[go: nahoru, domu]

1/*
2 *  drivers/mtd/nand.c
3 *
4 *  Overview:
5 *   This is the generic MTD driver for NAND flash devices. It should be
6 *   capable of working with almost all NAND chips currently available.
7 *
8 *	Additional technical information is available on
9 *	http://www.linux-mtd.infradead.org/doc/nand.html
10 *
11 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 *
14 *  Credits:
15 *	David Woodhouse for adding multichip support
16 *
17 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 *	rework for 2K page size chips
19 *
20 *  TODO:
21 *	Enable cached programming for 2k page size chips
22 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
23 *	if we have HW ECC support.
24 *	BBT table is not serialized, has to be fixed
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/module.h>
35#include <linux/delay.h>
36#include <linux/errno.h>
37#include <linux/err.h>
38#include <linux/sched.h>
39#include <linux/slab.h>
40#include <linux/mm.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
45#include <linux/mtd/nand_bch.h>
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
48#include <linux/leds.h>
49#include <linux/io.h>
50#include <linux/mtd/partitions.h>
51
52/* Define default oob placement schemes for large and small page devices */
53static struct nand_ecclayout nand_oob_8 = {
54	.eccbytes = 3,
55	.eccpos = {0, 1, 2},
56	.oobfree = {
57		{.offset = 3,
58		 .length = 2},
59		{.offset = 6,
60		 .length = 2} }
61};
62
63static struct nand_ecclayout nand_oob_16 = {
64	.eccbytes = 6,
65	.eccpos = {0, 1, 2, 3, 6, 7},
66	.oobfree = {
67		{.offset = 8,
68		 . length = 8} }
69};
70
71static struct nand_ecclayout nand_oob_64 = {
72	.eccbytes = 24,
73	.eccpos = {
74		   40, 41, 42, 43, 44, 45, 46, 47,
75		   48, 49, 50, 51, 52, 53, 54, 55,
76		   56, 57, 58, 59, 60, 61, 62, 63},
77	.oobfree = {
78		{.offset = 2,
79		 .length = 38} }
80};
81
82static struct nand_ecclayout nand_oob_128 = {
83	.eccbytes = 48,
84	.eccpos = {
85		   80, 81, 82, 83, 84, 85, 86, 87,
86		   88, 89, 90, 91, 92, 93, 94, 95,
87		   96, 97, 98, 99, 100, 101, 102, 103,
88		   104, 105, 106, 107, 108, 109, 110, 111,
89		   112, 113, 114, 115, 116, 117, 118, 119,
90		   120, 121, 122, 123, 124, 125, 126, 127},
91	.oobfree = {
92		{.offset = 2,
93		 .length = 78} }
94};
95
96static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99			     struct mtd_oob_ops *ops);
100
101/*
102 * For devices which display every fart in the system on a separate LED. Is
103 * compiled away when LED support is disabled.
104 */
105DEFINE_LED_TRIGGER(nand_led_trigger);
106
107static int check_offs_len(struct mtd_info *mtd,
108					loff_t ofs, uint64_t len)
109{
110	struct nand_chip *chip = mtd->priv;
111	int ret = 0;
112
113	/* Start address must align on block boundary */
114	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115		pr_debug("%s: unaligned address\n", __func__);
116		ret = -EINVAL;
117	}
118
119	/* Length must align on block boundary */
120	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121		pr_debug("%s: length not block aligned\n", __func__);
122		ret = -EINVAL;
123	}
124
125	return ret;
126}
127
128/**
129 * nand_release_device - [GENERIC] release chip
130 * @mtd: MTD device structure
131 *
132 * Release chip lock and wake up anyone waiting on the device.
133 */
134static void nand_release_device(struct mtd_info *mtd)
135{
136	struct nand_chip *chip = mtd->priv;
137
138	/* Release the controller and the chip */
139	spin_lock(&chip->controller->lock);
140	chip->controller->active = NULL;
141	chip->state = FL_READY;
142	wake_up(&chip->controller->wq);
143	spin_unlock(&chip->controller->lock);
144}
145
146/**
147 * nand_read_byte - [DEFAULT] read one byte from the chip
148 * @mtd: MTD device structure
149 *
150 * Default read function for 8bit buswidth
151 */
152static uint8_t nand_read_byte(struct mtd_info *mtd)
153{
154	struct nand_chip *chip = mtd->priv;
155	return readb(chip->IO_ADDR_R);
156}
157
158/**
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161 * @mtd: MTD device structure
162 *
163 * Default read function for 16bit buswidth with endianness conversion.
164 *
165 */
166static uint8_t nand_read_byte16(struct mtd_info *mtd)
167{
168	struct nand_chip *chip = mtd->priv;
169	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170}
171
172/**
173 * nand_read_word - [DEFAULT] read one word from the chip
174 * @mtd: MTD device structure
175 *
176 * Default read function for 16bit buswidth without endianness conversion.
177 */
178static u16 nand_read_word(struct mtd_info *mtd)
179{
180	struct nand_chip *chip = mtd->priv;
181	return readw(chip->IO_ADDR_R);
182}
183
184/**
185 * nand_select_chip - [DEFAULT] control CE line
186 * @mtd: MTD device structure
187 * @chipnr: chipnumber to select, -1 for deselect
188 *
189 * Default select function for 1 chip devices.
190 */
191static void nand_select_chip(struct mtd_info *mtd, int chipnr)
192{
193	struct nand_chip *chip = mtd->priv;
194
195	switch (chipnr) {
196	case -1:
197		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
198		break;
199	case 0:
200		break;
201
202	default:
203		BUG();
204	}
205}
206
207/**
208 * nand_write_byte - [DEFAULT] write single byte to chip
209 * @mtd: MTD device structure
210 * @byte: value to write
211 *
212 * Default function to write a byte to I/O[7:0]
213 */
214static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
215{
216	struct nand_chip *chip = mtd->priv;
217
218	chip->write_buf(mtd, &byte, 1);
219}
220
221/**
222 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
223 * @mtd: MTD device structure
224 * @byte: value to write
225 *
226 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
227 */
228static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
229{
230	struct nand_chip *chip = mtd->priv;
231	uint16_t word = byte;
232
233	/*
234	 * It's not entirely clear what should happen to I/O[15:8] when writing
235	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
236	 *
237	 *    When the host supports a 16-bit bus width, only data is
238	 *    transferred at the 16-bit width. All address and command line
239	 *    transfers shall use only the lower 8-bits of the data bus. During
240	 *    command transfers, the host may place any value on the upper
241	 *    8-bits of the data bus. During address transfers, the host shall
242	 *    set the upper 8-bits of the data bus to 00h.
243	 *
244	 * One user of the write_byte callback is nand_onfi_set_features. The
245	 * four parameters are specified to be written to I/O[7:0], but this is
246	 * neither an address nor a command transfer. Let's assume a 0 on the
247	 * upper I/O lines is OK.
248	 */
249	chip->write_buf(mtd, (uint8_t *)&word, 2);
250}
251
252/**
253 * nand_write_buf - [DEFAULT] write buffer to chip
254 * @mtd: MTD device structure
255 * @buf: data buffer
256 * @len: number of bytes to write
257 *
258 * Default write function for 8bit buswidth.
259 */
260static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
261{
262	struct nand_chip *chip = mtd->priv;
263
264	iowrite8_rep(chip->IO_ADDR_W, buf, len);
265}
266
267/**
268 * nand_read_buf - [DEFAULT] read chip data into buffer
269 * @mtd: MTD device structure
270 * @buf: buffer to store date
271 * @len: number of bytes to read
272 *
273 * Default read function for 8bit buswidth.
274 */
275static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
276{
277	struct nand_chip *chip = mtd->priv;
278
279	ioread8_rep(chip->IO_ADDR_R, buf, len);
280}
281
282/**
283 * nand_write_buf16 - [DEFAULT] write buffer to chip
284 * @mtd: MTD device structure
285 * @buf: data buffer
286 * @len: number of bytes to write
287 *
288 * Default write function for 16bit buswidth.
289 */
290static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
291{
292	struct nand_chip *chip = mtd->priv;
293	u16 *p = (u16 *) buf;
294
295	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
296}
297
298/**
299 * nand_read_buf16 - [DEFAULT] read chip data into buffer
300 * @mtd: MTD device structure
301 * @buf: buffer to store date
302 * @len: number of bytes to read
303 *
304 * Default read function for 16bit buswidth.
305 */
306static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
307{
308	struct nand_chip *chip = mtd->priv;
309	u16 *p = (u16 *) buf;
310
311	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
312}
313
314/**
315 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
316 * @mtd: MTD device structure
317 * @ofs: offset from device start
318 * @getchip: 0, if the chip is already selected
319 *
320 * Check, if the block is bad.
321 */
322static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
323{
324	int page, chipnr, res = 0, i = 0;
325	struct nand_chip *chip = mtd->priv;
326	u16 bad;
327
328	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
329		ofs += mtd->erasesize - mtd->writesize;
330
331	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
332
333	if (getchip) {
334		chipnr = (int)(ofs >> chip->chip_shift);
335
336		nand_get_device(mtd, FL_READING);
337
338		/* Select the NAND device */
339		chip->select_chip(mtd, chipnr);
340	}
341
342	do {
343		if (chip->options & NAND_BUSWIDTH_16) {
344			chip->cmdfunc(mtd, NAND_CMD_READOOB,
345					chip->badblockpos & 0xFE, page);
346			bad = cpu_to_le16(chip->read_word(mtd));
347			if (chip->badblockpos & 0x1)
348				bad >>= 8;
349			else
350				bad &= 0xFF;
351		} else {
352			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
353					page);
354			bad = chip->read_byte(mtd);
355		}
356
357		if (likely(chip->badblockbits == 8))
358			res = bad != 0xFF;
359		else
360			res = hweight8(bad) < chip->badblockbits;
361		ofs += mtd->writesize;
362		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
363		i++;
364	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
365
366	if (getchip) {
367		chip->select_chip(mtd, -1);
368		nand_release_device(mtd);
369	}
370
371	return res;
372}
373
374/**
375 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
376 * @mtd: MTD device structure
377 * @ofs: offset from device start
378 *
379 * This is the default implementation, which can be overridden by a hardware
380 * specific driver. It provides the details for writing a bad block marker to a
381 * block.
382 */
383static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
384{
385	struct nand_chip *chip = mtd->priv;
386	struct mtd_oob_ops ops;
387	uint8_t buf[2] = { 0, 0 };
388	int ret = 0, res, i = 0;
389
390	ops.datbuf = NULL;
391	ops.oobbuf = buf;
392	ops.ooboffs = chip->badblockpos;
393	if (chip->options & NAND_BUSWIDTH_16) {
394		ops.ooboffs &= ~0x01;
395		ops.len = ops.ooblen = 2;
396	} else {
397		ops.len = ops.ooblen = 1;
398	}
399	ops.mode = MTD_OPS_PLACE_OOB;
400
401	/* Write to first/last page(s) if necessary */
402	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
403		ofs += mtd->erasesize - mtd->writesize;
404	do {
405		res = nand_do_write_oob(mtd, ofs, &ops);
406		if (!ret)
407			ret = res;
408
409		i++;
410		ofs += mtd->writesize;
411	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
412
413	return ret;
414}
415
416/**
417 * nand_block_markbad_lowlevel - mark a block bad
418 * @mtd: MTD device structure
419 * @ofs: offset from device start
420 *
421 * This function performs the generic NAND bad block marking steps (i.e., bad
422 * block table(s) and/or marker(s)). We only allow the hardware driver to
423 * specify how to write bad block markers to OOB (chip->block_markbad).
424 *
425 * We try operations in the following order:
426 *  (1) erase the affected block, to allow OOB marker to be written cleanly
427 *  (2) write bad block marker to OOB area of affected block (unless flag
428 *      NAND_BBT_NO_OOB_BBM is present)
429 *  (3) update the BBT
430 * Note that we retain the first error encountered in (2) or (3), finish the
431 * procedures, and dump the error in the end.
432*/
433static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
434{
435	struct nand_chip *chip = mtd->priv;
436	int res, ret = 0;
437
438	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
439		struct erase_info einfo;
440
441		/* Attempt erase before marking OOB */
442		memset(&einfo, 0, sizeof(einfo));
443		einfo.mtd = mtd;
444		einfo.addr = ofs;
445		einfo.len = 1ULL << chip->phys_erase_shift;
446		nand_erase_nand(mtd, &einfo, 0);
447
448		/* Write bad block marker to OOB */
449		nand_get_device(mtd, FL_WRITING);
450		ret = chip->block_markbad(mtd, ofs);
451		nand_release_device(mtd);
452	}
453
454	/* Mark block bad in BBT */
455	if (chip->bbt) {
456		res = nand_markbad_bbt(mtd, ofs);
457		if (!ret)
458			ret = res;
459	}
460
461	if (!ret)
462		mtd->ecc_stats.badblocks++;
463
464	return ret;
465}
466
467/**
468 * nand_check_wp - [GENERIC] check if the chip is write protected
469 * @mtd: MTD device structure
470 *
471 * Check, if the device is write protected. The function expects, that the
472 * device is already selected.
