[go: nahoru, domu]

1/*
2 * Samsung S5P/EXYNOS4 SoC series FIMC (CAMIF) driver
3 *
4 * Copyright (C) 2010-2012 Samsung Electronics Co., Ltd.
5 * Sylwester Nawrocki <s.nawrocki@samsung.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation, either version 2 of the License,
10 * or (at your option) any later version.
11 */
12
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/types.h>
16#include <linux/errno.h>
17#include <linux/bug.h>
18#include <linux/interrupt.h>
19#include <linux/device.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/list.h>
23#include <linux/mfd/syscon.h>
24#include <linux/io.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
27#include <linux/slab.h>
28#include <linux/clk.h>
29#include <media/v4l2-ioctl.h>
30#include <media/videobuf2-core.h>
31#include <media/videobuf2-dma-contig.h>
32
33#include "fimc-core.h"
34#include "fimc-reg.h"
35#include "media-dev.h"
36
37static char *fimc_clocks[MAX_FIMC_CLOCKS] = {
38	"sclk_fimc", "fimc"
39};
40
41static struct fimc_fmt fimc_formats[] = {
42	{
43		.name		= "RGB565",
44		.fourcc		= V4L2_PIX_FMT_RGB565,
45		.depth		= { 16 },
46		.color		= FIMC_FMT_RGB565,
47		.memplanes	= 1,
48		.colplanes	= 1,
49		.flags		= FMT_FLAGS_M2M,
50	}, {
51		.name		= "BGR666",
52		.fourcc		= V4L2_PIX_FMT_BGR666,
53		.depth		= { 32 },
54		.color		= FIMC_FMT_RGB666,
55		.memplanes	= 1,
56		.colplanes	= 1,
57		.flags		= FMT_FLAGS_M2M,
58	}, {
59		.name		= "BGRA8888, 32 bpp",
60		.fourcc		= V4L2_PIX_FMT_BGR32,
61		.depth		= { 32 },
62		.color		= FIMC_FMT_RGB888,
63		.memplanes	= 1,
64		.colplanes	= 1,
65		.flags		= FMT_FLAGS_M2M | FMT_HAS_ALPHA,
66	}, {
67		.name		= "ARGB1555",
68		.fourcc		= V4L2_PIX_FMT_RGB555,
69		.depth		= { 16 },
70		.color		= FIMC_FMT_RGB555,
71		.memplanes	= 1,
72		.colplanes	= 1,
73		.flags		= FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
74	}, {
75		.name		= "ARGB4444",
76		.fourcc		= V4L2_PIX_FMT_RGB444,
77		.depth		= { 16 },
78		.color		= FIMC_FMT_RGB444,
79		.memplanes	= 1,
80		.colplanes	= 1,
81		.flags		= FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
82	}, {
83		.name		= "YUV 4:4:4",
84		.mbus_code	= V4L2_MBUS_FMT_YUV10_1X30,
85		.flags		= FMT_FLAGS_WRITEBACK,
86	}, {
87		.name		= "YUV 4:2:2 packed, YCbYCr",
88		.fourcc		= V4L2_PIX_FMT_YUYV,
89		.depth		= { 16 },
90		.color		= FIMC_FMT_YCBYCR422,
91		.memplanes	= 1,
92		.colplanes	= 1,
93		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
94		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
95	}, {
96		.name		= "YUV 4:2:2 packed, CbYCrY",
97		.fourcc		= V4L2_PIX_FMT_UYVY,
98		.depth		= { 16 },
99		.color		= FIMC_FMT_CBYCRY422,
100		.memplanes	= 1,
101		.colplanes	= 1,
102		.mbus_code	= V4L2_MBUS_FMT_UYVY8_2X8,
103		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
104	}, {
105		.name		= "YUV 4:2:2 packed, CrYCbY",
106		.fourcc		= V4L2_PIX_FMT_VYUY,
107		.depth		= { 16 },
108		.color		= FIMC_FMT_CRYCBY422,
109		.memplanes	= 1,
110		.colplanes	= 1,
111		.mbus_code	= V4L2_MBUS_FMT_VYUY8_2X8,
112		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
113	}, {
114		.name		= "YUV 4:2:2 packed, YCrYCb",
115		.fourcc		= V4L2_PIX_FMT_YVYU,
116		.depth		= { 16 },
117		.color		= FIMC_FMT_YCRYCB422,
118		.memplanes	= 1,
119		.colplanes	= 1,
120		.mbus_code	= V4L2_MBUS_FMT_YVYU8_2X8,
121		.flags		= FMT_FLAGS_M2M | FMT_FLAGS_CAM,
122	}, {
123		.name		= "YUV 4:2:2 planar, Y/Cb/Cr",
124		.fourcc		= V4L2_PIX_FMT_YUV422P,
125		.depth		= { 16 },
126		.color		= FIMC_FMT_YCBYCR422,
127		.memplanes	= 1,
128		.colplanes	= 3,
129		.flags		= FMT_FLAGS_M2M,
130	}, {
131		.name		= "YUV 4:2:2 planar, Y/CbCr",
132		.fourcc		= V4L2_PIX_FMT_NV16,
133		.depth		= { 16 },
134		.color		= FIMC_FMT_YCBYCR422,
135		.memplanes	= 1,
136		.colplanes	= 2,
137		.flags		= FMT_FLAGS_M2M,
138	}, {
139		.name		= "YUV 4:2:2 planar, Y/CrCb",
140		.fourcc		= V4L2_PIX_FMT_NV61,
141		.depth		= { 16 },
142		.color		= FIMC_FMT_YCRYCB422,
143		.memplanes	= 1,
144		.colplanes	= 2,
145		.flags		= FMT_FLAGS_M2M,
146	}, {
147		.name		= "YUV 4:2:0 planar, YCbCr",
148		.fourcc		= V4L2_PIX_FMT_YUV420,
149		.depth		= { 12 },
150		.color		= FIMC_FMT_YCBCR420,
151		.memplanes	= 1,
152		.colplanes	= 3,
153		.flags		= FMT_FLAGS_M2M,
154	}, {
155		.name		= "YUV 4:2:0 planar, Y/CbCr",
156		.fourcc		= V4L2_PIX_FMT_NV12,
157		.depth		= { 12 },
158		.color		= FIMC_FMT_YCBCR420,
159		.memplanes	= 1,
160		.colplanes	= 2,
161		.flags		= FMT_FLAGS_M2M,
162	}, {
163		.name		= "YUV 4:2:0 non-contig. 2p, Y/CbCr",
164		.fourcc		= V4L2_PIX_FMT_NV12M,
165		.color		= FIMC_FMT_YCBCR420,
166		.depth		= { 8, 4 },
167		.memplanes	= 2,
168		.colplanes	= 2,
