[go: nahoru, domu]

1/*
2 *  Copyright © 2003 Rick Bronson
3 *
4 *  Derived from drivers/mtd/nand/autcpu12.c
5 *	 Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 *  Derived from drivers/mtd/spia.c
8 *	 Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13 *
14 *     Derived from Das U-Boot source code
15 *     		(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 *  Add Programmable Multibit ECC support for various AT91 SoC
19 *     © Copyright 2012 ATMEL, Hong Xu
20 *
21 *  Add Nand Flash Controller support for SAMA5 SoC
22 *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30#include <linux/clk.h>
31#include <linux/dma-mapping.h>
32#include <linux/slab.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/platform_device.h>
36#include <linux/of.h>
37#include <linux/of_device.h>
38#include <linux/of_gpio.h>
39#include <linux/of_mtd.h>
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/nand.h>
42#include <linux/mtd/partitions.h>
43
44#include <linux/delay.h>
45#include <linux/dmaengine.h>
46#include <linux/gpio.h>
47#include <linux/interrupt.h>
48#include <linux/io.h>
49#include <linux/platform_data/atmel.h>
50
51static int use_dma = 1;
52module_param(use_dma, int, 0);
53
54static int on_flash_bbt = 0;
55module_param(on_flash_bbt, int, 0);
56
57/* Register access macros */
58#define ecc_readl(add, reg)				\
59	__raw_readl(add + ATMEL_ECC_##reg)
60#define ecc_writel(add, reg, value)			\
61	__raw_writel((value), add + ATMEL_ECC_##reg)
62
63#include "atmel_nand_ecc.h"	/* Hardware ECC registers */
64#include "atmel_nand_nfc.h"	/* Nand Flash Controller definition */
65
66/* oob layout for large page size
67 * bad block info is on bytes 0 and 1
68 * the bytes have to be consecutives to avoid
69 * several NAND_CMD_RNDOUT during read
70 */
71static struct nand_ecclayout atmel_oobinfo_large = {
72	.eccbytes = 4,
73	.eccpos = {60, 61, 62, 63},
74	.oobfree = {
75		{2, 58}
76	},
77};
78
79/* oob layout for small page size
80 * bad block info is on bytes 4 and 5
81 * the bytes have to be consecutives to avoid
82 * several NAND_CMD_RNDOUT during read
83 */
84static struct nand_ecclayout atmel_oobinfo_small = {
85	.eccbytes = 4,
86	.eccpos = {0, 1, 2, 3},
87	.oobfree = {
88		{6, 10}
89	},
90};
91
92struct atmel_nfc {
93	void __iomem		*base_cmd_regs;
94	void __iomem		*hsmc_regs;
95	void __iomem		*sram_bank0;
96	dma_addr_t		sram_bank0_phys;
97	bool			use_nfc_sram;
98	bool			write_by_sram;
99
100	struct clk		*clk;
101
102	bool			is_initialized;
103	struct completion	comp_ready;
104	struct completion	comp_cmd_done;
105	struct completion	comp_xfer_done;
106
107	/* Point to the sram bank which include readed data via NFC */
108	void __iomem		*data_in_sram;
109	bool			will_write_sram;
110};
111static struct atmel_nfc	nand_nfc;
112
113struct atmel_nand_host {
114	struct nand_chip	nand_chip;
115	struct mtd_info		mtd;
116	void __iomem		*io_base;
117	dma_addr_t		io_phys;
118	struct atmel_nand_data	board;
119	struct device		*dev;
120	void __iomem		*ecc;
121
122	struct completion	comp;
123	struct dma_chan		*dma_chan;
124
125	struct atmel_nfc	*nfc;
126
127	bool			has_pmecc;
128	u8			pmecc_corr_cap;
129	u16			pmecc_sector_size;
130	u32			pmecc_lookup_table_offset;
131	u32			pmecc_lookup_table_offset_512;
132	u32			pmecc_lookup_table_offset_1024;
133
134	int			pmecc_degree;	/* Degree of remainders */
135	int			pmecc_cw_len;	/* Length of codeword */
136
137	void __iomem		*pmerrloc_base;
138	void __iomem		*pmecc_rom_base;
139
140	/* lookup table for alpha_to and index_of */
141	void __iomem		*pmecc_alpha_to;
142	void __iomem		*pmecc_index_of;
143
144	/* data for pmecc computation */
145	int16_t			*pmecc_partial_syn;
146	int16_t			*pmecc_si;
147	int16_t			*pmecc_smu;	/* Sigma table */
148	int16_t			*pmecc_lmu;	/* polynomal order */
149	int			*pmecc_mu;
150	int			*pmecc_dmu;
151	int			*pmecc_delta;
152};
153
154static struct nand_ecclayout atmel_pmecc_oobinfo;
155
156/*
157 * Enable NAND.
158 */
159static void atmel_nand_enable(struct atmel_nand_host *host)
160{
161	if (gpio_is_valid(host->board.enable_pin))
162		gpio_set_value(host->board.enable_pin, 0);
163}
164
165/*
166 * Disable NAND.
167 */
168static void atmel_nand_disable(struct atmel_nand_host *host)
169{
170	if (gpio_is_valid(host->board.enable_pin))
171		gpio_set_value(host->board.enable_pin, 1);
172}
173
174/*
175 * Hardware specific access to control-lines
176 */
177static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
178{
179	struct nand_chip *nand_chip = mtd->priv;
180	struct atmel_nand_host *host = nand_chip->priv;
181
182	if (ctrl & NAND_CTRL_CHANGE) {
183		if (ctrl & NAND_NCE)
184			atmel_nand_enable(host);
185		else
186			atmel_nand_disable(host);
187	}
188	if (cmd == NAND_CMD_NONE)
189		return;
190
191	if (ctrl & NAND_CLE)
192		writeb(cmd, host->io_base + (1 << host->board.cle));
193	else
194		writeb(cmd, host->io_base + (1 << host->board.ale));
195}
196
197/*
198 * Read the Device Ready pin.
199 */
200static int atmel_nand_device_ready(struct mtd_info *mtd)
201{
202	struct nand_chip *nand_chip = mtd->priv;
203	struct atmel_nand_host *host = nand_chip->priv;
204
205	return gpio_get_value(host->board.rdy_pin) ^
206                !!host->board.rdy_pin_active_low;
207}
208
209/* Set up for hardware ready pin and enable pin. */
210static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
211{
212	struct nand_chip *chip = mtd->priv;
213	struct atmel_nand_host *host = chip->priv;
214	int res = 0;
215
216	if (gpio_is_valid(host->board.rdy_pin)) {
217		res = devm_gpio_request(host->dev,
218				host->board.rdy_pin, "nand_rdy");
219		if (res < 0) {
220			dev_err(host->dev,
221				"can't request rdy gpio %d\n",
222				host->board.rdy_pin);
223			return res;
224		}
225
226		res = gpio_direction_input(host->board.rdy_pin);
227		if (res < 0) {
228			dev_err(host->dev,
229				"can't request input direction rdy gpio %d\n",
230				host->board.rdy_pin);
231			return res;
232		}
233
234		chip->dev_ready = atmel_nand_device_ready;
235	}
236
237	if (gpio_is_valid(host->board.enable_pin)) {
238		res = devm_gpio_request(host->dev,
239				host->board.enable_pin, "nand_enable");
240		if (res < 0) {
241			dev_err(host->dev,
242				"can't request enable gpio %d\n",
243				host->board.enable_pin);
244			return res;
245		}
246
247		res = gpio_direction_output(host->board.enable_pin, 1);
248		if (res < 0) {
249			dev_err(host->dev,
250				"can't request output direction enable gpio %d\n",
251				host->board.enable_pin);
252			return res;
253		}
254	}
255
256	return res;
257}
258
259static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
260{
261	int i;
262	u32 *t = trg;
263	const __iomem u32 *s = src;
264
265	for (i = 0; i < (size >> 2); i++)
266		*t++ = readl_relaxed(s++);
267}
268
269static void memcpy32_toio(void __iomem *trg, const void *src, int size)
270{
271	int i;
272	u32 __iomem *t = trg;
273	const u32 *s = src;
274
275	for (i = 0; i < (size >> 2); i++)
276		writel_relaxed(*s++, t++);
277}
278
279/*
280 * Minimal-overhead PIO for data access.
