[go: nahoru, domu]

1/*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3 *
4 * The data sheet for this device can be found at:
5 *    http://wiki.laptop.org/go/Datasheets
6 *
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9 */
10
11#define DEBUG
12
13#include <linux/device.h>
14#undef DEBUG
15#include <linux/mtd/mtd.h>
16#include <linux/mtd/nand.h>
17#include <linux/mtd/partitions.h>
18#include <linux/rslib.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/interrupt.h>
22#include <linux/dma-mapping.h>
23#include <linux/slab.h>
24#include <linux/module.h>
25#include <asm/io.h>
26
27#define CAFE_NAND_CTRL1		0x00
28#define CAFE_NAND_CTRL2		0x04
29#define CAFE_NAND_CTRL3		0x08
30#define CAFE_NAND_STATUS	0x0c
31#define CAFE_NAND_IRQ		0x10
32#define CAFE_NAND_IRQ_MASK	0x14
33#define CAFE_NAND_DATA_LEN	0x18
34#define CAFE_NAND_ADDR1		0x1c
35#define CAFE_NAND_ADDR2		0x20
36#define CAFE_NAND_TIMING1	0x24
37#define CAFE_NAND_TIMING2	0x28
38#define CAFE_NAND_TIMING3	0x2c
39#define CAFE_NAND_NONMEM	0x30
40#define CAFE_NAND_ECC_RESULT	0x3C
41#define CAFE_NAND_DMA_CTRL	0x40
42#define CAFE_NAND_DMA_ADDR0	0x44
43#define CAFE_NAND_DMA_ADDR1	0x48
44#define CAFE_NAND_ECC_SYN01	0x50
45#define CAFE_NAND_ECC_SYN23	0x54
46#define CAFE_NAND_ECC_SYN45	0x58
47#define CAFE_NAND_ECC_SYN67	0x5c
48#define CAFE_NAND_READ_DATA	0x1000
49#define CAFE_NAND_WRITE_DATA	0x2000
50
51#define CAFE_GLOBAL_CTRL	0x3004
52#define CAFE_GLOBAL_IRQ		0x3008
53#define CAFE_GLOBAL_IRQ_MASK	0x300c
54#define CAFE_NAND_RESET		0x3034
55
56/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57#define CTRL1_CHIPSELECT	(1<<19)
58
59struct cafe_priv {
60	struct nand_chip nand;
61	struct pci_dev *pdev;
62	void __iomem *mmio;
63	struct rs_control *rs;
64	uint32_t ctl1;
65	uint32_t ctl2;
66	int datalen;
67	int nr_data;
68	int data_pos;
69	int page_addr;
70	dma_addr_t dmaaddr;
71	unsigned char *dmabuf;
72};
73
74static int usedma = 1;
75module_param(usedma, int, 0644);
76
77static int skipbbt = 0;
78module_param(skipbbt, int, 0644);
79
80static int debug = 0;
81module_param(debug, int, 0644);
82
83static int regdebug = 0;
84module_param(regdebug, int, 0644);
85
86static int checkecc = 1;
87module_param(checkecc, int, 0644);
88
89static unsigned int numtimings;
90static int timing[3];
91module_param_array(timing, int, &numtimings, 0644);
92
93static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94
95/* Hrm. Why isn't this already conditional on something in the struct device? */
96#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97
98/* Make it easier to switch to PIO if we need to */
99#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
100#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
101
102static int cafe_device_ready(struct mtd_info *mtd)
103{
104	struct cafe_priv *cafe = mtd->priv;
105	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
106	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
107
108	cafe_writel(cafe, irqs, NAND_IRQ);
109
110	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
111		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
112		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
113
114	return result;
115}
116
117
118static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
119{
120	struct cafe_priv *cafe = mtd->priv;
121
122	if (usedma)
123		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
124	else
125		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
126
127	cafe->datalen += len;
128
129	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
130		len, cafe->datalen);
131}
132
133static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134{
135	struct cafe_priv *cafe = mtd->priv;
136
137	if (usedma)
138		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
139	else
140		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
141
142	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
143		  len, cafe->datalen);
144	cafe->datalen += len;
145}
146
147static uint8_t cafe_read_byte(struct mtd_info *mtd)
148{
149	struct cafe_priv *cafe = mtd->priv;
150	uint8_t d;
151
152	cafe_read_buf(mtd, &d, 1);
153	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
154
155	return d;
156}
157
158static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
159			      int column, int page_addr)
160{
161	struct cafe_priv *cafe = mtd->priv;
162	int adrbytes = 0;
163	uint32_t ctl1;
164	uint32_t doneint = 0x80000000;
165
166	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
167		command, column, page_addr);
168