169		.flags		= FMT_FLAGS_M2M,
170	}, {
171		.name		= "YUV 4:2:0 non-contig. 3p, Y/Cb/Cr",
172		.fourcc		= V4L2_PIX_FMT_YUV420M,
173		.color		= FIMC_FMT_YCBCR420,
174		.depth		= { 8, 2, 2 },
175		.memplanes	= 3,
176		.colplanes	= 3,
177		.flags		= FMT_FLAGS_M2M,
178	}, {
179		.name		= "YUV 4:2:0 non-contig. 2p, tiled",
180		.fourcc		= V4L2_PIX_FMT_NV12MT,
181		.color		= FIMC_FMT_YCBCR420,
182		.depth		= { 8, 4 },
183		.memplanes	= 2,
184		.colplanes	= 2,
185		.flags		= FMT_FLAGS_M2M,
186	}, {
187		.name		= "JPEG encoded data",
188		.fourcc		= V4L2_PIX_FMT_JPEG,
189		.color		= FIMC_FMT_JPEG,
190		.depth		= { 8 },
191		.memplanes	= 1,
192		.colplanes	= 1,
193		.mbus_code	= V4L2_MBUS_FMT_JPEG_1X8,
194		.flags		= FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
195	}, {
196		.name		= "S5C73MX interleaved UYVY/JPEG",
197		.fourcc		= V4L2_PIX_FMT_S5C_UYVY_JPG,
198		.color		= FIMC_FMT_YUYV_JPEG,
199		.depth		= { 8 },
200		.memplanes	= 2,
201		.colplanes	= 1,
202		.mdataplanes	= 0x2, /* plane 1 holds frame meta data */
203		.mbus_code	= V4L2_MBUS_FMT_S5C_UYVY_JPEG_1X8,
204		.flags		= FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
205	},
206};
207
208struct fimc_fmt *fimc_get_format(unsigned int index)
209{
210	if (index >= ARRAY_SIZE(fimc_formats))
211		return NULL;
212
213	return &fimc_formats[index];
214}
215
216int fimc_check_scaler_ratio(struct fimc_ctx *ctx, int sw, int sh,
217			    int dw, int dh, int rotation)
218{
219	if (rotation == 90 || rotation == 270)
220		swap(dw, dh);
221
222	if (!ctx->scaler.enabled)
223		return (sw == dw && sh == dh) ? 0 : -EINVAL;
224
225	if ((sw >= SCALER_MAX_HRATIO * dw) || (sh >= SCALER_MAX_VRATIO * dh))
226		return -EINVAL;
227
228	return 0;
229}
230
231static int fimc_get_scaler_factor(u32 src, u32 tar, u32 *ratio, u32 *shift)
232{
233	u32 sh = 6;
234
235	if (src >= 64 * tar)
236		return -EINVAL;
237
238	while (sh--) {
239		u32 tmp = 1 << sh;
240		if (src >= tar * tmp) {
241			*shift = sh, *ratio = tmp;
242			return 0;
243		}
244	}
245	*shift = 0, *ratio = 1;
246	return 0;
247}
248
249int fimc_set_scaler_info(struct fimc_ctx *ctx)
250{
251	const struct fimc_variant *variant = ctx->fimc_dev->variant;
252	struct device *dev = &ctx->fimc_dev->pdev->dev;
253	struct fimc_scaler *sc = &ctx->scaler;
254	struct fimc_frame *s_frame = &ctx->s_frame;
255	struct fimc_frame *d_frame = &ctx->d_frame;
256	int tx, ty, sx, sy;
257	int ret;
258
259	if (ctx->rotation == 90 || ctx->rotation == 270) {
260		ty = d_frame->width;
261		tx = d_frame->height;
262	} else {
263		tx = d_frame->width;
264		ty = d_frame->height;
265	}
266	if (tx <= 0 || ty <= 0) {
267		dev_err(dev, "Invalid target size: %dx%d\n", tx, ty);
268		return -EINVAL;
269	}
270
271	sx = s_frame->width;
272	sy = s_frame->height;
273	if (sx <= 0 || sy <= 0) {
274		dev_err(dev, "Invalid source size: %dx%d\n", sx, sy);
275		return -EINVAL;
276	}
277	sc->real_width = sx;
278	sc->real_height = sy;
279
280	ret = fimc_get_scaler_factor(sx, tx, &sc->pre_hratio, &sc->hfactor);
281	if (ret)
282		return ret;
283
284	ret = fimc_get_scaler_factor(sy, ty,  &sc->pre_vratio, &sc->vfactor);
285	if (ret)
286		return ret;
287
288	sc->pre_dst_width = sx / sc->pre_hratio;
289	sc->pre_dst_height = sy / sc->pre_vratio;
290
291	if (variant->has_mainscaler_ext) {
292		sc->main_hratio = (sx << 14) / (tx << sc->hfactor);
293		sc->main_vratio = (sy << 14) / (ty << sc->vfactor);
294	} else {
295		sc->main_hratio = (sx << 8) / (tx << sc->hfactor);
296		sc->main_vratio = (sy << 8) / (ty << sc->vfactor);
297
298	}
299
300	sc->scaleup_h = (tx >= sx) ? 1 : 0;
301	sc->scaleup_v = (ty >= sy) ? 1 : 0;
302
303	/* check to see if input and output size/format differ */
304	if (s_frame->fmt->color == d_frame->fmt->color
305		&& s_frame->width == d_frame->width
306		&& s_frame->height == d_frame->height)
307		sc->copy_mode = 1;
308	else
309		sc->copy_mode = 0;
310
311	return 0;
312}
313
314static irqreturn_t fimc_irq_handler(int irq, void *priv)
315{
316	struct fimc_dev *fimc = priv;
317	struct fimc_ctx *ctx;
318
319	fimc_hw_clear_irq(fimc);
320
321	spin_lock(&fimc->slock);
322
323	if (test_and_clear_bit(ST_M2M_PEND, &fimc->state)) {
324		if (test_and_clear_bit(ST_M2M_SUSPENDING, &fimc->state)) {
325			set_bit(ST_M2M_SUSPENDED, &fimc->state);
326			wake_up(&fimc->irq_queue);
327			goto out;
328		}
329		ctx = v4l2_m2m_get_curr_priv(fimc->m2m.m2m_dev);
330		if (ctx != NULL) {
331			spin_unlock(&fimc->slock);
332			fimc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
333
334			if (ctx->state & FIMC_CTX_SHUT) {
335				ctx->state &= ~FIMC_CTX_SHUT;
336				wake_up(&fimc->irq_queue);