281 */
282static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
283{
284	struct nand_chip	*nand_chip = mtd->priv;
285	struct atmel_nand_host *host = nand_chip->priv;
286
287	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
288		memcpy32_fromio(buf, host->nfc->data_in_sram, len);
289		host->nfc->data_in_sram += len;
290	} else {
291		__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
292	}
293}
294
295static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
296{
297	struct nand_chip	*nand_chip = mtd->priv;
298	struct atmel_nand_host *host = nand_chip->priv;
299
300	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
301		memcpy32_fromio(buf, host->nfc->data_in_sram, len);
302		host->nfc->data_in_sram += len;
303	} else {
304		__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
305	}
306}
307
308static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
309{
310	struct nand_chip	*nand_chip = mtd->priv;
311
312	__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
313}
314
315static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
316{
317	struct nand_chip	*nand_chip = mtd->priv;
318
319	__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
320}
321
322static void dma_complete_func(void *completion)
323{
324	complete(completion);
325}
326
327static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
328{
329	/* NFC only has two banks. Must be 0 or 1 */
330	if (bank > 1)
331		return -EINVAL;
332
333	if (bank) {
334		/* Only for a 2k-page or lower flash, NFC can handle 2 banks */
335		if (host->mtd.writesize > 2048)
336			return -EINVAL;
337		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
338	} else {
339		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
340	}
341
342	return 0;
343}
344
345static uint nfc_get_sram_off(struct atmel_nand_host *host)
346{
347	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
348		return NFC_SRAM_BANK1_OFFSET;
349	else
350		return 0;
351}
352
353static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
354{
355	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
356		return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
357	else
358		return host->nfc->sram_bank0_phys;
359}
360
361static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
362			       int is_read)
363{
364	struct dma_device *dma_dev;
365	enum dma_ctrl_flags flags;
366	dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
367	struct dma_async_tx_descriptor *tx = NULL;
368	dma_cookie_t cookie;
369	struct nand_chip *chip = mtd->priv;
370	struct atmel_nand_host *host = chip->priv;
371	void *p = buf;
372	int err = -EIO;
373	enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
374	struct atmel_nfc *nfc = host->nfc;
375
376	if (buf >= high_memory)
377		goto err_buf;
378
379	dma_dev = host->dma_chan->device;
380
381	flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
382
383	phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
384	if (dma_mapping_error(dma_dev->dev, phys_addr)) {
385		dev_err(host->dev, "Failed to dma_map_single\n");
386		goto err_buf;
387	}
388
389	if (is_read) {
390		if (nfc && nfc->data_in_sram)
391			dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
392				- (nfc->sram_bank0 + nfc_get_sram_off(host)));
393		else
394			dma_src_addr = host->io_phys;
395
396		dma_dst_addr = phys_addr;
397	} else {
398		dma_src_addr = phys_addr;
399
400		if (nfc && nfc->write_by_sram)
401			dma_dst_addr = nfc_sram_phys(host);
402		else
403			dma_dst_addr = host->io_phys;
404	}
405
406	tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
407					     dma_src_addr, len, flags);
408	if (!tx) {
409		dev_err(host->dev, "Failed to prepare DMA memcpy\n");
410		goto err_dma;
411	}
412
413	init_completion(&host->comp);
414	tx->callback = dma_complete_func;
415	tx->callback_param = &host->comp;
416
417	cookie = tx->tx_submit(tx);
418	if (dma_submit_error(cookie)) {
419		dev_err(host->dev, "Failed to do DMA tx_submit\n");
420		goto err_dma;
421	}
422
423	dma_async_issue_pending(host->dma_chan);
424	wait_for_completion(&host->comp);
425
426	if (is_read && nfc && nfc->data_in_sram)
427		/* After read data from SRAM, need to increase the position */
428		nfc->data_in_sram += len;
429
430	err = 0;
431
432err_dma:
433	dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
434err_buf:
435	if (err != 0)
436		dev_dbg(host->dev, "Fall back to CPU I/O\n");
437	return err;
438}
439
440static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
441{
442	struct nand_chip *chip = mtd->priv;
443	struct atmel_nand_host *host = chip->priv;
444
445	if (use_dma && len > mtd->oobsize)
446		/* only use DMA for bigger than oob size: better performances */
447		if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
448			return;
449
450	if (host->board.bus_width_16)
451		atmel_read_buf16(mtd, buf, len);
452	else
453		atmel_read_buf8(mtd, buf, len);
454}
455
456static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
457{
458	struct nand_chip *chip = mtd->priv;
459	struct atmel_nand_host *host = chip->priv;
460
461	if (use_dma && len > mtd->oobsize)
462		/* only use DMA for bigger than oob size: better performances */
463		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
464			return;
465
466	if (host->board.bus_width_16)
467		atmel_write_buf16(mtd, buf, len);
468	else
469		atmel_write_buf8(mtd, buf, len);
470}
471
472/*
473 * Return number of ecc bytes per sector according to sector size and
474 * correction capability
475 *
476 * Following table shows what at91 PMECC supported:
477 * Correction Capability	Sector_512_bytes	Sector_1024_bytes
478 * =====================	================	=================
479 *                2-bits                 4-bytes                  4-bytes
480 *                4-bits                 7-bytes                  7-bytes
481 *                8-bits                13-bytes                 14-bytes
482 *               12-bits                20-bytes                 21-bytes
483 *               24-bits                39-bytes                 42-bytes
484 */
485static int pmecc_get_ecc_bytes(int cap, int sector_size)
486{
487	int m = 12 + sector_size / 512;
488	return (m * cap + 7) / 8;
489}
490
491static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
492				    int oobsize, int ecc_len)
493{
494	int i;
495
496	layout->eccbytes = ecc_len;
497
498	/* ECC will occupy the last ecc_len bytes continuously */
499	for (i = 0; i < ecc_len; i++)
500		layout->eccpos[i] = oobsize - ecc_len + i;
501
502	layout->oobfree[0].offset = 2;
503	layout->oobfree[0].length =
504		oobsize - ecc_len - layout->oobfree[0].offset;
505}
506
507static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
508{
509	int table_size;
510
511	table_size = host->pmecc_sector_size == 512 ?
512		PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
513
514	return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
515			table_size * sizeof(int16_t);
516}
517
518static int pmecc_data_alloc(struct atmel_nand_host *host)
519{
520	const int cap = host->pmecc_corr_cap;
521	int size;
522
523	size = (2 * cap + 1) * sizeof(int16_t);
524	host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
525	host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
526	host->pmecc_lmu = devm_kzalloc(host->dev,
527			(cap + 1) * sizeof(int16_t), GFP_KERNEL);
528	host->pmecc_smu = devm_kzalloc(host->dev,
529			(cap + 2) * size, GFP_KERNEL);
530
531	size = (cap + 1) * sizeof(int);
532	host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
533	host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
534	host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
535
536	if (!host->pmecc_partial_syn ||
537		!host->pmecc_si ||
538		!host->pmecc_lmu ||
539		!host->pmecc_smu ||
540		!host->pmecc_mu ||
541		!host->pmecc_dmu ||
542		!host->pmecc_delta)
543		return -ENOMEM;
544
545	return 0;
546}
547
548static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
549{
550	struct nand_chip *nand_chip = mtd->priv;
551	struct atmel_nand_host *host = nand_chip->priv;
552	int i;
553	uint32_t value;
554
555	/* Fill odd syndromes */
556	for (i = 0; i < host->pmecc_corr_cap; i++) {
557		value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
558		if (i & 1)
559			value >>= 16;
560		value &= 0xffff;
561		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
562	}
563}
564
565static void pmecc_substitute(struct mtd_info *mtd)
566{
567	struct nand_chip *nand_chip = mtd->priv;
568	struct atmel_nand_host *host = nand_chip->priv;
569	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
570	int16_t __iomem *index_of = host->pmecc_index_of;
571	int16_t *partial_syn = host->pmecc_partial_syn;
572	const int cap = host->pmecc_corr_cap;
573	int16_t *si;
574	int i, j;
575
576	/* si[] is a table that holds the current syndrome value,