473 */
474static int nand_check_wp(struct mtd_info *mtd)
475{
476	struct nand_chip *chip = mtd->priv;
477
478	/* Broken xD cards report WP despite being writable */
479	if (chip->options & NAND_BROKEN_XD)
480		return 0;
481
482	/* Check the WP bit */
483	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
484	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
485}
486
487/**
488 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489 * @mtd: MTD device structure
490 * @ofs: offset from device start
491 *
492 * Check if the block is mark as reserved.
493 */
494static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
495{
496	struct nand_chip *chip = mtd->priv;
497
498	if (!chip->bbt)
499		return 0;
500	/* Return info from the table */
501	return nand_isreserved_bbt(mtd, ofs);
502}
503
504/**
505 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
506 * @mtd: MTD device structure
507 * @ofs: offset from device start
508 * @getchip: 0, if the chip is already selected
509 * @allowbbt: 1, if its allowed to access the bbt area
510 *
511 * Check, if the block is bad. Either by reading the bad block table or
512 * calling of the scan function.
513 */
514static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
515			       int allowbbt)
516{
517	struct nand_chip *chip = mtd->priv;
518
519	if (!chip->bbt)
520		return chip->block_bad(mtd, ofs, getchip);
521
522	/* Return info from the table */
523	return nand_isbad_bbt(mtd, ofs, allowbbt);
524}
525
526/**
527 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
528 * @mtd: MTD device structure
529 * @timeo: Timeout
530 *
531 * Helper function for nand_wait_ready used when needing to wait in interrupt
532 * context.
533 */
534static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
535{
536	struct nand_chip *chip = mtd->priv;
537	int i;
538
539	/* Wait for the device to get ready */
540	for (i = 0; i < timeo; i++) {
541		if (chip->dev_ready(mtd))
542			break;
543		touch_softlockup_watchdog();
544		mdelay(1);
545	}
546}
547
548/* Wait for the ready pin, after a command. The timeout is caught later. */
549void nand_wait_ready(struct mtd_info *mtd)
550{
551	struct nand_chip *chip = mtd->priv;
552	unsigned long timeo = jiffies + msecs_to_jiffies(20);
553
554	/* 400ms timeout */
555	if (in_interrupt() || oops_in_progress)
556		return panic_nand_wait_ready(mtd, 400);
557
558	led_trigger_event(nand_led_trigger, LED_FULL);
559	/* Wait until command is processed or timeout occurs */
560	do {
561		if (chip->dev_ready(mtd))
562			break;
563		touch_softlockup_watchdog();
564	} while (time_before(jiffies, timeo));
565	led_trigger_event(nand_led_trigger, LED_OFF);
566}
567EXPORT_SYMBOL_GPL(nand_wait_ready);
568
569/**
570 * nand_command - [DEFAULT] Send command to NAND device
571 * @mtd: MTD device structure
572 * @command: the command to be sent
573 * @column: the column address for this command, -1 if none
574 * @page_addr: the page address for this command, -1 if none
575 *
576 * Send command to NAND device. This function is used for small page devices
577 * (512 Bytes per page).
578 */
579static void nand_command(struct mtd_info *mtd, unsigned int command,
580			 int column, int page_addr)
581{
582	register struct nand_chip *chip = mtd->priv;
583	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
584
585	/* Write out the command to the device */
586	if (command == NAND_CMD_SEQIN) {
587		int readcmd;
588
589		if (column >= mtd->writesize) {
590			/* OOB area */
591			column -= mtd->writesize;
592			readcmd = NAND_CMD_READOOB;
593		} else if (column < 256) {
594			/* First 256 bytes --> READ0 */
595			readcmd = NAND_CMD_READ0;
596		} else {
597			column -= 256;
598			readcmd = NAND_CMD_READ1;
599		}
600		chip->cmd_ctrl(mtd, readcmd, ctrl);
601		ctrl &= ~NAND_CTRL_CHANGE;
602	}
603	chip->cmd_ctrl(mtd, command, ctrl);
604
605	/* Address cycle, when necessary */
606	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
607	/* Serially input address */
608	if (column != -1) {
609		/* Adjust columns for 16 bit buswidth */
610		if (chip->options & NAND_BUSWIDTH_16 &&
611				!nand_opcode_8bits(command))
612			column >>= 1;
613		chip->cmd_ctrl(mtd, column, ctrl);
614		ctrl &= ~NAND_CTRL_CHANGE;
615	}
616	if (page_addr != -1) {
617		chip->cmd_ctrl(mtd, page_addr, ctrl);
618		ctrl &= ~NAND_CTRL_CHANGE;
619		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
620		/* One more address cycle for devices > 32MiB */
621		if (chip->chipsize > (32 << 20))
622			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
623	}
624	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
625
626	/*
627	 * Program and erase have their own busy handlers status and sequential
628	 * in needs no delay
629	 */
630	switch (command) {
631
632	case NAND_CMD_PAGEPROG:
633	case NAND_CMD_ERASE1:
634	case NAND_CMD_ERASE2:
635	case NAND_CMD_SEQIN:
636	case NAND_CMD_STATUS:
637		return;
638
639	case NAND_CMD_RESET:
640		if (chip->dev_ready)
641			break;
642		udelay(chip->chip_delay);
643		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
644			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
645		chip->cmd_ctrl(mtd,
646			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
647		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
648				;
649		return;
650
651		/* This applies to read commands */
652	default:
653		/*
654		 * If we don't have access to the busy pin, we apply the given
655		 * command delay
656		 */
657		if (!chip->dev_ready) {
658			udelay(chip->chip_delay);
659			return;
660		}
661	}
662	/*
663	 * Apply this short delay always to ensure that we do wait tWB in
664	 * any case on any machine.
665	 */
666	ndelay(100);
667
668	nand_wait_ready(mtd);
669}
670
671/**
672 * nand_command_lp - [DEFAULT] Send command to NAND large page device
673 * @mtd: MTD device structure
674 * @command: the command to be sent
675 * @column: the column address for this command, -1 if none
676 * @page_addr: the page address for this command, -1 if none
677 *
678 * Send command to NAND device. This is the version for the new large page
679 * devices. We don't have the separate regions as we have in the small page
680 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
681 */
682static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
683			    int column, int page_addr)
684{
685	register struct nand_chip *chip = mtd->priv;
686
687	/* Emulate NAND_CMD_READOOB */
688	if (command == NAND_CMD_READOOB) {
689		column += mtd->writesize;
690		command = NAND_CMD_READ0;
691	}
692
693	/* Command latch cycle */
694	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
695
696	if (column != -1 || page_addr != -1) {
697		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
698
699		/* Serially input address */
700		if (column != -1) {
701			/* Adjust columns for 16 bit buswidth */
702			if (chip->options & NAND_BUSWIDTH_16 &&
703					!nand_opcode_8bits(command))
704				column >>= 1;
705			chip->cmd_ctrl(mtd, column, ctrl);
706			ctrl &= ~NAND_CTRL_CHANGE;
707			chip->cmd_ctrl(mtd, column >> 8, ctrl);
708		}
709		if (page_addr != -1) {
710			chip->cmd_ctrl(mtd, page_addr, ctrl);
711			chip->cmd_ctrl(mtd, page_addr >> 8,
712				       NAND_NCE | NAND_ALE);
713			/* One more address cycle for devices > 128MiB */
714			if (chip->chipsize > (128 << 20))
715				chip->cmd_ctrl(mtd, page_addr >> 16,
716					       NAND_NCE | NAND_ALE);
717		}
718	}
719	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
720
721	/*
722	 * Program and erase have their own busy handlers status, sequential
723	 * in, and deplete1 need no delay.
724	 */
725	switch (command) {
726
727	case NAND_CMD_CACHEDPROG:
728	case NAND_CMD_PAGEPROG:
729	case NAND_CMD_ERASE1:
730	case NAND_CMD_ERASE2:
731	case NAND_CMD_SEQIN:
732	case NAND_CMD_RNDIN:
733	case NAND_CMD_STATUS:
734		return;
735
736	case NAND_CMD_RESET:
737		if (chip->dev_ready)
738			break;
739		udelay(chip->chip_delay);
740		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
741			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
742		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
743			       NAND_NCE | NAND_CTRL_CHANGE);
744		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
745				;
746		return;
747
748	case NAND_CMD_RNDOUT:
749		/* No ready / busy check necessary */
750		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
751			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753			       NAND_NCE | NAND_CTRL_CHANGE);
754		return;
755
756	case NAND_CMD_READ0:
757		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
758			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
759		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
760			       NAND_NCE | NAND_CTRL_CHANGE);
761
762		/* This applies to read commands */
763	default:
764		/*
765		 * If we don't have access to the busy pin, we apply the given
766		 * command delay.
767		 */
768		if (!chip->dev_ready) {
769			udelay(chip->chip_delay);
770			return;
771		}
772	}
773
774	/*
775	 * Apply this short delay always to ensure that we do wait tWB in
776	 * any case on any machine.
777	 */
778	ndelay(100);
779
780	nand_wait_ready(mtd);
781}
782
783/**
784 * panic_nand_get_device - [GENERIC] Get chip for selected access
785 * @chip: the nand chip descriptor
786 * @mtd: MTD device structure
787 * @new_state: the state which is requested
788 *
789 * Used when in panic, no locks are taken.
790 */
791static void panic_nand_get_device(struct nand_chip *chip,
792		      struct mtd_info *mtd, int new_state)
793{
794	/* Hardware controller shared among independent devices */
795	chip->controller->active = chip;
796	chip->state = new_state;
797}
798
799/**
800 * nand_get_device - [GENERIC] Get chip for selected access
801 * @mtd: MTD device structure
802 * @new_state: the state which is requested
803 *
804 * Get the device and lock it for exclusive access
805 */
806static int
807nand_get_device(struct mtd_info *mtd, int new_state)
808{
809	struct nand_chip *chip = mtd->priv;
810	spinlock_t *lock = &chip->controller->lock;
811	wait_queue_head_t *wq = &chip->controller->wq;
812	DECLARE_WAITQUEUE(wait, current);
813retry:
814	spin_lock(lock);
815
816	/* Hardware controller shared among independent devices */
817	if (!chip->controller->active)
818		chip->controller->active = chip;
819
820	if (chip->controller->active == chip && chip->state == FL_READY) {
821		chip->state = new_state;
822		spin_unlock(lock);
823		return 0;
824	}
825	if (new_state == FL_PM_SUSPENDED) {
826		if (chip->controller->active->state == FL_PM_SUSPENDED) {
827			chip->state = FL_PM_SUSPENDED;
828			spin_unlock(lock);
829			return 0;
830		}
831	}
832	set_current_state(TASK_UNINTERRUPTIBLE);
833	add_wait_queue(wq, &wait);
834	spin_unlock(lock);
835	schedule();
836	remove_wait_queue(wq, &wait);
837	goto retry;
838}
839
840/**
841 * panic_nand_wait - [GENERIC] wait until the command is done
842 * @mtd: MTD device structure
843 * @chip: NAND chip structure
844 * @timeo: timeout
845 *
846 * Wait for command done. This is a helper function for nand_wait used when
847 * we are in interrupt context. May happen when in panic and trying to write
848 * an oops through mtdoops.
849 */
850static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
851			    unsigned long timeo)
852{
853	int i;
854	for (i = 0; i < timeo; i++) {
855		if (chip->dev_ready) {
856			if (chip->dev_ready(mtd))
857				break;
858		} else {
859			if (chip->read_byte(mtd) & NAND_STATUS_READY)
860				break;
861		}
862		mdelay(1);
863	}
864}
865
866/**
867 * nand_wait - [DEFAULT] wait until the command is done
868 * @mtd: MTD device structure
869 * @chip: NAND chip structure
870 *
871 * Wait for command done. This applies to erase and program only. Erase can
872 * take up to 400ms and program up to 20ms according to general NAND and
873 * SmartMedia specs.
874 */
875static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
876{
877
878	int status, state = chip->state;
879	unsigned long timeo = (state == FL_ERASING ? 400 : 20);
880
881	led_trigger_event(nand_led_trigger, LED_FULL);
882
883	/*
884	 * Apply this short delay always to ensure that we do wait tWB in any
885	 * case on any machine.