337			}
338			return IRQ_HANDLED;
339		}
340	} else if (test_bit(ST_CAPT_PEND, &fimc->state)) {
341		int last_buf = test_bit(ST_CAPT_JPEG, &fimc->state) &&
342				fimc->vid_cap.reqbufs_count == 1;
343		fimc_capture_irq_handler(fimc, !last_buf);
344	}
345out:
346	spin_unlock(&fimc->slock);
347	return IRQ_HANDLED;
348}
349
350/* The color format (colplanes, memplanes) must be already configured. */
351int fimc_prepare_addr(struct fimc_ctx *ctx, struct vb2_buffer *vb,
352		      struct fimc_frame *frame, struct fimc_addr *paddr)
353{
354	int ret = 0;
355	u32 pix_size;
356
357	if (vb == NULL || frame == NULL)
358		return -EINVAL;
359
360	pix_size = frame->width * frame->height;
361
362	dbg("memplanes= %d, colplanes= %d, pix_size= %d",
363		frame->fmt->memplanes, frame->fmt->colplanes, pix_size);
364
365	paddr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
366
367	if (frame->fmt->memplanes == 1) {
368		switch (frame->fmt->colplanes) {
369		case 1:
370			paddr->cb = 0;
371			paddr->cr = 0;
372			break;
373		case 2:
374			/* decompose Y into Y/Cb */
375			paddr->cb = (u32)(paddr->y + pix_size);
376			paddr->cr = 0;
377			break;
378		case 3:
379			paddr->cb = (u32)(paddr->y + pix_size);
380			/* decompose Y into Y/Cb/Cr */
381			if (FIMC_FMT_YCBCR420 == frame->fmt->color)
382				paddr->cr = (u32)(paddr->cb
383						+ (pix_size >> 2));
384			else /* 422 */
385				paddr->cr = (u32)(paddr->cb
386						+ (pix_size >> 1));
387			break;
388		default:
389			return -EINVAL;
390		}
391	} else if (!frame->fmt->mdataplanes) {
392		if (frame->fmt->memplanes >= 2)
393			paddr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
394
395		if (frame->fmt->memplanes == 3)
396			paddr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
397	}
398
399	dbg("PHYS_ADDR: y= 0x%X  cb= 0x%X cr= 0x%X ret= %d",
400	    paddr->y, paddr->cb, paddr->cr, ret);
401
402	return ret;
403}
404
405/* Set order for 1 and 2 plane YCBCR 4:2:2 formats. */
406void fimc_set_yuv_order(struct fimc_ctx *ctx)
407{
408	/* The one only mode supported in SoC. */
409	ctx->in_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
410	ctx->out_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
411
412	/* Set order for 1 plane input formats. */
413	switch (ctx->s_frame.fmt->color) {
414	case FIMC_FMT_YCRYCB422:
415		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCRYCB;
416		break;
417	case FIMC_FMT_CBYCRY422:
418		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CBYCRY;
419		break;
420	case FIMC_FMT_CRYCBY422:
421		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CRYCBY;
422		break;
423	case FIMC_FMT_YCBYCR422:
424	default:
425		ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCBYCR;
426		break;
427	}
428	dbg("ctx->in_order_1p= %d", ctx->in_order_1p);
429
430	switch (ctx->d_frame.fmt->color) {
431	case FIMC_FMT_YCRYCB422:
432		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCRYCB;
433		break;
434	case FIMC_FMT_CBYCRY422:
435		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CBYCRY;
436		break;
437	case FIMC_FMT_CRYCBY422:
438		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CRYCBY;
439		break;
440	case FIMC_FMT_YCBYCR422:
441	default:
442		ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCBYCR;
443		break;
444	}
445	dbg("ctx->out_order_1p= %d", ctx->out_order_1p);
446}
447
448void fimc_prepare_dma_offset(struct fimc_ctx *ctx, struct fimc_frame *f)
449{
450	bool pix_hoff = ctx->fimc_dev->drv_data->dma_pix_hoff;
451	u32 i, depth = 0;
452
453	for (i = 0; i < f->fmt->memplanes; i++)
454		depth += f->fmt->depth[i];
455
456	f->dma_offset.y_h = f->offs_h;
457	if (!pix_hoff)
458		f->dma_offset.y_h *= (depth >> 3);
459
460	f->dma_offset.y_v = f->offs_v;
461
462	f->dma_offset.cb_h = f->offs_h;
463	f->dma_offset.cb_v = f->offs_v;
464
465	f->dma_offset.cr_h = f->offs_h;
466	f->dma_offset.cr_v = f->offs_v;
467
468	if (!pix_hoff) {
469		if (f->fmt->colplanes == 3) {
470			f->dma_offset.cb_h >>= 1;
471			f->dma_offset.cr_h >>= 1;
472		}
473		if (f->fmt->color == FIMC_FMT_YCBCR420) {
474			f->dma_offset.cb_v >>= 1;
475			f->dma_offset.cr_v >>= 1;
476		}
477	}
478
479	dbg("in_offset: color= %d, y_h= %d, y_v= %d",
480	    f->fmt->color, f->dma_offset.y_h, f->dma_offset.y_v);
481}
482
483static int fimc_set_color_effect(struct fimc_ctx *ctx, enum v4l2_colorfx colorfx)
484{
485	struct fimc_effect *effect = &ctx->effect;
486
487	switch (colorfx) {
488	case V4L2_COLORFX_NONE:
489		effect->type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
490		break;
491	case V4L2_COLORFX_BW:
492		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
493		effect->pat_cb = 128;