577	 * an element of that table belongs to the field
578	 */
579	si = host->pmecc_si;
580
581	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
582
583	/* Computation 2t syndromes based on S(x) */
584	/* Odd syndromes */
585	for (i = 1; i < 2 * cap; i += 2) {
586		for (j = 0; j < host->pmecc_degree; j++) {
587			if (partial_syn[i] & ((unsigned short)0x1 << j))
588				si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
589		}
590	}
591	/* Even syndrome = (Odd syndrome) ** 2 */
592	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
593		if (si[j] == 0) {
594			si[i] = 0;
595		} else {
596			int16_t tmp;
597
598			tmp = readw_relaxed(index_of + si[j]);
599			tmp = (tmp * 2) % host->pmecc_cw_len;
600			si[i] = readw_relaxed(alpha_to + tmp);
601		}
602	}
603
604	return;
605}
606
607static void pmecc_get_sigma(struct mtd_info *mtd)
608{
609	struct nand_chip *nand_chip = mtd->priv;
610	struct atmel_nand_host *host = nand_chip->priv;
611
612	int16_t *lmu = host->pmecc_lmu;
613	int16_t *si = host->pmecc_si;
614	int *mu = host->pmecc_mu;
615	int *dmu = host->pmecc_dmu;	/* Discrepancy */
616	int *delta = host->pmecc_delta; /* Delta order */
617	int cw_len = host->pmecc_cw_len;
618	const int16_t cap = host->pmecc_corr_cap;
619	const int num = 2 * cap + 1;
620	int16_t __iomem	*index_of = host->pmecc_index_of;
621	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
622	int i, j, k;
623	uint32_t dmu_0_count, tmp;
624	int16_t *smu = host->pmecc_smu;
625
626	/* index of largest delta */
627	int ro;
628	int largest;
629	int diff;
630
631	dmu_0_count = 0;
632
633	/* First Row */
634
635	/* Mu */
636	mu[0] = -1;
637
638	memset(smu, 0, sizeof(int16_t) * num);
639	smu[0] = 1;
640
641	/* discrepancy set to 1 */
642	dmu[0] = 1;
643	/* polynom order set to 0 */
644	lmu[0] = 0;
645	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
646
647	/* Second Row */
648
649	/* Mu */
650	mu[1] = 0;
651	/* Sigma(x) set to 1 */
652	memset(&smu[num], 0, sizeof(int16_t) * num);
653	smu[num] = 1;
654
655	/* discrepancy set to S1 */
656	dmu[1] = si[1];
657
658	/* polynom order set to 0 */
659	lmu[1] = 0;
660
661	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
662
663	/* Init the Sigma(x) last row */
664	memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
665
666	for (i = 1; i <= cap; i++) {
667		mu[i + 1] = i << 1;
668		/* Begin Computing Sigma (Mu+1) and L(mu) */
669		/* check if discrepancy is set to 0 */
670		if (dmu[i] == 0) {
671			dmu_0_count++;
672
673			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
674			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
675				tmp += 2;
676			else
677				tmp += 1;
678
679			if (dmu_0_count == tmp) {
680				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
681					smu[(cap + 1) * num + j] =
682							smu[i * num + j];
683
684				lmu[cap + 1] = lmu[i];
685				return;
686			}
687
688			/* copy polynom */
689			for (j = 0; j <= lmu[i] >> 1; j++)
690				smu[(i + 1) * num + j] = smu[i * num + j];
691
692			/* copy previous polynom order to the next */
693			lmu[i + 1] = lmu[i];
694		} else {
695			ro = 0;
696			largest = -1;
697			/* find largest delta with dmu != 0 */
698			for (j = 0; j < i; j++) {
699				if ((dmu[j]) && (delta[j] > largest)) {
700					largest = delta[j];
701					ro = j;
702				}
703			}
704
705			/* compute difference */
706			diff = (mu[i] - mu[ro]);
707
708			/* Compute degree of the new smu polynomial */
709			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
710				lmu[i + 1] = lmu[i];
711			else
712				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
713
714			/* Init smu[i+1] with 0 */
715			for (k = 0; k < num; k++)
716				smu[(i + 1) * num + k] = 0;
717
718			/* Compute smu[i+1] */
719			for (k = 0; k <= lmu[ro] >> 1; k++) {
720				int16_t a, b, c;
721
722				if (!(smu[ro * num + k] && dmu[i]))
723					continue;
724				a = readw_relaxed(index_of + dmu[i]);
725				b = readw_relaxed(index_of + dmu[ro]);
726				c = readw_relaxed(index_of + smu[ro * num + k]);
727				tmp = a + (cw_len - b) + c;
728				a = readw_relaxed(alpha_to + tmp % cw_len);
729				smu[(i + 1) * num + (k + diff)] = a;
730			}
731
732			for (k = 0; k <= lmu[i] >> 1; k++)
733				smu[(i + 1) * num + k] ^= smu[i * num + k];
734		}
735
736		/* End Computing Sigma (Mu+1) and L(mu) */
737		/* In either case compute delta */
738		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
739
740		/* Do not compute discrepancy for the last iteration */
741		if (i >= cap)
742			continue;
743
744		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
745			tmp = 2 * (i - 1);
746			if (k == 0) {
747				dmu[i + 1] = si[tmp + 3];
748			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
749				int16_t a, b, c;
750				a = readw_relaxed(index_of +
751						smu[(i + 1) * num + k]);
752				b = si[2 * (i - 1) + 3 - k];
753				c = readw_relaxed(index_of + b);
754				tmp = a + c;
755				tmp %= cw_len;
756				dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
757					dmu[i + 1];
758			}
759		}
760	}
761
762	return;
763}
764
765static int pmecc_err_location(struct mtd_info *mtd)
766{
767	struct nand_chip *nand_chip = mtd->priv;
768	struct atmel_nand_host *host = nand_chip->priv;
769	unsigned long end_time;
770	const int cap = host->pmecc_corr_cap;
771	const int num = 2 * cap + 1;
772	int sector_size = host->pmecc_sector_size;
773	int err_nbr = 0;	/* number of error */
774	int roots_nbr;		/* number of roots */
775	int i;
776	uint32_t val;
777	int16_t *smu = host->pmecc_smu;
778
779	pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
780
781	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
782		pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
783				      smu[(cap + 1) * num + i]);
784		err_nbr++;
785	}
786
787	val = (err_nbr - 1) << 16;
788	if (sector_size == 1024)
789		val |= 1;
790
791	pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
792	pmerrloc_writel(host->pmerrloc_base, ELEN,
793			sector_size * 8 + host->pmecc_degree * cap);
794
795	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
796	while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
797		 & PMERRLOC_CALC_DONE)) {
798		if (unlikely(time_after(jiffies, end_time))) {
799			dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
800			return -1;
801		}
802		cpu_relax();
803	}
804
805	roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
806		& PMERRLOC_ERR_NUM_MASK) >> 8;
807	/* Number of roots == degree of smu hence <= cap */
808	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
809		return err_nbr - 1;
810
811	/* Number of roots does not match the degree of smu
812	 * unable to correct error */
813	return -1;
814}
815
816static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
817		int sector_num, int extra_bytes, int err_nbr)
818{
819	struct nand_chip *nand_chip = mtd->priv;
820	struct atmel_nand_host *host = nand_chip->priv;
821	int i = 0;
822	int byte_pos, bit_pos, sector_size, pos;
823	uint32_t tmp;
824	uint8_t err_byte;
825
826	sector_size = host->pmecc_sector_size;
827
828	while (err_nbr) {
829		tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
830		byte_pos = tmp / 8;
831		bit_pos  = tmp % 8;
832
833		if (byte_pos >= (sector_size + extra_bytes))
834			BUG();	/* should never happen */
835
836		if (byte_pos < sector_size) {
837			err_byte = *(buf + byte_pos);
838			*(buf + byte_pos) ^= (1 << bit_pos);
839
840			pos = sector_num * host->pmecc_sector_size + byte_pos;
841			dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
842				pos, bit_pos, err_byte, *(buf + byte_pos));
843		} else {
844			/* Bit flip in OOB area */
845			tmp = sector_num * nand_chip->ecc.bytes
846					+ (byte_pos - sector_size);
847			err_byte = ecc[tmp];
848			ecc[tmp] ^= (1 << bit_pos);
849
850			pos = tmp + nand_chip->ecc.layout->eccpos[0];
851			dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
852				pos, bit_pos, err_byte, ecc[tmp]);
853		}
854
855		i++;
856		err_nbr--;
857	}
858
859	return;
860}
861
862static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
863	u8 *ecc)
864{
865	struct nand_chip *nand_chip = mtd->priv;
866	struct atmel_nand_host *host = nand_chip->priv;
867	int i, err_nbr;
868	uint8_t *buf_pos;
869	int total_err = 0;
870
871	for (i = 0; i < nand_chip->ecc.total; i++)
872		if (ecc[i] != 0xff)
873			goto normal_check;
874	/* Erased page, return OK */
875	return 0;
876
877normal_check:
878	for (i = 0; i < nand_chip->ecc.steps; i++) {
879		err_nbr = 0;
880		if (pmecc_stat & 0x1) {
881			buf_pos = buf + i * host->pmecc_sector_size;
882
883			pmecc_gen_syndrome(mtd, i);
884			pmecc_substitute(mtd);
885			pmecc_get_sigma(mtd);
886
887			err_nbr = pmecc_err_location(mtd);
888			if (err_nbr == -1) {
889				dev_err(host->dev, "PMECC: Too many errors\n");