169	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
170		/* Second half of a command we already calculated */
171		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
172		ctl1 = cafe->ctl1;
173		cafe->ctl2 &= ~(1<<30);
174		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
175			  cafe->ctl1, cafe->nr_data);
176		goto do_command;
177	}
178	/* Reset ECC engine */
179	cafe_writel(cafe, 0, NAND_CTRL2);
180
181	/* Emulate NAND_CMD_READOOB on large-page chips */
182	if (mtd->writesize > 512 &&
183	    command == NAND_CMD_READOOB) {
184		column += mtd->writesize;
185		command = NAND_CMD_READ0;
186	}
187
188	/* FIXME: Do we need to send read command before sending data
189	   for small-page chips, to position the buffer correctly? */
190
191	if (column != -1) {
192		cafe_writel(cafe, column, NAND_ADDR1);
193		adrbytes = 2;
194		if (page_addr != -1)
195			goto write_adr2;
196	} else if (page_addr != -1) {
197		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
198		page_addr >>= 16;
199	write_adr2:
200		cafe_writel(cafe, page_addr, NAND_ADDR2);
201		adrbytes += 2;
202		if (mtd->size > mtd->writesize << 16)
203			adrbytes++;
204	}
205
206	cafe->data_pos = cafe->datalen = 0;
207
208	/* Set command valid bit, mask in the chip select bit  */
209	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210
211	/* Set RD or WR bits as appropriate */
212	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
213		ctl1 |= (1<<26); /* rd */
214		/* Always 5 bytes, for now */
215		cafe->datalen = 4;
216		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
217		adrbytes = 1;
218	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
219		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
220		ctl1 |= 1<<26; /* rd */
221		/* For now, assume just read to end of page */
222		cafe->datalen = mtd->writesize + mtd->oobsize - column;
223	} else if (command == NAND_CMD_SEQIN)
224		ctl1 |= 1<<25; /* wr */
225
226	/* Set number of address bytes */
227	if (adrbytes)
228		ctl1 |= ((adrbytes-1)|8) << 27;
229
230	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
231		/* Ignore the first command of a pair; the hardware
232		   deals with them both at once, later */
233		cafe->ctl1 = ctl1;
234		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235			  cafe->ctl1, cafe->datalen);
236		return;
237	}
238	/* RNDOUT and READ0 commands need a following byte */
239	if (command == NAND_CMD_RNDOUT)
240		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
241	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
242		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243
244 do_command:
245	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
246		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247
248	/* NB: The datasheet lies -- we really should be subtracting 1 here */
249	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
250	cafe_writel(cafe, 0x90000000, NAND_IRQ);
251	if (usedma && (ctl1 & (3<<25))) {
252		uint32_t dmactl = 0xc0000000 + cafe->datalen;
253		/* If WR or RD bits set, set up DMA */
254		if (ctl1 & (1<<26)) {
255			/* It's a read */
256			dmactl |= (1<<29);
257			/* ... so it's done when the DMA is done, not just
258			   the command. */
259			doneint = 0x10000000;
260		}
261		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262	}
263	cafe->datalen = 0;
264
265	if (unlikely(regdebug)) {
266		int i;
267		printk("About to write command %08x to register 0\n", ctl1);
268		for (i=4; i< 0x5c; i+=4)
269			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270	}
271
272	cafe_writel(cafe, ctl1, NAND_CTRL1);
273	/* Apply this short delay always to ensure that we do wait tWB in
274	 * any case on any machine. */
275	ndelay(100);
276
277	if (1) {
278		int c;
279		uint32_t irqs;
280
281		for (c = 500000; c != 0; c--) {
282			irqs = cafe_readl(cafe, NAND_IRQ);
283			if (irqs & doneint)
284				break;
285			udelay(1);
286			if (!(c % 100000))
287				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
288			cpu_relax();
289		}
290		cafe_writel(cafe, doneint, NAND_IRQ);
291		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
292			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293	}
294
295	WARN_ON(cafe->ctl2 & (1<<30));
296
297	switch (command) {
298
299	case NAND_CMD_CACHEDPROG:
300	case NAND_CMD_PAGEPROG:
301	case NAND_CMD_ERASE1:
302	case NAND_CMD_ERASE2:
303	case NAND_CMD_SEQIN:
304	case NAND_CMD_RNDIN:
305	case NAND_CMD_STATUS:
306	case NAND_CMD_RNDOUT:
307		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
308		return;
309	}
310	nand_wait_ready(mtd);