494		effect->pat_cr = 128;
495		break;
496	case V4L2_COLORFX_SEPIA:
497		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
498		effect->pat_cb = 115;
499		effect->pat_cr = 145;
500		break;
501	case V4L2_COLORFX_NEGATIVE:
502		effect->type = FIMC_REG_CIIMGEFF_FIN_NEGATIVE;
503		break;
504	case V4L2_COLORFX_EMBOSS:
505		effect->type = FIMC_REG_CIIMGEFF_FIN_EMBOSSING;
506		break;
507	case V4L2_COLORFX_ART_FREEZE:
508		effect->type = FIMC_REG_CIIMGEFF_FIN_ARTFREEZE;
509		break;
510	case V4L2_COLORFX_SILHOUETTE:
511		effect->type = FIMC_REG_CIIMGEFF_FIN_SILHOUETTE;
512		break;
513	case V4L2_COLORFX_SET_CBCR:
514		effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
515		effect->pat_cb = ctx->ctrls.colorfx_cbcr->val >> 8;
516		effect->pat_cr = ctx->ctrls.colorfx_cbcr->val & 0xff;
517		break;
518	default:
519		return -EINVAL;
520	}
521
522	return 0;
523}
524
525/*
526 * V4L2 controls handling
527 */
528#define ctrl_to_ctx(__ctrl) \
529	container_of((__ctrl)->handler, struct fimc_ctx, ctrls.handler)
530
531static int __fimc_s_ctrl(struct fimc_ctx *ctx, struct v4l2_ctrl *ctrl)
532{
533	struct fimc_dev *fimc = ctx->fimc_dev;
534	const struct fimc_variant *variant = fimc->variant;
535	int ret = 0;
536
537	if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
538		return 0;
539
540	switch (ctrl->id) {
541	case V4L2_CID_HFLIP:
542		ctx->hflip = ctrl->val;
543		break;
544
545	case V4L2_CID_VFLIP:
546		ctx->vflip = ctrl->val;
547		break;
548
549	case V4L2_CID_ROTATE:
550		if (fimc_capture_pending(fimc)) {
551			ret = fimc_check_scaler_ratio(ctx, ctx->s_frame.width,
552					ctx->s_frame.height, ctx->d_frame.width,
553					ctx->d_frame.height, ctrl->val);
554			if (ret)
555				return -EINVAL;
556		}
557		if ((ctrl->val == 90 || ctrl->val == 270) &&
558		    !variant->has_out_rot)
559			return -EINVAL;
560
561		ctx->rotation = ctrl->val;
562		break;
563
564	case V4L2_CID_ALPHA_COMPONENT:
565		ctx->d_frame.alpha = ctrl->val;
566		break;
567
568	case V4L2_CID_COLORFX:
569		ret = fimc_set_color_effect(ctx, ctrl->val);
570		if (ret)
571			return ret;
572		break;
573	}
574
575	ctx->state |= FIMC_PARAMS;
576	set_bit(ST_CAPT_APPLY_CFG, &fimc->state);
577	return 0;
578}
579
580static int fimc_s_ctrl(struct v4l2_ctrl *ctrl)
581{
582	struct fimc_ctx *ctx = ctrl_to_ctx(ctrl);
583	unsigned long flags;
584	int ret;
585
586	spin_lock_irqsave(&ctx->fimc_dev->slock, flags);
587	ret = __fimc_s_ctrl(ctx, ctrl);
588	spin_unlock_irqrestore(&ctx->fimc_dev->slock, flags);
589
590	return ret;
591}
592
593static const struct v4l2_ctrl_ops fimc_ctrl_ops = {
594	.s_ctrl = fimc_s_ctrl,
595};
596
597int fimc_ctrls_create(struct fimc_ctx *ctx)
598{
599	unsigned int max_alpha = fimc_get_alpha_mask(ctx->d_frame.fmt);
600	struct fimc_ctrls *ctrls = &ctx->ctrls;
601	struct v4l2_ctrl_handler *handler = &ctrls->handler;
602
603	if (ctx->ctrls.ready)
604		return 0;
605
606	v4l2_ctrl_handler_init(handler, 6);
607
608	ctrls->rotate = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
609					V4L2_CID_ROTATE, 0, 270, 90, 0);
610	ctrls->hflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
611					V4L2_CID_HFLIP, 0, 1, 1, 0);
612	ctrls->vflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
613					V4L2_CID_VFLIP, 0, 1, 1, 0);
614
615	if (ctx->fimc_dev->drv_data->alpha_color)
616		ctrls->alpha = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
617					V4L2_CID_ALPHA_COMPONENT,
618					0, max_alpha, 1, 0);
619	else
620		ctrls->alpha = NULL;
621
622	ctrls->colorfx = v4l2_ctrl_new_std_menu(handler, &fimc_ctrl_ops,
623				V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR,
624				~0x983f, V4L2_COLORFX_NONE);
625
626	ctrls->colorfx_cbcr = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
627				V4L2_CID_COLORFX_CBCR, 0, 0xffff, 1, 0);
628
629	ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
630
631	if (!handler->error) {
632		v4l2_ctrl_cluster(2, &ctrls->colorfx);
633		ctrls->ready = true;
634	}
635
636	return handler->error;
637}
638
639void fimc_ctrls_delete(struct fimc_ctx *ctx)
640{
641	struct fimc_ctrls *ctrls = &ctx->ctrls;
642
643	if (ctrls->ready) {
644		v4l2_ctrl_handler_free(&ctrls->handler);
645		ctrls->ready = false;
646		ctrls->alpha = NULL;
647	}
648}
649
650void fimc_ctrls_activate(struct fimc_ctx *ctx, bool active)
651{
652	unsigned int has_alpha = ctx->d_frame.fmt->flags & FMT_HAS_ALPHA;
653	struct fimc_ctrls *ctrls = &ctx->ctrls;
654
655	if (!ctrls->ready)
656		return;
657
658	mutex_lock(ctrls->handler.lock);
659	v4l2_ctrl_activate(ctrls->rotate, active);
660	v4l2_ctrl_activate(ctrls->hflip, active);
661	v4l2_ctrl_activate(ctrls->vflip, active);
