[go: nahoru, domu]

1/*
2 * NXP LPC32XX NAND SLC driver
3 *
4 * Authors:
5 *    Kevin Wells <kevin.wells@nxp.com>
6 *    Roland Stigge <stigge@antcom.de>
7 *
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 */
21
22#include <linux/slab.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/mtd/mtd.h>
26#include <linux/mtd/nand.h>
27#include <linux/mtd/partitions.h>
28#include <linux/clk.h>
29#include <linux/err.h>
30#include <linux/delay.h>
31#include <linux/io.h>
32#include <linux/mm.h>
33#include <linux/dma-mapping.h>
34#include <linux/dmaengine.h>
35#include <linux/mtd/nand_ecc.h>
36#include <linux/gpio.h>
37#include <linux/of.h>
38#include <linux/of_mtd.h>
39#include <linux/of_gpio.h>
40#include <linux/mtd/lpc32xx_slc.h>
41
42#define LPC32XX_MODNAME		"lpc32xx-nand"
43
44/**********************************************************************
45* SLC NAND controller register offsets
46**********************************************************************/
47
48#define SLC_DATA(x)		(x + 0x000)
49#define SLC_ADDR(x)		(x + 0x004)
50#define SLC_CMD(x)		(x + 0x008)
51#define SLC_STOP(x)		(x + 0x00C)
52#define SLC_CTRL(x)		(x + 0x010)
53#define SLC_CFG(x)		(x + 0x014)
54#define SLC_STAT(x)		(x + 0x018)
55#define SLC_INT_STAT(x)		(x + 0x01C)
56#define SLC_IEN(x)		(x + 0x020)
57#define SLC_ISR(x)		(x + 0x024)
58#define SLC_ICR(x)		(x + 0x028)
59#define SLC_TAC(x)		(x + 0x02C)
60#define SLC_TC(x)		(x + 0x030)
61#define SLC_ECC(x)		(x + 0x034)
62#define SLC_DMA_DATA(x)		(x + 0x038)
63
64/**********************************************************************
65* slc_ctrl register definitions
66**********************************************************************/
67#define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
68#define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
69#define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
70
71/**********************************************************************
72* slc_cfg register definitions
73**********************************************************************/
74#define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
75#define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
76#define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
77#define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
78#define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
79#define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
80
81/**********************************************************************
82* slc_stat register definitions
83**********************************************************************/
84#define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
85#define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
86#define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
87
88/**********************************************************************
89* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90**********************************************************************/
91#define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
92#define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
93
94/**********************************************************************
95* slc_tac register definitions
96**********************************************************************/
97/* Clock setting for RDY write sample wait time in 2*n clocks */
98#define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
99/* Write pulse width in clock cycles, 1 to 16 clocks */
100#define SLCTAC_WWIDTH(n)	(((n) & 0xF) << 24)
101/* Write hold time of control and data signals, 1 to 16 clocks */
102#define SLCTAC_WHOLD(n)		(((n) & 0xF) << 20)
103/* Write setup time of control and data signals, 1 to 16 clocks */
104#define SLCTAC_WSETUP(n)	(((n) & 0xF) << 16)
105/* Clock setting for RDY read sample wait time in 2*n clocks */
106#define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
107/* Read pulse width in clock cycles, 1 to 16 clocks */
108#define SLCTAC_RWIDTH(n)	(((n) & 0xF) << 8)
109/* Read hold time of control and data signals, 1 to 16 clocks */
110#define SLCTAC_RHOLD(n)		(((n) & 0xF) << 4)
111/* Read setup time of control and data signals, 1 to 16 clocks */
112#define SLCTAC_RSETUP(n)	(((n) & 0xF) << 0)
113
114/**********************************************************************
115* slc_ecc register definitions
116**********************************************************************/
117/* ECC line party fetch macro */
118#define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
119#define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
120
121/*
122 * DMA requires storage space for the DMA local buffer and the hardware ECC
123 * storage area. The DMA local buffer is only used if DMA mapping fails
124 * during runtime.