311	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
312}
313
314static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
315{
316	struct cafe_priv *cafe = mtd->priv;
317
318	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
319
320	/* Mask the appropriate bit into the stored value of ctl1
321	   which will be used by cafe_nand_cmdfunc() */
322	if (chipnr)
323		cafe->ctl1 |= CTRL1_CHIPSELECT;
324	else
325		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
326}
327
328static irqreturn_t cafe_nand_interrupt(int irq, void *id)
329{
330	struct mtd_info *mtd = id;
331	struct cafe_priv *cafe = mtd->priv;
332	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
333	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
334	if (!irqs)
335		return IRQ_NONE;
336
337	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
338	return IRQ_HANDLED;
339}
340
341static void cafe_nand_bug(struct mtd_info *mtd)
342{
343	BUG();
344}
345
346static int cafe_nand_write_oob(struct mtd_info *mtd,
347			       struct nand_chip *chip, int page)
348{
349	int status = 0;
350
351	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
352	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
353	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
354	status = chip->waitfunc(mtd, chip);
355
356	return status & NAND_STATUS_FAIL ? -EIO : 0;
357}
358
359/* Don't use -- use nand_read_oob_std for now */
360static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
361			      int page)
362{
363	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
364	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
365	return 0;
366}
367/**
368 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
369 * @mtd:	mtd info structure
370 * @chip:	nand chip info structure
371 * @buf:	buffer to store read data
372 * @oob_required:	caller expects OOB data read to chip->oob_poi
373 *
374 * The hw generator calculates the error syndrome automatically. Therefore
375 * we need a special oob layout and handling.
376 */
377static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
378			       uint8_t *buf, int oob_required, int page)
379{
380	struct cafe_priv *cafe = mtd->priv;
381	unsigned int max_bitflips = 0;
382
383	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
384		     cafe_readl(cafe, NAND_ECC_RESULT),
385		     cafe_readl(cafe, NAND_ECC_SYN01));
386
387	chip->read_buf(mtd, buf, mtd->writesize);
388	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
389
390	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
391		unsigned short syn[8], pat[4];
392		int pos[4];
393		u8 *oob = chip->oob_poi;
394		int i, n;
395
396		for (i=0; i<8; i+=2) {
397			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
398			syn[i] = cafe->rs->index_of[tmp & 0xfff];
399			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
400		}
401
402		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
403		                pat);
404
405		for (i = 0; i < n; i++) {
406			int p = pos[i];
407
408			/* The 12-bit symbols are mapped to bytes here */
409
410			if (p > 1374) {
411				/* out of range */
412				n = -1374;
413			} else if (p == 0) {
414				/* high four bits do not correspond to data */
415				if (pat[i] > 0xff)
416					n = -2048;
417				else
418					buf[0] ^= pat[i];
419			} else if (p == 1365) {
420				buf[2047] ^= pat[i] >> 4;
421				oob[0] ^= pat[i] << 4;
422			} else if (p > 1365) {
423				if ((p & 1) == 1) {
424					oob[3*p/2 - 2048] ^= pat[i] >> 4;
425					oob[3*p/2 - 2047] ^= pat[i] << 4;
426				} else {
427					oob[3*p/2 - 2049] ^= pat[i] >> 8;
428					oob[3*p/2 - 2048] ^= pat[i];
429				}
430			} else if ((p & 1) == 1) {
431				buf[3*p/2] ^= pat[i] >> 4;
432				buf[3*p/2 + 1] ^= pat[i] << 4;
433			} else {
434				buf[3*p/2 - 1] ^= pat[i] >> 8;
435				buf[3*p/2] ^= pat[i];
436			}
437		}
438
439		if (n < 0) {
440			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
441				cafe_readl(cafe, NAND_ADDR2) * 2048);
442			for (i = 0; i < 0x5c; i += 4)
443				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
444			mtd->ecc_stats.failed++;
445		} else {
446			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
447			mtd->ecc_stats.corrected += n;
448			max_bitflips = max_t(unsigned int, max_bitflips, n);
449		}
450	}
451
452	return max_bitflips;
453}
454
455static struct nand_ecclayout cafe_oobinfo_2048 = {
456	.eccbytes = 14,
457	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
458	.oobfree = {{14, 50}}
459};
460
461/* Ick. The BBT code really ought to be able to work this bit out