662	v4l2_ctrl_activate(ctrls->colorfx, active);
663	if (ctrls->alpha)
664		v4l2_ctrl_activate(ctrls->alpha, active && has_alpha);
665
666	if (active) {
667		fimc_set_color_effect(ctx, ctrls->colorfx->cur.val);
668		ctx->rotation = ctrls->rotate->val;
669		ctx->hflip    = ctrls->hflip->val;
670		ctx->vflip    = ctrls->vflip->val;
671	} else {
672		ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
673		ctx->rotation = 0;
674		ctx->hflip    = 0;
675		ctx->vflip    = 0;
676	}
677	mutex_unlock(ctrls->handler.lock);
678}
679
680/* Update maximum value of the alpha color control */
681void fimc_alpha_ctrl_update(struct fimc_ctx *ctx)
682{
683	struct fimc_dev *fimc = ctx->fimc_dev;
684	struct v4l2_ctrl *ctrl = ctx->ctrls.alpha;
685
686	if (ctrl == NULL || !fimc->drv_data->alpha_color)
687		return;
688
689	v4l2_ctrl_lock(ctrl);
690	ctrl->maximum = fimc_get_alpha_mask(ctx->d_frame.fmt);
691
692	if (ctrl->cur.val > ctrl->maximum)
693		ctrl->cur.val = ctrl->maximum;
694
695	v4l2_ctrl_unlock(ctrl);
696}
697
698void __fimc_get_format(struct fimc_frame *frame, struct v4l2_format *f)
699{
700	struct v4l2_pix_format_mplane *pixm = &f->fmt.pix_mp;
701	int i;
702
703	pixm->width = frame->o_width;
704	pixm->height = frame->o_height;
705	pixm->field = V4L2_FIELD_NONE;
706	pixm->pixelformat = frame->fmt->fourcc;
707	pixm->colorspace = V4L2_COLORSPACE_JPEG;
708	pixm->num_planes = frame->fmt->memplanes;
709
710	for (i = 0; i < pixm->num_planes; ++i) {
711		pixm->plane_fmt[i].bytesperline = frame->bytesperline[i];
712		pixm->plane_fmt[i].sizeimage = frame->payload[i];
713	}
714}
715
716/**
717 * fimc_adjust_mplane_format - adjust bytesperline/sizeimage for each plane
718 * @fmt: fimc pixel format description (input)
719 * @width: requested pixel width
720 * @height: requested pixel height
721 * @pix: multi-plane format to adjust
722 */
723void fimc_adjust_mplane_format(struct fimc_fmt *fmt, u32 width, u32 height,
724			       struct v4l2_pix_format_mplane *pix)
725{
726	u32 bytesperline = 0;
727	int i;
728
729	pix->colorspace	= V4L2_COLORSPACE_JPEG;
730	pix->field = V4L2_FIELD_NONE;
731	pix->num_planes = fmt->memplanes;
732	pix->pixelformat = fmt->fourcc;
733	pix->height = height;
734	pix->width = width;
735
736	for (i = 0; i < pix->num_planes; ++i) {
737		struct v4l2_plane_pix_format *plane_fmt = &pix->plane_fmt[i];
738		u32 bpl = plane_fmt->bytesperline;
739
740		if (fmt->colplanes > 1 && (bpl == 0 || bpl < pix->width))
741			bpl = pix->width; /* Planar */
742
743		if (fmt->colplanes == 1 && /* Packed */
744		    (bpl == 0 || ((bpl * 8) / fmt->depth[i]) < pix->width))
745			bpl = (pix->width * fmt->depth[0]) / 8;
746		/*
747		 * Currently bytesperline for each plane is same, except
748		 * V4L2_PIX_FMT_YUV420M format. This calculation may need
749		 * to be changed when other multi-planar formats are added
750		 * to the fimc_formats[] array.
751		 */
752		if (i == 0)
753			bytesperline = bpl;
754		else if (i == 1 && fmt->memplanes == 3)
755			bytesperline /= 2;
756
757		plane_fmt->bytesperline = bytesperline;
758		plane_fmt->sizeimage = max((pix->width * pix->height *
759				   fmt->depth[i]) / 8, plane_fmt->sizeimage);
760	}
761}
762
763/**
764 * fimc_find_format - lookup fimc color format by fourcc or media bus format
765 * @pixelformat: fourcc to match, ignored if null
766 * @mbus_code: media bus code to match, ignored if null
767 * @mask: the color flags to match
768 * @index: offset in the fimc_formats array, ignored if negative
769 */
770struct fimc_fmt *fimc_find_format(const u32 *pixelformat, const u32 *mbus_code,
771				  unsigned int mask, int index)
772{
773	struct fimc_fmt *fmt, *def_fmt = NULL;
774	unsigned int i;
775	int id = 0;
776
777	if (index >= (int)ARRAY_SIZE(fimc_formats))
778		return NULL;
779
780	for (i = 0; i < ARRAY_SIZE(fimc_formats); ++i) {
781		fmt = &fimc_formats[i];
782		if (!(fmt->flags & mask))
783			continue;
784		if (pixelformat && fmt->fourcc == *pixelformat)
785			return fmt;
786		if (mbus_code && fmt->mbus_code == *mbus_code)
787			return fmt;
788		if (index == id)
789			def_fmt = fmt;
790		id++;
791	}
792	return def_fmt;
793}
794
795static void fimc_clk_put(struct fimc_dev *fimc)
796{
797	int i;
798	for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
799		if (IS_ERR(fimc->clock[i]))
800			continue;
801		clk_unprepare(fimc->clock[i]);
802		clk_put(fimc->clock[i]);
803		fimc->clock[i] = ERR_PTR(-EINVAL);
804	}
805}
806
807static int fimc_clk_get(struct fimc_dev *fimc)
808{
809	int i, ret;
810
811	for (i = 0; i < MAX_FIMC_CLOCKS; i++)
812		fimc->clock[i] = ERR_PTR(-EINVAL);
813