125 */
126#define LPC32XX_DMA_DATA_SIZE		4096
127#define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
128
129/* Number of bytes used for ECC stored in NAND per 256 bytes */
130#define LPC32XX_SLC_DEV_ECC_BYTES	3
131
132/*
133 * If the NAND base clock frequency can't be fetched, this frequency will be
134 * used instead as the base. This rate is used to setup the timing registers
135 * used for NAND accesses.
136 */
137#define LPC32XX_DEF_BUS_RATE		133250000
138
139/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
140#define LPC32XX_DMA_TIMEOUT		100
141
142/*
143 * NAND ECC Layout for small page NAND devices
144 * Note: For large and huge page devices, the default layouts are used
145 */
146static struct nand_ecclayout lpc32xx_nand_oob_16 = {
147	.eccbytes = 6,
148	.eccpos = {10, 11, 12, 13, 14, 15},
149	.oobfree = {
150		{ .offset = 0, .length = 4 },
151		{ .offset = 6, .length = 4 },
152	},
153};
154
155static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
156static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
157
158/*
159 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
160 * Note: Large page devices used the default layout
161 */
162static struct nand_bbt_descr bbt_smallpage_main_descr = {
163	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
164		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
165	.offs =	0,
166	.len = 4,
167	.veroffs = 6,
168	.maxblocks = 4,
169	.pattern = bbt_pattern
170};
171
172static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
173	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
174		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
175	.offs =	0,
176	.len = 4,
177	.veroffs = 6,
178	.maxblocks = 4,
179	.pattern = mirror_pattern
180};
181
182/*
183 * NAND platform configuration structure
184 */
185struct lpc32xx_nand_cfg_slc {
186	uint32_t wdr_clks;
187	uint32_t wwidth;
188	uint32_t whold;
189	uint32_t wsetup;
190	uint32_t rdr_clks;
191	uint32_t rwidth;
192	uint32_t rhold;
193	uint32_t rsetup;
194	bool use_bbt;
195	int wp_gpio;
196	struct mtd_partition *parts;
197	unsigned num_parts;
198};
199
200struct lpc32xx_nand_host {
201	struct nand_chip	nand_chip;
202	struct lpc32xx_slc_platform_data *pdata;
203	struct clk		*clk;
204	struct mtd_info		mtd;
205	void __iomem		*io_base;
206	struct lpc32xx_nand_cfg_slc *ncfg;
207
208	struct completion	comp;
209	struct dma_chan		*dma_chan;
210	uint32_t		dma_buf_len;
211	struct dma_slave_config	dma_slave_config;
212	struct scatterlist	sgl;
213
214	/*
215	 * DMA and CPU addresses of ECC work area and data buffer
216	 */
217	uint32_t		*ecc_buf;
218	uint8_t			*data_buf;
219	dma_addr_t		io_base_dma;
220};
221
222static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
223{
224	uint32_t clkrate, tmp;
225
226	/* Reset SLC controller */
227	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
228	udelay(1000);
229
230	/* Basic setup */
231	writel(0, SLC_CFG(host->io_base));
232	writel(0, SLC_IEN(host->io_base));
233	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
234		SLC_ICR(host->io_base));
235
236	/* Get base clock for SLC block */
237	clkrate = clk_get_rate(host->clk);
238	if (clkrate == 0)
239		clkrate = LPC32XX_DEF_BUS_RATE;
240
241	/* Compute clock setup values */
242	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
243		SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) |
244		SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) |
245		SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) |
246		SLCTAC_RDR(host->ncfg->rdr_clks) |
247		SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) |
248		SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) |
249		SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup));
250	writel(tmp, SLC_TAC(host->io_base));
251}
252
253/*
254 * Hardware specific access to control lines
255 */
256static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
257	unsigned int ctrl)
258{
259	uint32_t tmp;
260	struct nand_chip *chip = mtd->priv;
261	struct lpc32xx_nand_host *host = chip->priv;
262
263	/* Does CE state need to be changed? */