886	 */
887	ndelay(100);
888
889	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
890
891	if (in_interrupt() || oops_in_progress)
892		panic_nand_wait(mtd, chip, timeo);
893	else {
894		timeo = jiffies + msecs_to_jiffies(timeo);
895		while (time_before(jiffies, timeo)) {
896			if (chip->dev_ready) {
897				if (chip->dev_ready(mtd))
898					break;
899			} else {
900				if (chip->read_byte(mtd) & NAND_STATUS_READY)
901					break;
902			}
903			cond_resched();
904		}
905	}
906	led_trigger_event(nand_led_trigger, LED_OFF);
907
908	status = (int)chip->read_byte(mtd);
909	/* This can happen if in case of timeout or buggy dev_ready */
910	WARN_ON(!(status & NAND_STATUS_READY));
911	return status;
912}
913
914/**
915 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
916 * @mtd: mtd info
917 * @ofs: offset to start unlock from
918 * @len: length to unlock
919 * @invert: when = 0, unlock the range of blocks within the lower and
920 *                    upper boundary address
921 *          when = 1, unlock the range of blocks outside the boundaries
922 *                    of the lower and upper boundary address
923 *
924 * Returs unlock status.
925 */
926static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
927					uint64_t len, int invert)
928{
929	int ret = 0;
930	int status, page;
931	struct nand_chip *chip = mtd->priv;
932
933	/* Submit address of first page to unlock */
934	page = ofs >> chip->page_shift;
935	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
936
937	/* Submit address of last page to unlock */
938	page = (ofs + len) >> chip->page_shift;
939	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
940				(page | invert) & chip->pagemask);
941
942	/* Call wait ready function */
943	status = chip->waitfunc(mtd, chip);
944	/* See if device thinks it succeeded */
945	if (status & NAND_STATUS_FAIL) {
946		pr_debug("%s: error status = 0x%08x\n",
947					__func__, status);
948		ret = -EIO;
949	}
950
951	return ret;
952}
953
954/**
955 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
956 * @mtd: mtd info
957 * @ofs: offset to start unlock from
958 * @len: length to unlock
959 *
960 * Returns unlock status.
961 */
962int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
963{
964	int ret = 0;
965	int chipnr;
966	struct nand_chip *chip = mtd->priv;
967
968	pr_debug("%s: start = 0x%012llx, len = %llu\n",
969			__func__, (unsigned long long)ofs, len);
970
971	if (check_offs_len(mtd, ofs, len))
972		ret = -EINVAL;
973
974	/* Align to last block address if size addresses end of the device */
975	if (ofs + len == mtd->size)
976		len -= mtd->erasesize;
977
978	nand_get_device(mtd, FL_UNLOCKING);
979
980	/* Shift to get chip number */
981	chipnr = ofs >> chip->chip_shift;
982
983	chip->select_chip(mtd, chipnr);
984
985	/*
986	 * Reset the chip.
987	 * If we want to check the WP through READ STATUS and check the bit 7
988	 * we must reset the chip
989	 * some operation can also clear the bit 7 of status register
990	 * eg. erase/program a locked block
991	 */
992	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
993
994	/* Check, if it is write protected */
995	if (nand_check_wp(mtd)) {
996		pr_debug("%s: device is write protected!\n",
997					__func__);
998		ret = -EIO;
999		goto out;
1000	}
1001
1002	ret = __nand_unlock(mtd, ofs, len, 0);
1003
1004out:
1005	chip->select_chip(mtd, -1);
1006	nand_release_device(mtd);
1007
1008	return ret;
1009}
1010EXPORT_SYMBOL(nand_unlock);
1011
1012/**
1013 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1014 * @mtd: mtd info
1015 * @ofs: offset to start unlock from
1016 * @len: length to unlock
1017 *
1018 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1019 * have this feature, but it allows only to lock all blocks, not for specified
1020 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1021 * now.
1022 *
1023 * Returns lock status.
1024 */
1025int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1026{
1027	int ret = 0;
1028	int chipnr, status, page;
1029	struct nand_chip *chip = mtd->priv;
1030
1031	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1032			__func__, (unsigned long long)ofs, len);
1033
1034	if (check_offs_len(mtd, ofs, len))
1035		ret = -EINVAL;
1036
1037	nand_get_device(mtd, FL_LOCKING);
1038
1039	/* Shift to get chip number */
1040	chipnr = ofs >> chip->chip_shift;
1041
1042	chip->select_chip(mtd, chipnr);
1043
1044	/*
1045	 * Reset the chip.
1046	 * If we want to check the WP through READ STATUS and check the bit 7
1047	 * we must reset the chip
1048	 * some operation can also clear the bit 7 of status register
1049	 * eg. erase/program a locked block
1050	 */
1051	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1052
1053	/* Check, if it is write protected */
1054	if (nand_check_wp(mtd)) {
1055		pr_debug("%s: device is write protected!\n",
1056					__func__);
1057		status = MTD_ERASE_FAILED;
1058		ret = -EIO;
1059		goto out;
1060	}
1061
1062	/* Submit address of first page to lock */
1063	page = ofs >> chip->page_shift;
1064	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1065
1066	/* Call wait ready function */
1067	status = chip->waitfunc(mtd, chip);
1068	/* See if device thinks it succeeded */
1069	if (status & NAND_STATUS_FAIL) {
1070		pr_debug("%s: error status = 0x%08x\n",
1071					__func__, status);
1072		ret = -EIO;
1073		goto out;
1074	}
1075
1076	ret = __nand_unlock(mtd, ofs, len, 0x1);
1077
1078out:
1079	chip->select_chip(mtd, -1);
1080	nand_release_device(mtd);
1081
1082	return ret;
1083}
1084EXPORT_SYMBOL(nand_lock);
1085
1086/**
1087 * nand_read_page_raw - [INTERN] read raw page data without ecc
1088 * @mtd: mtd info structure
1089 * @chip: nand chip info structure
1090 * @buf: buffer to store read data
1091 * @oob_required: caller requires OOB data read to chip->oob_poi
1092 * @page: page number to read
1093 *
1094 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1095 */
1096static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1097			      uint8_t *buf, int oob_required, int page)
1098{
1099	chip->read_buf(mtd, buf, mtd->writesize);
1100	if (oob_required)
1101		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1102	return 0;
1103}
1104
1105/**
1106 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1107 * @mtd: mtd info structure
1108 * @chip: nand chip info structure
1109 * @buf: buffer to store read data
1110 * @oob_required: caller requires OOB data read to chip->oob_poi
1111 * @page: page number to read
1112 *
1113 * We need a special oob layout and handling even when OOB isn't used.
1114 */
1115static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1116				       struct nand_chip *chip, uint8_t *buf,
1117				       int oob_required, int page)
1118{
1119	int eccsize = chip->ecc.size;
1120	int eccbytes = chip->ecc.bytes;
1121	uint8_t *oob = chip->oob_poi;
1122	int steps, size;
1123
1124	for (steps = chip->ecc.steps; steps > 0; steps--) {
1125		chip->read_buf(mtd, buf, eccsize);
1126		buf += eccsize;
1127
1128		if (chip->ecc.prepad) {
1129			chip->read_buf(mtd, oob, chip->ecc.prepad);
1130			oob += chip->ecc.prepad;
1131		}
1132
1133		chip->read_buf(mtd, oob, eccbytes);
1134		oob += eccbytes;
1135
1136		if (chip->ecc.postpad) {
1137			chip->read_buf(mtd, oob, chip->ecc.postpad);
1138			oob += chip->ecc.postpad;
1139		}
1140	}
1141
1142	size = mtd->oobsize - (oob - chip->oob_poi);
1143	if (size)
1144		chip->read_buf(mtd, oob, size);
1145
1146	return 0;
1147}
1148
1149/**
1150 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1151 * @mtd: mtd info structure
1152 * @chip: nand chip info structure
1153 * @buf: buffer to store read data
1154 * @oob_required: caller requires OOB data read to chip->oob_poi
1155 * @page: page number to read
1156 */
1157static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1158				uint8_t *buf, int oob_required, int page)
1159{
1160	int i, eccsize = chip->ecc.size;
1161	int eccbytes = chip->ecc.bytes;
1162	int eccsteps = chip->ecc.steps;
1163	uint8_t *p = buf;
1164	uint8_t *ecc_calc = chip->buffers->ecccalc;
1165	uint8_t *ecc_code = chip->buffers->ecccode;
1166	uint32_t *eccpos = chip->ecc.layout->eccpos;
1167	unsigned int max_bitflips = 0;
1168
1169	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1170
1171	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1172		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1173
1174	for (i = 0; i < chip->ecc.total; i++)
1175		ecc_code[i] = chip->oob_poi[eccpos[i]];
1176
1177	eccsteps = chip->ecc.steps;
1178	p = buf;
1179
1180	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1181		int stat;
1182
1183		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1184		if (stat < 0) {
1185			mtd->ecc_stats.failed++;
1186		} else {
1187			mtd->ecc_stats.corrected += stat;
1188			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1189		}
1190	}
1191	return max_bitflips;
1192}
1193
1194/**
1195 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1196 * @mtd: mtd info structure
1197 * @chip: nand chip info structure
1198 * @data_offs: offset of requested data within the page
1199 * @readlen: data length
1200 * @bufpoi: buffer to store read data
1201 * @page: page number to read
1202 */
1203static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1204			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1205			int page)
1206{
1207	int start_step, end_step, num_steps;
1208	uint32_t *eccpos = chip->ecc.layout->eccpos;
1209	uint8_t *p;
1210	int data_col_addr, i, gaps = 0;
1211	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1212	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1213	int index;
1214	unsigned int max_bitflips = 0;
1215
1216	/* Column address within the page aligned to ECC size (256bytes) */
1217	start_step = data_offs / chip->ecc.size;
1218	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1219	num_steps = end_step - start_step + 1;
1220	index = start_step * chip->ecc.bytes;
1221
1222	/* Data size aligned to ECC ecc.size */
1223	datafrag_len = num_steps * chip->ecc.size;
1224	eccfrag_len = num_steps * chip->ecc.bytes;
1225
1226	data_col_addr = start_step * chip->ecc.size;
1227	/* If we read not a page aligned data */
1228	if (data_col_addr != 0)
1229		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1230
1231	p = bufpoi + data_col_addr;
1232	chip->read_buf(mtd, p, datafrag_len);
1233
1234	/* Calculate ECC */
1235	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1236		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1237
1238	/*
1239	 * The performance is faster if we position offsets according to
1240	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1241	 */
1242	for (i = 0; i < eccfrag_len - 1; i++) {
1243		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1244			gaps = 1;
1245			break;
1246		}
1247	}
1248	if (gaps) {
1249		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1250		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1251	} else {
1252		/*
1253		 * Send the command to read the particular ECC bytes take care
1254		 * about buswidth alignment in read_buf.
1255		 */
1256		aligned_pos = eccpos[index] & ~(busw - 1);
1257		aligned_len = eccfrag_len;
1258		if (eccpos[index] & (busw - 1))
1259			aligned_len++;
1260		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1261			aligned_len++;
1262
1263		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1264					mtd->writesize + aligned_pos, -1);
1265		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1266	}
1267
1268	for (i = 0; i < eccfrag_len; i++)
1269		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1270
1271	p = bufpoi + data_col_addr;
1272	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1273		int stat;
1274
1275		stat = chip->ecc.correct(mtd, p,
1276			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1277		if (stat < 0) {
1278			mtd->ecc_stats.failed++;
1279		} else {
1280			mtd->ecc_stats.corrected += stat;
1281			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1282		}
1283	}
1284	return max_bitflips;
1285}
1286
1287/**
1288 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1289 * @mtd: mtd info structure
1290 * @chip: nand chip info structure
1291 * @buf: buffer to store read data
1292 * @oob_required: caller requires OOB data read to chip->oob_poi
1293 * @page: page number to read
1294 *
1295 * Not for syndrome calculating ECC controllers which need a special oob layout.
1296 */
1297static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1298				uint8_t *buf, int oob_required, int page)
1299{
1300	int i, eccsize = chip->ecc.size;
1301	int eccbytes = chip->ecc.bytes;
1302	int eccsteps = chip->ecc.steps;
1303	uint8_t *p = buf;
1304	uint8_t *ecc_calc = chip->buffers->ecccalc;
1305	uint8_t *ecc_code = chip->buffers->ecccode;
1306	uint32_t *eccpos = chip->ecc.layout->eccpos;
1307	unsigned int max_bitflips = 0;
1308
1309	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1310		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1311		chip->read_buf(mtd, p, eccsize);
1312		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1313	}
1314	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1315
1316	for (i = 0; i < chip->ecc.total; i++)
1317		ecc_code[i] = chip->oob_poi[eccpos[i]];
1318
1319	eccsteps = chip->ecc.steps;
1320	p = buf;
1321
1322	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1323		int stat;
1324
1325		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1326		if (stat < 0) {
1327			mtd->ecc_stats.failed++;
1328		} else {
1329			mtd->ecc_stats.corrected += stat;
1330			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1331		}
1332	}
1333	return max_bitflips;
1334}
1335
1336/**
1337 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1338 * @mtd: mtd info structure
1339 * @chip: nand chip info structure
1340 * @buf: buffer to store read data
1341 * @oob_required: caller requires OOB data read to chip->oob_poi
1342 * @page: page number to read
1343 *
1344 * Hardware ECC for large page chips, require OOB to be read first. For this
1345 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1346 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1347 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1348 * the data area, by overwriting the NAND manufacturer bad block markings.
