[go: nahoru, domu]

1/*
2 * drivers/media/i2c/smiapp/smiapp-core.c
3 *
4 * Generic driver for SMIA/SMIA++ compliant camera modules
5 *
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
8 *
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25 * 02110-1301 USA
26 *
27 */
28
29#include <linux/clk.h>
30#include <linux/delay.h>
31#include <linux/device.h>
32#include <linux/gpio.h>
33#include <linux/module.h>
34#include <linux/regulator/consumer.h>
35#include <linux/slab.h>
36#include <linux/smiapp.h>
37#include <linux/v4l2-mediabus.h>
38#include <media/v4l2-device.h>
39
40#include "smiapp.h"
41
42#define SMIAPP_ALIGN_DIM(dim, flags)	\
43	((flags) & V4L2_SEL_FLAG_GE	\
44	 ? ALIGN((dim), 2)		\
45	 : (dim) & ~1)
46
47/*
48 * smiapp_module_idents - supported camera modules
49 */
50static const struct smiapp_module_ident smiapp_module_idents[] = {
51	SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
52	SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
53	SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
54	SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
55	SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
56	SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
57	SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
58	SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
59	SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
60	SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
61	SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
62};
63
64/*
65 *
66 * Dynamic Capability Identification
67 *
68 */
69
70static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
71{
72	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
73	u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
74	unsigned int i;
75	int rval;
76	int line_count = 0;
77	int embedded_start = -1, embedded_end = -1;
78	int image_start = 0;
79
80	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
81			   &fmt_model_type);
82	if (rval)
83		return rval;
84
85	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
86			   &fmt_model_subtype);
87	if (rval)
88		return rval;
89
90	ncol_desc = (fmt_model_subtype
91		     & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
92		>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
93	nrow_desc = fmt_model_subtype
94		& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
95
96	dev_dbg(&client->dev, "format_model_type %s\n",
97		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
98		? "2 byte" :
99		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
100		? "4 byte" : "is simply bad");
101
102	for (i = 0; i < ncol_desc + nrow_desc; i++) {
103		u32 desc;
104		u32 pixelcode;
105		u32 pixels;
106		char *which;
107		char *what;
108
109		if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
110			rval = smiapp_read(
111				sensor,
112				SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
113				&desc);
114			if (rval)
115				return rval;
116
117			pixelcode =
118				(desc
119				 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
120				>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
121			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
122		} else if (fmt_model_type
123			   == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
124			rval = smiapp_read(
125				sensor,
126				SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
127				&desc);
128			if (rval)
129				return rval;
130
131			pixelcode =
132				(desc
133				 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
134				>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
135			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
136		} else {
137			dev_dbg(&client->dev,
138				"invalid frame format model type %d\n",
139				fmt_model_type);
140			return -EINVAL;
141		}
142
143		if (i < ncol_desc)
144			which = "columns";
145		else
146			which = "rows";
147
148		switch (pixelcode) {
149		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
150			what = "embedded";
151			break;
152		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
153			what = "dummy";
154			break;
155		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
156			what = "black";
157			break;
158		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
159			what = "dark";
160			break;
161		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
162			what = "visible";
163			break;
164		default:
165			what = "invalid";
166			dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
167			break;
168		}
169
170		dev_dbg(&client->dev, "%s pixels: %d %s\n",
171			what, pixels, which);
172
173		if (i < ncol_desc)
174			continue;
175
176		/* Handle row descriptors */
177		if (pixelcode
178		    == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
179			embedded_start = line_count;
180		} else {
181			if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
182			    || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
183				image_start = line_count;
184			if (embedded_start != -1 && embedded_end == -1)
185				embedded_end = line_count;
186		}
187		line_count += pixels;
188	}
189
190	if (embedded_start == -1 || embedded_end == -1) {
191		embedded_start = 0;
192		embedded_end = 0;
193	}
194
195	dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
196		embedded_start, embedded_end);
197	dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
198
199	return 0;
200}
201
202static int smiapp_pll_configure(struct smiapp_sensor *sensor)
203{
204	struct smiapp_pll *pll = &sensor->pll;
205	int rval;
206
207	rval = smiapp_write(
208		sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
209	if (rval < 0)
210		return rval;
211
212	rval = smiapp_write(
213		sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
214	if (rval < 0)
215		return rval;
216
217	rval = smiapp_write(
218		sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
219	if (rval < 0)
220		return rval;
221
222	rval = smiapp_write(
223		sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
224	if (rval < 0)
225		return rval;
226
227	/* Lane op clock ratio does not apply here. */
228	rval = smiapp_write(
229		sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
230		DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
231	if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
232		return rval;
233
234	rval = smiapp_write(
235		sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
236	if (rval < 0)
237		return rval;
238
239	return smiapp_write(
240		sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
241}
242
243static int smiapp_pll_update(struct smiapp_sensor *sensor)
244{
245	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
246	struct smiapp_pll_limits lim = {
247		.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
248		.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
249		.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
250		.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
251		.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
252		.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
253		.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
254		.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
255
256		.op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
257		.op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
258		.op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
259		.op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
260		.op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
261		.op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
262		.op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
263		.op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
264
265		.vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
266		.vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
267		.vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
268		.vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
269		.vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
270		.vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
271		.vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
272		.vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
273
274		.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
275		.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
276	};
277	struct smiapp_pll *pll = &sensor->pll;
278	int rval;
279
280	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
281		/*
282		 * Fill in operational clock divisors limits from the
283		 * video timing ones. On profile 0 sensors the
284		 * requirements regarding them are essentially the
285		 * same as on VT ones.
286		 */
287		lim.op = lim.vt;
288	}
289
290	pll->binning_horizontal = sensor->binning_horizontal;
291	pll->binning_vertical = sensor->binning_vertical;
292	pll->link_freq =
293		sensor->link_freq->qmenu_int[sensor->link_freq->val];
294	pll->scale_m = sensor->scale_m;
295	pll->bits_per_pixel = sensor->csi_format->compressed;
296
297	rval = smiapp_pll_calculate(&client->dev, &lim, pll);
298	if (rval < 0)
299		return rval;
300
301	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
302				 pll->vt_pix_clk_freq_hz);
303	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
304
305	return 0;
306}
307
308
309/*
310 *
311 * V4L2 Controls handling
312 *
313 */
314
315static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
316{
317	struct v4l2_ctrl *ctrl = sensor->exposure;
318	int max;
319
320	max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
321		+ sensor->vblank->val
322		- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
323
324	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
325}
326
327/*
328 * Order matters.
329 *
330 * 1. Bits-per-pixel, descending.
331 * 2. Bits-per-pixel compressed, descending.
332 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
333 *    orders must be defined.
334 */
335static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
336	{ V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
337	{ V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
338	{ V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
339	{ V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
340	{ V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
341	{ V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
342	{ V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
343	{ V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
344	{ V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
345	{ V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
346	{ V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
347	{ V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
348	{ V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
349	{ V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
350	{ V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
351	{ V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
352};
353
354const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
355
356#define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
357				 - (unsigned long)smiapp_csi_data_formats) \
358				/ sizeof(*smiapp_csi_data_formats))
359
360static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
361{
362	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
363	int flip = 0;
364
365	if (sensor->hflip) {
366		if (sensor->hflip->val)
367			flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
368
369		if (sensor->vflip->val)
370			flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
371	}
372
373	flip ^= sensor->hvflip_inv_mask;
374
375	dev_dbg(&client->dev, "flip %d\n", flip);
376	return sensor->default_pixel_order ^ flip;
377}
378
379static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
380{
381	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
382	unsigned int csi_format_idx =
383		to_csi_format_idx(sensor->csi_format) & ~3;
384	unsigned int internal_csi_format_idx =
385		to_csi_format_idx(sensor->internal_csi_format) & ~3;
386	unsigned int pixel_order = smiapp_pixel_order(sensor);
387
388	sensor->mbus_frame_fmts =
389		sensor->default_mbus_frame_fmts << pixel_order;
390	sensor->csi_format =
391		&smiapp_csi_data_formats[csi_format_idx + pixel_order];
392	sensor->internal_csi_format =
393		&smiapp_csi_data_formats[internal_csi_format_idx
394					 + pixel_order];
395
396	BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
397	       >= ARRAY_SIZE(smiapp_csi_data_formats));
398
399	dev_dbg(&client->dev, "new pixel order %s\n",
400		pixel_order_str[pixel_order]);
401}
402
403static const char * const smiapp_test_patterns[] = {
404	"Disabled",
405	"Solid Colour",
406	"Eight Vertical Colour Bars",
407	"Colour Bars With Fade to Grey",
408	"Pseudorandom Sequence (PN9)",
409};
410
411static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
412{
413	struct smiapp_sensor *sensor =
414		container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
415			->sensor;
416	u32 orient = 0;
417	int exposure;
418	int rval;
419
420	switch (ctrl->id) {
421	case V4L2_CID_ANALOGUE_GAIN:
422		return smiapp_write(
423			sensor,
424			SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