264	tmp = readl(SLC_CFG(host->io_base));
265	if (ctrl & NAND_NCE)
266		tmp |= SLCCFG_CE_LOW;
267	else
268		tmp &= ~SLCCFG_CE_LOW;
269	writel(tmp, SLC_CFG(host->io_base));
270
271	if (cmd != NAND_CMD_NONE) {
272		if (ctrl & NAND_CLE)
273			writel(cmd, SLC_CMD(host->io_base));
274		else
275			writel(cmd, SLC_ADDR(host->io_base));
276	}
277}
278
279/*
280 * Read the Device Ready pin
281 */
282static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
283{
284	struct nand_chip *chip = mtd->priv;
285	struct lpc32xx_nand_host *host = chip->priv;
286	int rdy = 0;
287
288	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
289		rdy = 1;
290
291	return rdy;
292}
293
294/*
295 * Enable NAND write protect
296 */
297static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
298{
299	if (gpio_is_valid(host->ncfg->wp_gpio))
300		gpio_set_value(host->ncfg->wp_gpio, 0);
301}
302
303/*
304 * Disable NAND write protect
305 */
306static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
307{
308	if (gpio_is_valid(host->ncfg->wp_gpio))
309		gpio_set_value(host->ncfg->wp_gpio, 1);
310}
311
312/*
313 * Prepares SLC for transfers with H/W ECC enabled
314 */
315static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
316{
317	/* Hardware ECC is enabled automatically in hardware as needed */
318}
319
320/*
321 * Calculates the ECC for the data
322 */
323static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
324				      const unsigned char *buf,
325				      unsigned char *code)
326{
327	/*
328	 * ECC is calculated automatically in hardware during syndrome read
329	 * and write operations, so it doesn't need to be calculated here.
330	 */
331	return 0;
332}
333
334/*
335 * Read a single byte from NAND device
336 */
337static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
338{
339	struct nand_chip *chip = mtd->priv;
340	struct lpc32xx_nand_host *host = chip->priv;
341
342	return (uint8_t)readl(SLC_DATA(host->io_base));
343}
344
345/*
346 * Simple device read without ECC
347 */
348static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
349{
350	struct nand_chip *chip = mtd->priv;
351	struct lpc32xx_nand_host *host = chip->priv;
352
353	/* Direct device read with no ECC */
354	while (len-- > 0)
355		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
356}
357
358/*
359 * Simple device write without ECC
360 */
361static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
362{
363	struct nand_chip *chip = mtd->priv;
364	struct lpc32xx_nand_host *host = chip->priv;
365
366	/* Direct device write with no ECC */
367	while (len-- > 0)
368		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
369}
370
371/*
372 * Read the OOB data from the device without ECC using FIFO method
373 */
374static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
375					  struct nand_chip *chip, int page)
376{
377	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
378	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
379
380	return 0;
381}
382
383/*
384 * Write the OOB data to the device without ECC using FIFO method
385 */
386static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
387	struct nand_chip *chip, int page)
388{
389	int status;
390
391	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
392	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
393
394	/* Send command to program the OOB data */
395	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
396
397	status = chip->waitfunc(mtd, chip);
398
399	return status & NAND_STATUS_FAIL ? -EIO : 0;
400}
401
402/*
403 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
404 */
405static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
406{
407	int i;
408
409	for (i = 0; i < (count * 3); i += 3) {
410		uint32_t ce = ecc[i / 3];
411		ce = ~(ce << 2) & 0xFFFFFF;
412		spare[i + 2] = (uint8_t)(ce & 0xFF);
413		ce >>= 8;
414		spare[i + 1] = (uint8_t)(ce & 0xFF);
415		ce >>= 8;
416		spare[i] = (uint8_t)(ce & 0xFF);
417	}
418}
419
420static void lpc32xx_dma_complete_func(void *completion)
421{
422	complete(completion);
423}
424