1349 */
1350static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1351	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1352{
1353	int i, eccsize = chip->ecc.size;
1354	int eccbytes = chip->ecc.bytes;
1355	int eccsteps = chip->ecc.steps;
1356	uint8_t *p = buf;
1357	uint8_t *ecc_code = chip->buffers->ecccode;
1358	uint32_t *eccpos = chip->ecc.layout->eccpos;
1359	uint8_t *ecc_calc = chip->buffers->ecccalc;
1360	unsigned int max_bitflips = 0;
1361
1362	/* Read the OOB area first */
1363	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1364	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1365	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1366
1367	for (i = 0; i < chip->ecc.total; i++)
1368		ecc_code[i] = chip->oob_poi[eccpos[i]];
1369
1370	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1371		int stat;
1372
1373		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1374		chip->read_buf(mtd, p, eccsize);
1375		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1376
1377		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1378		if (stat < 0) {
1379			mtd->ecc_stats.failed++;
1380		} else {
1381			mtd->ecc_stats.corrected += stat;
1382			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1383		}
1384	}
1385	return max_bitflips;
1386}
1387
1388/**
1389 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1390 * @mtd: mtd info structure
1391 * @chip: nand chip info structure
1392 * @buf: buffer to store read data
1393 * @oob_required: caller requires OOB data read to chip->oob_poi
1394 * @page: page number to read
1395 *
1396 * The hw generator calculates the error syndrome automatically. Therefore we
1397 * need a special oob layout and handling.
1398 */
1399static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1400				   uint8_t *buf, int oob_required, int page)
1401{
1402	int i, eccsize = chip->ecc.size;
1403	int eccbytes = chip->ecc.bytes;
1404	int eccsteps = chip->ecc.steps;
1405	uint8_t *p = buf;
1406	uint8_t *oob = chip->oob_poi;
1407	unsigned int max_bitflips = 0;
1408
1409	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1410		int stat;
1411
1412		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1413		chip->read_buf(mtd, p, eccsize);
1414
1415		if (chip->ecc.prepad) {
1416			chip->read_buf(mtd, oob, chip->ecc.prepad);
1417			oob += chip->ecc.prepad;
1418		}
1419
1420		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1421		chip->read_buf(mtd, oob, eccbytes);
1422		stat = chip->ecc.correct(mtd, p, oob, NULL);
1423
1424		if (stat < 0) {
1425			mtd->ecc_stats.failed++;
1426		} else {
1427			mtd->ecc_stats.corrected += stat;
1428			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1429		}
1430
1431		oob += eccbytes;
1432
1433		if (chip->ecc.postpad) {
1434			chip->read_buf(mtd, oob, chip->ecc.postpad);
1435			oob += chip->ecc.postpad;
1436		}
1437	}
1438
1439	/* Calculate remaining oob bytes */
1440	i = mtd->oobsize - (oob - chip->oob_poi);
1441	if (i)
1442		chip->read_buf(mtd, oob, i);
1443
1444	return max_bitflips;
1445}
1446
1447/**
1448 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1449 * @chip: nand chip structure
1450 * @oob: oob destination address
1451 * @ops: oob ops structure
1452 * @len: size of oob to transfer
1453 */
1454static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1455				  struct mtd_oob_ops *ops, size_t len)
1456{
1457	switch (ops->mode) {
1458
1459	case MTD_OPS_PLACE_OOB:
1460	case MTD_OPS_RAW:
1461		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1462		return oob + len;
1463
1464	case MTD_OPS_AUTO_OOB: {
1465		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1466		uint32_t boffs = 0, roffs = ops->ooboffs;
1467		size_t bytes = 0;
1468
1469		for (; free->length && len; free++, len -= bytes) {
1470			/* Read request not from offset 0? */
1471			if (unlikely(roffs)) {
1472				if (roffs >= free->length) {
1473					roffs -= free->length;
1474					continue;
1475				}
1476				boffs = free->offset + roffs;
1477				bytes = min_t(size_t, len,
1478					      (free->length - roffs));
1479				roffs = 0;
1480			} else {
1481				bytes = min_t(size_t, len, free->length);
1482				boffs = free->offset;
1483			}
1484			memcpy(oob, chip->oob_poi + boffs, bytes);
1485			oob += bytes;
1486		}
1487		return oob;
1488	}
1489	default:
1490		BUG();
1491	}
1492	return NULL;
1493}
1494
1495/**
1496 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1497 * @mtd: MTD device structure
1498 * @retry_mode: the retry mode to use
1499 *
1500 * Some vendors supply a special command to shift the Vt threshold, to be used
1501 * when there are too many bitflips in a page (i.e., ECC error). After setting
1502 * a new threshold, the host should retry reading the page.
1503 */
1504static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1505{
1506	struct nand_chip *chip = mtd->priv;
1507
1508	pr_debug("setting READ RETRY mode %d\n", retry_mode);
1509
1510	if (retry_mode >= chip->read_retries)
1511		return -EINVAL;
1512
1513	if (!chip->setup_read_retry)
1514		return -EOPNOTSUPP;
1515
1516	return chip->setup_read_retry(mtd, retry_mode);
1517}
1518
1519/**
1520 * nand_do_read_ops - [INTERN] Read data with ECC
1521 * @mtd: MTD device structure
1522 * @from: offset to read from
1523 * @ops: oob ops structure
1524 *
1525 * Internal function. Called with chip held.
1526 */
1527static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1528			    struct mtd_oob_ops *ops)
1529{
1530	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1531	struct nand_chip *chip = mtd->priv;
1532	int ret = 0;
1533	uint32_t readlen = ops->len;
1534	uint32_t oobreadlen = ops->ooblen;
1535	uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1536		mtd->oobavail : mtd->oobsize;
1537
1538	uint8_t *bufpoi, *oob, *buf;
1539	int use_bufpoi;
1540	unsigned int max_bitflips = 0;
1541	int retry_mode = 0;
1542	bool ecc_fail = false;
1543
1544	chipnr = (int)(from >> chip->chip_shift);
1545	chip->select_chip(mtd, chipnr);
1546
1547	realpage = (int)(from >> chip->page_shift);
1548	page = realpage & chip->pagemask;
1549
1550	col = (int)(from & (mtd->writesize - 1));
1551
1552	buf = ops->datbuf;
1553	oob = ops->oobbuf;
1554	oob_required = oob ? 1 : 0;
1555
1556	while (1) {
1557		unsigned int ecc_failures = mtd->ecc_stats.failed;
1558
1559		bytes = min(mtd->writesize - col, readlen);
1560		aligned = (bytes == mtd->writesize);
1561
1562		if (!aligned)
1563			use_bufpoi = 1;
1564		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1565			use_bufpoi = !virt_addr_valid(buf);
1566		else
1567			use_bufpoi = 0;
1568
1569		/* Is the current page in the buffer? */
1570		if (realpage != chip->pagebuf || oob) {
1571			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1572
1573			if (use_bufpoi && aligned)
1574				pr_debug("%s: using read bounce buffer for buf@%p\n",
1575						 __func__, buf);
1576
1577read_retry:
1578			chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1579
1580			/*
1581			 * Now read the page into the buffer.  Absent an error,
1582			 * the read methods return max bitflips per ecc step.
1583			 */
1584			if (unlikely(ops->mode == MTD_OPS_RAW))
1585				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1586							      oob_required,
1587							      page);
1588			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1589				 !oob)
1590				ret = chip->ecc.read_subpage(mtd, chip,
1591							col, bytes, bufpoi,
1592							page);
1593			else
1594				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1595							  oob_required, page);
1596			if (ret < 0) {
1597				if (use_bufpoi)
1598					/* Invalidate page cache */
1599					chip->pagebuf = -1;
1600				break;
1601			}
1602
1603			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1604
1605			/* Transfer not aligned data */
1606			if (use_bufpoi) {
1607				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1608				    !(mtd->ecc_stats.failed - ecc_failures) &&
1609				    (ops->mode != MTD_OPS_RAW)) {
1610					chip->pagebuf = realpage;
1611					chip->pagebuf_bitflips = ret;
1612				} else {
1613					/* Invalidate page cache */
1614					chip->pagebuf = -1;
1615				}
1616				memcpy(buf, chip->buffers->databuf + col, bytes);
1617			}
1618
1619			if (unlikely(oob)) {
1620				int toread = min(oobreadlen, max_oobsize);
1621
1622				if (toread) {
1623					oob = nand_transfer_oob(chip,
1624						oob, ops, toread);
1625					oobreadlen -= toread;
1626				}
1627			}
1628
1629			if (chip->options & NAND_NEED_READRDY) {
1630				/* Apply delay or wait for ready/busy pin */
1631				if (!chip->dev_ready)
1632					udelay(chip->chip_delay);
1633				else
1634					nand_wait_ready(mtd);
1635			}
1636
1637			if (mtd->ecc_stats.failed - ecc_failures) {
1638				if (retry_mode + 1 < chip->read_retries) {
1639					retry_mode++;
1640					ret = nand_setup_read_retry(mtd,
1641							retry_mode);
1642					if (ret < 0)
1643						break;
1644
1645					/* Reset failures; retry */
1646					mtd->ecc_stats.failed = ecc_failures;
1647					goto read_retry;
1648				} else {
1649					/* No more retry modes; real failure */
1650					ecc_fail = true;
1651				}
1652			}
1653
1654			buf += bytes;
1655		} else {
1656			memcpy(buf, chip->buffers->databuf + col, bytes);
1657			buf += bytes;
1658			max_bitflips = max_t(unsigned int, max_bitflips,
1659					     chip->pagebuf_bitflips);
1660		}
1661
1662		readlen -= bytes;
1663
1664		/* Reset to retry mode 0 */
1665		if (retry_mode) {
1666			ret = nand_setup_read_retry(mtd, 0);
1667			if (ret < 0)
1668				break;
1669			retry_mode = 0;
1670		}
1671
1672		if (!readlen)
1673			break;
1674
1675		/* For subsequent reads align to page boundary */
1676		col = 0;
1677		/* Increment page address */
1678		realpage++;
1679
1680		page = realpage & chip->pagemask;
1681		/* Check, if we cross a chip boundary */
1682		if (!page) {
1683			chipnr++;
1684			chip->select_chip(mtd, -1);
1685			chip->select_chip(mtd, chipnr);
1686		}
1687	}
1688	chip->select_chip(mtd, -1);
1689
1690	ops->retlen = ops->len - (size_t) readlen;
1691	if (oob)
1692		ops->oobretlen = ops->ooblen - oobreadlen;
1693
1694	if (ret < 0)
1695		return ret;
1696
1697	if (ecc_fail)
1698		return -EBADMSG;
1699
1700	return max_bitflips;
1701}
1702
1703/**
1704 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1705 * @mtd: MTD device structure
1706 * @from: offset to read from
1707 * @len: number of bytes to read
1708 * @retlen: pointer to variable to store the number of read bytes
1709 * @buf: the databuffer to put data
1710 *
1711 * Get hold of the chip and call nand_do_read.