890				mtd->ecc_stats.failed++;
891				return -EIO;
892			} else {
893				pmecc_correct_data(mtd, buf_pos, ecc, i,
894					nand_chip->ecc.bytes, err_nbr);
895				mtd->ecc_stats.corrected += err_nbr;
896				total_err += err_nbr;
897			}
898		}
899		pmecc_stat >>= 1;
900	}
901
902	return total_err;
903}
904
905static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
906{
907	u32 val;
908
909	if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
910		dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
911		return;
912	}
913
914	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
915	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
916	val = pmecc_readl_relaxed(host->ecc, CFG);
917
918	if (ecc_op == NAND_ECC_READ)
919		pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
920			| PMECC_CFG_AUTO_ENABLE);
921	else
922		pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
923			& ~PMECC_CFG_AUTO_ENABLE);
924
925	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
926	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
927}
928
929static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
930	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
931{
932	struct atmel_nand_host *host = chip->priv;
933	int eccsize = chip->ecc.size * chip->ecc.steps;
934	uint8_t *oob = chip->oob_poi;
935	uint32_t *eccpos = chip->ecc.layout->eccpos;
936	uint32_t stat;
937	unsigned long end_time;
938	int bitflips = 0;
939
940	if (!host->nfc || !host->nfc->use_nfc_sram)
941		pmecc_enable(host, NAND_ECC_READ);
942
943	chip->read_buf(mtd, buf, eccsize);
944	chip->read_buf(mtd, oob, mtd->oobsize);
945
946	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
947	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
948		if (unlikely(time_after(jiffies, end_time))) {
949			dev_err(host->dev, "PMECC: Timeout to get error status.\n");
950			return -EIO;
951		}
952		cpu_relax();
953	}
954
955	stat = pmecc_readl_relaxed(host->ecc, ISR);
956	if (stat != 0) {
957		bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
958		if (bitflips < 0)
959			/* uncorrectable errors */
960			return 0;
961	}
962
963	return bitflips;
964}
965
966static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
967		struct nand_chip *chip, const uint8_t *buf, int oob_required)
968{
969	struct atmel_nand_host *host = chip->priv;
970	uint32_t *eccpos = chip->ecc.layout->eccpos;
971	int i, j;
972	unsigned long end_time;
973
974	if (!host->nfc || !host->nfc->write_by_sram) {
975		pmecc_enable(host, NAND_ECC_WRITE);
976		chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
977	}
978
979	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
980	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
981		if (unlikely(time_after(jiffies, end_time))) {
982			dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
983			return -EIO;
984		}
985		cpu_relax();
986	}
987
988	for (i = 0; i < chip->ecc.steps; i++) {
989		for (j = 0; j < chip->ecc.bytes; j++) {
990			int pos;
991
992			pos = i * chip->ecc.bytes + j;
993			chip->oob_poi[eccpos[pos]] =
994				pmecc_readb_ecc_relaxed(host->ecc, i, j);
995		}
996	}
997	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
998
999	return 0;
1000}
1001
1002static void atmel_pmecc_core_init(struct mtd_info *mtd)
1003{
1004	struct nand_chip *nand_chip = mtd->priv;
1005	struct atmel_nand_host *host = nand_chip->priv;
1006	uint32_t val = 0;
1007	struct nand_ecclayout *ecc_layout;
1008
1009	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1010	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1011
1012	switch (host->pmecc_corr_cap) {
1013	case 2:
1014		val = PMECC_CFG_BCH_ERR2;
1015		break;
1016	case 4:
1017		val = PMECC_CFG_BCH_ERR4;
1018		break;
1019	case 8:
1020		val = PMECC_CFG_BCH_ERR8;
1021		break;
1022	case 12:
1023		val = PMECC_CFG_BCH_ERR12;
1024		break;
1025	case 24:
1026		val = PMECC_CFG_BCH_ERR24;
1027		break;
1028	}
1029
1030	if (host->pmecc_sector_size == 512)
1031		val |= PMECC_CFG_SECTOR512;
1032	else if (host->pmecc_sector_size == 1024)
1033		val |= PMECC_CFG_SECTOR1024;
1034
1035	switch (nand_chip->ecc.steps) {
1036	case 1:
1037		val |= PMECC_CFG_PAGE_1SECTOR;
1038		break;
1039	case 2:
1040		val |= PMECC_CFG_PAGE_2SECTORS;
1041		break;
1042	case 4:
1043		val |= PMECC_CFG_PAGE_4SECTORS;
1044		break;
1045	case 8:
1046		val |= PMECC_CFG_PAGE_8SECTORS;
1047		break;
1048	}
1049
1050	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1051		| PMECC_CFG_AUTO_DISABLE);
1052	pmecc_writel(host->ecc, CFG, val);
1053
1054	ecc_layout = nand_chip->ecc.layout;
1055	pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1056	pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1057	pmecc_writel(host->ecc, EADDR,
1058			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1059	/* See datasheet about PMECC Clock Control Register */
1060	pmecc_writel(host->ecc, CLK, 2);
1061	pmecc_writel(host->ecc, IDR, 0xff);
1062	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1063}
1064
1065/*
1066 * Get minimum ecc requirements from NAND.
1067 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1068 * will set them according to minimum ecc requirement. Otherwise, use the
1069 * value in DTS file.
1070 * return 0 if success. otherwise return error code.
1071 */
1072static int pmecc_choose_ecc(struct atmel_nand_host *host,
1073		int *cap, int *sector_size)
1074{
1075	/* Get minimum ECC requirements */
1076	if (host->nand_chip.ecc_strength_ds) {
1077		*cap = host->nand_chip.ecc_strength_ds;
1078		*sector_size = host->nand_chip.ecc_step_ds;
1079		dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1080				*cap, *sector_size);
1081	} else {
1082		*cap = 2;
1083		*sector_size = 512;
1084		dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1085	}
1086
1087	/* If device tree doesn't specify, use NAND's minimum ECC parameters */
1088	if (host->pmecc_corr_cap == 0) {
1089		/* use the most fitable ecc bits (the near bigger one ) */
1090		if (*cap <= 2)
1091			host->pmecc_corr_cap = 2;
1092		else if (*cap <= 4)
1093			host->pmecc_corr_cap = 4;
1094		else if (*cap <= 8)
1095			host->pmecc_corr_cap = 8;
1096		else if (*cap <= 12)
1097			host->pmecc_corr_cap = 12;
1098		else if (*cap <= 24)
1099			host->pmecc_corr_cap = 24;
1100		else
1101			return -EINVAL;
1102	}
1103	if (host->pmecc_sector_size == 0) {
1104		/* use the most fitable sector size (the near smaller one ) */
1105		if (*sector_size >= 1024)
1106			host->pmecc_sector_size = 1024;
1107		else if (*sector_size >= 512)
1108			host->pmecc_sector_size = 512;
1109		else
1110			return -EINVAL;
1111	}
1112	return 0;
1113}
1114
1115static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1116					 struct atmel_nand_host *host)
1117{
1118	struct mtd_info *mtd = &host->mtd;
1119	struct nand_chip *nand_chip = &host->nand_chip;
1120	struct resource *regs, *regs_pmerr, *regs_rom;
1121	int cap, sector_size, err_no;
1122
1123	err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1124	if (err_no) {
1125		dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1126		return err_no;
1127	}
1128
1129	if (cap > host->pmecc_corr_cap ||
1130			sector_size != host->pmecc_sector_size)
1131		dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1132
1133	cap = host->pmecc_corr_cap;
1134	sector_size = host->pmecc_sector_size;
1135	host->pmecc_lookup_table_offset = (sector_size == 512) ?
1136			host->pmecc_lookup_table_offset_512 :
1137			host->pmecc_lookup_table_offset_1024;
1138
1139	dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1140		 cap, sector_size);
1141
1142	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1143	if (!regs) {
1144		dev_warn(host->dev,
1145			"Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1146		nand_chip->ecc.mode = NAND_ECC_SOFT;
1147		return 0;
1148	}
1149
1150	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1151	if (IS_ERR(host->ecc)) {
1152		err_no = PTR_ERR(host->ecc);
1153		goto err;
1154	}
1155
1156	regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1157	host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1158	if (IS_ERR(host->pmerrloc_base)) {
1159		err_no = PTR_ERR(host->pmerrloc_base);
1160		goto err;
1161	}
1162
1163	regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1164	host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1165	if (IS_ERR(host->pmecc_rom_base)) {
1166		err_no = PTR_ERR(host->pmecc_rom_base);
1167		goto err;
1168	}
1169
1170	nand_chip->ecc.size = sector_size;
1171
1172	/* set ECC page size and oob layout */
1173	switch (mtd->writesize) {
1174	case 512:
1175	case 1024:
1176	case 2048:
1177	case 4096:
1178	case 8192:
1179		if (sector_size > mtd->writesize) {
1180			dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1181			err_no = -EINVAL;
1182			goto err;
1183		}
1184
1185		host->pmecc_degree = (sector_size == 512) ?