814	for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
815		fimc->clock[i] = clk_get(&fimc->pdev->dev, fimc_clocks[i]);
816		if (IS_ERR(fimc->clock[i])) {
817			ret = PTR_ERR(fimc->clock[i]);
818			goto err;
819		}
820		ret = clk_prepare(fimc->clock[i]);
821		if (ret < 0) {
822			clk_put(fimc->clock[i]);
823			fimc->clock[i] = ERR_PTR(-EINVAL);
824			goto err;
825		}
826	}
827	return 0;
828err:
829	fimc_clk_put(fimc);
830	dev_err(&fimc->pdev->dev, "failed to get clock: %s\n",
831		fimc_clocks[i]);
832	return -ENXIO;
833}
834
835#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
836static int fimc_m2m_suspend(struct fimc_dev *fimc)
837{
838	unsigned long flags;
839	int timeout;
840
841	spin_lock_irqsave(&fimc->slock, flags);
842	if (!fimc_m2m_pending(fimc)) {
843		spin_unlock_irqrestore(&fimc->slock, flags);
844		return 0;
845	}
846	clear_bit(ST_M2M_SUSPENDED, &fimc->state);
847	set_bit(ST_M2M_SUSPENDING, &fimc->state);
848	spin_unlock_irqrestore(&fimc->slock, flags);
849
850	timeout = wait_event_timeout(fimc->irq_queue,
851			     test_bit(ST_M2M_SUSPENDED, &fimc->state),
852			     FIMC_SHUTDOWN_TIMEOUT);
853
854	clear_bit(ST_M2M_SUSPENDING, &fimc->state);
855	return timeout == 0 ? -EAGAIN : 0;
856}
857
858static int fimc_m2m_resume(struct fimc_dev *fimc)
859{
860	struct fimc_ctx *ctx;
861	unsigned long flags;
862
863	spin_lock_irqsave(&fimc->slock, flags);
864	/* Clear for full H/W setup in first run after resume */
865	ctx = fimc->m2m.ctx;
866	fimc->m2m.ctx = NULL;
867	spin_unlock_irqrestore(&fimc->slock, flags);
868
869	if (test_and_clear_bit(ST_M2M_SUSPENDED, &fimc->state))
870		fimc_m2m_job_finish(ctx, VB2_BUF_STATE_ERROR);
871
872	return 0;
873}
874#endif /* CONFIG_PM_RUNTIME || CONFIG_PM_SLEEP */
875
876static const struct of_device_id fimc_of_match[];
877
878static int fimc_parse_dt(struct fimc_dev *fimc, u32 *clk_freq)
879{
880	struct device *dev = &fimc->pdev->dev;
881	struct device_node *node = dev->of_node;
882	const struct of_device_id *of_id;
883	struct fimc_variant *v;
884	struct fimc_pix_limit *lim;
885	u32 args[FIMC_PIX_LIMITS_MAX];
886	int ret;
887
888	if (of_property_read_bool(node, "samsung,lcd-wb"))
889		return -ENODEV;
890
891	v = devm_kzalloc(dev, sizeof(*v) + sizeof(*lim), GFP_KERNEL);
892	if (!v)
893		return -ENOMEM;
894
895	of_id = of_match_node(fimc_of_match, node);
896	if (!of_id)
897		return -EINVAL;
898	fimc->drv_data = of_id->data;
899	ret = of_property_read_u32_array(node, "samsung,pix-limits",
900					 args, FIMC_PIX_LIMITS_MAX);
901	if (ret < 0)
902		return ret;
903
904	lim = (struct fimc_pix_limit *)&v[1];
905
906	lim->scaler_en_w = args[0];
907	lim->scaler_dis_w = args[1];
908	lim->out_rot_en_w = args[2];
909	lim->out_rot_dis_w = args[3];
910	v->pix_limit = lim;
911
912	ret = of_property_read_u32_array(node, "samsung,min-pix-sizes",
913								args, 2);
914	v->min_inp_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[0];
915	v->min_out_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[1];
916	ret = of_property_read_u32_array(node, "samsung,min-pix-alignment",
917								args, 2);
918	v->min_vsize_align = ret ? FIMC_DEF_HEIGHT_ALIGN : args[0];
919	v->hor_offs_align = ret ? FIMC_DEF_HOR_OFFS_ALIGN : args[1];
920
921	ret = of_property_read_u32(node, "samsung,rotators", &args[1]);
922	v->has_inp_rot = ret ? 1 : args[1] & 0x01;
923	v->has_out_rot = ret ? 1 : args[1] & 0x10;
924	v->has_mainscaler_ext = of_property_read_bool(node,
925					"samsung,mainscaler-ext");
926
927	v->has_isp_wb = of_property_read_bool(node, "samsung,isp-wb");
928	v->has_cam_if = of_property_read_bool(node, "samsung,cam-if");
929	of_property_read_u32(node, "clock-frequency", clk_freq);
930	fimc->id = of_alias_get_id(node, "fimc");
931
932	fimc->variant = v;
933	return 0;
934}
935
936static int fimc_probe(struct platform_device *pdev)
937{
938	struct device *dev = &pdev->dev;
939	u32 lclk_freq = 0;
940	struct fimc_dev *fimc;
941	struct resource *res;
942	int ret = 0;
943
944	fimc = devm_kzalloc(dev, sizeof(*fimc), GFP_KERNEL);
945	if (!fimc)
946		return -ENOMEM;
947
948	fimc->pdev = pdev;
949
950	if (dev->of_node) {
951		ret = fimc_parse_dt(fimc, &lclk_freq);
952		if (ret < 0)
953			return ret;
954	} else {
955		fimc->drv_data = fimc_get_drvdata(pdev);
956		fimc->id = pdev->id;
957	}
958	if (!fimc->drv_data || fimc->id >= fimc->drv_data->num_entities ||
959	    fimc->id < 0) {
960		dev_err(dev, "Invalid driver data or device id (%d)\n",
961			fimc->id);
962		return -EINVAL;
963	}
964	if (!dev->of_node)
965		fimc->variant = fimc->drv_data->variant[fimc->id];
966
967	init_waitqueue_head(&fimc->irq_queue);
968	spin_lock_init(&fimc->slock);