1712 */
1713static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1714		     size_t *retlen, uint8_t *buf)
1715{
1716	struct mtd_oob_ops ops;
1717	int ret;
1718
1719	nand_get_device(mtd, FL_READING);
1720	ops.len = len;
1721	ops.datbuf = buf;
1722	ops.oobbuf = NULL;
1723	ops.mode = MTD_OPS_PLACE_OOB;
1724	ret = nand_do_read_ops(mtd, from, &ops);
1725	*retlen = ops.retlen;
1726	nand_release_device(mtd);
1727	return ret;
1728}
1729
1730/**
1731 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1732 * @mtd: mtd info structure
1733 * @chip: nand chip info structure
1734 * @page: page number to read
1735 */
1736static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1737			     int page)
1738{
1739	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1740	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1741	return 0;
1742}
1743
1744/**
1745 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1746 *			    with syndromes
1747 * @mtd: mtd info structure
1748 * @chip: nand chip info structure
1749 * @page: page number to read
1750 */
1751static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1752				  int page)
1753{
1754	uint8_t *buf = chip->oob_poi;
1755	int length = mtd->oobsize;
1756	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1757	int eccsize = chip->ecc.size;
1758	uint8_t *bufpoi = buf;
1759	int i, toread, sndrnd = 0, pos;
1760
1761	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1762	for (i = 0; i < chip->ecc.steps; i++) {
1763		if (sndrnd) {
1764			pos = eccsize + i * (eccsize + chunk);
1765			if (mtd->writesize > 512)
1766				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1767			else
1768				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1769		} else
1770			sndrnd = 1;
1771		toread = min_t(int, length, chunk);
1772		chip->read_buf(mtd, bufpoi, toread);
1773		bufpoi += toread;
1774		length -= toread;
1775	}
1776	if (length > 0)
1777		chip->read_buf(mtd, bufpoi, length);
1778
1779	return 0;
1780}
1781
1782/**
1783 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1784 * @mtd: mtd info structure
1785 * @chip: nand chip info structure
1786 * @page: page number to write
1787 */
1788static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1789			      int page)
1790{
1791	int status = 0;
1792	const uint8_t *buf = chip->oob_poi;
1793	int length = mtd->oobsize;
1794
1795	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1796	chip->write_buf(mtd, buf, length);
1797	/* Send command to program the OOB data */
1798	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1799
1800	status = chip->waitfunc(mtd, chip);
1801
1802	return status & NAND_STATUS_FAIL ? -EIO : 0;
1803}
1804
1805/**
1806 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1807 *			     with syndrome - only for large page flash
1808 * @mtd: mtd info structure
1809 * @chip: nand chip info structure
1810 * @page: page number to write
1811 */
1812static int nand_write_oob_syndrome(struct mtd_info *mtd,
1813				   struct nand_chip *chip, int page)
1814{
1815	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1816	int eccsize = chip->ecc.size, length = mtd->oobsize;
1817	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1818	const uint8_t *bufpoi = chip->oob_poi;
1819
1820	/*
1821	 * data-ecc-data-ecc ... ecc-oob
1822	 * or
1823	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1824	 */
1825	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1826		pos = steps * (eccsize + chunk);
1827		steps = 0;
1828	} else
1829		pos = eccsize;
1830
1831	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1832	for (i = 0; i < steps; i++) {
1833		if (sndcmd) {
1834			if (mtd->writesize <= 512) {
1835				uint32_t fill = 0xFFFFFFFF;
1836
1837				len = eccsize;
1838				while (len > 0) {
1839					int num = min_t(int, len, 4);
1840					chip->write_buf(mtd, (uint8_t *)&fill,
1841							num);
1842					len -= num;
1843				}
1844			} else {
1845				pos = eccsize + i * (eccsize + chunk);
1846				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1847			}
1848		} else
1849			sndcmd = 1;
1850		len = min_t(int, length, chunk);
1851		chip->write_buf(mtd, bufpoi, len);
1852		bufpoi += len;
1853		length -= len;
1854	}
1855	if (length > 0)
1856		chip->write_buf(mtd, bufpoi, length);
1857
1858	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1859	status = chip->waitfunc(mtd, chip);
1860
1861	return status & NAND_STATUS_FAIL ? -EIO : 0;
1862}
1863
1864/**
1865 * nand_do_read_oob - [INTERN] NAND read out-of-band
1866 * @mtd: MTD device structure
1867 * @from: offset to read from
1868 * @ops: oob operations description structure
1869 *
1870 * NAND read out-of-band data from the spare area.
1871 */
1872static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1873			    struct mtd_oob_ops *ops)
1874{
1875	int page, realpage, chipnr;
1876	struct nand_chip *chip = mtd->priv;
1877	struct mtd_ecc_stats stats;
1878	int readlen = ops->ooblen;
1879	int len;
1880	uint8_t *buf = ops->oobbuf;
1881	int ret = 0;
1882
1883	pr_debug("%s: from = 0x%08Lx, len = %i\n",
1884			__func__, (unsigned long long)from, readlen);
1885
1886	stats = mtd->ecc_stats;
1887
1888	if (ops->mode == MTD_OPS_AUTO_OOB)
1889		len = chip->ecc.layout->oobavail;
1890	else
1891		len = mtd->oobsize;
1892
1893	if (unlikely(ops->ooboffs >= len)) {
1894		pr_debug("%s: attempt to start read outside oob\n",
1895				__func__);
1896		return -EINVAL;
1897	}
1898
1899	/* Do not allow reads past end of device */
1900	if (unlikely(from >= mtd->size ||
1901		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1902					(from >> chip->page_shift)) * len)) {
1903		pr_debug("%s: attempt to read beyond end of device\n",
1904				__func__);
1905		return -EINVAL;
1906	}
1907
1908	chipnr = (int)(from >> chip->chip_shift);
1909	chip->select_chip(mtd, chipnr);
1910
1911	/* Shift to get page */
1912	realpage = (int)(from >> chip->page_shift);
1913	page = realpage & chip->pagemask;
1914
1915	while (1) {
1916		if (ops->mode == MTD_OPS_RAW)
1917			ret = chip->ecc.read_oob_raw(mtd, chip, page);
1918		else
1919			ret = chip->ecc.read_oob(mtd, chip, page);
1920
1921		if (ret < 0)
1922			break;
1923
1924		len = min(len, readlen);
1925		buf = nand_transfer_oob(chip, buf, ops, len);
1926
1927		if (chip->options & NAND_NEED_READRDY) {
1928			/* Apply delay or wait for ready/busy pin */
1929			if (!chip->dev_ready)
1930				udelay(chip->chip_delay);
1931			else
1932				nand_wait_ready(mtd);
1933		}
1934
1935		readlen -= len;
1936		if (!readlen)
1937			break;
1938
1939		/* Increment page address */
1940		realpage++;
1941
1942		page = realpage & chip->pagemask;
1943		/* Check, if we cross a chip boundary */
1944		if (!page) {
1945			chipnr++;
1946			chip->select_chip(mtd, -1);
1947			chip->select_chip(mtd, chipnr);
1948		}
1949	}
1950	chip->select_chip(mtd, -1);
1951
1952	ops->oobretlen = ops->ooblen - readlen;
1953
1954	if (ret < 0)
1955		return ret;
1956
1957	if (mtd->ecc_stats.failed - stats.failed)
1958		return -EBADMSG;
1959
1960	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1961}
1962
1963/**
1964 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1965 * @mtd: MTD device structure
1966 * @from: offset to read from
1967 * @ops: oob operation description structure
1968 *
1969 * NAND read data and/or out-of-band data.
1970 */
1971static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1972			 struct mtd_oob_ops *ops)
1973{
1974	int ret = -ENOTSUPP;
1975
1976	ops->retlen = 0;
1977
1978	/* Do not allow reads past end of device */
1979	if (ops->datbuf && (from + ops->len) > mtd->size) {
1980		pr_debug("%s: attempt to read beyond end of device\n",
1981				__func__);
1982		return -EINVAL;
1983	}
1984
1985	nand_get_device(mtd, FL_READING);
1986
1987	switch (ops->mode) {
1988	case MTD_OPS_PLACE_OOB:
1989	case MTD_OPS_AUTO_OOB:
1990	case MTD_OPS_RAW:
1991		break;
1992
1993	default:
1994		goto out;
1995	}
1996
1997	if (!ops->datbuf)
1998		ret = nand_do_read_oob(mtd, from, ops);
1999	else
2000		ret = nand_do_read_ops(mtd, from, ops);
2001
2002out:
2003	nand_release_device(mtd);
2004	return ret;
2005}
2006
2007
2008/**
2009 * nand_write_page_raw - [INTERN] raw page write function
2010 * @mtd: mtd info structure
2011 * @chip: nand chip info structure
2012 * @buf: data buffer
2013 * @oob_required: must write chip->oob_poi to OOB
2014 *
2015 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2016 */
2017static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2018				const uint8_t *buf, int oob_required)
2019{
2020	chip->write_buf(mtd, buf, mtd->writesize);
2021	if (oob_required)
2022		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2023
2024	return 0;
2025}
2026
2027/**
2028 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2029 * @mtd: mtd info structure
2030 * @chip: nand chip info structure
2031 * @buf: data buffer
2032 * @oob_required: must write chip->oob_poi to OOB
2033 *
2034 * We need a special oob layout and handling even when ECC isn't checked.
2035 */
2036static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2037					struct nand_chip *chip,
2038					const uint8_t *buf, int oob_required)
2039{
2040	int eccsize = chip->ecc.size;
2041	int eccbytes = chip->ecc.bytes;
2042	uint8_t *oob = chip->oob_poi;
2043	int steps, size;
2044
2045	for (steps = chip->ecc.steps; steps > 0; steps--) {
2046		chip->write_buf(mtd, buf, eccsize);
2047		buf += eccsize;
2048
2049		if (chip->ecc.prepad) {
2050			chip->write_buf(mtd, oob, chip->ecc.prepad);
2051			oob += chip->ecc.prepad;
2052		}
2053
2054		chip->write_buf(mtd, oob, eccbytes);
2055		oob += eccbytes;
2056
2057		if (chip->ecc.postpad) {
2058			chip->write_buf(mtd, oob, chip->ecc.postpad);
2059			oob += chip->ecc.postpad;
2060		}
2061	}
2062
2063	size = mtd->oobsize - (oob - chip->oob_poi);
2064	if (size)
2065		chip->write_buf(mtd, oob, size);
2066
2067	return 0;
2068}
2069/**
2070 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2071 * @mtd: mtd info structure
2072 * @chip: nand chip info structure
2073 * @buf: data buffer
2074 * @oob_required: must write chip->oob_poi to OOB
2075 */
2076static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2077				  const uint8_t *buf, int oob_required)
2078{
2079	int i, eccsize = chip->ecc.size;
2080	int eccbytes = chip->ecc.bytes;
2081	int eccsteps = chip->ecc.steps;
2082	uint8_t *ecc_calc = chip->buffers->ecccalc;
2083	const uint8_t *p = buf;
2084	uint32_t *eccpos = chip->ecc.layout->eccpos;
2085
2086	/* Software ECC calculation */
2087	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2088		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2089
2090	for (i = 0; i < chip->ecc.total; i++)
2091		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2092
2093	return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2094}
2095
2096/**
2097 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2098 * @mtd: mtd info structure
2099 * @chip: nand chip info structure
2100 * @buf: data buffer
2101 * @oob_required: must write chip->oob_poi to OOB
2102 */
2103static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2104				  const uint8_t *buf, int oob_required)
2105{
2106	int i, eccsize = chip->ecc.size;
2107	int eccbytes = chip->ecc.bytes;
2108	int eccsteps = chip->ecc.steps;
2109	uint8_t *ecc_calc = chip->buffers->ecccalc;
2110	const uint8_t *p = buf;
2111	uint32_t *eccpos = chip->ecc.layout->eccpos;
2112
2113	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2114		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2115		chip->write_buf(mtd, p, eccsize);
2116		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2117	}
2118
2119	for (i = 0; i < chip->ecc.total; i++)
2120		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2121
2122	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2123
2124	return 0;
2125}
2126
2127
2128/**
2129 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2130 * @mtd:	mtd info structure
2131 * @chip:	nand chip info structure
2132 * @offset:	column address of subpage within the page
2133 * @data_len:	data length
2134 * @buf:	data buffer
2135 * @oob_required: must write chip->oob_poi to OOB
2136 */
2137static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2138				struct nand_chip *chip, uint32_t offset,
2139				uint32_t data_len, const uint8_t *buf,
2140				int oob_required)
2141{
2142	uint8_t *oob_buf  = chip->oob_poi;
2143	uint8_t *ecc_calc = chip->buffers->ecccalc;
2144	int ecc_size      = chip->ecc.size;
2145	int ecc_bytes     = chip->ecc.bytes;
2146	int ecc_steps     = chip->ecc.steps;
2147	uint32_t *eccpos  = chip->ecc.layout->eccpos;
2148	uint32_t start_step = offset / ecc_size;
2149	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2150	int oob_bytes       = mtd->oobsize / ecc_steps;
2151	int step, i;
2152
2153	for (step = 0; step < ecc_steps; step++) {
2154		/* configure controller for WRITE access */
2155		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2156
2157		/* write data (untouched subpages already masked by 0xFF) */
2158		chip->write_buf(mtd, buf, ecc_size);
2159
2160		/* mask ECC of un-touched subpages by padding 0xFF */
2161		if ((step < start_step) || (step > end_step))
2162			memset(ecc_calc, 0xff, ecc_bytes);
2163		else
2164			chip->ecc.calculate(mtd, buf, ecc_calc);
2165
2166		/* mask OOB of un-touched subpages by padding 0xFF */
2167		/* if oob_required, preserve OOB metadata of written subpage */
2168		if (!oob_required || (step < start_step) || (step > end_step))
2169			memset(oob_buf, 0xff, oob_bytes);
2170
2171		buf += ecc_size;
2172		ecc_calc += ecc_bytes;
2173		oob_buf  += oob_bytes;
2174	}
2175
2176	/* copy calculated ECC for whole page to chip->buffer->oob */
2177	/* this include masked-value(0xFF) for unwritten subpages */
2178	ecc_calc = chip->buffers->ecccalc;
2179	for (i = 0; i < chip->ecc.total; i++)
2180		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2181
2182	/* write OOB buffer to NAND device */
2183	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2184
2185	return 0;
2186}
2187
2188
2189/**
2190 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2191 * @mtd: mtd info structure
2192 * @chip: nand chip info structure
2193 * @buf: data buffer
2194 * @oob_required: must write chip->oob_poi to OOB
2195 *
2196 * The hw generator calculates the error syndrome automatically. Therefore we
2197 * need a special oob layout and handling.