462   for itself from the above, at least for the 2KiB case */
463static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
464static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
465
466static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
467static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
468
469
470static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
471	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
472		| NAND_BBT_2BIT | NAND_BBT_VERSION,
473	.offs =	14,
474	.len = 4,
475	.veroffs = 18,
476	.maxblocks = 4,
477	.pattern = cafe_bbt_pattern_2048
478};
479
480static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
481	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
482		| NAND_BBT_2BIT | NAND_BBT_VERSION,
483	.offs =	14,
484	.len = 4,
485	.veroffs = 18,
486	.maxblocks = 4,
487	.pattern = cafe_mirror_pattern_2048
488};
489
490static struct nand_ecclayout cafe_oobinfo_512 = {
491	.eccbytes = 14,
492	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
493	.oobfree = {{14, 2}}
494};
495
496static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
497	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
498		| NAND_BBT_2BIT | NAND_BBT_VERSION,
499	.offs =	14,
500	.len = 1,
501	.veroffs = 15,
502	.maxblocks = 4,
503	.pattern = cafe_bbt_pattern_512
504};
505
506static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
507	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
508		| NAND_BBT_2BIT | NAND_BBT_VERSION,
509	.offs =	14,
510	.len = 1,
511	.veroffs = 15,
512	.maxblocks = 4,
513	.pattern = cafe_mirror_pattern_512
514};
515
516
517static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
518					  struct nand_chip *chip,
519					  const uint8_t *buf, int oob_required)
520{
521	struct cafe_priv *cafe = mtd->priv;
522
523	chip->write_buf(mtd, buf, mtd->writesize);
524	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
525
526	/* Set up ECC autogeneration */
527	cafe->ctl2 |= (1<<30);
528
529	return 0;
530}
531
532static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
533			uint32_t offset, int data_len, const uint8_t *buf,
534			int oob_required, int page, int cached, int raw)
535{
536	int status;
537
538	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
539
540	if (unlikely(raw))
541		status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
542	else
543		status = chip->ecc.write_page(mtd, chip, buf, oob_required);
544
545	if (status < 0)
546		return status;
547
548	/*
549	 * Cached progamming disabled for now, Not sure if its worth the
550	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
551	 */
552	cached = 0;
553
554	if (!cached || !(chip->options & NAND_CACHEPRG)) {
555
556		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
557		status = chip->waitfunc(mtd, chip);
558		/*
559		 * See if operation failed and additional status checks are
560		 * available
561		 */
562		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
563			status = chip->errstat(mtd, chip, FL_WRITING, status,
564					       page);
565
566		if (status & NAND_STATUS_FAIL)
567			return -EIO;
568	} else {
569		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
570		status = chip->waitfunc(mtd, chip);
571	}
572
573	return 0;
574}
575
576static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
577{
578	return 0;
579}
580
581/* F_2[X]/(X**6+X+1)  */
582static unsigned short gf64_mul(u8 a, u8 b)
583{
584	u8 c;
585	unsigned int i;
586
587	c = 0;
588	for (i = 0; i < 6; i++) {
589		if (a & 1)
590			c ^= b;
591		a >>= 1;
592		b <<= 1;
593		if ((b & 0x40) != 0)
594			b ^= 0x43;
595	}
596
597	return c;
598}
599
600/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
601static u16 gf4096_mul(u16 a, u16 b)
602{
603	u8 ah, al, bh, bl, ch, cl;
604
605	ah = a >> 6;
606	al = a & 0x3f;
607	bh = b >> 6;
608	bl = b & 0x3f;
609
610	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
611	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
612
613	return (ch << 6) ^ cl;
614}
615
616static int cafe_mul(int x)
617{
618	if (x == 0)
619		return 1;
620	return gf4096_mul(x, 0xe01);
621}
622
623static int cafe_nand_probe(struct pci_dev *pdev,
624				     const struct pci_device_id *ent)
625{
626	struct mtd_info *mtd;
627	struct cafe_priv *cafe;
628	uint32_t ctrl;
629	int err = 0;
630	int old_dma;
631	struct nand_buffers *nbuf;
632
633	/* Very old versions shared the same PCI ident for all three
634	   functions on the chip. Verify the class too... */
635	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
