_1_2:
765		break;
766	case FEC_2_3:
767		buf[2] |= (1 << 0);
768		break;
769	case FEC_3_4:
770		buf[2] |= (2 << 0);
771		break;
772	case FEC_5_6:
773		buf[2] |= (3 << 0);
774		break;
775	case FEC_7_8:
776		buf[2] |= (4 << 0);
777		break;
778	default:
779		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
780				__func__);
781		auto_mode = true;
782	}
783
784	switch (c->code_rate_LP) {
785	case FEC_AUTO:
786		auto_mode = true;
787		break;
788	case FEC_1_2:
789		break;
790	case FEC_2_3:
791		buf[2] |= (1 << 3);
792		break;
793	case FEC_3_4:
794		buf[2] |= (2 << 3);
795		break;
796	case FEC_5_6:
797		buf[2] |= (3 << 3);
798		break;
799	case FEC_7_8:
800		buf[2] |= (4 << 3);
801		break;
802	case FEC_NONE:
803		break;
804	default:
805		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
806				__func__);
807		auto_mode = true;
808	}
809
810	switch (c->bandwidth_hz) {
811	case 6000000:
812		break;
813	case 7000000:
814		buf[1] |= (1 << 2);
815		break;
816	case 8000000:
817		buf[1] |= (2 << 2);
818		break;
819	default:
820		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
821				__func__);
822		ret = -EINVAL;
823		goto err;
824	}
825
826	ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
827	if (ret)
828		goto err;
829
830	if (auto_mode) {
831		/* clear easy mode flag */
832		ret = af9013_wr_reg(state, 0xaefd, 0);
833		if (ret)
834			goto err;
835
836		dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
837	} else {
838		/* set easy mode flag */
839		ret = af9013_wr_reg(state, 0xaefd, 1);
840		if (ret)
841			goto err;
842
843		ret = af9013_wr_reg(state, 0xaefe, 0);
844		if (ret)
845			goto err;
846
847		dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
848	}
849
850	/* tune */
851	ret = af9013_wr_reg(state, 0xffff, 0);
852	if (ret)
853		goto err;
854
855	state->bandwidth_hz = c->bandwidth_hz;
856	state->set_frontend_jiffies = jiffies;
857	state->first_tune = false;
858
859	return ret;
860err:
861	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
862	return ret;
863}
864
865static int af9013_get_frontend(struct dvb_frontend *fe)
866{
867	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
868	struct af9013_state *state = fe->demodulator_priv;
869	int ret;
870	u8 buf[3];
871
872	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
873
874	ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
875	if (ret)
876		goto err;
877
878	switch ((buf[1] >> 6) & 3) {
879	case 0:
880		c->modulation = QPSK;
881		break;
882	case 1:
883		c->modulation = QAM_16;
884		break;
885	case 2:
886		c->modulation = QAM_64;
887		break;
888	}
889
890	switch ((buf[0] >> 0) & 3) {
891	case 0:
892		c->transmission_mode = TRANSMISSION_MODE_2K;
893		break;
894	case 1:
895		c->transmission_mode = TRANSMISSION_MODE_8K;
896	}
897
898	switch ((buf[0] >> 2) & 3) {
899	case 0:
900		c->guard_interval = GUARD_INTERVAL_1_32;
901		break;
902	case 1:
903		c->guard_interval = GUARD_INTERVAL_1_16;
904		break;
905	case 2:
906		c->guard_interval = GUARD_INTERVAL_1_8;
907		break;
908	case 3:
909		c->guard_interval = GUARD_INTERVAL_1_4;
910		break;
911	}
912
913	switch ((buf[0] >> 4) & 7) {
914	case 0:
915		c->hierarchy = HIERARCHY_NONE;
916		break;
917	case 1:
918		c->hierarchy = HIERARCHY_1;
919		break;
920	case 2:
921		c->hierarchy = HIERARCHY_2;
922		break;
923	case 3:
924		c->hierarchy = HIERARCHY_4;
925		break;
926	}
927
928	switch ((buf[2] >> 0) & 7) {
929	case 0:
930		c->code_rate_HP = FEC_1_2;
931		break;
932	case 1:
933		c->code_rate_HP = FEC_2_3;
934		break;
935	case 2:
936		c->code_rate_HP = FEC_3_4;
937		break;
938	case 3:
939		c->code_rate_HP = FEC_5_6;
940		break;
941	case 4:
942		c->code_rate_HP = FEC_7_8;
943		break;
944	}
945
946	switch ((buf[2] >> 3) & 7) {
947	case 0:
948		c->code_rate_LP = FEC_1_2;
949		break;
950	case 1:
951		c->code_rate_LP = FEC_2_3;
952		break;
953	case 2:
954		c->code_rate_LP = FEC_3_4;
955		break;
956	case 3:
957		c->code_rate_LP = FEC_5_6;
958		break;
959	case 4:
960		c->code_rate_LP = FEC_7_8;
961		break;
962	}
963
964	switch ((buf[1] >> 2) & 3) {
965	case 0:
966		c->bandwidth_hz = 6000000;
967		break;
968	case 1:
969		c->bandwidth_hz = 7000000;
970		break;
971	case 2:
972		c->bandwidth_hz = 8000000;
973		break;
974	}
975
976	return ret;
977err:
978	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
979	return ret;
980}
981
982static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
983{
984	struct af9013_state *state = fe->demodulator_priv;
985	int ret;
986	u8 tmp;
987
988	/*
989	 * Return status from the cache if it is younger than 2000ms with the
990	 * exception of last tune is done during 4000ms.