2198 */
2199static int nand_write_page_syndrome(struct mtd_info *mtd,
2200				    struct nand_chip *chip,
2201				    const uint8_t *buf, int oob_required)
2202{
2203	int i, eccsize = chip->ecc.size;
2204	int eccbytes = chip->ecc.bytes;
2205	int eccsteps = chip->ecc.steps;
2206	const uint8_t *p = buf;
2207	uint8_t *oob = chip->oob_poi;
2208
2209	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2210
2211		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2212		chip->write_buf(mtd, p, eccsize);
2213
2214		if (chip->ecc.prepad) {
2215			chip->write_buf(mtd, oob, chip->ecc.prepad);
2216			oob += chip->ecc.prepad;
2217		}
2218
2219		chip->ecc.calculate(mtd, p, oob);
2220		chip->write_buf(mtd, oob, eccbytes);
2221		oob += eccbytes;
2222
2223		if (chip->ecc.postpad) {
2224			chip->write_buf(mtd, oob, chip->ecc.postpad);
2225			oob += chip->ecc.postpad;
2226		}
2227	}
2228
2229	/* Calculate remaining oob bytes */
2230	i = mtd->oobsize - (oob - chip->oob_poi);
2231	if (i)
2232		chip->write_buf(mtd, oob, i);
2233
2234	return 0;
2235}
2236
2237/**
2238 * nand_write_page - [REPLACEABLE] write one page
2239 * @mtd: MTD device structure
2240 * @chip: NAND chip descriptor
2241 * @offset: address offset within the page
2242 * @data_len: length of actual data to be written
2243 * @buf: the data to write
2244 * @oob_required: must write chip->oob_poi to OOB
2245 * @page: page number to write
2246 * @cached: cached programming
2247 * @raw: use _raw version of write_page
2248 */
2249static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2250		uint32_t offset, int data_len, const uint8_t *buf,
2251		int oob_required, int page, int cached, int raw)
2252{
2253	int status, subpage;
2254
2255	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2256		chip->ecc.write_subpage)
2257		subpage = offset || (data_len < mtd->writesize);
2258	else
2259		subpage = 0;
2260
2261	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2262
2263	if (unlikely(raw))
2264		status = chip->ecc.write_page_raw(mtd, chip, buf,
2265							oob_required);
2266	else if (subpage)
2267		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2268							 buf, oob_required);
2269	else
2270		status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2271
2272	if (status < 0)
2273		return status;
2274
2275	/*
2276	 * Cached progamming disabled for now. Not sure if it's worth the
2277	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2278	 */
2279	cached = 0;
2280
2281	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2282
2283		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2284		status = chip->waitfunc(mtd, chip);
2285		/*
2286		 * See if operation failed and additional status checks are
2287		 * available.
2288		 */
2289		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2290			status = chip->errstat(mtd, chip, FL_WRITING, status,
2291					       page);
2292
2293		if (status & NAND_STATUS_FAIL)
2294			return -EIO;
2295	} else {
2296		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2297		status = chip->waitfunc(mtd, chip);
2298	}
2299
2300	return 0;
2301}
2302
2303/**
2304 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2305 * @mtd: MTD device structure
2306 * @oob: oob data buffer
2307 * @len: oob data write length
2308 * @ops: oob ops structure
2309 */
2310static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2311			      struct mtd_oob_ops *ops)
2312{
2313	struct nand_chip *chip = mtd->priv;
2314
2315	/*
2316	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2317	 * data from a previous OOB read.
2318	 */
2319	memset(chip->oob_poi, 0xff, mtd->oobsize);
2320
2321	switch (ops->mode) {
2322
2323	case MTD_OPS_PLACE_OOB:
2324	case MTD_OPS_RAW:
2325		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2326		return oob + len;
2327
2328	case MTD_OPS_AUTO_OOB: {
2329		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2330		uint32_t boffs = 0, woffs = ops->ooboffs;
2331		size_t bytes = 0;
2332
2333		for (; free->length && len; free++, len -= bytes) {
2334			/* Write request not from offset 0? */
2335			if (unlikely(woffs)) {
2336				if (woffs >= free->length) {
2337					woffs -= free->length;
2338					continue;
2339				}
2340				boffs = free->offset + woffs;
2341				bytes = min_t(size_t, len,
2342					      (free->length - woffs));
2343				woffs = 0;
2344			} else {
2345				bytes = min_t(size_t, len, free->length);
2346				boffs = free->offset;
2347			}
2348			memcpy(chip->oob_poi + boffs, oob, bytes);
2349			oob += bytes;
2350		}
2351		return oob;
2352	}
2353	default:
2354		BUG();
2355	}
2356	return NULL;
2357}
2358
2359#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
2360
2361/**
2362 * nand_do_write_ops - [INTERN] NAND write with ECC
2363 * @mtd: MTD device structure
2364 * @to: offset to write to
2365 * @ops: oob operations description structure
2366 *
2367 * NAND write with ECC.
2368 */
2369static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2370			     struct mtd_oob_ops *ops)
2371{
2372	int chipnr, realpage, page, blockmask, column;
2373	struct nand_chip *chip = mtd->priv;
2374	uint32_t writelen = ops->len;
2375
2376	uint32_t oobwritelen = ops->ooblen;
2377	uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2378				mtd->oobavail : mtd->oobsize;
2379
2380	uint8_t *oob = ops->oobbuf;
2381	uint8_t *buf = ops->datbuf;
2382	int ret;
2383	int oob_required = oob ? 1 : 0;
2384
2385	ops->retlen = 0;
2386	if (!writelen)
2387		return 0;
2388
2389	/* Reject writes, which are not page aligned */
2390	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2391		pr_notice("%s: attempt to write non page aligned data\n",
2392			   __func__);
2393		return -EINVAL;
2394	}
2395
2396	column = to & (mtd->writesize - 1);
2397
2398	chipnr = (int)(to >> chip->chip_shift);
2399	chip->select_chip(mtd, chipnr);
2400
2401	/* Check, if it is write protected */
2402	if (nand_check_wp(mtd)) {
2403		ret = -EIO;
2404		goto err_out;
2405	}
2406
2407	realpage = (int)(to >> chip->page_shift);
2408	page = realpage & chip->pagemask;
2409	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2410
2411	/* Invalidate the page cache, when we write to the cached page */
2412	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2413	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2414		chip->pagebuf = -1;
2415
2416	/* Don't allow multipage oob writes with offset */
2417	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2418		ret = -EINVAL;
2419		goto err_out;
2420	}
2421
2422	while (1) {
2423		int bytes = mtd->writesize;
2424		int cached = writelen > bytes && page != blockmask;
2425		uint8_t *wbuf = buf;
2426		int use_bufpoi;
2427		int part_pagewr = (column || writelen < (mtd->writesize - 1));
2428
2429		if (part_pagewr)
2430			use_bufpoi = 1;
2431		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2432			use_bufpoi = !virt_addr_valid(buf);
2433		else
2434			use_bufpoi = 0;
2435
2436		/* Partial page write?, or need to use bounce buffer */
2437		if (use_bufpoi) {
2438			pr_debug("%s: using write bounce buffer for buf@%p\n",
2439					 __func__, buf);
2440			cached = 0;
2441			if (part_pagewr)
2442				bytes = min_t(int, bytes - column, writelen);
2443			chip->pagebuf = -1;
2444			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2445			memcpy(&chip->buffers->databuf[column], buf, bytes);
2446			wbuf = chip->buffers->databuf;
2447		}
2448
2449		if (unlikely(oob)) {
2450			size_t len = min(oobwritelen, oobmaxlen);
2451			oob = nand_fill_oob(mtd, oob, len, ops);
2452			oobwritelen -= len;
2453		} else {
2454			/* We still need to erase leftover OOB data */
2455			memset(chip->oob_poi, 0xff, mtd->oobsize);
2456		}
2457		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2458					oob_required, page, cached,
2459					(ops->mode == MTD_OPS_RAW));
2460		if (ret)
2461			break;
2462
2463		writelen -= bytes;
2464		if (!writelen)
2465			break;
2466
2467		column = 0;
2468		buf += bytes;
2469		realpage++;
2470
2471		page = realpage & chip->pagemask;
2472		/* Check, if we cross a chip boundary */
2473		if (!page) {
2474			chipnr++;
2475			chip->select_chip(mtd, -1);
2476			chip->select_chip(mtd, chipnr);
2477		}
2478	}
2479
2480	ops->retlen = ops->len - writelen;
2481	if (unlikely(oob))
2482		ops->oobretlen = ops->ooblen;
2483
2484err_out:
2485	chip->select_chip(mtd, -1);
2486	return ret;
2487}
2488
2489/**
2490 * panic_nand_write - [MTD Interface] NAND write with ECC
2491 * @mtd: MTD device structure
2492 * @to: offset to write to
2493 * @len: number of bytes to write
2494 * @retlen: pointer to variable to store the number of written bytes
2495 * @buf: the data to write
2496 *
2497 * NAND write with ECC. Used when performing writes in interrupt context, this
2498 * may for example be called by mtdoops when writing an oops while in panic.
2499 */
2500static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2501			    size_t *retlen, const uint8_t *buf)
2502{
2503	struct nand_chip *chip = mtd->priv;
2504	struct mtd_oob_ops ops;
2505	int ret;
2506
2507	/* Wait for the device to get ready */
2508	panic_nand_wait(mtd, chip, 400);
2509
2510	/* Grab the device */
2511	panic_nand_get_device(chip, mtd, FL_WRITING);
2512
2513	ops.len = len;
2514	ops.datbuf = (uint8_t *)buf;
2515	ops.oobbuf = NULL;
2516	ops.mode = MTD_OPS_PLACE_OOB;
2517
2518	ret = nand_do_write_ops(mtd, to, &ops);
2519
2520	*retlen = ops.retlen;
2521	return ret;
2522}
2523
2524/**
2525 * nand_write - [MTD Interface] NAND write with ECC
2526 * @mtd: MTD device structure
2527 * @to: offset to write to
2528 * @len: number of bytes to write
2529 * @retlen: pointer to variable to store the number of written bytes
2530 * @buf: the data to write
2531 *
2532 * NAND write with ECC.
2533 */
2534static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2535			  size_t *retlen, const uint8_t *buf)
2536{
2537	struct mtd_oob_ops ops;
2538	int ret;
2539
2540	nand_get_device(mtd, FL_WRITING);
2541	ops.len = len;
2542	ops.datbuf = (uint8_t *)buf;
2543	ops.oobbuf = NULL;
2544	ops.mode = MTD_OPS_PLACE_OOB;
2545	ret = nand_do_write_ops(mtd, to, &ops);
2546	*retlen = ops.retlen;
2547	nand_release_device(mtd);
2548	return ret;
2549}
2550
2551/**
2552 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2553 * @mtd: MTD device structure
2554 * @to: offset to write to
2555 * @ops: oob operation description structure
2556 *
2557 * NAND write out-of-band.