636		return -ENODEV;
637
638	err = pci_enable_device(pdev);
639	if (err)
640		return err;
641
642	pci_set_master(pdev);
643
644	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
645	if (!mtd)
646		return  -ENOMEM;
647	cafe = (void *)(&mtd[1]);
648
649	mtd->dev.parent = &pdev->dev;
650	mtd->priv = cafe;
651	mtd->owner = THIS_MODULE;
652
653	cafe->pdev = pdev;
654	cafe->mmio = pci_iomap(pdev, 0, 0);
655	if (!cafe->mmio) {
656		dev_warn(&pdev->dev, "failed to iomap\n");
657		err = -ENOMEM;
658		goto out_free_mtd;
659	}
660
661	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
662	if (!cafe->rs) {
663		err = -ENOMEM;
664		goto out_ior;
665	}
666
667	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
668	cafe->nand.dev_ready = cafe_device_ready;
669	cafe->nand.read_byte = cafe_read_byte;
670	cafe->nand.read_buf = cafe_read_buf;
671	cafe->nand.write_buf = cafe_write_buf;
672	cafe->nand.select_chip = cafe_select_chip;
673
674	cafe->nand.chip_delay = 0;
675
676	/* Enable the following for a flash based bad block table */
677	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
678	cafe->nand.options = NAND_OWN_BUFFERS;
679
680	if (skipbbt) {
681		cafe->nand.options |= NAND_SKIP_BBTSCAN;
682		cafe->nand.block_bad = cafe_nand_block_bad;
683	}
684
685	if (numtimings && numtimings != 3) {
686		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
687	}
688
689	if (numtimings == 3) {
690		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
691			     timing[0], timing[1], timing[2]);
692	} else {
693		timing[0] = cafe_readl(cafe, NAND_TIMING1);
694		timing[1] = cafe_readl(cafe, NAND_TIMING2);
695		timing[2] = cafe_readl(cafe, NAND_TIMING3);
696
697		if (timing[0] | timing[1] | timing[2]) {
698			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
699				     timing[0], timing[1], timing[2]);
700		} else {
701			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
702			timing[0] = timing[1] = timing[2] = 0xffffffff;
703		}
704	}
705
706	/* Start off by resetting the NAND controller completely */
707	cafe_writel(cafe, 1, NAND_RESET);
708	cafe_writel(cafe, 0, NAND_RESET);
709
710	cafe_writel(cafe, timing[0], NAND_TIMING1);
711	cafe_writel(cafe, timing[1], NAND_TIMING2);
712	cafe_writel(cafe, timing[2], NAND_TIMING3);
713
714	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
715	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
716			  "CAFE NAND", mtd);
717	if (err) {
718		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
719		goto out_ior;
720	}
721
722	/* Disable master reset, enable NAND clock */
723	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
724	ctrl &= 0xffffeff0;
725	ctrl |= 0x00007000;
726	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
727	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
728	cafe_writel(cafe, 0, NAND_DMA_CTRL);
729
730	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
731	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
732
733	/* Enable NAND IRQ in global IRQ mask register */
734	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
735	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
736		cafe_readl(cafe, GLOBAL_CTRL),
737		cafe_readl(cafe, GLOBAL_IRQ_MASK));
738
739	/* Do not use the DMA for the nand_scan_ident() */
740	old_dma = usedma;
741	usedma = 0;
742
743	/* Scan to find existence of the device */
744	if (nand_scan_ident(mtd, 2, NULL)) {
745		err = -ENXIO;
746		goto out_irq;
747	}
748
749	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
750				2112 + sizeof(struct nand_buffers) +
751				mtd->writesize + mtd->oobsize,
752				&cafe->dmaaddr, GFP_KERNEL);
753	if (!cafe->dmabuf) {
754		err = -ENOMEM;
755		goto out_irq;
756	}
757	cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
758
759	/* Set up DMA address */
760	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
761	if (sizeof(cafe->dmaaddr) > 4)
762		/* Shift in two parts to shut the compiler up */
763		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
764	else
765		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
766
767	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
768		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
769
770	/* this driver does not need the @ecccalc and @ecccode */
771	nbuf->ecccalc = NULL;
772	nbuf->ecccode = NULL;
773	nbuf->databuf = (uint8_t *)(nbuf + 1);
774
775	/* Restore the DMA flag */
776	usedma = old_dma;
777
778	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
779	if (mtd->writesize == 2048)
780		cafe->ctl2 |= 1<<29; /* 2KiB page size */
781