425static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
426			    void *mem, int len, enum dma_transfer_direction dir)
427{
428	struct nand_chip *chip = mtd->priv;
429	struct lpc32xx_nand_host *host = chip->priv;
430	struct dma_async_tx_descriptor *desc;
431	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
432	int res;
433
434	host->dma_slave_config.direction = dir;
435	host->dma_slave_config.src_addr = dma;
436	host->dma_slave_config.dst_addr = dma;
437	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
438	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
439	host->dma_slave_config.src_maxburst = 4;
440	host->dma_slave_config.dst_maxburst = 4;
441	/* DMA controller does flow control: */
442	host->dma_slave_config.device_fc = false;
443	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
444		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
445		return -ENXIO;
446	}
447
448	sg_init_one(&host->sgl, mem, len);
449
450	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
451			 DMA_BIDIRECTIONAL);
452	if (res != 1) {
453		dev_err(mtd->dev.parent, "Failed to map sg list\n");
454		return -ENXIO;
455	}
456	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
457				       flags);
458	if (!desc) {
459		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
460		goto out1;
461	}
462
463	init_completion(&host->comp);
464	desc->callback = lpc32xx_dma_complete_func;
465	desc->callback_param = &host->comp;
466
467	dmaengine_submit(desc);
468	dma_async_issue_pending(host->dma_chan);
469
470	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
471
472	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
473		     DMA_BIDIRECTIONAL);
474
475	return 0;
476out1:
477	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
478		     DMA_BIDIRECTIONAL);
479	return -ENXIO;
480}
481
482/*
483 * DMA read/write transfers with ECC support
484 */
485static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
486			int read)
487{
488	struct nand_chip *chip = mtd->priv;
489	struct lpc32xx_nand_host *host = chip->priv;
490	int i, status = 0;
491	unsigned long timeout;
492	int res;
493	enum dma_transfer_direction dir =
494		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
495	uint8_t *dma_buf;
496	bool dma_mapped;
497
498	if ((void *)buf <= high_memory) {
499		dma_buf = buf;
500		dma_mapped = true;
501	} else {
502		dma_buf = host->data_buf;
503		dma_mapped = false;
504		if (!read)
505			memcpy(host->data_buf, buf, mtd->writesize);
506	}
507
508	if (read) {
509		writel(readl(SLC_CFG(host->io_base)) |
510		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
511		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
512	} else {
513		writel((readl(SLC_CFG(host->io_base)) |
514			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
515		       ~SLCCFG_DMA_DIR,
516			SLC_CFG(host->io_base));
517	}
518
519	/* Clear initial ECC */
520	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
521
522	/* Transfer size is data area only */
523	writel(mtd->writesize, SLC_TC(host->io_base));
524
525	/* Start transfer in the NAND controller */
526	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
527	       SLC_CTRL(host->io_base));
528
529	for (i = 0; i < chip->ecc.steps; i++) {
530		/* Data */
531		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
532				       dma_buf + i * chip->ecc.size,
533				       mtd->writesize / chip->ecc.steps, dir);
534		if (res)
535			return res;
536
537		/* Always _read_ ECC */
538		if (i == chip->ecc.steps - 1)
539			break;
540		if (!read) /* ECC availability delayed on write */
541			udelay(10);
542		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
543				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
544		if (res)
545			return res;
546	}
547
548	/*
549	 * According to NXP, the DMA can be finished here, but the NAND
550	 * controller may still have buffered data. After porting to using the
551	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
552	 * appears to be always true, according to tests. Keeping the check for
553	 * safety reasons for now.