425
426	case V4L2_CID_EXPOSURE:
427		return smiapp_write(
428			sensor,
429			SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
430
431	case V4L2_CID_HFLIP:
432	case V4L2_CID_VFLIP:
433		if (sensor->streaming)
434			return -EBUSY;
435
436		if (sensor->hflip->val)
437			orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
438
439		if (sensor->vflip->val)
440			orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
441
442		orient ^= sensor->hvflip_inv_mask;
443		rval = smiapp_write(sensor,
444				    SMIAPP_REG_U8_IMAGE_ORIENTATION,
445				    orient);
446		if (rval < 0)
447			return rval;
448
449		smiapp_update_mbus_formats(sensor);
450
451		return 0;
452
453	case V4L2_CID_VBLANK:
454		exposure = sensor->exposure->val;
455
456		__smiapp_update_exposure_limits(sensor);
457
458		if (exposure > sensor->exposure->maximum) {
459			sensor->exposure->val =
460				sensor->exposure->maximum;
461			rval = smiapp_set_ctrl(
462				sensor->exposure);
463			if (rval < 0)
464				return rval;
465		}
466
467		return smiapp_write(
468			sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
469			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
470			+ ctrl->val);
471
472	case V4L2_CID_HBLANK:
473		return smiapp_write(
474			sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
475			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
476			+ ctrl->val);
477
478	case V4L2_CID_LINK_FREQ:
479		if (sensor->streaming)
480			return -EBUSY;
481
482		return smiapp_pll_update(sensor);
483
484	case V4L2_CID_TEST_PATTERN: {
485		unsigned int i;
486
487		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
488			v4l2_ctrl_activate(
489				sensor->test_data[i],
490				ctrl->val ==
491				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
492
493		return smiapp_write(
494			sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
495	}
496
497	case V4L2_CID_TEST_PATTERN_RED:
498		return smiapp_write(
499			sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
500
501	case V4L2_CID_TEST_PATTERN_GREENR:
502		return smiapp_write(
503			sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
504
505	case V4L2_CID_TEST_PATTERN_BLUE:
506		return smiapp_write(
507			sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
508
509	case V4L2_CID_TEST_PATTERN_GREENB:
510		return smiapp_write(
511			sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
512
513	case V4L2_CID_PIXEL_RATE:
514		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
515		return 0;
516
517	default:
518		return -EINVAL;
519	}
520}
521
522static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
523	.s_ctrl = smiapp_set_ctrl,
524};
525
526static int smiapp_init_controls(struct smiapp_sensor *sensor)
527{
528	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
529	unsigned int max, i;
530	int rval;
531
532	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
533	if (rval)
534		return rval;
535	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
536
537	sensor->analog_gain = v4l2_ctrl_new_std(
538		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
539		V4L2_CID_ANALOGUE_GAIN,
540		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
541		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
542		max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
543		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
544
545	/* Exposure limits will be updated soon, use just something here. */
546	sensor->exposure = v4l2_ctrl_new_std(
547		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
548		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
549
550	sensor->hflip = v4l2_ctrl_new_std(
551		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
552		V4L2_CID_HFLIP, 0, 1, 1, 0);
553	sensor->vflip = v4l2_ctrl_new_std(
554		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
555		V4L2_CID_VFLIP, 0, 1, 1, 0);
556
557	sensor->vblank = v4l2_ctrl_new_std(
558		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
559		V4L2_CID_VBLANK, 0, 1, 1, 0);
560
561	if (sensor->vblank)
562		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
563
564	sensor->hblank = v4l2_ctrl_new_std(
565		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
566		V4L2_CID_HBLANK, 0, 1, 1, 0);
567
568	if (sensor->hblank)
569		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
570
571	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
572		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
573		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
574
575	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
576				     &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
577				     ARRAY_SIZE(smiapp_test_patterns) - 1,
578				     0, 0, smiapp_test_patterns);
579
580	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
581		int max_value = (1 << sensor->csi_format->width) - 1;
582		sensor->test_data[i] =
583			v4l2_ctrl_new_std(
584				&sensor->pixel_array->ctrl_handler,
585				&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
586				0, max_value, 1, max_value);
587	}
588
589	if (sensor->pixel_array->ctrl_handler.error) {
590		dev_err(&client->dev,
591			"pixel array controls initialization failed (%d)\n",
592			sensor->pixel_array->ctrl_handler.error);
593		rval = sensor->pixel_array->ctrl_handler.error;
594		goto error;
595	}
596
597	sensor->pixel_array->sd.ctrl_handler =
598		&sensor->pixel_array->ctrl_handler;
599
600	v4l2_ctrl_cluster(2, &sensor->hflip);
601
602	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
603	if (rval)
604		goto error;
605	sensor->src->ctrl_handler.lock = &sensor->mutex;
606
607	for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
608
609	sensor->link_freq = v4l2_ctrl_new_int_menu(
610		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
611		V4L2_CID_LINK_FREQ, max, 0,
612		sensor->platform_data->op_sys_clock);
613
614	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
615		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
616		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
617
618	if (sensor->src->ctrl_handler.error) {
619		dev_err(&client->dev,
620			"src controls initialization failed (%d)\n",
621			sensor->src->ctrl_handler.error);
622		rval = sensor->src->ctrl_handler.error;
623		goto error;
624	}
625
626	sensor->src->sd.ctrl_handler =
627		&sensor->src->ctrl_handler;
628
629	return 0;
630
631error:
632	v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
633	v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
634
635	return rval;
636}
637
638static void smiapp_free_controls(struct smiapp_sensor *sensor)
639{
640	unsigned int i;
641
642	for (i = 0; i < sensor->ssds_used; i++)
643		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
644}
645
646static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
647			     unsigned int n)
648{
649	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
650	unsigned int i;
651	u32 val;
652	int rval;
653
654	for (i = 0; i < n; i++) {
655		rval = smiapp_read(
656			sensor, smiapp_reg_limits[limit[i]].addr, &val);
657		if (rval)
658			return rval;
659		sensor->limits[limit[i]] = val;
660		dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
661			smiapp_reg_limits[limit[i]].addr,
662			smiapp_reg_limits[limit[i]].what, val, val);
663	}
664
665	return 0;
666}
667
668static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
669{
670	unsigned int i;
671	int rval;
672
673	for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
674		rval = smiapp_get_limits(sensor, &i, 1);
675		if (rval < 0)
676			return rval;
677	}
678
679	if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
680		smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
681
682	return 0;
683}
684
685static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
686{
687	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
688	static u32 const limits[] = {
689		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
690		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
691		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
692		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
693		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
694		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
695		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
696	};
697	static u32 const limits_replace[] = {
698		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
699		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
700		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
701		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
702		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
703		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
704		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
705	};
706	unsigned int i;
707	int rval;
708
709	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
710	    SMIAPP_BINNING_CAPABILITY_NO) {
711		for (i = 0; i < ARRAY_SIZE(limits); i++)
712			sensor->limits[limits[i]] =
713				sensor->limits[limits_replace[i]];
714
715		return 0;
716	}
717
718	rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
719	if (rval < 0)
720		return rval;
721
722	/*
723	 * Sanity check whether the binning limits are valid. If not,
724	 * use the non-binning ones.
725	 */
726	if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
727	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
728	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
729		return 0;
730
731	for (i = 0; i < ARRAY_SIZE(limits); i++) {
732		dev_dbg(&client->dev,
733			"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
734			smiapp_reg_limits[limits[i]].addr,
735			smiapp_reg_limits[limits[i]].what,
736			sensor->limits[limits_replace[i]],
737			sensor->limits[limits_replace[i]]);
738		sensor->limits[limits[i]] =
739			sensor->limits[limits_replace[i]];
740	}
741
742	return 0;
743}
744
745static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
746{
747	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
748	unsigned int type, n;
749	unsigned int i, pixel_order;
750	int rval;
751
752	rval = smiapp_read(
753		sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
754	if (rval)
755		return rval;
756
757	dev_dbg(&client->dev, "data_format_model_type %d\n", type);
758
759	rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
760			   &pixel_order);
761	if (rval)
762		return rval;
763
764	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
765		dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
766		return -EINVAL;
767	}
768
769	dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
770		pixel_order_str[pixel_order]);
771
772	switch (type) {
773	case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
774		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
775		break;
776	case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
777		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
778		break;
779	default:
780		return -EINVAL;
781	}
782
783	sensor->default_pixel_order = pixel_order;
784	sensor->mbus_frame_fmts = 0;
785
786	for (i = 0; i < n; i++) {
787		unsigned int fmt, j;
788
789		rval = smiapp_read(
790			sensor,
791			SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
792		if (rval)
793			return rval;
794
795		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
796			i, fmt >> 8, (u8)fmt);
797
798		for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
799			const struct smiapp_csi_data_format *f =
800				&smiapp_csi_data_formats[j];
801
802			if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
803				continue;
804
805			if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
806				continue;
807
808			dev_dbg(&client->dev, "jolly good! %d\n", j);
809
810			sensor->default_mbus_frame_fmts |= 1 << j;
811			if (!sensor->csi_format
812			    || f->width > sensor->csi_format->width
813			    || (f->width == sensor->csi_format->width
814				&& f->compressed
815				> sensor->csi_format->compressed)) {
816				sensor->csi_format = f;
817				sensor->internal_csi_format = f;
818			}
819		}
820	}
821
822	if (!sensor->csi_format) {
823		dev_err(&client->dev, "no supported mbus code found\n");
824		return -EINVAL;
825	}
826
827	smiapp_update_mbus_formats(sensor);
828
829	return 0;
830}
831
832static void smiapp_update_blanking(struct smiapp_sensor *sensor)
833{
834	struct v4l2_ctrl *vblank = sensor->vblank;
835	struct v4l2_ctrl *hblank = sensor->hblank;
836	int min, max;
837
838	min = max_t(int,
839		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
840		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
841		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
842	max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
843		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
844
845	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
846
847	min = max_t(int,
848		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
849		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
850		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
851	max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
852		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
853