1186			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1187		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1188		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1189		host->pmecc_index_of = host->pmecc_rom_base +
1190			host->pmecc_lookup_table_offset;
1191
1192		nand_chip->ecc.strength = cap;
1193		nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1194		nand_chip->ecc.steps = mtd->writesize / sector_size;
1195		nand_chip->ecc.total = nand_chip->ecc.bytes *
1196			nand_chip->ecc.steps;
1197		if (nand_chip->ecc.total > mtd->oobsize - 2) {
1198			dev_err(host->dev, "No room for ECC bytes\n");
1199			err_no = -EINVAL;
1200			goto err;
1201		}
1202		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1203					mtd->oobsize,
1204					nand_chip->ecc.total);
1205
1206		nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1207		break;
1208	default:
1209		dev_warn(host->dev,
1210			"Unsupported page size for PMECC, use Software ECC\n");
1211		/* page size not handled by HW ECC */
1212		/* switching back to soft ECC */
1213		nand_chip->ecc.mode = NAND_ECC_SOFT;
1214		return 0;
1215	}
1216
1217	/* Allocate data for PMECC computation */
1218	err_no = pmecc_data_alloc(host);
1219	if (err_no) {
1220		dev_err(host->dev,
1221				"Cannot allocate memory for PMECC computation!\n");
1222		goto err;
1223	}
1224
1225	nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1226	nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1227	nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1228
1229	atmel_pmecc_core_init(mtd);
1230
1231	return 0;
1232
1233err:
1234	return err_no;
1235}
1236
1237/*
1238 * Calculate HW ECC
1239 *
1240 * function called after a write
1241 *
1242 * mtd:        MTD block structure
1243 * dat:        raw data (unused)
1244 * ecc_code:   buffer for ECC
1245 */
1246static int atmel_nand_calculate(struct mtd_info *mtd,
1247		const u_char *dat, unsigned char *ecc_code)
1248{
1249	struct nand_chip *nand_chip = mtd->priv;
1250	struct atmel_nand_host *host = nand_chip->priv;
1251	unsigned int ecc_value;
1252
1253	/* get the first 2 ECC bytes */
1254	ecc_value = ecc_readl(host->ecc, PR);
1255
1256	ecc_code[0] = ecc_value & 0xFF;
1257	ecc_code[1] = (ecc_value >> 8) & 0xFF;
1258
1259	/* get the last 2 ECC bytes */
1260	ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1261
1262	ecc_code[2] = ecc_value & 0xFF;
1263	ecc_code[3] = (ecc_value >> 8) & 0xFF;
1264
1265	return 0;
1266}
1267
1268/*
1269 * HW ECC read page function
1270 *
1271 * mtd:        mtd info structure
1272 * chip:       nand chip info structure
1273 * buf:        buffer to store read data
1274 * oob_required:    caller expects OOB data read to chip->oob_poi
1275 */
1276static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1277				uint8_t *buf, int oob_required, int page)
1278{
1279	int eccsize = chip->ecc.size;
1280	int eccbytes = chip->ecc.bytes;
1281	uint32_t *eccpos = chip->ecc.layout->eccpos;
1282	uint8_t *p = buf;
1283	uint8_t *oob = chip->oob_poi;
1284	uint8_t *ecc_pos;
1285	int stat;
1286	unsigned int max_bitflips = 0;
1287
1288	/*
1289	 * Errata: ALE is incorrectly wired up to the ECC controller
1290	 * on the AP7000, so it will include the address cycles in the
1291	 * ECC calculation.
1292	 *
1293	 * Workaround: Reset the parity registers before reading the
1294	 * actual data.
1295	 */
1296	struct atmel_nand_host *host = chip->priv;
1297	if (host->board.need_reset_workaround)
1298		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1299
1300	/* read the page */
1301	chip->read_buf(mtd, p, eccsize);
1302
1303	/* move to ECC position if needed */
1304	if (eccpos[0] != 0) {
1305		/* This only works on large pages
1306		 * because the ECC controller waits for
1307		 * NAND_CMD_RNDOUTSTART after the
1308		 * NAND_CMD_RNDOUT.
1309		 * anyway, for small pages, the eccpos[0] == 0
1310		 */
1311		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1312				mtd->writesize + eccpos[0], -1);
1313	}
1314
1315	/* the ECC controller needs to read the ECC just after the data */
1316	ecc_pos = oob + eccpos[0];
1317	chip->read_buf(mtd, ecc_pos, eccbytes);
1318
1319	/* check if there's an error */
1320	stat = chip->ecc.correct(mtd, p, oob, NULL);
1321
1322	if (stat < 0) {
1323		mtd->ecc_stats.failed++;
1324	} else {
1325		mtd->ecc_stats.corrected += stat;
1326		max_bitflips = max_t(unsigned int, max_bitflips, stat);
1327	}
1328
1329	/* get back to oob start (end of page) */
1330	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1331
1332	/* read the oob */
1333	chip->read_buf(mtd, oob, mtd->oobsize);
1334
1335	return max_bitflips;
1336}
1337
1338/*
1339 * HW ECC Correction
1340 *
1341 * function called after a read
1342 *
1343 * mtd:        MTD block structure
1344 * dat:        raw data read from the chip
1345 * read_ecc:   ECC from the chip (unused)
1346 * isnull:     unused
1347 *
1348 * Detect and correct a 1 bit error for a page
1349 */
1350static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1351		u_char *read_ecc, u_char *isnull)
1352{
1353	struct nand_chip *nand_chip = mtd->priv;
1354	struct atmel_nand_host *host = nand_chip->priv;
1355	unsigned int ecc_status;
1356	unsigned int ecc_word, ecc_bit;
1357
1358	/* get the status from the Status Register */
1359	ecc_status = ecc_readl(host->ecc, SR);
1360
1361	/* if there's no error */
1362	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1363		return 0;
1364
1365	/* get error bit offset (4 bits) */
1366	ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1367	/* get word address (12 bits) */
1368	ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1369	ecc_word >>= 4;
1370
1371	/* if there are multiple errors */
1372	if (ecc_status & ATMEL_ECC_MULERR) {
1373		/* check if it is a freshly erased block
1374		 * (filled with 0xff) */
1375		if ((ecc_bit == ATMEL_ECC_BITADDR)
1376				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1377			/* the block has just been erased, return OK */
1378			return 0;
1379		}
1380		/* it doesn't seems to be a freshly
1381		 * erased block.
1382		 * We can't correct so many errors */
1383		dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1384				" Unable to correct.\n");
1385		return -EIO;
1386	}
1387
1388	/* if there's a single bit error : we can correct it */
1389	if (ecc_status & ATMEL_ECC_ECCERR) {
1390		/* there's nothing much to do here.
1391		 * the bit error is on the ECC itself.
1392		 */
1393		dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1394				" Nothing to correct\n");
1395		return 0;
1396	}
1397
1398	dev_dbg(host->dev, "atmel_nand : one bit error on data."
1399			" (word offset in the page :"
1400			" 0x%x bit offset : 0x%x)\n",
1401			ecc_word, ecc_bit);
1402	/* correct the error */
1403	if (nand_chip->options & NAND_BUSWIDTH_16) {
1404		/* 16 bits words */
1405		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1406	} else {
1407		/* 8 bits words */
1408		dat[ecc_word] ^= (1 << ecc_bit);
1409	}
1410	dev_dbg(host->dev, "atmel_nand : error corrected\n");
1411	return 1;
1412}
1413
1414/*
1415 * Enable HW ECC : unused on most chips
1416 */
1417static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1418{
1419	struct nand_chip *nand_chip = mtd->priv;
1420	struct atmel_nand_host *host = nand_chip->priv;
1421
1422	if (host->board.need_reset_workaround)
1423		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1424}
1425
1426static int atmel_of_init_port(struct atmel_nand_host *host,
1427			      struct device_node *np)
1428{
1429	u32 val;
1430	u32 offset[2];
1431	int ecc_mode;
1432	struct atmel_nand_data *board = &host->board;
1433	enum of_gpio_flags flags = 0;
1434
1435	if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1436		if (val >= 32) {
1437			dev_err(host->dev, "invalid addr-offset %u\n", val);
1438			return -EINVAL;
1439		}
1440		board->ale = val;
1441	}
1442
1443	if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1444		if (val >= 32) {
1445			dev_err(host->dev, "invalid cmd-offset %u\n", val);
1446			return -EINVAL;
1447		}
1448		board->cle = val;
1449	}
1450
1451	ecc_mode = of_get_nand_ecc_mode(np);
1452
1453	board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1454
1455	board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1456
1457	board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1458
1459	if (of_get_nand_bus_width(np) == 16)
1460		board->bus_width_16 = 1;
1461
1462	board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1463	board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1464
1465	board->enable_pin = of_get_gpio(np, 1);
1466	board->det_pin = of_get_gpio(np, 2);
1467
1468	host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1469
1470	/* load the nfc driver if there is */
1471	of_platform_populate(np, NULL, NULL, host->dev);
1472
1473	if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1474		return 0;	/* Not using PMECC */
1475
1476	/* use PMECC, get correction capability, sector size and lookup
1477	 * table offset.
1478	 * If correction bits and sector size are not specified, then find
1479	 * them from NAND ONFI parameters.