554	 */
555	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
556		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
557		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
558		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
559		       time_before(jiffies, timeout))
560			cpu_relax();
561		if (!time_before(jiffies, timeout)) {
562			dev_err(mtd->dev.parent, "FIFO held data too long\n");
563			status = -EIO;
564		}
565	}
566
567	/* Read last calculated ECC value */
568	if (!read)
569		udelay(10);
570	host->ecc_buf[chip->ecc.steps - 1] =
571		readl(SLC_ECC(host->io_base));
572
573	/* Flush DMA */
574	dmaengine_terminate_all(host->dma_chan);
575
576	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
577	    readl(SLC_TC(host->io_base))) {
578		/* Something is left in the FIFO, something is wrong */
579		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
580		status = -EIO;
581	}
582
583	/* Stop DMA & HW ECC */
584	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
585	       SLC_CTRL(host->io_base));
586	writel(readl(SLC_CFG(host->io_base)) &
587	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
588		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
589
590	if (!dma_mapped && read)
591		memcpy(buf, host->data_buf, mtd->writesize);
592
593	return status;
594}
595
596/*
597 * Read the data and OOB data from the device, use ECC correction with the
598 * data, disable ECC for the OOB data
599 */
600static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
601					   struct nand_chip *chip, uint8_t *buf,
602					   int oob_required, int page)
603{
604	struct lpc32xx_nand_host *host = chip->priv;
605	int stat, i, status;
606	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
607
608	/* Issue read command */
609	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
610
611	/* Read data and oob, calculate ECC */
612	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
613
614	/* Get OOB data */
615	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
616
617	/* Convert to stored ECC format */
618	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
619
620	/* Pointer to ECC data retrieved from NAND spare area */
621	oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
622
623	for (i = 0; i < chip->ecc.steps; i++) {
624		stat = chip->ecc.correct(mtd, buf, oobecc,
625					 &tmpecc[i * chip->ecc.bytes]);
626		if (stat < 0)
627			mtd->ecc_stats.failed++;
628		else
629			mtd->ecc_stats.corrected += stat;
630
631		buf += chip->ecc.size;
632		oobecc += chip->ecc.bytes;
633	}
634
635	return status;
636}
637
638/*
639 * Read the data and OOB data from the device, no ECC correction with the
640 * data or OOB data
641 */
642static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
643					       struct nand_chip *chip,
644					       uint8_t *buf, int oob_required,
645					       int page)
646{
647	/* Issue read command */
648	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
649
650	/* Raw reads can just use the FIFO interface */
651	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
652	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
653
654	return 0;
655}
656
657/*
658 * Write the data and OOB data to the device, use ECC with the data,
659 * disable ECC for the OOB data
660 */
661static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
662					    struct nand_chip *chip,
663					    const uint8_t *buf, int oob_required)
664{
665	struct lpc32xx_nand_host *host = chip->priv;
666	uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
667	int error;
668
669	/* Write data, calculate ECC on outbound data */
670	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
671	if (error)
672		return error;
673
674	/*
675	 * The calculated ECC needs some manual work done to it before
676	 * committing it to NAND. Process the calculated ECC and place
677	 * the resultant values directly into the OOB buffer. */
678	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
679
680	/* Write ECC data to device */
681	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
682	return 0;
683}
684
685/*
686 * Write the data and OOB data to the device, no ECC correction with the
687 * data or OOB data
688 */
689static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
690						struct nand_chip *chip,
691						const uint8_t *buf,
692						int oob_required)
693{
694	/* Raw writes can just use the FIFO interface */
695	chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
696	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
697	return 0;
698}
699
700static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
701{
702	struct mtd_info *mtd = &host->mtd;
703	dma_cap_mask_t mask;
704
705	if (!host->pdata || !host->pdata->dma_filter) {
706		dev_err(mtd->dev.parent, "no DMA platform data\n");
707		return -ENOENT;
708	}
709
710	dma_cap_zero(mask);
711	dma_cap_set(DMA_SLAVE, mask);
712	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
713					     "nand-slc");
714	if (!host->dma_chan) {