969	mutex_init(&fimc->lock);
970
971	fimc->sysreg = fimc_get_sysreg_regmap(dev->of_node);
972	if (IS_ERR(fimc->sysreg))
973		return PTR_ERR(fimc->sysreg);
974
975	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
976	fimc->regs = devm_ioremap_resource(dev, res);
977	if (IS_ERR(fimc->regs))
978		return PTR_ERR(fimc->regs);
979
980	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
981	if (res == NULL) {
982		dev_err(dev, "Failed to get IRQ resource\n");
983		return -ENXIO;
984	}
985
986	ret = fimc_clk_get(fimc);
987	if (ret)
988		return ret;
989
990	if (lclk_freq == 0)
991		lclk_freq = fimc->drv_data->lclk_frequency;
992
993	ret = clk_set_rate(fimc->clock[CLK_BUS], lclk_freq);
994	if (ret < 0)
995		return ret;
996
997	ret = clk_enable(fimc->clock[CLK_BUS]);
998	if (ret < 0)
999		return ret;
1000
1001	ret = devm_request_irq(dev, res->start, fimc_irq_handler,
1002			       0, dev_name(dev), fimc);
1003	if (ret < 0) {
1004		dev_err(dev, "failed to install irq (%d)\n", ret);
1005		goto err_sclk;
1006	}
1007
1008	ret = fimc_initialize_capture_subdev(fimc);
1009	if (ret < 0)
1010		goto err_sclk;
1011
1012	platform_set_drvdata(pdev, fimc);
1013	pm_runtime_enable(dev);
1014
1015	if (!pm_runtime_enabled(dev)) {
1016		ret = clk_enable(fimc->clock[CLK_GATE]);
1017		if (ret < 0)
1018			goto err_sd;
1019	}
1020
1021	/* Initialize contiguous memory allocator */
1022	fimc->alloc_ctx = vb2_dma_contig_init_ctx(dev);
1023	if (IS_ERR(fimc->alloc_ctx)) {
1024		ret = PTR_ERR(fimc->alloc_ctx);
1025		goto err_gclk;
1026	}
1027
1028	dev_dbg(dev, "FIMC.%d registered successfully\n", fimc->id);
1029	return 0;
1030
1031err_gclk:
1032	if (!pm_runtime_enabled(dev))
1033		clk_disable(fimc->clock[CLK_GATE]);
1034err_sd:
1035	fimc_unregister_capture_subdev(fimc);
1036err_sclk:
1037	clk_disable(fimc->clock[CLK_BUS]);
1038	fimc_clk_put(fimc);
1039	return ret;
1040}
1041
1042#ifdef CONFIG_PM_RUNTIME
1043static int fimc_runtime_resume(struct device *dev)
1044{
1045	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1046
1047	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1048
1049	/* Enable clocks and perform basic initialization */
1050	clk_enable(fimc->clock[CLK_GATE]);
1051	fimc_hw_reset(fimc);
1052
1053	/* Resume the capture or mem-to-mem device */
1054	if (fimc_capture_busy(fimc))
1055		return fimc_capture_resume(fimc);
1056
1057	return fimc_m2m_resume(fimc);
1058}
1059
1060static int fimc_runtime_suspend(struct device *dev)
1061{
1062	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1063	int ret = 0;
1064
1065	if (fimc_capture_busy(fimc))
1066		ret = fimc_capture_suspend(fimc);
1067	else
1068		ret = fimc_m2m_suspend(fimc);
1069	if (!ret)
1070		clk_disable(fimc->clock[CLK_GATE]);
1071
1072	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1073	return ret;
1074}
1075#endif
1076
1077#ifdef CONFIG_PM_SLEEP
1078static int fimc_resume(struct device *dev)
1079{
1080	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1081	unsigned long flags;
1082
1083	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1084
1085	/* Do not resume if the device was idle before system suspend */
1086	spin_lock_irqsave(&fimc->slock, flags);
1087	if (!test_and_clear_bit(ST_LPM, &fimc->state) ||
1088	    (!fimc_m2m_active(fimc) && !fimc_capture_busy(fimc))) {
1089		spin_unlock_irqrestore(&fimc->slock, flags);
1090		return 0;
1091	}
1092	fimc_hw_reset(fimc);
1093	spin_unlock_irqrestore(&fimc->slock, flags);
1094
1095	if (fimc_capture_busy(fimc))
1096		return fimc_capture_resume(fimc);
1097
1098	return fimc_m2m_resume(fimc);
1099}
1100
1101static int fimc_suspend(struct device *dev)
1102{
1103	struct fimc_dev *fimc =	dev_get_drvdata(dev);
1104
1105	dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1106
1107	if (test_and_set_bit(ST_LPM, &fimc->state))
1108		return 0;
1109	if (fimc_capture_busy(fimc))
1110		return fimc_capture_suspend(fimc);
1111
1112	return fimc_m2m_suspend(fimc);
1113}
1114#endif /* CONFIG_PM_SLEEP */
1115
1116static int fimc_remove(struct platform_device *pdev)
1117{
1118	struct fimc_dev *fimc = platform_get_drvdata(pdev);
1119
1120	pm_runtime_disable(&pdev->dev);
1121	if (!pm_runtime_status_suspended(&pdev->dev))
1122		clk_disable(fimc->clock[CLK_GATE]);
1123	pm_runtime_set_suspended(&pdev->dev);
1124
1125	fimc_unregister_capture_subdev(fimc);
1126	vb2_dma_contig_cleanup_ctx(fimc->alloc_ctx);
1127
1128	clk_disable(fimc->clock[CLK_BUS]);
1129	fimc_clk_put(fimc);
1130
1131	dev_info(&pdev->dev, "driver unloaded\n");
1132	return 0;
1133}
1134
1135/* Image pixel limits, similar across several FIMC HW revisions. */