854	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
855
856	__smiapp_update_exposure_limits(sensor);
857}
858
859static int smiapp_update_mode(struct smiapp_sensor *sensor)
860{
861	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
862	unsigned int binning_mode;
863	int rval;
864
865	dev_dbg(&client->dev, "frame size: %dx%d\n",
866		sensor->src->crop[SMIAPP_PAD_SRC].width,
867		sensor->src->crop[SMIAPP_PAD_SRC].height);
868	dev_dbg(&client->dev, "csi format width: %d\n",
869		sensor->csi_format->width);
870
871	/* Binning has to be set up here; it affects limits */
872	if (sensor->binning_horizontal == 1 &&
873	    sensor->binning_vertical == 1) {
874		binning_mode = 0;
875	} else {
876		u8 binning_type =
877			(sensor->binning_horizontal << 4)
878			| sensor->binning_vertical;
879
880		rval = smiapp_write(
881			sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
882		if (rval < 0)
883			return rval;
884
885		binning_mode = 1;
886	}
887	rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
888	if (rval < 0)
889		return rval;
890
891	/* Get updated limits due to binning */
892	rval = smiapp_get_limits_binning(sensor);
893	if (rval < 0)
894		return rval;
895
896	rval = smiapp_pll_update(sensor);
897	if (rval < 0)
898		return rval;
899
900	/* Output from pixel array, including blanking */
901	smiapp_update_blanking(sensor);
902
903	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
904	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
905
906	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
907		sensor->pll.vt_pix_clk_freq_hz /
908		((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
909		  + sensor->hblank->val) *
910		 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
911		  + sensor->vblank->val) / 100));
912
913	return 0;
914}
915
916/*
917 *
918 * SMIA++ NVM handling
919 *
920 */
921static int smiapp_read_nvm(struct smiapp_sensor *sensor,
922			   unsigned char *nvm)
923{
924	u32 i, s, p, np, v;
925	int rval = 0, rval2;
926
927	np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
928	for (p = 0; p < np; p++) {
929		rval = smiapp_write(
930			sensor,
931			SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
932		if (rval)
933			goto out;
934
935		rval = smiapp_write(sensor,
936				    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
937				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
938				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
939		if (rval)
940			goto out;
941
942		for (i = 0; i < 1000; i++) {
943			rval = smiapp_read(
944				sensor,
945				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
946
947			if (rval)
948				goto out;
949
950			if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
951				break;
952
953			if (--i == 0) {
954				rval = -ETIMEDOUT;
955				goto out;
956			}
957
958		}
959
960		for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
961			rval = smiapp_read(
962				sensor,
963				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
964				&v);
965			if (rval)
966				goto out;
967
968			*nvm++ = v;
969		}
970	}
971
972out:
973	rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
974	if (rval < 0)
975		return rval;
976	else
977		return rval2;
978}
979
980/*
981 *
982 * SMIA++ CCI address control
983 *
984 */
985static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
986{
987	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
988	int rval;
989	u32 val;
990
991	client->addr = sensor->platform_data->i2c_addr_dfl;
992
993	rval = smiapp_write(sensor,
994			    SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
995			    sensor->platform_data->i2c_addr_alt << 1);
996	if (rval)
997		return rval;
998
999	client->addr = sensor->platform_data->i2c_addr_alt;
1000
1001	/* verify addr change went ok */
1002	rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1003	if (rval)
1004		return rval;
1005
1006	if (val != sensor->platform_data->i2c_addr_alt << 1)
1007		return -ENODEV;
1008
1009	return 0;
1010}
1011
1012/*
1013 *
1014 * SMIA++ Mode Control
1015 *
1016 */
1017static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1018{
1019	struct smiapp_flash_strobe_parms *strobe_setup;
1020	unsigned int ext_freq = sensor->platform_data->ext_clk;
1021	u32 tmp;
1022	u32 strobe_adjustment;
1023	u32 strobe_width_high_rs;
1024	int rval;
1025
1026	strobe_setup = sensor->platform_data->strobe_setup;
1027
1028	/*
1029	 * How to calculate registers related to strobe length. Please
1030	 * do not change, or if you do at least know what you're
1031	 * doing. :-)
1032	 *
1033	 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1034	 *
1035	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1036	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
1037	 *
1038	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1039	 * flash_strobe_adjustment E N, [1 - 0xff]
1040	 *
1041	 * The formula above is written as below to keep it on one
1042	 * line:
1043	 *
1044	 * l / 10^6 = w / e * a
1045	 *
1046	 * Let's mark w * a by x:
1047	 *
1048	 * x = w * a
1049	 *
1050	 * Thus, we get:
1051	 *
1052	 * x = l * e / 10^6
1053	 *
1054	 * The strobe width must be at least as long as requested,
1055	 * thus rounding upwards is needed.
1056	 *
1057	 * x = (l * e + 10^6 - 1) / 10^6
1058	 * -----------------------------
1059	 *
1060	 * Maximum possible accuracy is wanted at all times. Thus keep
1061	 * a as small as possible.
1062	 *
1063	 * Calculate a, assuming maximum w, with rounding upwards:
1064	 *
1065	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1066	 * -------------------------------------
1067	 *
1068	 * Thus, we also get w, with that a, with rounding upwards:
1069	 *
1070	 * w = (x + a - 1) / a
1071	 * -------------------
1072	 *
1073	 * To get limits:
1074	 *
1075	 * x E [1, (2^16 - 1) * (2^8 - 1)]
1076	 *
1077	 * Substituting maximum x to the original formula (with rounding),
1078	 * the maximum l is thus
1079	 *
1080	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1081	 *
1082	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1083	 * --------------------------------------------------
1084	 *
1085	 * flash_strobe_length must be clamped between 1 and
1086	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1087	 *
1088	 * Then,
1089	 *
1090	 * flash_strobe_adjustment = ((flash_strobe_length *
1091	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1092	 *
1093	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1094	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
1095	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
1096	 */
1097	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1098		      1000000 + 1, ext_freq);
1099	strobe_setup->strobe_width_high_us =
1100		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1101
1102	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1103			1000000 - 1), 1000000ULL);
1104	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1105	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1106				strobe_adjustment;
1107
1108	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1109			    strobe_setup->mode);
1110	if (rval < 0)
1111		goto out;
1112
1113	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1114			    strobe_adjustment);
1115	if (rval < 0)
1116		goto out;
1117
1118	rval = smiapp_write(
1119		sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1120		strobe_width_high_rs);
1121	if (rval < 0)
1122		goto out;
1123
1124	rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1125			    strobe_setup->strobe_delay);
1126	if (rval < 0)
1127		goto out;
1128
1129	rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1130			    strobe_setup->stobe_start_point);
1131	if (rval < 0)
1132		goto out;
1133
1134	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1135			    strobe_setup->trigger);
1136
1137out:
1138	sensor->platform_data->strobe_setup->trigger = 0;
1139
1140	return rval;
1141}
1142
1143/* -----------------------------------------------------------------------------
1144 * Power management
1145 */
1146
1147static int smiapp_power_on(struct smiapp_sensor *sensor)
1148{
1149	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1150	unsigned int sleep;
1151	int rval;
1152
1153	rval = regulator_enable(sensor->vana);
1154	if (rval) {
1155		dev_err(&client->dev, "failed to enable vana regulator\n");
1156		return rval;
1157	}
1158	usleep_range(1000, 1000);
1159
1160	if (sensor->platform_data->set_xclk)
1161		rval = sensor->platform_data->set_xclk(
1162			&sensor->src->sd, sensor->platform_data->ext_clk);
1163	else
1164		rval = clk_prepare_enable(sensor->ext_clk);
1165	if (rval < 0) {
1166		dev_dbg(&client->dev, "failed to enable xclk\n");
1167		goto out_xclk_fail;
1168	}
1169	usleep_range(1000, 1000);
1170
1171	if (gpio_is_valid(sensor->platform_data->xshutdown))
1172		gpio_set_value(sensor->platform_data->xshutdown, 1);
1173
1174	sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1175	usleep_range(sleep, sleep);
1176
1177	/*
1178	 * Failures to respond to the address change command have been noticed.
1179	 * Those failures seem to be caused by the sensor requiring a longer
1180	 * boot time than advertised. An additional 10ms delay seems to work
1181	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1182	 * unnecessary. The failures need to be investigated to find a proper
1183	 * fix, and a delay will likely need to be added here if the I2C write
1184	 * retry hack is reverted before the root cause of the boot time issue
1185	 * is found.
1186	 */
1187
1188	if (sensor->platform_data->i2c_addr_alt) {
1189		rval = smiapp_change_cci_addr(sensor);
1190		if (rval) {
1191			dev_err(&client->dev, "cci address change error\n");
1192			goto out_cci_addr_fail;
1193		}
1194	}
1195
1196	rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1197			    SMIAPP_SOFTWARE_RESET);
1198	if (rval < 0) {
1199		dev_err(&client->dev, "software reset failed\n");
1200		goto out_cci_addr_fail;
1201	}
1202
1203	if (sensor->platform_data->i2c_addr_alt) {
1204		rval = smiapp_change_cci_addr(sensor);
1205		if (rval) {
1206			dev_err(&client->dev, "cci address change error\n");
1207			goto out_cci_addr_fail;
1208		}
1209	}
1210
1211	rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1212			    SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1213	if (rval) {
1214		dev_err(&client->dev, "compression mode set failed\n");
1215		goto out_cci_addr_fail;
1216	}
1217
1218	rval = smiapp_write(
1219		sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1220		sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1221	if (rval) {
1222		dev_err(&client->dev, "extclk frequency set failed\n");
1223		goto out_cci_addr_fail;
1224	}
1225
1226	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1227			    sensor->platform_data->lanes - 1);
1228	if (rval) {
1229		dev_err(&client->dev, "csi lane mode set failed\n");
1230		goto out_cci_addr_fail;
1231	}
1232
1233	rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1234			    SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1235	if (rval) {
1236		dev_err(&client->dev, "fast standby set failed\n");
1237		goto out_cci_addr_fail;
1238	}
1239
1240	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1241			    sensor->platform_data->csi_signalling_mode);
1242	if (rval) {
1243		dev_err(&client->dev, "csi signalling mode set failed\n");
1244		goto out_cci_addr_fail;
1245	}
1246
1247	/* DPHY control done by sensor based on requested link rate */
1248	rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1249			    SMIAPP_DPHY_CTRL_UI);
1250	if (rval < 0)
1251		return rval;
1252
1253	rval = smiapp_call_quirk(sensor, post_poweron);
1254	if (rval) {
1255		dev_err(&client->dev, "post_poweron quirks failed\n");
1256		goto out_cci_addr_fail;
1257	}
1258
1259	/* Are we still initialising...? If yes, return here. */
1260	if (!sensor->pixel_array)
1261		return 0;
1262
1263	rval = v4l2_ctrl_handler_setup(
1264		&sensor->pixel_array->ctrl_handler);
1265	if (rval)
1266		goto out_cci_addr_fail;
1267
1268	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1269	if (rval)
1270		goto out_cci_addr_fail;
1271
1272	mutex_lock(&sensor->mutex);
1273	rval = smiapp_update_mode(sensor);
1274	mutex_unlock(&sensor->mutex);
1275	if (rval < 0)
1276		goto out_cci_addr_fail;
1277
1278	return 0;
1279
1280out_cci_addr_fail:
1281	if (gpio_is_valid(sensor->platform_data->xshutdown))
1282		gpio_set_value(sensor->platform_data->xshutdown, 0);
1283	if (sensor->platform_data->set_xclk)
1284		sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1285	else
1286		clk_disable_unprepare(sensor->ext_clk);
1287
1288out_xclk_fail:
1289	regulator_disable(sensor->vana);
1290	return rval;
1291}
1292
1293static void smiapp_power_off(struct smiapp_sensor *sensor)
1294{
1295	/*
1296	 * Currently power/clock to lens are enable/disabled separately
1297	 * but they are essentially the same signals. So if the sensor is
1298	 * powered off while the lens is powered on the sensor does not
1299	 * really see a power off and next time the cci address change
1300	 * will fail. So do a soft reset explicitly here.