715		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
716		return -EBUSY;
717	}
718
719	return 0;
720}
721
722static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
723{
724	struct lpc32xx_nand_cfg_slc *ncfg;
725	struct device_node *np = dev->of_node;
726
727	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
728	if (!ncfg)
729		return NULL;
730
731	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
732	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
733	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
734	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
735	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
736	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
737	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
738	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
739
740	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
741	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
742	    !ncfg->rhold || !ncfg->rsetup) {
743		dev_err(dev, "chip parameters not specified correctly\n");
744		return NULL;
745	}
746
747	ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
748	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
749
750	return ncfg;
751}
752
753/*
754 * Probe for NAND controller
755 */
756static int lpc32xx_nand_probe(struct platform_device *pdev)
757{
758	struct lpc32xx_nand_host *host;
759	struct mtd_info *mtd;
760	struct nand_chip *chip;
761	struct resource *rc;
762	struct mtd_part_parser_data ppdata = {};
763	int res;
764
765	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
766	if (rc == NULL) {
767		dev_err(&pdev->dev, "No memory resource found for device\n");
768		return -EBUSY;
769	}
770
771	/* Allocate memory for the device structure (and zero it) */
772	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
773	if (!host)
774		return -ENOMEM;
775	host->io_base_dma = rc->start;
776
777	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
778	if (IS_ERR(host->io_base))
779		return PTR_ERR(host->io_base);
780
781	if (pdev->dev.of_node)
782		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
783	if (!host->ncfg) {
784		dev_err(&pdev->dev,
785			"Missing or bad NAND config from device tree\n");
786		return -ENOENT;
787	}
788	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
789		return -EPROBE_DEFER;
790	if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
791			host->ncfg->wp_gpio, "NAND WP")) {
792		dev_err(&pdev->dev, "GPIO not available\n");
793		return -EBUSY;
794	}
795	lpc32xx_wp_disable(host);
796
797	host->pdata = dev_get_platdata(&pdev->dev);
798
799	mtd = &host->mtd;
800	chip = &host->nand_chip;
801	chip->priv = host;
802	mtd->priv = chip;
803	mtd->owner = THIS_MODULE;
804	mtd->dev.parent = &pdev->dev;
805
806	/* Get NAND clock */
807	host->clk = devm_clk_get(&pdev->dev, NULL);
808	if (IS_ERR(host->clk)) {
809		dev_err(&pdev->dev, "Clock failure\n");
810		res = -ENOENT;
811		goto err_exit1;
812	}
813	clk_enable(host->clk);
814
815	/* Set NAND IO addresses and command/ready functions */
816	chip->IO_ADDR_R = SLC_DATA(host->io_base);
817	chip->IO_ADDR_W = SLC_DATA(host->io_base);
818	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
819	chip->dev_ready = lpc32xx_nand_device_ready;
820	chip->chip_delay = 20; /* 20us command delay time */
821
822	/* Init NAND controller */
823	lpc32xx_nand_setup(host);
824
825	platform_set_drvdata(pdev, host);
826
827	/* NAND callbacks for LPC32xx SLC hardware */
828	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
829	chip->read_byte = lpc32xx_nand_read_byte;
830	chip->read_buf = lpc32xx_nand_read_buf;
831	chip->write_buf = lpc32xx_nand_write_buf;
832	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
833	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
834	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
835	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
836	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
837	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
838	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
839	chip->ecc.correct = nand_correct_data;
840	chip->ecc.strength = 1;
841	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
842
843	/*
844	 * Allocate a large enough buffer for a single huge page plus
845	 * extra space for the spare area and ECC storage area
846	 */
847	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
848	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
849				      GFP_KERNEL);
850	if (host->data_buf == NULL) {
851		res = -ENOMEM;
852		goto err_exit2;
853	}
854
855	res = lpc32xx_nand_dma_setup(host);
856	if (res) {
857		res = -EIO;
858		goto err_exit2;
859	}
860
861	/* Find NAND device */
862	if (nand_scan_ident(mtd, 1, NULL)) {
863		res = -ENXIO;
864		goto err_exit3;
865	}
866
867	/* OOB and ECC CPU and DMA work areas */
868	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
869
870	/*
871	 * Small page FLASH has a unique OOB layout, but large and huge
872	 * page FLASH use the standard layout. Small page FLASH uses a
873	 * custom BBT marker layout.