2558 */
2559static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2560			     struct mtd_oob_ops *ops)
2561{
2562	int chipnr, page, status, len;
2563	struct nand_chip *chip = mtd->priv;
2564
2565	pr_debug("%s: to = 0x%08x, len = %i\n",
2566			 __func__, (unsigned int)to, (int)ops->ooblen);
2567
2568	if (ops->mode == MTD_OPS_AUTO_OOB)
2569		len = chip->ecc.layout->oobavail;
2570	else
2571		len = mtd->oobsize;
2572
2573	/* Do not allow write past end of page */
2574	if ((ops->ooboffs + ops->ooblen) > len) {
2575		pr_debug("%s: attempt to write past end of page\n",
2576				__func__);
2577		return -EINVAL;
2578	}
2579
2580	if (unlikely(ops->ooboffs >= len)) {
2581		pr_debug("%s: attempt to start write outside oob\n",
2582				__func__);
2583		return -EINVAL;
2584	}
2585
2586	/* Do not allow write past end of device */
2587	if (unlikely(to >= mtd->size ||
2588		     ops->ooboffs + ops->ooblen >
2589			((mtd->size >> chip->page_shift) -
2590			 (to >> chip->page_shift)) * len)) {
2591		pr_debug("%s: attempt to write beyond end of device\n",
2592				__func__);
2593		return -EINVAL;
2594	}
2595
2596	chipnr = (int)(to >> chip->chip_shift);
2597	chip->select_chip(mtd, chipnr);
2598
2599	/* Shift to get page */
2600	page = (int)(to >> chip->page_shift);
2601
2602	/*
2603	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2604	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2605	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2606	 * it in the doc2000 driver in August 1999.  dwmw2.
2607	 */
2608	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2609
2610	/* Check, if it is write protected */
2611	if (nand_check_wp(mtd)) {
2612		chip->select_chip(mtd, -1);
2613		return -EROFS;
2614	}
2615
2616	/* Invalidate the page cache, if we write to the cached page */
2617	if (page == chip->pagebuf)
2618		chip->pagebuf = -1;
2619
2620	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2621
2622	if (ops->mode == MTD_OPS_RAW)
2623		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2624	else
2625		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2626
2627	chip->select_chip(mtd, -1);
2628
2629	if (status)
2630		return status;
2631
2632	ops->oobretlen = ops->ooblen;
2633
2634	return 0;
2635}
2636
2637/**
2638 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2639 * @mtd: MTD device structure
2640 * @to: offset to write to
2641 * @ops: oob operation description structure
2642 */
2643static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2644			  struct mtd_oob_ops *ops)
2645{
2646	int ret = -ENOTSUPP;
2647
2648	ops->retlen = 0;
2649
2650	/* Do not allow writes past end of device */
2651	if (ops->datbuf && (to + ops->len) > mtd->size) {
2652		pr_debug("%s: attempt to write beyond end of device\n",
2653				__func__);
2654		return -EINVAL;
2655	}
2656
2657	nand_get_device(mtd, FL_WRITING);
2658
2659	switch (ops->mode) {
2660	case MTD_OPS_PLACE_OOB:
2661	case MTD_OPS_AUTO_OOB:
2662	case MTD_OPS_RAW:
2663		break;
2664
2665	default:
2666		goto out;
2667	}
2668
2669	if (!ops->datbuf)
2670		ret = nand_do_write_oob(mtd, to, ops);
2671	else
2672		ret = nand_do_write_ops(mtd, to, ops);
2673
2674out:
2675	nand_release_device(mtd);
2676	return ret;
2677}
2678
2679/**
2680 * single_erase - [GENERIC] NAND standard block erase command function
2681 * @mtd: MTD device structure
2682 * @page: the page address of the block which will be erased
2683 *
2684 * Standard erase command for NAND chips. Returns NAND status.
2685 */
2686static int single_erase(struct mtd_info *mtd, int page)
2687{
2688	struct nand_chip *chip = mtd->priv;
2689	/* Send commands to erase a block */
2690	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2691	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2692
2693	return chip->waitfunc(mtd, chip);
2694}
2695
2696/**
2697 * nand_erase - [MTD Interface] erase block(s)
2698 * @mtd: MTD device structure
2699 * @instr: erase instruction
2700 *
2701 * Erase one ore more blocks.
2702 */
2703static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2704{
2705	return nand_erase_nand(mtd, instr, 0);
2706}
2707
2708/**
2709 * nand_erase_nand - [INTERN] erase block(s)
2710 * @mtd: MTD device structure
2711 * @instr: erase instruction
2712 * @allowbbt: allow erasing the bbt area
2713 *
2714 * Erase one ore more blocks.
2715 */
2716int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2717		    int allowbbt)
2718{
2719	int page, status, pages_per_block, ret, chipnr;
2720	struct nand_chip *chip = mtd->priv;
2721	loff_t len;
2722
2723	pr_debug("%s: start = 0x%012llx, len = %llu\n",
2724			__func__, (unsigned long long)instr->addr,
2725			(unsigned long long)instr->len);
2726
2727	if (check_offs_len(mtd, instr->addr, instr->len))
2728		return -EINVAL;
2729
2730	/* Grab the lock and see if the device is available */
2731	nand_get_device(mtd, FL_ERASING);
2732
2733	/* Shift to get first page */
2734	page = (int)(instr->addr >> chip->page_shift);
2735	chipnr = (int)(instr->addr >> chip->chip_shift);
2736
2737	/* Calculate pages in each block */
2738	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2739
2740	/* Select the NAND device */
2741	chip->select_chip(mtd, chipnr);
2742
2743	/* Check, if it is write protected */
2744	if (nand_check_wp(mtd)) {
2745		pr_debug("%s: device is write protected!\n",
2746				__func__);
2747		instr->state = MTD_ERASE_FAILED;
2748		goto erase_exit;
2749	}
2750
2751	/* Loop through the pages */
2752	len = instr->len;
2753
2754	instr->state = MTD_ERASING;
2755
2756	while (len) {
2757		/* Check if we have a bad block, we do not erase bad blocks! */
2758		if (nand_block_checkbad(mtd, ((loff_t) page) <<
2759					chip->page_shift, 0, allowbbt)) {
2760			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2761				    __func__, page);
2762			instr->state = MTD_ERASE_FAILED;
2763			goto erase_exit;
2764		}
2765
2766		/*
2767		 * Invalidate the page cache, if we erase the block which
2768		 * contains the current cached page.
2769		 */
2770		if (page <= chip->pagebuf && chip->pagebuf <
2771		    (page + pages_per_block))
2772			chip->pagebuf = -1;
2773
2774		status = chip->erase(mtd, page & chip->pagemask);
2775
2776		/*
2777		 * See if operation failed and additional status checks are
2778		 * available
2779		 */
2780		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2781			status = chip->errstat(mtd, chip, FL_ERASING,
2782					       status, page);
2783
2784		/* See if block erase succeeded */
2785		if (status & NAND_STATUS_FAIL) {
2786			pr_debug("%s: failed erase, page 0x%08x\n",
2787					__func__, page);
2788			instr->state = MTD_ERASE_FAILED;
2789			instr->fail_addr =
2790				((loff_t)page << chip->page_shift);
2791			goto erase_exit;
2792		}
2793
2794		/* Increment page address and decrement length */
2795		len -= (1ULL << chip->phys_erase_shift);
2796		page += pages_per_block;
2797
2798		/* Check, if we cross a chip boundary */
2799		if (len && !(page & chip->pagemask)) {
2800			chipnr++;
2801			chip->select_chip(mtd, -1);
2802			chip->select_chip(mtd, chipnr);
2803		}
2804	}
2805	instr->state = MTD_ERASE_DONE;
2806
2807erase_exit:
2808
2809	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2810
2811	/* Deselect and wake up anyone waiting on the device */
2812	chip->select_chip(mtd, -1);
2813	nand_release_device(mtd);
2814
2815	/* Do call back function */
2816	if (!ret)
2817		mtd_erase_callback(instr);
2818
2819	/* Return more or less happy */
2820	return ret;
2821}
2822
2823/**
2824 * nand_sync - [MTD Interface] sync
2825 * @mtd: MTD device structure
2826 *
2827 * Sync is actually a wait for chip ready function.
2828 */
2829static void nand_sync(struct mtd_info *mtd)
2830{
2831	pr_debug("%s: called\n", __func__);
2832
2833	/* Grab the lock and see if the device is available */
2834	nand_get_device(mtd, FL_SYNCING);
2835	/* Release it and go back */
2836	nand_release_device(mtd);
2837}
2838
2839/**
2840 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2841 * @mtd: MTD device structure
2842 * @offs: offset relative to mtd start
2843 */
2844static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2845{
2846	return nand_block_checkbad(mtd, offs, 1, 0);
2847}
2848
2849/**
2850 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2851 * @mtd: MTD device structure
2852 * @ofs: offset relative to mtd start
2853 */
2854static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2855{
2856	int ret;
2857
2858	ret = nand_block_isbad(mtd, ofs);
2859	if (ret) {
2860		/* If it was bad already, return success and do nothing */
2861		if (ret > 0)
2862			return 0;
2863		return ret;
2864	}
2865
2866	return nand_block_markbad_lowlevel(mtd, ofs);
2867}
2868
2869/**
2870 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2871 * @mtd: MTD device structure
2872 * @chip: nand chip info structure
2873 * @addr: feature address.
2874 * @subfeature_param: the subfeature parameters, a four bytes array.
2875 */
2876static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2877			int addr, uint8_t *subfeature_param)
2878{
2879	int status;
2880	int i;
2881
2882	if (!chip->onfi_version ||
2883	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
2884	      & ONFI_OPT_CMD_SET_GET_FEATURES))
2885		return -EINVAL;
2886
2887	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2888	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2889		chip->write_byte(mtd, subfeature_param[i]);
2890
2891	status = chip->waitfunc(mtd, chip);
2892	if (status & NAND_STATUS_FAIL)
2893		return -EIO;
2894	return 0;
2895}
2896
2897/**
2898 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2899 * @mtd: MTD device structure
2900 * @chip: nand chip info structure
2901 * @addr: feature address.
2902 * @subfeature_param: the subfeature parameters, a four bytes array.
2903 */
2904static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2905			int addr, uint8_t *subfeature_param)
2906{
2907	int i;
2908
2909	if (!chip->onfi_version ||
2910	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
2911	      & ONFI_OPT_CMD_SET_GET_FEATURES))
2912		return -EINVAL;
2913
2914	/* clear the sub feature parameters */
2915	memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2916
2917	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2918	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2919		*subfeature_param++ = chip->read_byte(mtd);
2920	return 0;
2921}
2922
2923/**
2924 * nand_suspend - [MTD Interface] Suspend the NAND flash
2925 * @mtd: MTD device structure
2926 */
2927static int nand_suspend(struct mtd_info *mtd)
2928{
2929	return nand_get_device(mtd, FL_PM_SUSPENDED);
2930}
2931
2932/**
2933 * nand_resume - [MTD Interface] Resume the NAND flash
2934 * @mtd: MTD device structure
2935 */
2936static void nand_resume(struct mtd_info *mtd)
2937{
2938	struct nand_chip *chip = mtd->priv;
2939
2940	if (chip->state == FL_PM_SUSPENDED)
2941		nand_release_device(mtd);
2942	else
2943		pr_err("%s called for a chip which is not in suspended state\n",
2944			__func__);
2945}
2946
2947/* Set default functions */
2948static void nand_set_defaults(struct nand_chip *chip, int busw)
2949{
2950	/* check for proper chip_delay setup, set 20us if not */
2951	if (!chip->chip_delay)
2952		chip->chip_delay = 20;
2953
2954	/* check, if a user supplied command function given */
2955	if (chip->cmdfunc == NULL)
2956		chip->cmdfunc = nand_command;
2957
2958	/* check, if a user supplied wait function given */
2959	if (chip->waitfunc == NULL)
2960		chip->waitfunc = nand_wait;
2961
2962	if (!chip->select_chip)
2963		chip->select_chip = nand_select_chip;
2964
2965	/* set for ONFI nand */
2966	if (!chip->onfi_set_features)
2967		chip->onfi_set_features = nand_onfi_set_features;
2968	if (!chip->onfi_get_features)
2969		chip->onfi_get_features = nand_onfi_get_features;
2970
2971	/* If called twice, pointers that depend on busw may need to be reset */
2972	if (!chip->read_byte || chip->read_byte == nand_read_byte)
2973		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2974	if (!chip->read_word)
2975		chip->read_word = nand_read_word;
2976	if (!chip->block_bad)
2977		chip->block_bad = nand_block_bad;
2978	if (!chip->block_markbad)
2979		chip->block_markbad = nand_default_block_markbad;
2980	if (!chip->write_buf || chip->write_buf == nand_write_buf)
2981		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2982	if (!chip->write_byte || chip->write_byte == nand_write_byte)
2983		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2984	if (!chip->read_buf || chip->read_buf == nand_read_buf)
2985		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2986	if (!chip->scan_bbt)
2987		chip->scan_bbt = nand_default_bbt;
2988
2989	if (!chip->controller) {
2990		chip->controller = &chip->hwcontrol;
2991		spin_lock_init(&chip->controller->lock);
2992		init_waitqueue_head(&chip->controller->wq);
2993	}
2994
2995}
2996
2997/* Sanitize ONFI strings so we can safely print them */
2998static void sanitize_string(uint8_t *s, size_t len)
2999{
3000	ssize_t i;
3001
3002	/* Null terminate */
3003	s[len - 1] = 0;
3004
3005	/* Remove non printable chars */
3006	for (i = 0; i < len - 1; i++) {
3007		if (s[i] < ' ' || s[i] > 127)
3008			s[i] = '?';
3009	}
3010
3011	/* Remove trailing spaces */
3012	strim(s);
3013}
3014
3015static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3016{
3017	int i;
3018	while (len--) {
3019		crc ^= *p++ << 8;
3020		for (i = 0; i < 8; i++)
3021			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3022	}
3023
3024	return crc;
3025}
3026
3027/* Parse the Extended Parameter Page. */
3028static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3029		struct nand_chip *chip, struct nand_onfi_params *p)
3030{
3031	struct onfi_ext_param_page *ep;
3032	struct onfi_ext_section *s;
3033	struct onfi_ext_ecc_info *ecc;
3034	uint8_t *cursor;
3035	int ret = -EINVAL;
3036	int len;
3037	int i;
3038
3039	len = le16_to_cpu(p->ext_param_page_length) * 16;
3040	ep = kmalloc(len, GFP_KERNEL);
3041	if (!ep)
3042		return -ENOMEM;
3043
3044	/* Send our own NAND_CMD_PARAM. */
3045	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3046
3047	/* Use the Change Read Column command to skip the ONFI param pages. */
3048	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3049			sizeof(*p) * p->num_of_param_pages , -1);
3050
3051	/* Read out the Extended Parameter Page. */
3052	chip->read_buf(mtd, (uint8_t *)ep, len);
3053	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3054		!= le16_to_cpu(ep->crc))) {
3055		pr_debug("fail in the CRC.\n");
3056		goto ext_out;
3057	}
3058
3059	/*
3060	 * Check the signature.