1301	 */
1302	if (sensor->platform_data->i2c_addr_alt)
1303		smiapp_write(sensor,
1304			     SMIAPP_REG_U8_SOFTWARE_RESET,
1305			     SMIAPP_SOFTWARE_RESET);
1306
1307	if (gpio_is_valid(sensor->platform_data->xshutdown))
1308		gpio_set_value(sensor->platform_data->xshutdown, 0);
1309	if (sensor->platform_data->set_xclk)
1310		sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1311	else
1312		clk_disable_unprepare(sensor->ext_clk);
1313	usleep_range(5000, 5000);
1314	regulator_disable(sensor->vana);
1315	sensor->streaming = false;
1316}
1317
1318static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1319{
1320	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1321	int ret = 0;
1322
1323	mutex_lock(&sensor->power_mutex);
1324
1325	if (on && !sensor->power_count) {
1326		/* Power on and perform initialisation. */
1327		ret = smiapp_power_on(sensor);
1328		if (ret < 0)
1329			goto out;
1330	} else if (!on && sensor->power_count == 1) {
1331		smiapp_power_off(sensor);
1332	}
1333
1334	/* Update the power count. */
1335	sensor->power_count += on ? 1 : -1;
1336	WARN_ON(sensor->power_count < 0);
1337
1338out:
1339	mutex_unlock(&sensor->power_mutex);
1340	return ret;
1341}
1342
1343/* -----------------------------------------------------------------------------
1344 * Video stream management
1345 */
1346
1347static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1348{
1349	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1350	int rval;
1351
1352	mutex_lock(&sensor->mutex);
1353
1354	rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1355			    (sensor->csi_format->width << 8) |
1356			    sensor->csi_format->compressed);
1357	if (rval)
1358		goto out;
1359
1360	rval = smiapp_pll_configure(sensor);
1361	if (rval)
1362		goto out;
1363
1364	/* Analog crop start coordinates */
1365	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1366			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1367	if (rval < 0)
1368		goto out;
1369
1370	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1371			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1372	if (rval < 0)
1373		goto out;
1374
1375	/* Analog crop end coordinates */
1376	rval = smiapp_write(
1377		sensor, SMIAPP_REG_U16_X_ADDR_END,
1378		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1379		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1380	if (rval < 0)
1381		goto out;
1382
1383	rval = smiapp_write(
1384		sensor, SMIAPP_REG_U16_Y_ADDR_END,
1385		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1386		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1387	if (rval < 0)
1388		goto out;
1389
1390	/*
1391	 * Output from pixel array, including blanking, is set using
1392	 * controls below. No need to set here.
1393	 */
1394
1395	/* Digital crop */
1396	if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1397	    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1398		rval = smiapp_write(
1399			sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1400			sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1401		if (rval < 0)
1402			goto out;
1403
1404		rval = smiapp_write(
1405			sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1406			sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1407		if (rval < 0)
1408			goto out;
1409
1410		rval = smiapp_write(
1411			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1412			sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1413		if (rval < 0)
1414			goto out;
1415
1416		rval = smiapp_write(
1417			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1418			sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1419		if (rval < 0)
1420			goto out;
1421	}
1422
1423	/* Scaling */
1424	if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1425	    != SMIAPP_SCALING_CAPABILITY_NONE) {
1426		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1427				    sensor->scaling_mode);
1428		if (rval < 0)
1429			goto out;
1430
1431		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1432				    sensor->scale_m);
1433		if (rval < 0)
1434			goto out;
1435	}
1436
1437	/* Output size from sensor */
1438	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1439			    sensor->src->crop[SMIAPP_PAD_SRC].width);
1440	if (rval < 0)
1441		goto out;
1442	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1443			    sensor->src->crop[SMIAPP_PAD_SRC].height);
1444	if (rval < 0)
1445		goto out;
1446
1447	if ((sensor->flash_capability &
1448	     (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1449	      SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1450	    sensor->platform_data->strobe_setup != NULL &&
1451	    sensor->platform_data->strobe_setup->trigger != 0) {
1452		rval = smiapp_setup_flash_strobe(sensor);
1453		if (rval)
1454			goto out;
1455	}
1456
1457	rval = smiapp_call_quirk(sensor, pre_streamon);
1458	if (rval) {
1459		dev_err(&client->dev, "pre_streamon quirks failed\n");
1460		goto out;
1461	}
1462
1463	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1464			    SMIAPP_MODE_SELECT_STREAMING);
1465
1466out:
1467	mutex_unlock(&sensor->mutex);
1468
1469	return rval;
1470}
1471
1472static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1473{
1474	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1475	int rval;
1476
1477	mutex_lock(&sensor->mutex);
1478	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1479			    SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1480	if (rval)
1481		goto out;
1482
1483	rval = smiapp_call_quirk(sensor, post_streamoff);
1484	if (rval)
1485		dev_err(&client->dev, "post_streamoff quirks failed\n");
1486
1487out:
1488	mutex_unlock(&sensor->mutex);
1489	return rval;
1490}
1491
1492/* -----------------------------------------------------------------------------
1493 * V4L2 subdev video operations
1494 */
1495
1496static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1497{
1498	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1499	int rval;
1500
1501	if (sensor->streaming == enable)
1502		return 0;
1503
1504	if (enable) {
1505		sensor->streaming = true;
1506		rval = smiapp_start_streaming(sensor);
1507		if (rval < 0)
1508			sensor->streaming = false;
1509	} else {
1510		rval = smiapp_stop_streaming(sensor);
1511		sensor->streaming = false;
1512	}
1513
1514	return rval;
1515}
1516
1517static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1518				 struct v4l2_subdev_fh *fh,
1519				 struct v4l2_subdev_mbus_code_enum *code)
1520{
1521	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1522	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1523	unsigned int i;
1524	int idx = -1;
1525	int rval = -EINVAL;
1526
1527	mutex_lock(&sensor->mutex);
1528
1529	dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1530		subdev->name, code->pad, code->index);
1531
1532	if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1533		if (code->index)
1534			goto out;
1535
1536		code->code = sensor->internal_csi_format->code;
1537		rval = 0;
1538		goto out;
1539	}
1540
1541	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1542		if (sensor->mbus_frame_fmts & (1 << i))
1543			idx++;
1544
1545		if (idx == code->index) {
1546			code->code = smiapp_csi_data_formats[i].code;
1547			dev_err(&client->dev, "found index %d, i %d, code %x\n",
1548				code->index, i, code->code);
1549			rval = 0;
1550			break;
1551		}
1552	}
1553
1554out:
1555	mutex_unlock(&sensor->mutex);
1556
1557	return rval;
1558}
1559
1560static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1561				  unsigned int pad)
1562{
1563	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1564
1565	if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1566		return sensor->csi_format->code;
1567	else
1568		return sensor->internal_csi_format->code;
1569}
1570
1571static int __smiapp_get_format(struct v4l2_subdev *subdev,
1572			       struct v4l2_subdev_fh *fh,
1573			       struct v4l2_subdev_format *fmt)
1574{
1575	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1576
1577	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1578		fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1579	} else {
1580		struct v4l2_rect *r;
1581
1582		if (fmt->pad == ssd->source_pad)
1583			r = &ssd->crop[ssd->source_pad];
1584		else
1585			r = &ssd->sink_fmt;
1586
1587		fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1588		fmt->format.width = r->width;
1589		fmt->format.height = r->height;
1590		fmt->format.field = V4L2_FIELD_NONE;
1591	}
1592
1593	return 0;
1594}
1595
1596static int smiapp_get_format(struct v4l2_subdev *subdev,
1597			     struct v4l2_subdev_fh *fh,
1598			     struct v4l2_subdev_format *fmt)
1599{
1600	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1601	int rval;
1602
1603	mutex_lock(&sensor->mutex);
1604	rval = __smiapp_get_format(subdev, fh, fmt);
1605	mutex_unlock(&sensor->mutex);
1606
1607	return rval;
1608}
1609
1610static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1611				    struct v4l2_subdev_fh *fh,
1612				    struct v4l2_rect **crops,
1613				    struct v4l2_rect **comps, int which)
1614{
1615	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1616	unsigned int i;
1617
1618	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1619		if (crops)
1620			for (i = 0; i < subdev->entity.num_pads; i++)
1621				crops[i] = &ssd->crop[i];
1622		if (comps)
1623			*comps = &ssd->compose;
1624	} else {
1625		if (crops) {
1626			for (i = 0; i < subdev->entity.num_pads; i++) {
1627				crops[i] = v4l2_subdev_get_try_crop(fh, i);
1628				BUG_ON(!crops[i]);
1629			}
1630		}
1631		if (comps) {
1632			*comps = v4l2_subdev_get_try_compose(fh,
1633							     SMIAPP_PAD_SINK);
1634			BUG_ON(!*comps);
1635		}
1636	}
1637}
1638
1639/* Changes require propagation only on sink pad. */
1640static void smiapp_propagate(struct v4l2_subdev *subdev,
1641			     struct v4l2_subdev_fh *fh, int which,
1642			     int target)
1643{
1644	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1645	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1646	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1647
1648	smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1649
1650	switch (target) {
1651	case V4L2_SEL_TGT_CROP:
1652		comp->width = crops[SMIAPP_PAD_SINK]->width;
1653		comp->height = crops[SMIAPP_PAD_SINK]->height;
1654		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1655			if (ssd == sensor->scaler) {
1656				sensor->scale_m =
1657					sensor->limits[
1658						SMIAPP_LIMIT_SCALER_N_MIN];
1659				sensor->scaling_mode =
1660					SMIAPP_SCALING_MODE_NONE;
1661			} else if (ssd == sensor->binner) {
1662				sensor->binning_horizontal = 1;
1663				sensor->binning_vertical = 1;
1664			}
1665		}
1666		/* Fall through */
1667	case V4L2_SEL_TGT_COMPOSE:
1668		*crops[SMIAPP_PAD_SRC] = *comp;
1669		break;
1670	default:
1671		BUG();
1672	}
1673}
1674
1675static const struct smiapp_csi_data_format
1676*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1677{
1678	const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1679	unsigned int i;
1680
1681	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1682		if (sensor->mbus_frame_fmts & (1 << i)
1683		    && smiapp_csi_data_formats[i].code == code)
1684			return &smiapp_csi_data_formats[i];
1685	}
1686
1687	return csi_format;
1688}
1689
1690static int smiapp_set_format(struct v4l2_subdev *subdev,
1691			     struct v4l2_subdev_fh *fh,
1692			     struct v4l2_subdev_format *fmt)
1693{
1694	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1695	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1696	struct v4l2_rect *crops[SMIAPP_PADS];
1697
1698	mutex_lock(&sensor->mutex);
1699
1700	/*
1701	 * Media bus code is changeable on src subdev's source pad. On
1702	 * other source pads we just get format here.