1480	 */
1481	if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1482		if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1483				(val != 24)) {
1484			dev_err(host->dev,
1485				"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1486				val);
1487			return -EINVAL;
1488		}
1489		host->pmecc_corr_cap = (u8)val;
1490	}
1491
1492	if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1493		if ((val != 512) && (val != 1024)) {
1494			dev_err(host->dev,
1495				"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1496				val);
1497			return -EINVAL;
1498		}
1499		host->pmecc_sector_size = (u16)val;
1500	}
1501
1502	if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1503			offset, 2) != 0) {
1504		dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1505		return -EINVAL;
1506	}
1507	if (!offset[0] && !offset[1]) {
1508		dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1509		return -EINVAL;
1510	}
1511	host->pmecc_lookup_table_offset_512 = offset[0];
1512	host->pmecc_lookup_table_offset_1024 = offset[1];
1513
1514	return 0;
1515}
1516
1517static int atmel_hw_nand_init_params(struct platform_device *pdev,
1518					 struct atmel_nand_host *host)
1519{
1520	struct mtd_info *mtd = &host->mtd;
1521	struct nand_chip *nand_chip = &host->nand_chip;
1522	struct resource		*regs;
1523
1524	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1525	if (!regs) {
1526		dev_err(host->dev,
1527			"Can't get I/O resource regs, use software ECC\n");
1528		nand_chip->ecc.mode = NAND_ECC_SOFT;
1529		return 0;
1530	}
1531
1532	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1533	if (IS_ERR(host->ecc))
1534		return PTR_ERR(host->ecc);
1535
1536	/* ECC is calculated for the whole page (1 step) */
1537	nand_chip->ecc.size = mtd->writesize;
1538
1539	/* set ECC page size and oob layout */
1540	switch (mtd->writesize) {
1541	case 512:
1542		nand_chip->ecc.layout = &atmel_oobinfo_small;
1543		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1544		break;
1545	case 1024:
1546		nand_chip->ecc.layout = &atmel_oobinfo_large;
1547		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1548		break;
1549	case 2048:
1550		nand_chip->ecc.layout = &atmel_oobinfo_large;
1551		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1552		break;
1553	case 4096:
1554		nand_chip->ecc.layout = &atmel_oobinfo_large;
1555		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1556		break;
1557	default:
1558		/* page size not handled by HW ECC */
1559		/* switching back to soft ECC */
1560		nand_chip->ecc.mode = NAND_ECC_SOFT;
1561		return 0;
1562	}
1563
1564	/* set up for HW ECC */
1565	nand_chip->ecc.calculate = atmel_nand_calculate;
1566	nand_chip->ecc.correct = atmel_nand_correct;
1567	nand_chip->ecc.hwctl = atmel_nand_hwctl;
1568	nand_chip->ecc.read_page = atmel_nand_read_page;
1569	nand_chip->ecc.bytes = 4;
1570	nand_chip->ecc.strength = 1;
1571
1572	return 0;
1573}
1574
1575static inline u32 nfc_read_status(struct atmel_nand_host *host)
1576{
1577	u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1578	u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1579
1580	if (unlikely(nfc_status & err_flags)) {
1581		if (nfc_status & NFC_SR_DTOE)
1582			dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1583		else if (nfc_status & NFC_SR_UNDEF)
1584			dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1585		else if (nfc_status & NFC_SR_AWB)
1586			dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1587		else if (nfc_status & NFC_SR_ASE)
1588			dev_err(host->dev, "NFC: Access memory Size Error\n");
1589	}
1590
1591	return nfc_status;
1592}
1593
1594/* SMC interrupt service routine */
1595static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1596{
1597	struct atmel_nand_host *host = dev_id;
1598	u32 status, mask, pending;
1599	irqreturn_t ret = IRQ_NONE;
1600
1601	status = nfc_read_status(host);
1602	mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1603	pending = status & mask;
1604
1605	if (pending & NFC_SR_XFR_DONE) {
1606		complete(&host->nfc->comp_xfer_done);
1607		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1608		ret = IRQ_HANDLED;
1609	}
1610	if (pending & NFC_SR_RB_EDGE) {
1611		complete(&host->nfc->comp_ready);
1612		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1613		ret = IRQ_HANDLED;
1614	}
1615	if (pending & NFC_SR_CMD_DONE) {
1616		complete(&host->nfc->comp_cmd_done);
1617		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1618		ret = IRQ_HANDLED;
1619	}
1620
1621	return ret;
1622}
1623
1624/* NFC(Nand Flash Controller) related functions */
1625static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1626{
1627	if (flag & NFC_SR_XFR_DONE)
1628		init_completion(&host->nfc->comp_xfer_done);
1629
1630	if (flag & NFC_SR_RB_EDGE)
1631		init_completion(&host->nfc->comp_ready);
1632
1633	if (flag & NFC_SR_CMD_DONE)
1634		init_completion(&host->nfc->comp_cmd_done);
1635
1636	/* Enable interrupt that need to wait for */
1637	nfc_writel(host->nfc->hsmc_regs, IER, flag);
1638}
1639
1640static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1641{
1642	int i, index = 0;
1643	struct completion *comp[3];	/* Support 3 interrupt completion */
1644
1645	if (flag & NFC_SR_XFR_DONE)
1646		comp[index++] = &host->nfc->comp_xfer_done;
1647
1648	if (flag & NFC_SR_RB_EDGE)
1649		comp[index++] = &host->nfc->comp_ready;
1650
1651	if (flag & NFC_SR_CMD_DONE)
1652		comp[index++] = &host->nfc->comp_cmd_done;
1653
1654	if (index == 0) {
1655		dev_err(host->dev, "Unkown interrupt flag: 0x%08x\n", flag);
1656		return -EINVAL;
1657	}
1658
1659	for (i = 0; i < index; i++) {
1660		if (wait_for_completion_timeout(comp[i],
1661				msecs_to_jiffies(NFC_TIME_OUT_MS)))
1662			continue;	/* wait for next completion */
1663		else
1664			goto err_timeout;
1665	}
1666
1667	return 0;
1668
1669err_timeout:
1670	dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1671	/* Disable the interrupt as it is not handled by interrupt handler */
1672	nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1673	return -ETIMEDOUT;
1674}
1675
1676static int nfc_send_command(struct atmel_nand_host *host,
1677	unsigned int cmd, unsigned int addr, unsigned char cycle0)
1678{
1679	unsigned long timeout;
1680	u32 flag = NFC_SR_CMD_DONE;
1681	flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1682
1683	dev_dbg(host->dev,
1684		"nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1685		cmd, addr, cycle0);
1686
1687	timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1688	while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1689			& NFCADDR_CMD_NFCBUSY) {
1690		if (time_after(jiffies, timeout)) {
1691			dev_err(host->dev,
1692				"Time out to wait CMD_NFCBUSY ready!\n");
1693			return -ETIMEDOUT;
1694		}
1695	}
1696
1697	nfc_prepare_interrupt(host, flag);
1698	nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1699	nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1700	return nfc_wait_interrupt(host, flag);
1701}
1702
1703static int nfc_device_ready(struct mtd_info *mtd)
1704{
1705	u32 status, mask;
1706	struct nand_chip *nand_chip = mtd->priv;
1707	struct atmel_nand_host *host = nand_chip->priv;
1708
1709	status = nfc_read_status(host);
1710	mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1711
1712	/* The mask should be 0. If not we may lost interrupts */
1713	if (unlikely(mask & status))
1714		dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1715				mask & status);
1716
1717	return status & NFC_SR_RB_EDGE;
1718}
1719
1720static void nfc_select_chip(struct mtd_info *mtd, int chip)
1721{
1722	struct nand_chip *nand_chip = mtd->priv;
1723	struct atmel_nand_host *host = nand_chip->priv;
1724
1725	if (chip == -1)
1726		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1727	else
1728		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1729}
1730
1731static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1732		int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1733{
1734	struct nand_chip *chip = mtd->priv;
1735
1736	int acycle = 0;
1737	unsigned char addr_bytes[8];
1738	int index = 0, bit_shift;
1739
1740	BUG_ON(addr1234 == NULL || cycle0 == NULL);
1741
1742	*cycle0 = 0;
1743	*addr1234 = 0;
1744
1745	if (column != -1) {
1746		if (chip->options & NAND_BUSWIDTH_16 &&
1747				!nand_opcode_8bits(command))
1748			column >>= 1;
1749		addr_bytes[acycle++] = column & 0xff;
1750		if (mtd->writesize > 512)
1751			addr_bytes[acycle++] = (column >> 8) & 0xff;
1752	}
1753
1754	if (page_addr != -1) {
1755		addr_bytes[acycle++] = page_addr & 0xff;
1756		addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1757		if (chip->chipsize > (128 << 20))
1758			addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1759	}
1760
1761	if (acycle > 4)
1762		*cycle0 = addr_bytes[index++];
1763
1764	for (bit_shift = 0; index < acycle; bit_shift += 8)
1765		*addr1234 += addr_bytes[index++] << bit_shift;
1766
1767	/* return acycle in cmd register */
1768	return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1769}
1770
1771static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1772				int column, int page_addr)
1773{
1774	struct nand_chip *chip = mtd->priv;
1775	struct atmel_nand_host *host = chip->priv;
1776	unsigned long timeout;
1777	unsigned int nfc_addr_cmd = 0;
1778
1779	unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1780
1781	/* Set default settings: no cmd2, no addr cycle. read from nand */
1782	unsigned int cmd2 = 0;
1783	unsigned int vcmd2 = 0;
1784	int acycle = NFCADDR_CMD_ACYCLE_NONE;
1785	int csid = NFCADDR_CMD_CSID_3;
1786	int dataen = NFCADDR_CMD_DATADIS;
1787	int nfcwr = NFCADDR_CMD_NFCRD;
1788	unsigned int addr1234 = 0;
1789	unsigned int cycle0 = 0;
1790	bool do_addr = true;
1791	host->nfc->data_in_sram = NULL;
1792
1793	dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1794	     __func__, command, column, page_addr);
1795
1796	switch (command) {
1797	case NAND_CMD_RESET:
1798		nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1799		nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1800		udelay(chip->chip_delay);
1801
1802		nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1803		timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1804		while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1805			if (time_after(jiffies, timeout)) {
1806				dev_err(host->dev,
1807					"Time out to wait status ready!\n");
1808				break;
1809			}
1810		}
1811		return;
1812	case NAND_CMD_STATUS:
1813		do_addr = false;
1814		break;
1815	case NAND_CMD_PARAM:
1816	case NAND_CMD_READID:
1817		do_addr = false;
1818		acycle = NFCADDR_CMD_ACYCLE_1;
1819		if (column != -1)
1820			addr1234 = column;
1821		break;
1822	case NAND_CMD_RNDOUT:
1823		cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1824		vcmd2 = NFCADDR_CMD_VCMD2;
1825		break;
1826	case NAND_CMD_READ0:
1827	case NAND_CMD_READOOB:
1828		if (command == NAND_CMD_READOOB) {
1829			column += mtd->writesize;
1830			command = NAND_CMD_READ0; /* only READ0 is valid */
1831			cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1832		}
1833		if (host->nfc->use_nfc_sram) {
1834			/* Enable Data transfer to sram */
1835			dataen = NFCADDR_CMD_DATAEN;
1836
1837			/* Need enable PMECC now, since NFC will transfer
1838			 * data in bus after sending nfc read command.