991	 */
992	if (time_is_after_jiffies(
993		state->read_status_jiffies + msecs_to_jiffies(2000)) &&
994		time_is_before_jiffies(
995		state->set_frontend_jiffies + msecs_to_jiffies(4000))
996	) {
997			*status = state->fe_status;
998			return 0;
999	} else {
1000		*status = 0;
1001	}
1002
1003	/* MPEG2 lock */
1004	ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
1005	if (ret)
1006		goto err;
1007
1008	if (tmp)
1009		*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1010			FE_HAS_SYNC | FE_HAS_LOCK;
1011
1012	if (!*status) {
1013		/* TPS lock */
1014		ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
1015		if (ret)
1016			goto err;
1017
1018		if (tmp)
1019			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1020				FE_HAS_VITERBI;
1021	}
1022
1023	state->fe_status = *status;
1024	state->read_status_jiffies = jiffies;
1025
1026	return ret;
1027err:
1028	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1029	return ret;
1030}
1031
1032static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1033{
1034	struct af9013_state *state = fe->demodulator_priv;
1035	*snr = state->snr;
1036	return 0;
1037}
1038
1039static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1040{
1041	struct af9013_state *state = fe->demodulator_priv;
1042	*strength = state->signal_strength;
1043	return 0;
1044}
1045
1046static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1047{
1048	struct af9013_state *state = fe->demodulator_priv;
1049	*ber = state->ber;
1050	return 0;
1051}
1052
1053static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1054{
1055	struct af9013_state *state = fe->demodulator_priv;
1056	*ucblocks = state->ucblocks;
1057	return 0;
1058}
1059
1060static int af9013_init(struct dvb_frontend *fe)
1061{
1062	struct af9013_state *state = fe->demodulator_priv;
1063	int ret, i, len;
1064	u8 buf[3], tmp;
1065	u32 adc_cw;
1066	const struct af9013_reg_bit *init;
1067
1068	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1069
1070	/* power on */
1071	ret = af9013_power_ctrl(state, 1);
1072	if (ret)
1073		goto err;
1074
1075	/* enable ADC */
1076	ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1077	if (ret)
1078		goto err;
1079
1080	/* write API version to firmware */
1081	ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1082	if (ret)
1083		goto err;
1084
1085	/* program ADC control */
1086	switch (state->config.clock) {
1087	case 28800000: /* 28.800 MHz */
1088		tmp = 0;
1089		break;
1090	case 20480000: /* 20.480 MHz */
1091		tmp = 1;
1092		break;
1093	case 28000000: /* 28.000 MHz */
1094		tmp = 2;
1095		break;
1096	case 25000000: /* 25.000 MHz */
1097		tmp = 3;
1098		break;
1099	default:
1100		dev_err(&state->i2c->dev, "%s: invalid clock\n",
1101				KBUILD_MODNAME);
1102		return -EINVAL;
1103	}
1104
1105	adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
1106	buf[0] = (adc_cw >>  0) & 0xff;
1107	buf[1] = (adc_cw >>  8) & 0xff;
1108	buf[2] = (adc_cw >> 16) & 0xff;
1109
1110	ret = af9013_wr_regs(state, 0xd180, buf, 3);
1111	if (ret)
1112		goto err;
1113
1114	ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1115	if (ret)
1116		goto err;
1117
1118	/* set I2C master clock */
1119	ret = af9013_wr_reg(state, 0xd416, 0x14);
1120	if (ret)
1121		goto err;
1122
1123	/* set 16 embx */
1124	ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1125	if (ret)
1126		goto err;
1127
1128	/* set no trigger */
1129	ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1130	if (ret)
1131		goto err;
1132
1133	/* set read-update bit for constellation */
1134	ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1135	if (ret)
1136		goto err;
1137
1138	/* settings for mp2if */
1139	if (state->config.ts_mode == AF9013_TS_USB) {
1140		/* AF9015 split PSB to 1.5k + 0.5k */