1136static const struct fimc_pix_limit s5p_pix_limit[4] = {
1137	[0] = {
1138		.scaler_en_w	= 3264,
1139		.scaler_dis_w	= 8192,
1140		.out_rot_en_w	= 1920,
1141		.out_rot_dis_w	= 4224,
1142	},
1143	[1] = {
1144		.scaler_en_w	= 4224,
1145		.scaler_dis_w	= 8192,
1146		.out_rot_en_w	= 1920,
1147		.out_rot_dis_w	= 4224,
1148	},
1149	[2] = {
1150		.scaler_en_w	= 1920,
1151		.scaler_dis_w	= 8192,
1152		.out_rot_en_w	= 1280,
1153		.out_rot_dis_w	= 1920,
1154	},
1155};
1156
1157static const struct fimc_variant fimc0_variant_s5p = {
1158	.has_inp_rot	 = 1,
1159	.has_out_rot	 = 1,
1160	.has_cam_if	 = 1,
1161	.min_inp_pixsize = 16,
1162	.min_out_pixsize = 16,
1163	.hor_offs_align	 = 8,
1164	.min_vsize_align = 16,
1165	.pix_limit	 = &s5p_pix_limit[0],
1166};
1167
1168static const struct fimc_variant fimc2_variant_s5p = {
1169	.has_cam_if	 = 1,
1170	.min_inp_pixsize = 16,
1171	.min_out_pixsize = 16,
1172	.hor_offs_align	 = 8,
1173	.min_vsize_align = 16,
1174	.pix_limit	 = &s5p_pix_limit[1],
1175};
1176
1177static const struct fimc_variant fimc0_variant_s5pv210 = {
1178	.has_inp_rot	 = 1,
1179	.has_out_rot	 = 1,
1180	.has_cam_if	 = 1,
1181	.min_inp_pixsize = 16,
1182	.min_out_pixsize = 16,
1183	.hor_offs_align	 = 8,
1184	.min_vsize_align = 16,
1185	.pix_limit	 = &s5p_pix_limit[1],
1186};
1187
1188static const struct fimc_variant fimc1_variant_s5pv210 = {
1189	.has_inp_rot	 = 1,
1190	.has_out_rot	 = 1,
1191	.has_cam_if	 = 1,
1192	.has_mainscaler_ext = 1,
1193	.min_inp_pixsize = 16,
1194	.min_out_pixsize = 16,
1195	.hor_offs_align	 = 1,
1196	.min_vsize_align = 1,
1197	.pix_limit	 = &s5p_pix_limit[2],
1198};
1199
1200static const struct fimc_variant fimc2_variant_s5pv210 = {
1201	.has_cam_if	 = 1,
1202	.min_inp_pixsize = 16,
1203	.min_out_pixsize = 16,
1204	.hor_offs_align	 = 8,
1205	.min_vsize_align = 16,
1206	.pix_limit	 = &s5p_pix_limit[2],
1207};
1208
1209/* S5PC100 */
1210static const struct fimc_drvdata fimc_drvdata_s5p = {
1211	.variant = {
1212		[0] = &fimc0_variant_s5p,
1213		[1] = &fimc0_variant_s5p,
1214		[2] = &fimc2_variant_s5p,
1215	},
1216	.num_entities	= 3,
1217	.lclk_frequency = 133000000UL,
1218	.out_buf_count	= 4,
1219};
1220
1221/* S5PV210, S5PC110 */
1222static const struct fimc_drvdata fimc_drvdata_s5pv210 = {
1223	.variant = {
1224		[0] = &fimc0_variant_s5pv210,
1225		[1] = &fimc1_variant_s5pv210,
1226		[2] = &fimc2_variant_s5pv210,
1227	},
1228	.num_entities	= 3,
1229	.lclk_frequency	= 166000000UL,
1230	.out_buf_count	= 4,
1231	.dma_pix_hoff	= 1,
1232};
1233
1234/* EXYNOS4210, S5PV310, S5PC210 */
1235static const struct fimc_drvdata fimc_drvdata_exynos4210 = {
1236	.num_entities	= 4,
1237	.lclk_frequency = 166000000UL,
1238	.dma_pix_hoff	= 1,
1239	.cistatus2	= 1,
1240	.alpha_color	= 1,
1241	.out_buf_count	= 32,
1242};
1243
1244/* EXYNOS4212, EXYNOS4412 */
1245static const struct fimc_drvdata fimc_drvdata_exynos4x12 = {
1246	.num_entities	= 4,
1247	.lclk_frequency	= 166000000UL,
1248	.dma_pix_hoff	= 1,
1249	.cistatus2	= 1,
1250	.alpha_color	= 1,
1251	.out_buf_count	= 32,
1252};
1253
1254static const struct platform_device_id fimc_driver_ids[] = {
1255	{
1256		.name		= "s5p-fimc",
1257		.driver_data	= (unsigned long)&fimc_drvdata_s5p,
1258	}, {
1259		.name		= "s5pv210-fimc",
1260		.driver_data	= (unsigned long)&fimc_drvdata_s5pv210,
1261	}, {
1262		.name		= "exynos4-fimc",
1263		.driver_data	= (unsigned long)&fimc_drvdata_exynos4210,
1264	}, {
1265		.name		= "exynos4x12-fimc",
1266		.driver_data	= (unsigned long)&fimc_drvdata_exynos4x12,
1267	},
1268	{ },
1269};
1270
1271static const struct of_device_id fimc_of_match[] = {
1272	{
1273		.compatible = "samsung,s5pv210-fimc",
1274		.data = &fimc_drvdata_s5pv210,
1275	}, {
1276		.compatible = "samsung,exynos4210-fimc",
1277		.data = &fimc_drvdata_exynos4210,
1278	}, {
1279		.compatible = "samsung,exynos4212-fimc",
1280		.data = &fimc_drvdata_exynos4x12,
1281	},
1282	{ /* sentinel */ },
1283};
1284
1285static const struct dev_pm_ops fimc_pm_ops = {
1286	SET_SYSTEM_SLEEP_PM_OPS(fimc_suspend, fimc_resume)
1287	SET_RUNTIME_PM_OPS(fimc_runtime_suspend, fimc_runtime_resume, NULL)
1288};
1289
1290static struct platform_driver fimc_driver = {
1291	.probe		= fimc_probe,
1292	.remove		= fimc_remove,
1293	.id_table	= fimc_driver_ids,
1294	.driver = {
1295		.of_match_table = fimc_of_match,
1296		.name		= FIMC_DRIVER_NAME,
1297		.owner		= THIS_MODULE,
1298		.pm     	= &fimc_pm_ops,
1299	}
1300};
1301
1302int __init fimc_register_driver(void)
1303{
1304	return platform_driver_register(&fimc_driver);
1305}
1306
1307void __exit fimc_unregister_driver(void)
1308{
1309	platform_driver_unregister(&fimc_driver);
1310}
1311