1839			 */
1840			if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1841				pmecc_enable(host, NAND_ECC_READ);
1842		}
1843
1844		cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1845		vcmd2 = NFCADDR_CMD_VCMD2;
1846		break;
1847	/* For prgramming command, the cmd need set to write enable */
1848	case NAND_CMD_PAGEPROG:
1849	case NAND_CMD_SEQIN:
1850	case NAND_CMD_RNDIN:
1851		nfcwr = NFCADDR_CMD_NFCWR;
1852		if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1853			dataen = NFCADDR_CMD_DATAEN;
1854		break;
1855	default:
1856		break;
1857	}
1858
1859	if (do_addr)
1860		acycle = nfc_make_addr(mtd, command, column, page_addr,
1861				&addr1234, &cycle0);
1862
1863	nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1864	nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1865
1866	/*
1867	 * Program and erase have their own busy handlers status, sequential
1868	 * in, and deplete1 need no delay.
1869	 */
1870	switch (command) {
1871	case NAND_CMD_CACHEDPROG:
1872	case NAND_CMD_PAGEPROG:
1873	case NAND_CMD_ERASE1:
1874	case NAND_CMD_ERASE2:
1875	case NAND_CMD_RNDIN:
1876	case NAND_CMD_STATUS:
1877	case NAND_CMD_RNDOUT:
1878	case NAND_CMD_SEQIN:
1879	case NAND_CMD_READID:
1880		return;
1881
1882	case NAND_CMD_READ0:
1883		if (dataen == NFCADDR_CMD_DATAEN) {
1884			host->nfc->data_in_sram = host->nfc->sram_bank0 +
1885				nfc_get_sram_off(host);
1886			return;
1887		}
1888		/* fall through */
1889	default:
1890		nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1891		nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1892	}
1893}
1894
1895static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1896			uint32_t offset, int data_len, const uint8_t *buf,
1897			int oob_required, int page, int cached, int raw)
1898{
1899	int cfg, len;
1900	int status = 0;
1901	struct atmel_nand_host *host = chip->priv;
1902	void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1903
1904	/* Subpage write is not supported */
1905	if (offset || (data_len < mtd->writesize))
1906		return -EINVAL;
1907
1908	len = mtd->writesize;
1909	/* Copy page data to sram that will write to nand via NFC */
1910	if (use_dma) {
1911		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1912			/* Fall back to use cpu copy */
1913			memcpy32_toio(sram, buf, len);
1914	} else {
1915		memcpy32_toio(sram, buf, len);
1916	}
1917
1918	cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1919	if (unlikely(raw) && oob_required) {
1920		memcpy32_toio(sram + len, chip->oob_poi, mtd->oobsize);
1921		len += mtd->oobsize;
1922		nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1923	} else {
1924		nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1925	}
1926
1927	if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1928		/*
1929		 * When use NFC sram, need set up PMECC before send
1930		 * NAND_CMD_SEQIN command. Since when the nand command
1931		 * is sent, nfc will do transfer from sram and nand.
1932		 */
1933		pmecc_enable(host, NAND_ECC_WRITE);
1934
1935	host->nfc->will_write_sram = true;
1936	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1937	host->nfc->will_write_sram = false;
1938
1939	if (likely(!raw))
1940		/* Need to write ecc into oob */
1941		status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1942
1943	if (status < 0)
1944		return status;
1945
1946	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1947	status = chip->waitfunc(mtd, chip);
1948
1949	if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1950		status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1951
1952	if (status & NAND_STATUS_FAIL)
1953		return -EIO;
1954
1955	return 0;
1956}
1957
1958static int nfc_sram_init(struct mtd_info *mtd)
1959{
1960	struct nand_chip *chip = mtd->priv;
1961	struct atmel_nand_host *host = chip->priv;
1962	int res = 0;
1963
1964	/* Initialize the NFC CFG register */
1965	unsigned int cfg_nfc = 0;
1966
1967	/* set page size and oob layout */
1968	switch (mtd->writesize) {
1969	case 512:
1970		cfg_nfc = NFC_CFG_PAGESIZE_512;
1971		break;
1972	case 1024:
1973		cfg_nfc = NFC_CFG_PAGESIZE_1024;
1974		break;
1975	case 2048:
1976		cfg_nfc = NFC_CFG_PAGESIZE_2048;
1977		break;
1978	case 4096:
1979		cfg_nfc = NFC_CFG_PAGESIZE_4096;
1980		break;
1981	case 8192:
1982		cfg_nfc = NFC_CFG_PAGESIZE_8192;
1983		break;
1984	default:
1985		dev_err(host->dev, "Unsupported page size for NFC.\n");
1986		res = -ENXIO;
1987		return res;
1988	}
1989
1990	/* oob bytes size = (NFCSPARESIZE + 1) * 4
1991	 * Max support spare size is 512 bytes. */
1992	cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1993		& NFC_CFG_NFC_SPARESIZE);
1994	/* default set a max timeout */
1995	cfg_nfc |= NFC_CFG_RSPARE |
1996			NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1997
1998	nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1999
2000	host->nfc->will_write_sram = false;
2001	nfc_set_sram_bank(host, 0);
2002
2003	/* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2004	if (host->nfc->write_by_sram) {
2005		if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2006				chip->ecc.mode == NAND_ECC_NONE)
2007			chip->write_page = nfc_sram_write_page;
2008		else
2009			host->nfc->write_by_sram = false;
2010	}
2011
2012	dev_info(host->dev, "Using NFC Sram read %s\n",
2013			host->nfc->write_by_sram ? "and write" : "");
2014	return 0;
2015}
2016
2017static struct platform_driver atmel_nand_nfc_driver;
2018/*
2019 * Probe for the NAND device.