1141		ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1142		if (ret)
1143			goto err;
1144	} else {
1145		/* AF9013 change the output bit to data7 */
1146		ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1147		if (ret)
1148			goto err;
1149
1150		/* AF9013 set mpeg to full speed */
1151		ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1152		if (ret)
1153			goto err;
1154	}
1155
1156	ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1157	if (ret)
1158		goto err;
1159
1160	/* load OFSM settings */
1161	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
1162	len = ARRAY_SIZE(ofsm_init);
1163	init = ofsm_init;
1164	for (i = 0; i < len; i++) {
1165		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1166			init[i].len, init[i].val);
1167		if (ret)
1168			goto err;
1169	}
1170
1171	/* load tuner specific settings */
1172	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
1173			__func__);
1174	switch (state->config.tuner) {
1175	case AF9013_TUNER_MXL5003D:
1176		len = ARRAY_SIZE(tuner_init_mxl5003d);
1177		init = tuner_init_mxl5003d;
1178		break;
1179	case AF9013_TUNER_MXL5005D:
1180	case AF9013_TUNER_MXL5005R:
1181	case AF9013_TUNER_MXL5007T:
1182		len = ARRAY_SIZE(tuner_init_mxl5005);
1183		init = tuner_init_mxl5005;
1184		break;
1185	case AF9013_TUNER_ENV77H11D5:
1186		len = ARRAY_SIZE(tuner_init_env77h11d5);
1187		init = tuner_init_env77h11d5;
1188		break;
1189	case AF9013_TUNER_MT2060:
1190		len = ARRAY_SIZE(tuner_init_mt2060);
1191		init = tuner_init_mt2060;
1192		break;
1193	case AF9013_TUNER_MC44S803:
1194		len = ARRAY_SIZE(tuner_init_mc44s803);
1195		init = tuner_init_mc44s803;
1196		break;
1197	case AF9013_TUNER_QT1010:
1198	case AF9013_TUNER_QT1010A:
1199		len = ARRAY_SIZE(tuner_init_qt1010);
1200		init = tuner_init_qt1010;
1201		break;
1202	case AF9013_TUNER_MT2060_2:
1203		len = ARRAY_SIZE(tuner_init_mt2060_2);
1204		init = tuner_init_mt2060_2;
1205		break;
1206	case AF9013_TUNER_TDA18271:
1207	case AF9013_TUNER_TDA18218:
1208		len = ARRAY_SIZE(tuner_init_tda18271);
1209		init = tuner_init_tda18271;
1210		break;
1211	case AF9013_TUNER_UNKNOWN:
1212	default:
1213		len = ARRAY_SIZE(tuner_init_unknown);
1214		init = tuner_init_unknown;
1215		break;
1216	}
1217
1218	for (i = 0; i < len; i++) {
1219		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1220			init[i].len, init[i].val);
1221		if (ret)
1222			goto err;
1223	}
1224
1225	/* TS mode */
1226	ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1227	if (ret)
1228		goto err;
1229
1230	/* enable lock led */
1231	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1232	if (ret)
1233		goto err;
1234
1235	/* check if we support signal strength */
1236	if (!state->signal_strength_en) {
1237		ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1238			&state->signal_strength_en);
1239		if (ret)
1240			goto err;
1241	}
1242
1243	/* read values needed for signal strength calculation */
1244	if (state->signal_strength_en && !state->rf_50) {
1245		ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1246		if (ret)
1247			goto err;
1248
1249		ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1250		if (ret)
1251			goto err;
1252
1253		ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1254		if (ret)
1255			goto err;
1256
1257		ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1258		if (ret)
1259			goto err;
1260	}
1261
1262	/* SNR */
1263	ret = af9013_wr_reg(state, 0xd2e2, 1);
1264	if (ret)
1265		goto err;
1266
1267	/* BER / UCB */
1268	buf[0] = (10000 >> 0) & 0xff;
1269	buf[1] = (10000 >> 8) & 0xff;
1270	ret = af9013_wr_regs(state, 0xd385, buf, 2);
1271	if (ret)
1272		goto err;
1273
1274	/* enable FEC monitor */
1275	ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1276	if (ret)
1277		goto err;
1278
1279	state->first_tune = true;