1703	 */
1704	if (fmt->pad == ssd->source_pad) {
1705		u32 code = fmt->format.code;
1706		int rval = __smiapp_get_format(subdev, fh, fmt);
1707		bool range_changed = false;
1708		unsigned int i;
1709
1710		if (!rval && subdev == &sensor->src->sd) {
1711			const struct smiapp_csi_data_format *csi_format =
1712				smiapp_validate_csi_data_format(sensor, code);
1713
1714			if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1715				if (csi_format->width !=
1716				    sensor->csi_format->width)
1717					range_changed = true;
1718
1719				sensor->csi_format = csi_format;
1720			}
1721
1722			fmt->format.code = csi_format->code;
1723		}
1724
1725		mutex_unlock(&sensor->mutex);
1726		if (rval || !range_changed)
1727			return rval;
1728
1729		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1730			v4l2_ctrl_modify_range(
1731				sensor->test_data[i],
1732				0, (1 << sensor->csi_format->width) - 1, 1, 0);
1733
1734		return 0;
1735	}
1736
1737	/* Sink pad. Width and height are changeable here. */
1738	fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1739	fmt->format.width &= ~1;
1740	fmt->format.height &= ~1;
1741	fmt->format.field = V4L2_FIELD_NONE;
1742
1743	fmt->format.width =
1744		clamp(fmt->format.width,
1745		      sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1746		      sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1747	fmt->format.height =
1748		clamp(fmt->format.height,
1749		      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1750		      sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1751
1752	smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1753
1754	crops[ssd->sink_pad]->left = 0;
1755	crops[ssd->sink_pad]->top = 0;
1756	crops[ssd->sink_pad]->width = fmt->format.width;
1757	crops[ssd->sink_pad]->height = fmt->format.height;
1758	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1759		ssd->sink_fmt = *crops[ssd->sink_pad];
1760	smiapp_propagate(subdev, fh, fmt->which,
1761			 V4L2_SEL_TGT_CROP);
1762
1763	mutex_unlock(&sensor->mutex);
1764
1765	return 0;
1766}
1767
1768/*
1769 * Calculate goodness of scaled image size compared to expected image
1770 * size and flags provided.
1771 */
1772#define SCALING_GOODNESS		100000
1773#define SCALING_GOODNESS_EXTREME	100000000
1774static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1775			    int h, int ask_h, u32 flags)
1776{
1777	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1778	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1779	int val = 0;
1780
1781	w &= ~1;
1782	ask_w &= ~1;
1783	h &= ~1;
1784	ask_h &= ~1;
1785
1786	if (flags & V4L2_SEL_FLAG_GE) {
1787		if (w < ask_w)
1788			val -= SCALING_GOODNESS;
1789		if (h < ask_h)
1790			val -= SCALING_GOODNESS;
1791	}
1792
1793	if (flags & V4L2_SEL_FLAG_LE) {
1794		if (w > ask_w)
1795			val -= SCALING_GOODNESS;
1796		if (h > ask_h)
1797			val -= SCALING_GOODNESS;
1798	}
1799
1800	val -= abs(w - ask_w);
1801	val -= abs(h - ask_h);
1802
1803	if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1804		val -= SCALING_GOODNESS_EXTREME;
1805
1806	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1807		w, ask_h, h, ask_h, val);
1808
1809	return val;
1810}
1811
1812static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1813				      struct v4l2_subdev_fh *fh,
1814				      struct v4l2_subdev_selection *sel,
1815				      struct v4l2_rect **crops,
1816				      struct v4l2_rect *comp)
1817{
1818	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1819	unsigned int i;
1820	unsigned int binh = 1, binv = 1;
1821	int best = scaling_goodness(
1822		subdev,
1823		crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1824		crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1825
1826	for (i = 0; i < sensor->nbinning_subtypes; i++) {
1827		int this = scaling_goodness(
1828			subdev,
1829			crops[SMIAPP_PAD_SINK]->width
1830			/ sensor->binning_subtypes[i].horizontal,
1831			sel->r.width,
1832			crops[SMIAPP_PAD_SINK]->height
1833			/ sensor->binning_subtypes[i].vertical,
1834			sel->r.height, sel->flags);
1835
1836		if (this > best) {
1837			binh = sensor->binning_subtypes[i].horizontal;
1838			binv = sensor->binning_subtypes[i].vertical;
1839			best = this;
1840		}
1841	}
1842	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1843		sensor->binning_vertical = binv;
1844		sensor->binning_horizontal = binh;
1845	}
1846
1847	sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1848	sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1849}
1850
1851/*
1852 * Calculate best scaling ratio and mode for given output resolution.
1853 *
1854 * Try all of these: horizontal ratio, vertical ratio and smallest
1855 * size possible (horizontally).
1856 *
1857 * Also try whether horizontal scaler or full scaler gives a better
1858 * result.