2020 */
2021static int atmel_nand_probe(struct platform_device *pdev)
2022{
2023	struct atmel_nand_host *host;
2024	struct mtd_info *mtd;
2025	struct nand_chip *nand_chip;
2026	struct resource *mem;
2027	struct mtd_part_parser_data ppdata = {};
2028	int res, irq;
2029
2030	/* Allocate memory for the device structure (and zero it) */
2031	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2032	if (!host)
2033		return -ENOMEM;
2034
2035	res = platform_driver_register(&atmel_nand_nfc_driver);
2036	if (res)
2037		dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2038
2039	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2040	host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2041	if (IS_ERR(host->io_base)) {
2042		res = PTR_ERR(host->io_base);
2043		goto err_nand_ioremap;
2044	}
2045	host->io_phys = (dma_addr_t)mem->start;
2046
2047	mtd = &host->mtd;
2048	nand_chip = &host->nand_chip;
2049	host->dev = &pdev->dev;
2050	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2051		/* Only when CONFIG_OF is enabled of_node can be parsed */
2052		res = atmel_of_init_port(host, pdev->dev.of_node);
2053		if (res)
2054			goto err_nand_ioremap;
2055	} else {
2056		memcpy(&host->board, dev_get_platdata(&pdev->dev),
2057		       sizeof(struct atmel_nand_data));
2058	}
2059
2060	nand_chip->priv = host;		/* link the private data structures */
2061	mtd->priv = nand_chip;
2062	mtd->owner = THIS_MODULE;
2063
2064	/* Set address of NAND IO lines */
2065	nand_chip->IO_ADDR_R = host->io_base;
2066	nand_chip->IO_ADDR_W = host->io_base;
2067
2068	if (nand_nfc.is_initialized) {
2069		/* NFC driver is probed and initialized */
2070		host->nfc = &nand_nfc;
2071
2072		nand_chip->select_chip = nfc_select_chip;
2073		nand_chip->dev_ready = nfc_device_ready;
2074		nand_chip->cmdfunc = nfc_nand_command;
2075
2076		/* Initialize the interrupt for NFC */
2077		irq = platform_get_irq(pdev, 0);
2078		if (irq < 0) {
2079			dev_err(host->dev, "Cannot get HSMC irq!\n");
2080			res = irq;
2081			goto err_nand_ioremap;
2082		}
2083
2084		res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2085				0, "hsmc", host);
2086		if (res) {
2087			dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2088				irq);
2089			goto err_nand_ioremap;
2090		}
2091	} else {
2092		res = atmel_nand_set_enable_ready_pins(mtd);
2093		if (res)
2094			goto err_nand_ioremap;
2095
2096		nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2097	}
2098
2099	nand_chip->ecc.mode = host->board.ecc_mode;
2100	nand_chip->chip_delay = 40;		/* 40us command delay time */
2101
2102	if (host->board.bus_width_16)	/* 16-bit bus width */
2103		nand_chip->options |= NAND_BUSWIDTH_16;
2104
2105	nand_chip->read_buf = atmel_read_buf;
2106	nand_chip->write_buf = atmel_write_buf;
2107
2108	platform_set_drvdata(pdev, host);
2109	atmel_nand_enable(host);
2110
2111	if (gpio_is_valid(host->board.det_pin)) {
2112		res = devm_gpio_request(&pdev->dev,
2113				host->board.det_pin, "nand_det");
2114		if (res < 0) {
2115			dev_err(&pdev->dev,
2116				"can't request det gpio %d\n",
2117				host->board.det_pin);
2118			goto err_no_card;
2119		}
2120
2121		res = gpio_direction_input(host->board.det_pin);
2122		if (res < 0) {
2123			dev_err(&pdev->dev,
2124				"can't request input direction det gpio %d\n",
2125				host->board.det_pin);
2126			goto err_no_card;
2127		}
2128
2129		if (gpio_get_value(host->board.det_pin)) {
2130			dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2131			res = -ENXIO;
2132			goto err_no_card;
2133		}
2134	}
2135
2136	if (host->board.on_flash_bbt || on_flash_bbt) {
2137		dev_info(&pdev->dev, "Use On Flash BBT\n");
2138		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2139	}
2140
2141	if (!host->board.has_dma)
2142		use_dma = 0;
2143
2144	if (use_dma) {
2145		dma_cap_mask_t mask;
2146
2147		dma_cap_zero(mask);
2148		dma_cap_set(DMA_MEMCPY, mask);
2149		host->dma_chan = dma_request_channel(mask, NULL, NULL);
2150		if (!host->dma_chan) {
2151			dev_err(host->dev, "Failed to request DMA channel\n");
2152			use_dma = 0;
2153		}
2154	}
2155	if (use_dma)
2156		dev_info(host->dev, "Using %s for DMA transfers.\n",
2157					dma_chan_name(host->dma_chan));
2158	else
2159		dev_info(host->dev, "No DMA support for NAND access.\n");
2160
2161	/* first scan to find the device and get the page size */
2162	if (nand_scan_ident(mtd, 1, NULL)) {
2163		res = -ENXIO;
2164		goto err_scan_ident;
2165	}
2166
2167	if (nand_chip->ecc.mode == NAND_ECC_HW) {
2168		if (host->has_pmecc)
2169			res = atmel_pmecc_nand_init_params(pdev, host);
2170		else
2171			res = atmel_hw_nand_init_params(pdev, host);
2172
2173		if (res != 0)
2174			goto err_hw_ecc;
2175	}
2176
2177	/* initialize the nfc configuration register */
2178	if (host->nfc && host->nfc->use_nfc_sram) {
2179		res = nfc_sram_init(mtd);
2180		if (res) {
2181			host->nfc->use_nfc_sram = false;
2182			dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2183		}
2184	}
2185
2186	/* second phase scan */
2187	if (nand_scan_tail(mtd)) {
2188		res = -ENXIO;
2189		goto err_scan_tail;
2190	}
2191
2192	mtd->name = "atmel_nand";
2193	ppdata.of_node = pdev->dev.of_node;
2194	res = mtd_device_parse_register(mtd, NULL, &ppdata,
2195			host->board.parts, host->board.num_parts);
2196	if (!res)
2197		return res;
2198
2199err_scan_tail:
2200	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2201		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2202err_hw_ecc:
2203err_scan_ident:
2204err_no_card:
2205	atmel_nand_disable(host);
2206	if (host->dma_chan)
2207		dma_release_channel(host->dma_chan);
2208err_nand_ioremap:
2209	return res;
2210}
2211
2212/*
2213 * Remove a NAND device.
2214 */
2215static int atmel_nand_remove(struct platform_device *pdev)
2216{
2217	struct atmel_nand_host *host = platform_get_drvdata(pdev);
2218	struct mtd_info *mtd = &host->mtd;
2219
2220	nand_release(mtd);
2221
2222	atmel_nand_disable(host);
2223
2224	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2225		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2226		pmerrloc_writel(host->pmerrloc_base, ELDIS,
2227				PMERRLOC_DISABLE);
2228	}
2229
2230	if (host->dma_chan)
2231		dma_release_channel(host->dma_chan);
2232
2233	platform_driver_unregister(&atmel_nand_nfc_driver);
2234
2235	return 0;
2236}
2237
2238static const struct of_device_id atmel_nand_dt_ids[] = {
2239	{ .compatible = "atmel,at91rm9200-nand" },
2240	{ /* sentinel */ }
2241};
2242
2243MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2244
2245static int atmel_nand_nfc_probe(struct platform_device *pdev)
2246{
2247	struct atmel_nfc *nfc = &nand_nfc;
2248	struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2249	int ret;
2250
2251	nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2252	nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2253	if (IS_ERR(nfc->base_cmd_regs))
2254		return PTR_ERR(nfc->base_cmd_regs);
2255
2256	nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2257	nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2258	if (IS_ERR(nfc->hsmc_regs))
2259		return PTR_ERR(nfc->hsmc_regs);
2260
2261	nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2262	if (nfc_sram) {
2263		nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2264		if (IS_ERR(nfc->sram_bank0)) {
2265			dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2266					PTR_ERR(nfc->sram_bank0));
2267		} else {
2268			nfc->use_nfc_sram = true;
2269			nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2270
2271			if (pdev->dev.of_node)
2272				nfc->write_by_sram = of_property_read_bool(
2273						pdev->dev.of_node,
2274						"atmel,write-by-sram");
2275		}
2276	}
2277
2278	nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2279	nfc_readl(nfc->hsmc_regs, SR);	/* clear the NFC_SR */
2280
2281	nfc->clk = devm_clk_get(&pdev->dev, NULL);
2282	if (!IS_ERR(nfc->clk)) {
2283		ret = clk_prepare_enable(nfc->clk);
2284		if (ret)
2285			return ret;
2286	} else {
2287		dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2288	}
2289
2290	nfc->is_initialized = true;
2291	dev_info(&pdev->dev, "NFC is probed.\n");
2292
2293	return 0;
2294}
2295
2296static int atmel_nand_nfc_remove(struct platform_device *pdev)
2297{
2298	struct atmel_nfc *nfc = &nand_nfc;
2299
2300	if (!IS_ERR(nfc->clk))
2301		clk_disable_unprepare(nfc->clk);
2302
2303	return 0;
2304}
2305
2306static const struct of_device_id atmel_nand_nfc_match[] = {
2307	{ .compatible = "atmel,sama5d3-nfc" },
2308	{ /* sentinel */ }
2309};
2310MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2311
2312static struct platform_driver atmel_nand_nfc_driver = {
2313	.driver = {
2314		.name = "atmel_nand_nfc",
2315		.owner = THIS_MODULE,
2316		.of_match_table = of_match_ptr(atmel_nand_nfc_match),
2317	},
2318	.probe = atmel_nand_nfc_probe,
2319	.remove = atmel_nand_nfc_remove,
2320};
2321
2322static struct platform_driver atmel_nand_driver = {
2323	.probe		= atmel_nand_probe,
2324	.remove		= atmel_nand_remove,
2325	.driver		= {
2326		.name	= "atmel_nand",
2327		.owner	= THIS_MODULE,
2328		.of_match_table	= of_match_ptr(atmel_nand_dt_ids),
2329	},
2330};
2331
2332module_platform_driver(atmel_nand_driver);
2333
2334MODULE_LICENSE("GPL");
2335MODULE_AUTHOR("Rick Bronson");
2336MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2337MODULE_ALIAS("platform:atmel_nand");
2338