874	 */
875	if (mtd->writesize <= 512)
876		chip->ecc.layout = &lpc32xx_nand_oob_16;
877
878	/* These sizes remain the same regardless of page size */
879	chip->ecc.size = 256;
880	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
881	chip->ecc.prepad = chip->ecc.postpad = 0;
882
883	/* Avoid extra scan if using BBT, setup BBT support */
884	if (host->ncfg->use_bbt) {
885		chip->bbt_options |= NAND_BBT_USE_FLASH;
886
887		/*
888		 * Use a custom BBT marker setup for small page FLASH that
889		 * won't interfere with the ECC layout. Large and huge page
890		 * FLASH use the standard layout.
891		 */
892		if (mtd->writesize <= 512) {
893			chip->bbt_td = &bbt_smallpage_main_descr;
894			chip->bbt_md = &bbt_smallpage_mirror_descr;
895		}
896	}
897
898	/*
899	 * Fills out all the uninitialized function pointers with the defaults
900	 */
901	if (nand_scan_tail(mtd)) {
902		res = -ENXIO;
903		goto err_exit3;
904	}
905
906	mtd->name = "nxp_lpc3220_slc";
907	ppdata.of_node = pdev->dev.of_node;
908	res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
909					host->ncfg->num_parts);
910	if (!res)
911		return res;
912
913	nand_release(mtd);
914
915err_exit3:
916	dma_release_channel(host->dma_chan);
917err_exit2:
918	clk_disable(host->clk);
919err_exit1:
920	lpc32xx_wp_enable(host);
921
922	return res;
923}
924
925/*
926 * Remove NAND device.
927 */
928static int lpc32xx_nand_remove(struct platform_device *pdev)
929{
930	uint32_t tmp;
931	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
932	struct mtd_info *mtd = &host->mtd;
933
934	nand_release(mtd);
935	dma_release_channel(host->dma_chan);
936
937	/* Force CE high */
938	tmp = readl(SLC_CTRL(host->io_base));
939	tmp &= ~SLCCFG_CE_LOW;
940	writel(tmp, SLC_CTRL(host->io_base));
941
942	clk_disable(host->clk);
943	lpc32xx_wp_enable(host);
944
945	return 0;
946}
947
948#ifdef CONFIG_PM
949static int lpc32xx_nand_resume(struct platform_device *pdev)
950{
951	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
952
953	/* Re-enable NAND clock */
954	clk_enable(host->clk);
955
956	/* Fresh init of NAND controller */
957	lpc32xx_nand_setup(host);
958
959	/* Disable write protect */
960	lpc32xx_wp_disable(host);
961
962	return 0;
963}
964
965static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
966{
967	uint32_t tmp;
968	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
969
970	/* Force CE high */
971	tmp = readl(SLC_CTRL(host->io_base));
972	tmp &= ~SLCCFG_CE_LOW;
973	writel(tmp, SLC_CTRL(host->io_base));
974
975	/* Enable write protect for safety */
976	lpc32xx_wp_enable(host);
977
978	/* Disable clock */
979	clk_disable(host->clk);
980
981	return 0;
982}
983
984#else
985#define lpc32xx_nand_resume NULL
986#define lpc32xx_nand_suspend NULL
987#endif
988
989static const struct of_device_id lpc32xx_nand_match[] = {
990	{ .compatible = "nxp,lpc3220-slc" },
991	{ /* sentinel */ },
992};
993MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
994
995static struct platform_driver lpc32xx_nand_driver = {
996	.probe		= lpc32xx_nand_probe,
997	.remove		= lpc32xx_nand_remove,
998	.resume		= lpc32xx_nand_resume,
999	.suspend	= lpc32xx_nand_suspend,
1000	.driver		= {
1001		.name	= LPC32XX_MODNAME,
1002		.owner	= THIS_MODULE,
1003		.of_match_table = lpc32xx_nand_match,
1004	},
1005};
1006
1007module_platform_driver(lpc32xx_nand_driver);
1008
1009MODULE_LICENSE("GPL");
1010MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1011MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1012MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1013