1859 */
1860static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1861				      struct v4l2_subdev_fh *fh,
1862				      struct v4l2_subdev_selection *sel,
1863				      struct v4l2_rect **crops,
1864				      struct v4l2_rect *comp)
1865{
1866	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1867	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1868	u32 min, max, a, b, max_m;
1869	u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1870	int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1871	u32 try[4];
1872	u32 ntry = 0;
1873	unsigned int i;
1874	int best = INT_MIN;
1875
1876	sel->r.width = min_t(unsigned int, sel->r.width,
1877			     crops[SMIAPP_PAD_SINK]->width);
1878	sel->r.height = min_t(unsigned int, sel->r.height,
1879			      crops[SMIAPP_PAD_SINK]->height);
1880
1881	a = crops[SMIAPP_PAD_SINK]->width
1882		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1883	b = crops[SMIAPP_PAD_SINK]->height
1884		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1885	max_m = crops[SMIAPP_PAD_SINK]->width
1886		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1887		/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1888
1889	a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1890		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1891	b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1892		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1893	max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1894		      sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1895
1896	dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1897
1898	min = min(max_m, min(a, b));
1899	max = min(max_m, max(a, b));
1900
1901	try[ntry] = min;
1902	ntry++;
1903	if (min != max) {
1904		try[ntry] = max;
1905		ntry++;
1906	}
1907	if (max != max_m) {
1908		try[ntry] = min + 1;
1909		ntry++;
1910		if (min != max) {
1911			try[ntry] = max + 1;
1912			ntry++;
1913		}
1914	}
1915
1916	for (i = 0; i < ntry; i++) {
1917		int this = scaling_goodness(
1918			subdev,
1919			crops[SMIAPP_PAD_SINK]->width
1920			/ try[i]
1921			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1922			sel->r.width,
1923			crops[SMIAPP_PAD_SINK]->height,
1924			sel->r.height,
1925			sel->flags);
1926
1927		dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1928
1929		if (this > best) {
1930			scale_m = try[i];
1931			mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1932			best = this;
1933		}
1934
1935		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1936		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1937			continue;
1938
1939		this = scaling_goodness(
1940			subdev, crops[SMIAPP_PAD_SINK]->width
1941			/ try[i]
1942			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1943			sel->r.width,
1944			crops[SMIAPP_PAD_SINK]->height
1945			/ try[i]
1946			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1947			sel->r.height,
1948			sel->flags);
1949
1950		if (this > best) {
1951			scale_m = try[i];
1952			mode = SMIAPP_SCALING_MODE_BOTH;
1953			best = this;
1954		}
1955	}
1956
1957	sel->r.width =
1958		(crops[SMIAPP_PAD_SINK]->width
1959		 / scale_m
1960		 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1961	if (mode == SMIAPP_SCALING_MODE_BOTH)
1962		sel->r.height =
1963			(crops[SMIAPP_PAD_SINK]->height
1964			 / scale_m
1965			 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1966			& ~1;
1967	else
1968		sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1969
1970	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1971		sensor->scale_m = scale_m;
1972		sensor->scaling_mode = mode;
1973	}
1974}
1975/* We're only called on source pads. This function sets scaling. */
1976static int smiapp_set_compose(struct v4l2_subdev *subdev,
1977			      struct v4l2_subdev_fh *fh,
1978			      struct v4l2_subdev_selection *sel)
1979{
1980	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1981	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1982	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1983
1984	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1985
1986	sel->r.top = 0;
1987	sel->r.left = 0;
1988
1989	if (ssd == sensor->binner)
1990		smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1991	else
1992		smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1993
1994	*comp = sel->r;
1995	smiapp_propagate(subdev, fh, sel->which,
1996			 V4L2_SEL_TGT_COMPOSE);
1997
1998	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1999		return smiapp_update_mode(sensor);
2000
2001	return 0;
2002}
2003
2004static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2005				  struct v4l2_subdev_selection *sel)
2006{
2007	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2008	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2009
2010	/* We only implement crop in three places. */
2011	switch (sel->target) {
2012	case V4L2_SEL_TGT_CROP:
2013	case V4L2_SEL_TGT_CROP_BOUNDS:
2014		if (ssd == sensor->pixel_array
2015		    && sel->pad == SMIAPP_PA_PAD_SRC)
2016			return 0;
2017		if (ssd == sensor->src
2018		    && sel->pad == SMIAPP_PAD_SRC)
2019			return 0;
2020		if (ssd == sensor->scaler
2021		    && sel->pad == SMIAPP_PAD_SINK
2022		    && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2023		    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2024			return 0;
2025		return -EINVAL;
2026	case V4L2_SEL_TGT_COMPOSE:
2027	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2028		if (sel->pad == ssd->source_pad)
2029			return -EINVAL;
2030		if (ssd == sensor->binner)
2031			return 0;
2032		if (ssd == sensor->scaler
2033		    && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2034		    != SMIAPP_SCALING_CAPABILITY_NONE)
2035			return 0;
2036		/* Fall through */
2037	default:
2038		return -EINVAL;
2039	}
2040}
2041
2042static int smiapp_set_crop(struct v4l2_subdev *subdev,
2043			   struct v4l2_subdev_fh *fh,
2044			   struct v4l2_subdev_selection *sel)
2045{
2046	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2047	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2048	struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2049	struct v4l2_rect _r;
2050
2051	smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2052
2053	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2054		if (sel->pad == ssd->sink_pad)
2055			src_size = &ssd->sink_fmt;
2056		else
2057			src_size = &ssd->compose;
2058	} else {
2059		if (sel->pad == ssd->sink_pad) {
2060			_r.left = 0;
2061			_r.top = 0;
2062			_r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2063				->width;
2064			_r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2065				->height;
2066			src_size = &_r;
2067		} else {
2068			src_size =
2069				v4l2_subdev_get_try_compose(
2070					fh, ssd->sink_pad);
2071		}
2072	}
2073
2074	if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2075		sel->r.left = 0;
2076		sel->r.top = 0;
2077	}
2078
2079	sel->r.width = min(sel->r.width, src_size->width);
2080	sel->r.height = min(sel->r.height, src_size->height);
2081
2082	sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2083	sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2084
2085	*crops[sel->pad] = sel->r;
2086
2087	if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2088		smiapp_propagate(subdev, fh, sel->which,
2089				 V4L2_SEL_TGT_CROP);
2090
2091	return 0;
2092}
2093
2094static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2095				  struct v4l2_subdev_fh *fh,
2096				  struct v4l2_subdev_selection *sel)
2097{
2098	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2099	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2100	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2101	struct v4l2_rect sink_fmt;
2102	int ret;
2103
2104	ret = __smiapp_sel_supported(subdev, sel);
2105	if (ret)
2106		return ret;
2107
2108	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2109
2110	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2111		sink_fmt = ssd->sink_fmt;
2112	} else {
2113		struct v4l2_mbus_framefmt *fmt =
2114			v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2115
2116		sink_fmt.left = 0;
2117		sink_fmt.top = 0;
2118		sink_fmt.width = fmt->width;
2119		sink_fmt.height = fmt->height;
2120	}
2121
2122	switch (sel->target) {
2123	case V4L2_SEL_TGT_CROP_BOUNDS:
2124		if (ssd == sensor->pixel_array) {
2125			sel->r.width =
2126				sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2127			sel->r.height =
2128				sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2129		} else if (sel->pad == ssd->sink_pad) {
2130			sel->r = sink_fmt;
2131		} else {
2132			sel->r = *comp;
2133		}
2134		break;
2135	case V4L2_SEL_TGT_CROP:
2136	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2137		sel->r = *crops[sel->pad];
2138		break;
2139	case V4L2_SEL_TGT_COMPOSE:
2140		sel->r = *comp;
2141		break;
2142	}
2143
2144	return 0;
2145}
2146
2147static int smiapp_get_selection(struct v4l2_subdev *subdev,
2148				struct v4l2_subdev_fh *fh,
2149				struct v4l2_subdev_selection *sel)
2150{
2151	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2152	int rval;
2153
2154	mutex_lock(&sensor->mutex);
2155	rval = __smiapp_get_selection(subdev, fh, sel);
2156	mutex_unlock(&sensor->mutex);
2157
2158	return rval;
2159}
2160static int smiapp_set_selection(struct v4l2_subdev *subdev,
2161				struct v4l2_subdev_fh *fh,
2162				struct v4l2_subdev_selection *sel)
2163{
2164	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2165	int ret;
2166
2167	ret = __smiapp_sel_supported(subdev, sel);
2168	if (ret)
2169		return ret;
2170
2171	mutex_lock(&sensor->mutex);
2172
2173	sel->r.left = max(0, sel->r.left & ~1);
2174	sel->r.top = max(0, sel->r.top & ~1);
2175	sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2176	sel->r.height =	SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2177
2178	sel->r.width = max_t(unsigned int,
2179			     sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2180			     sel->r.width);
2181	sel->r.height = max_t(unsigned int,
2182			      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2183			      sel->r.height);
2184
2185	switch (sel->target) {
2186	case V4L2_SEL_TGT_CROP:
2187		ret = smiapp_set_crop(subdev, fh, sel);
2188		break;
2189	case V4L2_SEL_TGT_COMPOSE:
2190		ret = smiapp_set_compose(subdev, fh, sel);
2191		break;
2192	default:
2193		ret = -EINVAL;
2194	}
2195
2196	mutex_unlock(&sensor->mutex);
2197	return ret;
2198}
2199
2200static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2201{
2202	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2203
2204	*frames = sensor->frame_skip;
2205	return 0;
2206}
2207
2208/* -----------------------------------------------------------------------------
2209 * sysfs attributes
2210 */
2211
2212static ssize_t
2213smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2214		      char *buf)
2215{
2216	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2217	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2218	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2219	unsigned int nbytes;
2220
2221	if (!sensor->dev_init_done)
2222		return -EBUSY;
2223
2224	if (!sensor->nvm_size) {
2225		/* NVM not read yet - read it now */
2226		sensor->nvm_size = sensor->platform_data->nvm_size;
2227		if (smiapp_set_power(subdev, 1) < 0)
2228			return -ENODEV;
2229		if (smiapp_read_nvm(sensor, sensor->nvm)) {
2230			dev_err(&client->dev, "nvm read failed\n");
2231			return -ENODEV;
2232		}
2233		smiapp_set_power(subdev, 0);
2234	}
2235	/*
2236	 * NVM is still way below a PAGE_SIZE, so we can safely
2237	 * assume this for now.