782	/* Set up ECC according to the type of chip we found */
783	if (mtd->writesize == 2048) {
784		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
785		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
786		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
787	} else if (mtd->writesize == 512) {
788		cafe->nand.ecc.layout = &cafe_oobinfo_512;
789		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
790		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
791	} else {
792		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
793		       mtd->writesize);
794		goto out_free_dma;
795	}
796	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
797	cafe->nand.ecc.size = mtd->writesize;
798	cafe->nand.ecc.bytes = 14;
799	cafe->nand.ecc.strength = 4;
800	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
801	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
802	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
803	cafe->nand.write_page = cafe_nand_write_page;
804	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
805	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
806	cafe->nand.ecc.read_page = cafe_nand_read_page;
807	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
808
809	err = nand_scan_tail(mtd);
810	if (err)
811		goto out_free_dma;
812
813	pci_set_drvdata(pdev, mtd);
814
815	mtd->name = "cafe_nand";
816	mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
817
818	goto out;
819
820 out_free_dma:
821	dma_free_coherent(&cafe->pdev->dev,
822			2112 + sizeof(struct nand_buffers) +
823			mtd->writesize + mtd->oobsize,
824			cafe->dmabuf, cafe->dmaaddr);
825 out_irq:
826	/* Disable NAND IRQ in global IRQ mask register */
827	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
828	free_irq(pdev->irq, mtd);
829 out_ior:
830	pci_iounmap(pdev, cafe->mmio);
831 out_free_mtd:
832	kfree(mtd);
833 out:
834	return err;
835}
836
837static void cafe_nand_remove(struct pci_dev *pdev)
838{
839	struct mtd_info *mtd = pci_get_drvdata(pdev);
840	struct cafe_priv *cafe = mtd->priv;
841
842	/* Disable NAND IRQ in global IRQ mask register */
843	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
844	free_irq(pdev->irq, mtd);
845	nand_release(mtd);
846	free_rs(cafe->rs);
847	pci_iounmap(pdev, cafe->mmio);
848	dma_free_coherent(&cafe->pdev->dev,
849			2112 + sizeof(struct nand_buffers) +
850			mtd->writesize + mtd->oobsize,
851			cafe->dmabuf, cafe->dmaaddr);
852	kfree(mtd);
853}
854
855static const struct pci_device_id cafe_nand_tbl[] = {
856	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
857	  PCI_ANY_ID, PCI_ANY_ID },
858	{ }
859};
860
861MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
862
863static int cafe_nand_resume(struct pci_dev *pdev)
864{
865	uint32_t ctrl;
866	struct mtd_info *mtd = pci_get_drvdata(pdev);
867	struct cafe_priv *cafe = mtd->priv;
868
869       /* Start off by resetting the NAND controller completely */
870	cafe_writel(cafe, 1, NAND_RESET);
871	cafe_writel(cafe, 0, NAND_RESET);
872	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
873
874	/* Restore timing configuration */
875	cafe_writel(cafe, timing[0], NAND_TIMING1);
876	cafe_writel(cafe, timing[1], NAND_TIMING2);
877	cafe_writel(cafe, timing[2], NAND_TIMING3);
878
879        /* Disable master reset, enable NAND clock */
880	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
881	ctrl &= 0xffffeff0;
882	ctrl |= 0x00007000;
883	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
884	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
885	cafe_writel(cafe, 0, NAND_DMA_CTRL);
886	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
887	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
888
889	/* Set up DMA address */
890	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
891	if (sizeof(cafe->dmaaddr) > 4)
892	/* Shift in two parts to shut the compiler up */
893		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
894	else
895		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
896
897	/* Enable NAND IRQ in global IRQ mask register */
898	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
899	return 0;
900}
901
902static struct pci_driver cafe_nand_pci_driver = {
903	.name = "CAFÉ NAND",
904	.id_table = cafe_nand_tbl,
905	.probe = cafe_nand_probe,
906	.remove = cafe_nand_remove,
907	.resume = cafe_nand_resume,
908};
909
910module_pci_driver(cafe_nand_pci_driver);
911
912MODULE_LICENSE("GPL");
913MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
914MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
915