1280	schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1281
1282	return ret;
1283err:
1284	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1285	return ret;
1286}
1287
1288static int af9013_sleep(struct dvb_frontend *fe)
1289{
1290	struct af9013_state *state = fe->demodulator_priv;
1291	int ret;
1292
1293	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1294
1295	/* stop statistics polling */
1296	cancel_delayed_work_sync(&state->statistics_work);
1297
1298	/* disable lock led */
1299	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1300	if (ret)
1301		goto err;
1302
1303	/* power off */
1304	ret = af9013_power_ctrl(state, 0);
1305	if (ret)
1306		goto err;
1307
1308	return ret;
1309err:
1310	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1311	return ret;
1312}
1313
1314static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1315{
1316	int ret;
1317	struct af9013_state *state = fe->demodulator_priv;
1318
1319	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
1320
1321	/* gate already open or close */
1322	if (state->i2c_gate_state == enable)
1323		return 0;
1324
1325	if (state->config.ts_mode == AF9013_TS_USB)
1326		ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1327	else
1328		ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1329	if (ret)
1330		goto err;
1331
1332	state->i2c_gate_state = enable;
1333
1334	return ret;
1335err:
1336	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1337	return ret;
1338}
1339
1340static void af9013_release(struct dvb_frontend *fe)
1341{
1342	struct af9013_state *state = fe->demodulator_priv;
1343	kfree(state);
1344}
1345
1346static struct dvb_frontend_ops af9013_ops;
1347
1348static int af9013_download_firmware(struct af9013_state *state)
1349{
1350	int i, len, remaining, ret;
1351	const struct firmware *fw;
1352	u16 checksum = 0;
1353	u8 val;
1354	u8 fw_params[4];
1355	u8 *fw_file = AF9013_FIRMWARE;
1356
1357	msleep(100);
1358	/* check whether firmware is already running */
1359	ret = af9013_rd_reg(state, 0x98be, &val);
1360	if (ret)
1361		goto err;
1362	else
1363		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1364				__func__, val);
1365
1366	if (val == 0x0c) /* fw is running, no need for download */
1367		goto exit;
1368
1369	dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
1370			"to load a firmware\n",
1371			KBUILD_MODNAME, af9013_ops.info.name);
1372
1373	/* request the firmware, this will block and timeout */
1374	ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1375	if (ret) {
1376		dev_info(&state->i2c->dev, "%s: did not find the firmware " \
1377			"file. (%s) Please see linux/Documentation/dvb/ for " \
1378			"more details on firmware-problems. (%d)\n",
1379			KBUILD_MODNAME, fw_file, ret);
1380		goto err;
1381	}
1382
1383	dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
1384			KBUILD_MODNAME, fw_file);
1385
1386	/* calc checksum */
1387	for (i = 0; i < fw->size; i++)
1388		checksum += fw->data[i];
1389
1390	fw_params[0] = checksum >> 8;
1391	fw_params[1] = checksum & 0xff;
1392	fw_params[2] = fw->size >> 8;
1393	fw_params[3] = fw->size & 0xff;
1394
1395	/* write fw checksum & size */
1396	ret = af9013_write_ofsm_regs(state, 0x50fc,
1397		fw_params, sizeof(fw_params));
1398	if (ret)
1399		goto err_release;
1400
1401	#define FW_ADDR 0x5100 /* firmware start address */
1402	#define LEN_MAX 16 /* max packet size */
1403	for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1404		len = remaining;
1405		if (len > LEN_MAX)
1406			len = LEN_MAX;
1407
1408		ret = af9013_write_ofsm_regs(state,
1409			FW_ADDR + fw->size - remaining,
1410			(u8 *) &fw->data[fw->size - remaining], len);
1411		if (ret) {
1412			dev_err(&state->i2c->dev,
1413					"%s: firmware download failed=%d\n",
1414					KBUILD_MODNAME, ret);