2238	 */
2239	nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2240	memcpy(buf, sensor->nvm, nbytes);
2241
2242	return nbytes;
2243}
2244static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2245
2246static ssize_t
2247smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2248			char *buf)
2249{
2250	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2251	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2252	struct smiapp_module_info *minfo = &sensor->minfo;
2253
2254	return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2255			minfo->manufacturer_id, minfo->model_id,
2256			minfo->revision_number_major) + 1;
2257}
2258
2259static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2260
2261/* -----------------------------------------------------------------------------
2262 * V4L2 subdev core operations
2263 */
2264
2265static int smiapp_identify_module(struct v4l2_subdev *subdev)
2266{
2267	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2268	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2269	struct smiapp_module_info *minfo = &sensor->minfo;
2270	unsigned int i;
2271	int rval = 0;
2272
2273	minfo->name = SMIAPP_NAME;
2274
2275	/* Module info */
2276	rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2277				 &minfo->manufacturer_id);
2278	if (!rval)
2279		rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2280					 &minfo->model_id);
2281	if (!rval)
2282		rval = smiapp_read_8only(sensor,
2283					 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2284					 &minfo->revision_number_major);
2285	if (!rval)
2286		rval = smiapp_read_8only(sensor,
2287					 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2288					 &minfo->revision_number_minor);
2289	if (!rval)
2290		rval = smiapp_read_8only(sensor,
2291					 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2292					 &minfo->module_year);
2293	if (!rval)
2294		rval = smiapp_read_8only(sensor,
2295					 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2296					 &minfo->module_month);
2297	if (!rval)
2298		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2299					 &minfo->module_day);
2300
2301	/* Sensor info */
2302	if (!rval)
2303		rval = smiapp_read_8only(sensor,
2304					 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2305					 &minfo->sensor_manufacturer_id);
2306	if (!rval)
2307		rval = smiapp_read_8only(sensor,
2308					 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2309					 &minfo->sensor_model_id);
2310	if (!rval)
2311		rval = smiapp_read_8only(sensor,
2312					 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2313					 &minfo->sensor_revision_number);
2314	if (!rval)
2315		rval = smiapp_read_8only(sensor,
2316					 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2317					 &minfo->sensor_firmware_version);
2318
2319	/* SMIA */
2320	if (!rval)
2321		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2322					 &minfo->smia_version);
2323	if (!rval)
2324		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2325					 &minfo->smiapp_version);
2326
2327	if (rval) {
2328		dev_err(&client->dev, "sensor detection failed\n");
2329		return -ENODEV;
2330	}
2331
2332	dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2333		minfo->manufacturer_id, minfo->model_id);
2334
2335	dev_dbg(&client->dev,
2336		"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2337		minfo->revision_number_major, minfo->revision_number_minor,
2338		minfo->module_year, minfo->module_month, minfo->module_day);
2339
2340	dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2341		minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2342
2343	dev_dbg(&client->dev,
2344		"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2345		minfo->sensor_revision_number, minfo->sensor_firmware_version);
2346
2347	dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2348		minfo->smia_version, minfo->smiapp_version);
2349
2350	/*
2351	 * Some modules have bad data in the lvalues below. Hope the
2352	 * rvalues have better stuff. The lvalues are module
2353	 * parameters whereas the rvalues are sensor parameters.
2354	 */
2355	if (!minfo->manufacturer_id && !minfo->model_id) {
2356		minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2357		minfo->model_id = minfo->sensor_model_id;
2358		minfo->revision_number_major = minfo->sensor_revision_number;
2359	}
2360
2361	for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2362		if (smiapp_module_idents[i].manufacturer_id
2363		    != minfo->manufacturer_id)
2364			continue;
2365		if (smiapp_module_idents[i].model_id != minfo->model_id)
2366			continue;
2367		if (smiapp_module_idents[i].flags
2368		    & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2369			if (smiapp_module_idents[i].revision_number_major
2370			    < minfo->revision_number_major)
2371				continue;
2372		} else {
2373			if (smiapp_module_idents[i].revision_number_major
2374			    != minfo->revision_number_major)
2375				continue;
2376		}
2377
2378		minfo->name = smiapp_module_idents[i].name;
2379		minfo->quirk = smiapp_module_idents[i].quirk;
2380		break;
2381	}
2382
2383	if (i >= ARRAY_SIZE(smiapp_module_idents))
2384		dev_warn(&client->dev,
2385			 "no quirks for this module; let's hope it's fully compliant\n");
2386
2387	dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2388		minfo->name, minfo->manufacturer_id, minfo->model_id,
2389		minfo->revision_number_major);
2390
2391	strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2392
2393	return 0;
2394}
2395
2396static const struct v4l2_subdev_ops smiapp_ops;
2397static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2398static const struct media_entity_operations smiapp_entity_ops;
2399
2400static int smiapp_registered(struct v4l2_subdev *subdev)
2401{
2402	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2403	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2404	struct smiapp_pll *pll = &sensor->pll;
2405	struct smiapp_subdev *last = NULL;
2406	u32 tmp;
2407	unsigned int i;
2408	int rval;
2409
2410	sensor->vana = devm_regulator_get(&client->dev, "vana");
2411	if (IS_ERR(sensor->vana)) {
2412		dev_err(&client->dev, "could not get regulator for vana\n");
2413		return PTR_ERR(sensor->vana);
2414	}
2415
2416	if (!sensor->platform_data->set_xclk) {
2417		sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk");
2418		if (IS_ERR(sensor->ext_clk)) {
2419			dev_err(&client->dev, "could not get clock\n");
2420			return PTR_ERR(sensor->ext_clk);
2421		}
2422
2423		rval = clk_set_rate(sensor->ext_clk,
2424				    sensor->platform_data->ext_clk);
2425		if (rval < 0) {
2426			dev_err(&client->dev,
2427				"unable to set clock freq to %u\n",
2428				sensor->platform_data->ext_clk);
2429			return rval;
2430		}
2431	}
2432
2433	if (gpio_is_valid(sensor->platform_data->xshutdown)) {
2434		rval = devm_gpio_request_one(
2435			&client->dev, sensor->platform_data->xshutdown, 0,
2436			"SMIA++ xshutdown");
2437		if (rval < 0) {
2438			dev_err(&client->dev,
2439				"unable to acquire reset gpio %d\n",
2440				sensor->platform_data->xshutdown);
2441			return rval;
2442		}
2443	}
2444
2445	rval = smiapp_power_on(sensor);
2446	if (rval)
2447		return -ENODEV;
2448
2449	rval = smiapp_identify_module(subdev);
2450	if (rval) {
2451		rval = -ENODEV;
2452		goto out_power_off;
2453	}
2454
2455	rval = smiapp_get_all_limits(sensor);
2456	if (rval) {
2457		rval = -ENODEV;
2458		goto out_power_off;
2459	}
2460
2461	/*
2462	 * Handle Sensor Module orientation on the board.
2463	 *
2464	 * The application of H-FLIP and V-FLIP on the sensor is modified by
2465	 * the sensor orientation on the board.
2466	 *
2467	 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2468	 * both H-FLIP and V-FLIP for normal operation which also implies
2469	 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2470	 * controls will need to be internally inverted.
2471	 *
2472	 * Rotation also changes the bayer pattern.
2473	 */
2474	if (sensor->platform_data->module_board_orient ==
2475	    SMIAPP_MODULE_BOARD_ORIENT_180)
2476		sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2477					  SMIAPP_IMAGE_ORIENTATION_VFLIP;
2478
2479	rval = smiapp_call_quirk(sensor, limits);
2480	if (rval) {
2481		dev_err(&client->dev, "limits quirks failed\n");
2482		goto out_power_off;
2483	}
2484
2485	rval = smiapp_get_mbus_formats(sensor);
2486	if (rval) {
2487		rval = -ENODEV;
2488		goto out_power_off;
2489	}
2490
2491	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2492		u32 val;
2493
2494		rval = smiapp_read(sensor,
2495				   SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2496		if (rval < 0) {
2497			rval = -ENODEV;
2498			goto out_power_off;
2499		}
2500		sensor->nbinning_subtypes = min_t(u8, val,
2501						  SMIAPP_BINNING_SUBTYPES);
2502
2503		for (i = 0; i < sensor->nbinning_subtypes; i++) {
2504			rval = smiapp_read(
2505				sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2506			if (rval < 0) {
2507				rval = -ENODEV;
2508				goto out_power_off;
2509			}
2510			sensor->binning_subtypes[i] =
2511				*(struct smiapp_binning_subtype *)&val;
2512
2513			dev_dbg(&client->dev, "binning %xx%x\n",
2514				sensor->binning_subtypes[i].horizontal,
2515				sensor->binning_subtypes[i].vertical);
2516		}
2517	}
2518	sensor->binning_horizontal = 1;
2519	sensor->binning_vertical = 1;
2520
2521	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2522		dev_err(&client->dev, "sysfs ident entry creation failed\n");
2523		rval = -ENOENT;
2524		goto out_power_off;
2525	}
2526	/* SMIA++ NVM initialization - it will be read from the sensor
2527	 * when it is first requested by userspace.
2528	 */
2529	if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2530		sensor->nvm = devm_kzalloc(&client->dev,
2531				sensor->platform_data->nvm_size, GFP_KERNEL);
2532		if (sensor->nvm == NULL) {
2533			dev_err(&client->dev, "nvm buf allocation failed\n");
2534			rval = -ENOMEM;
2535			goto out_ident_release;
2536		}
2537
2538		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2539			dev_err(&client->dev, "sysfs nvm entry failed\n");
2540			rval = -EBUSY;
2541			goto out_ident_release;
2542		}
2543	}
2544
2545	/* We consider this as profile 0 sensor if any of these are zero. */
2546	if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2547	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2548	    !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2549	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2550		sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2551	} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2552		   != SMIAPP_SCALING_CAPABILITY_NONE) {
2553		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2554		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2555			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2556		else
2557			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2558		sensor->scaler = &sensor->ssds[sensor->ssds_used];
2559		sensor->ssds_used++;
2560	} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2561		   == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2562		sensor->scaler = &sensor->ssds[sensor->ssds_used];
2563		sensor->ssds_used++;
2564	}
2565	sensor->binner = &sensor->ssds[sensor->ssds_used];
2566	sensor->ssds_used++;
2567	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2568	sensor->ssds_used++;
2569
2570	sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2571
2572	for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2573		struct {
2574			struct smiapp_subdev *ssd;
2575			char *name;
2576		} const __this[] = {
2577			{ sensor->scaler, "scaler", },
2578			{ sensor->binner, "binner", },
2579			{ sensor->pixel_array, "pixel array", },
2580		}, *_this = &__this[i];
2581		struct smiapp_subdev *this = _this->ssd;
2582
2583		if (!this)
2584			continue;
2585
2586		if (this != sensor->src)
2587			v4l2_subdev_init(&this->sd, &smiapp_ops);
2588
2589		this->sensor = sensor;
2590
2591		if (this == sensor->pixel_array) {
2592			this->npads = 1;
2593		} else {
2594			this->npads = 2;
2595			this->source_pad = 1;
2596		}
2597
2598		snprintf(this->sd.name,
2599			 sizeof(this->sd.name), "%s %s %d-%4.4x",
2600			 sensor->minfo.name, _this->name,
2601			 i2c_adapter_id(client->adapter), client->addr);
2602
2603		this->sink_fmt.width =
2604			sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2605		this->sink_fmt.height =
2606			sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2607		this->compose.width = this->sink_fmt.width;
2608		this->compose.height = this->sink_fmt.height;
2609		this->crop[this->source_pad] = this->compose;
2610		this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2611		if (this != sensor->pixel_array) {
2612			this->crop[this->sink_pad] = this->compose;
2613			this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2614		}
2615
2616		this->sd.entity.ops = &smiapp_entity_ops;
2617
2618		if (last == NULL) {
2619			last = this;
2620			continue;
2621		}
2622
2623		this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2624		this->sd.internal_ops = &smiapp_internal_ops;
2625		this->sd.owner = THIS_MODULE;
2626		v4l2_set_subdevdata(&this->sd, client);
2627
2628		rval = media_entity_init(&this->sd.entity,
2629					 this->npads, this->pads, 0);
2630		if (rval) {
2631			dev_err(&client->dev,
2632				"media_entity_init failed\n");
2633			goto out_nvm_release;
2634		}
2635
2636		rval = media_entity_create_link(&this->sd.entity,
2637						this->source_pad,
2638						&last->sd.entity,
2639						last->sink_pad,
2640						MEDIA_LNK_FL_ENABLED |
2641						MEDIA_LNK_FL_IMMUTABLE);
2642		if (rval) {
2643			dev_err(&client->dev,
2644				"media_entity_create_link failed\n");
2645			goto out_nvm_release;
2646		}
2647
2648		rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2649						   &this->sd);
2650		if (rval) {
2651			dev_err(&client->dev,
2652				"v4l2_device_register_subdev failed\n");
2653			goto out_nvm_release;
2654		}
2655
2656		last = this;
2657	}
2658
2659	dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2660
2661	sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2662
2663	/* final steps */
2664	smiapp_read_frame_fmt(sensor);
2665	rval = smiapp_init_controls(sensor);
2666	if (rval < 0)
2667		goto out_nvm_release;
2668
2669	/* prepare PLL configuration input values */
2670	pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2671	pll->csi2.lanes = sensor->platform_data->lanes;
2672	pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
2673	pll->flags = smiapp_call_quirk(sensor, pll_flags);
2674
2675	/* Profile 0 sensors have no separate OP clock branch. */
2676	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2677		pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2678	pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2679
2680	rval = smiapp_update_mode(sensor);
2681	if (rval) {
2682		dev_err(&client->dev, "update mode failed\n");
2683		goto out_nvm_release;
2684	}
2685
2686	sensor->streaming = false;
2687	sensor->dev_init_done = true;
2688
2689	/* check flash capability */
2690	rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2691	sensor->flash_capability = tmp;
2692	if (rval)
2693		goto out_nvm_release;
2694
2695	smiapp_power_off(sensor);
2696
2697	return 0;
2698
2699out_nvm_release:
2700	device_remove_file(&client->dev, &dev_attr_nvm);
2701
2702out_ident_release:
2703	device_remove_file(&client->dev, &dev_attr_ident);
2704
2705out_power_off:
2706	smiapp_power_off(sensor);
2707	return rval;
2708}
2709
2710static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2711{
2712	struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2713	struct smiapp_sensor *sensor = ssd->sensor;
2714	u32 mbus_code =
2715		smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2716	unsigned int i;
2717
2718	mutex_lock(&sensor->mutex);
2719
2720	for (i = 0; i < ssd->npads; i++) {
2721		struct v4l2_mbus_framefmt *try_fmt =
2722			v4l2_subdev_get_try_format(fh, i);
2723		struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2724		struct v4l2_rect *try_comp;
2725
2726		try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2727		try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2728		try_fmt->code = mbus_code;
2729		try_fmt->field = V4L2_FIELD_NONE;
2730
2731		try_crop->top = 0;
2732		try_crop->left = 0;
2733		try_crop->width = try_fmt->width;
2734		try_crop->height = try_fmt->height;
2735
2736		if (ssd != sensor->pixel_array)
2737			continue;
2738
2739		try_comp = v4l2_subdev_get_try_compose(fh, i);
2740		*try_comp = *try_crop;
2741	}
2742
2743	mutex_unlock(&sensor->mutex);
2744
2745	return smiapp_set_power(sd, 1);
2746}
2747
2748static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2749{
2750	return smiapp_set_power(sd, 0);
2751}
2752
2753static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2754	.s_stream = smiapp_set_stream,
2755};
2756
2757static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2758	.s_power = smiapp_set_power,
2759};
2760
2761static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2762	.enum_mbus_code = smiapp_enum_mbus_code,
2763	.get_fmt = smiapp_get_format,
2764	.set_fmt = smiapp_set_format,
2765	.get_selection = smiapp_get_selection,
2766	.set_selection = smiapp_set_selection,
2767};
2768
2769static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2770	.g_skip_frames = smiapp_get_skip_frames,
2771};
2772
2773static const struct v4l2_subdev_ops smiapp_ops = {
2774	.core = &smiapp_core_ops,
2775	.video = &smiapp_video_ops,
2776	.pad = &smiapp_pad_ops,
2777	.sensor = &smiapp_sensor_ops,
2778};
2779
2780static const struct media_entity_operations smiapp_entity_ops = {
2781	.link_validate = v4l2_subdev_link_validate,
2782};
2783
2784static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2785	.registered = smiapp_registered,
2786	.open = smiapp_open,
2787	.close = smiapp_close,
2788};
2789
2790static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2791	.open = smiapp_open,
2792	.close = smiapp_close,
2793};
2794
2795/* -----------------------------------------------------------------------------
2796 * I2C Driver
2797 */
2798
2799#ifdef CONFIG_PM
2800
2801static int smiapp_suspend(struct device *dev)
2802{
2803	struct i2c_client *client = to_i2c_client(dev);
2804	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2805	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2806	bool streaming;
2807
2808	BUG_ON(mutex_is_locked(&sensor->mutex));
2809
2810	if (sensor->power_count == 0)
2811		return 0;
2812
2813	if (sensor->streaming)
2814		smiapp_stop_streaming(sensor);
2815
2816	streaming = sensor->streaming;
2817
2818	smiapp_power_off(sensor);
2819
2820	/* save state for resume */
2821	sensor->streaming = streaming;
2822
2823	return 0;
2824}
2825
2826static int smiapp_resume(struct device *dev)
2827{
2828	struct i2c_client *client = to_i2c_client(dev);
2829	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2830	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2831	int rval;
2832
2833	if (sensor->power_count == 0)
2834		return 0;
2835
2836	rval = smiapp_power_on(sensor);
2837	if (rval)
2838		return rval;
2839
2840	if (sensor->streaming)
2841		rval = smiapp_start_streaming(sensor);
2842
2843	return rval;
2844}
2845
2846#else
2847
2848#define smiapp_suspend	NULL
2849#define smiapp_resume	NULL
2850
2851#endif /* CONFIG_PM */
2852
2853static int smiapp_probe(struct i2c_client *client,
2854			const struct i2c_device_id *devid)
2855{
2856	struct smiapp_sensor *sensor;
2857
2858	if (client->dev.platform_data == NULL)
2859		return -ENODEV;
2860
2861	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2862	if (sensor == NULL)
2863		return -ENOMEM;
2864
2865	sensor->platform_data = client->dev.platform_data;
2866	mutex_init(&sensor->mutex);
2867	mutex_init(&sensor->power_mutex);
2868	sensor->src = &sensor->ssds[sensor->ssds_used];
2869
2870	v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2871	sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2872	sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2873	sensor->src->sensor = sensor;
2874
2875	sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2876	return media_entity_init(&sensor->src->sd.entity, 2,
2877				 sensor->src->pads, 0);
2878}
2879
2880static int smiapp_remove(struct i2c_client *client)
2881{
2882	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2883	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2884	unsigned int i;
2885
2886	if (sensor->power_count) {
2887		if (gpio_is_valid(sensor->platform_data->xshutdown))
2888			gpio_set_value(sensor->platform_data->xshutdown, 0);
2889		if (sensor->platform_data->set_xclk)
2890			sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2891		else
2892			clk_disable_unprepare(sensor->ext_clk);
2893		sensor->power_count = 0;
2894	}
2895
2896	device_remove_file(&client->dev, &dev_attr_ident);
2897	if (sensor->nvm)
2898		device_remove_file(&client->dev, &dev_attr_nvm);
2899
2900	for (i = 0; i < sensor->ssds_used; i++) {
2901		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2902		media_entity_cleanup(&sensor->ssds[i].sd.entity);
2903	}
2904	smiapp_free_controls(sensor);
2905
2906	return 0;
2907}
2908
2909static const struct i2c_device_id smiapp_id_table[] = {
2910	{ SMIAPP_NAME, 0 },
2911	{ },
2912};
2913MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2914
2915static const struct dev_pm_ops smiapp_pm_ops = {
2916	.suspend	= smiapp_suspend,
2917	.resume		= smiapp_resume,
2918};
2919
2920static struct i2c_driver smiapp_i2c_driver = {
2921	.driver	= {
2922		.name = SMIAPP_NAME,
2923		.pm = &smiapp_pm_ops,
2924	},
2925	.probe	= smiapp_probe,
2926	.remove	= smiapp_remove,
2927	.id_table = smiapp_id_table,
2928};
2929
2930module_i2c_driver(smiapp_i2c_driver);
2931
2932MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
2933MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2934MODULE_LICENSE("GPL");
2935