1415			goto err_release;
1416		}
1417	}
1418
1419	/* request boot firmware */
1420	ret = af9013_wr_reg(state, 0xe205, 1);
1421	if (ret)
1422		goto err_release;
1423
1424	for (i = 0; i < 15; i++) {
1425		msleep(100);
1426
1427		/* check firmware status */
1428		ret = af9013_rd_reg(state, 0x98be, &val);
1429		if (ret)
1430			goto err_release;
1431
1432		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1433				__func__, val);
1434
1435		if (val == 0x0c || val == 0x04) /* success or fail */
1436			break;
1437	}
1438
1439	if (val == 0x04) {
1440		dev_err(&state->i2c->dev, "%s: firmware did not run\n",
1441				KBUILD_MODNAME);
1442		ret = -ENODEV;
1443	} else if (val != 0x0c) {
1444		dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
1445				KBUILD_MODNAME);
1446		ret = -ENODEV;
1447	}
1448
1449err_release:
1450	release_firmware(fw);
1451err:
1452exit:
1453	if (!ret)
1454		dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
1455				KBUILD_MODNAME, af9013_ops.info.name);
1456	return ret;
1457}
1458
1459struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1460	struct i2c_adapter *i2c)
1461{
1462	int ret;
1463	struct af9013_state *state = NULL;
1464	u8 buf[4], i;
1465
1466	/* allocate memory for the internal state */
1467	state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1468	if (state == NULL)
1469		goto err;
1470
1471	/* setup the state */
1472	state->i2c = i2c;
1473	memcpy(&state->config, config, sizeof(struct af9013_config));
1474
1475	/* download firmware */
1476	if (state->config.ts_mode != AF9013_TS_USB) {
1477		ret = af9013_download_firmware(state);
1478		if (ret)
1479			goto err;
1480	}
1481
1482	/* firmware version */
1483	ret = af9013_rd_regs(state, 0x5103, buf, 4);
1484	if (ret)
1485		goto err;
1486
1487	dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
1488			KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
1489
1490	/* set GPIOs */
1491	for (i = 0; i < sizeof(state->config.gpio); i++) {
1492		ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1493		if (ret)
1494			goto err;
1495	}
1496
1497	/* create dvb_frontend */
1498	memcpy(&state->fe.ops, &af9013_ops,
1499		sizeof(struct dvb_frontend_ops));
1500	state->fe.demodulator_priv = state;
1501
1502	INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1503
1504	return &state->fe;
1505err:
1506	kfree(state);
1507	return NULL;
1508}
1509EXPORT_SYMBOL(af9013_attach);
1510
1511static struct dvb_frontend_ops af9013_ops = {
1512	.delsys = { SYS_DVBT },
1513	.info = {
1514		.name = "Afatech AF9013",
1515		.frequency_min = 174000000,
1516		.frequency_max = 862000000,
1517		.frequency_stepsize = 250000,
1518		.frequency_tolerance = 0,
1519		.caps =	FE_CAN_FEC_1_2 |
1520			FE_CAN_FEC_2_3 |
1521			FE_CAN_FEC_3_4 |
1522			FE_CAN_FEC_5_6 |
1523			FE_CAN_FEC_7_8 |
1524			FE_CAN_FEC_AUTO |
1525			FE_CAN_QPSK |
1526			FE_CAN_QAM_16 |
1527			FE_CAN_QAM_64 |
1528			FE_CAN_QAM_AUTO |
1529			FE_CAN_TRANSMISSION_MODE_AUTO |
1530			FE_CAN_GUARD_INTERVAL_AUTO |
1531			FE_CAN_HIERARCHY_AUTO |
1532			FE_CAN_RECOVER |
1533			FE_CAN_MUTE_TS
1534	},
1535
1536	.release = af9013_release,
1537
1538	.init = af9013_init,
1539	.sleep = af9013_sleep,
1540
1541	.get_tune_settings = af9013_get_tune_settings,
1542	.set_frontend = af9013_set_frontend,
1543	.get_frontend = af9013_get_frontend,
1544
1545	.read_status = af9013_read_status,
1546	.read_snr = af9013_read_snr,
1547	.read_signal_strength = af9013_read_signal_strength,
1548	.read_ber = af9013_read_ber,
1549	.read_ucblocks = af9013_read_ucblocks,
1550
1551	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1552};
1553
1554MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1555MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1556MODULE_LICENSE("GPL");
1557MODULE_FIRMWARE(AF9013_FIRMWARE);
1558