3061	 * Do not strictly follow the ONFI spec, maybe changed in future.
3062	 */
3063	if (strncmp(ep->sig, "EPPS", 4)) {
3064		pr_debug("The signature is invalid.\n");
3065		goto ext_out;
3066	}
3067
3068	/* find the ECC section. */
3069	cursor = (uint8_t *)(ep + 1);
3070	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3071		s = ep->sections + i;
3072		if (s->type == ONFI_SECTION_TYPE_2)
3073			break;
3074		cursor += s->length * 16;
3075	}
3076	if (i == ONFI_EXT_SECTION_MAX) {
3077		pr_debug("We can not find the ECC section.\n");
3078		goto ext_out;
3079	}
3080
3081	/* get the info we want. */
3082	ecc = (struct onfi_ext_ecc_info *)cursor;
3083
3084	if (!ecc->codeword_size) {
3085		pr_debug("Invalid codeword size\n");
3086		goto ext_out;
3087	}
3088
3089	chip->ecc_strength_ds = ecc->ecc_bits;
3090	chip->ecc_step_ds = 1 << ecc->codeword_size;
3091	ret = 0;
3092
3093ext_out:
3094	kfree(ep);
3095	return ret;
3096}
3097
3098static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3099{
3100	struct nand_chip *chip = mtd->priv;
3101	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3102
3103	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3104			feature);
3105}
3106
3107/*
3108 * Configure chip properties from Micron vendor-specific ONFI table
3109 */
3110static void nand_onfi_detect_micron(struct nand_chip *chip,
3111		struct nand_onfi_params *p)
3112{
3113	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3114
3115	if (le16_to_cpu(p->vendor_revision) < 1)
3116		return;
3117
3118	chip->read_retries = micron->read_retry_options;
3119	chip->setup_read_retry = nand_setup_read_retry_micron;
3120}
3121
3122/*
3123 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3124 */
3125static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3126					int *busw)
3127{
3128	struct nand_onfi_params *p = &chip->onfi_params;
3129	int i, j;
3130	int val;
3131
3132	/* Try ONFI for unknown chip or LP */
3133	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3134	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3135		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3136		return 0;
3137
3138	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3139	for (i = 0; i < 3; i++) {
3140		for (j = 0; j < sizeof(*p); j++)
3141			((uint8_t *)p)[j] = chip->read_byte(mtd);
3142		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3143				le16_to_cpu(p->crc)) {
3144			break;
3145		}
3146	}
3147
3148	if (i == 3) {
3149		pr_err("Could not find valid ONFI parameter page; aborting\n");
3150		return 0;
3151	}
3152
3153	/* Check version */
3154	val = le16_to_cpu(p->revision);
3155	if (val & (1 << 5))
3156		chip->onfi_version = 23;
3157	else if (val & (1 << 4))
3158		chip->onfi_version = 22;
3159	else if (val & (1 << 3))
3160		chip->onfi_version = 21;
3161	else if (val & (1 << 2))
3162		chip->onfi_version = 20;
3163	else if (val & (1 << 1))
3164		chip->onfi_version = 10;
3165
3166	if (!chip->onfi_version) {
3167		pr_info("unsupported ONFI version: %d\n", val);
3168		return 0;
3169	}
3170
3171	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3172	sanitize_string(p->model, sizeof(p->model));
3173	if (!mtd->name)
3174		mtd->name = p->model;
3175
3176	mtd->writesize = le32_to_cpu(p->byte_per_page);
3177
3178	/*
3179	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3180	 * (don't ask me who thought of this...). MTD assumes that these
3181	 * dimensions will be power-of-2, so just truncate the remaining area.
3182	 */
3183	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3184	mtd->erasesize *= mtd->writesize;
3185
3186	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3187
3188	/* See erasesize comment */
3189	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3190	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3191	chip->bits_per_cell = p->bits_per_cell;
3192
3193	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3194		*busw = NAND_BUSWIDTH_16;
3195	else
3196		*busw = 0;
3197
3198	if (p->ecc_bits != 0xff) {
3199		chip->ecc_strength_ds = p->ecc_bits;
3200		chip->ecc_step_ds = 512;
3201	} else if (chip->onfi_version >= 21 &&
3202		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3203
3204		/*
3205		 * The nand_flash_detect_ext_param_page() uses the
3206		 * Change Read Column command which maybe not supported
3207		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3208		 * now. We do not replace user supplied command function.
3209		 */
3210		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3211			chip->cmdfunc = nand_command_lp;
3212
3213		/* The Extended Parameter Page is supported since ONFI 2.1. */
3214		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3215			pr_warn("Failed to detect ONFI extended param page\n");
3216	} else {
3217		pr_warn("Could not retrieve ONFI ECC requirements\n");
3218	}
3219
3220	if (p->jedec_id == NAND_MFR_MICRON)
3221		nand_onfi_detect_micron(chip, p);
3222
3223	return 1;
3224}
3225
3226/*
3227 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3228 */
3229static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3230					int *busw)
3231{
3232	struct nand_jedec_params *p = &chip->jedec_params;
3233	struct jedec_ecc_info *ecc;
3234	int val;
3235	int i, j;
3236
3237	/* Try JEDEC for unknown chip or LP */
3238	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3239	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3240		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3241		chip->read_byte(mtd) != 'C')
3242		return 0;
3243
3244	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3245	for (i = 0; i < 3; i++) {
3246		for (j = 0; j < sizeof(*p); j++)
3247			((uint8_t *)p)[j] = chip->read_byte(mtd);
3248
3249		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3250				le16_to_cpu(p->crc))
3251			break;
3252	}
3253
3254	if (i == 3) {
3255		pr_err("Could not find valid JEDEC parameter page; aborting\n");
3256		return 0;
3257	}
3258
3259	/* Check version */
3260	val = le16_to_cpu(p->revision);
3261	if (val & (1 << 2))
3262		chip->jedec_version = 10;
3263	else if (val & (1 << 1))
3264		chip->jedec_version = 1; /* vendor specific version */
3265
3266	if (!chip->jedec_version) {
3267		pr_info("unsupported JEDEC version: %d\n", val);
3268		return 0;
3269	}
3270
3271	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3272	sanitize_string(p->model, sizeof(p->model));
3273	if (!mtd->name)
3274		mtd->name = p->model;
3275
3276	mtd->writesize = le32_to_cpu(p->byte_per_page);
3277
3278	/* Please reference to the comment for nand_flash_detect_onfi. */
3279	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3280	mtd->erasesize *= mtd->writesize;
3281
3282	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3283
3284	/* Please reference to the comment for nand_flash_detect_onfi. */
3285	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3286	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3287	chip->bits_per_cell = p->bits_per_cell;
3288
3289	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3290		*busw = NAND_BUSWIDTH_16;
3291	else
3292		*busw = 0;
3293
3294	/* ECC info */
3295	ecc = &p->ecc_info[0];
3296
3297	if (ecc->codeword_size >= 9) {
3298		chip->ecc_strength_ds = ecc->ecc_bits;
3299		chip->ecc_step_ds = 1 << ecc->codeword_size;
3300	} else {
3301		pr_warn("Invalid codeword size\n");
3302	}
3303
3304	return 1;
3305}
3306
3307/*
3308 * nand_id_has_period - Check if an ID string has a given wraparound period
3309 * @id_data: the ID string
3310 * @arrlen: the length of the @id_data array
3311 * @period: the period of repitition
3312 *
3313 * Check if an ID string is repeated within a given sequence of bytes at
3314 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3315 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3316 * if the repetition has a period of @period; otherwise, returns zero.
3317 */
3318static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3319{
3320	int i, j;
3321	for (i = 0; i < period; i++)
3322		for (j = i + period; j < arrlen; j += period)
3323			if (id_data[i] != id_data[j])
3324				return 0;
3325	return 1;
3326}
3327
3328/*
3329 * nand_id_len - Get the length of an ID string returned by CMD_READID
3330 * @id_data: the ID string
3331 * @arrlen: the length of the @id_data array
3332
3333 * Returns the length of the ID string, according to known wraparound/trailing
3334 * zero patterns. If no pattern exists, returns the length of the array.
3335 */
3336static int nand_id_len(u8 *id_data, int arrlen)
3337{
3338	int last_nonzero, period;
3339
3340	/* Find last non-zero byte */
3341	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3342		if (id_data[last_nonzero])
3343			break;
3344
3345	/* All zeros */
3346	if (last_nonzero < 0)
3347		return 0;
3348
3349	/* Calculate wraparound period */
3350	for (period = 1; period < arrlen; period++)
3351		if (nand_id_has_period(id_data, arrlen, period))
3352			break;
3353
3354	/* There's a repeated pattern */
3355	if (period < arrlen)
3356		return period;
3357
3358	/* There are trailing zeros */
3359	if (last_nonzero < arrlen - 1)
3360		return last_nonzero + 1;
3361
3362	/* No pattern detected */
3363	return arrlen;
3364}
3365
3366/* Extract the bits of per cell from the 3rd byte of the extended ID */
3367static int nand_get_bits_per_cell(u8 cellinfo)
3368{
3369	int bits;
3370
3371	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3372	bits >>= NAND_CI_CELLTYPE_SHIFT;
3373	return bits + 1;
3374}
3375
3376/*
3377 * Many new NAND share similar device ID codes, which represent the size of the
3378 * chip. The rest of the parameters must be decoded according to generic or
3379 * manufacturer-specific "extended ID" decoding patterns.
3380 */
3381static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3382				u8 id_data[8], int *busw)
3383{
3384	int extid, id_len;
3385	/* The 3rd id byte holds MLC / multichip data */
3386	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3387	/* The 4th id byte is the important one */
3388	extid = id_data[3];
3389
3390	id_len = nand_id_len(id_data, 8);
3391
3392	/*
3393	 * Field definitions are in the following datasheets:
3394	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3395	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3396	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3397	 *
3398	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3399	 * ID to decide what to do.
3400	 */
3401	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3402			!nand_is_slc(chip) && id_data[5] != 0x00) {
3403		/* Calc pagesize */
3404		mtd->writesize = 2048 << (extid & 0x03);
3405		extid >>= 2;
3406		/* Calc oobsize */
3407		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3408		case 1:
3409			mtd->oobsize = 128;
3410			break;
3411		case 2:
3412			mtd->oobsize = 218;
3413			break;
3414		case 3:
3415			mtd->oobsize = 400;
3416			break;
3417		case 4:
3418			mtd->oobsize = 436;
3419			break;
3420		case 5:
3421			mtd->oobsize = 512;
3422			break;
3423		case 6:
3424			mtd->oobsize = 640;
3425			break;
3426		case 7:
3427		default: /* Other cases are "reserved" (unknown) */
3428			mtd->oobsize = 1024;
3429			break;
3430		}
3431		extid >>= 2;
3432		/* Calc blocksize */
3433		mtd->erasesize = (128 * 1024) <<
3434			(((extid >> 1) & 0x04) | (extid & 0x03));
3435		*busw = 0;
3436	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3437			!nand_is_slc(chip)) {
3438		unsigned int tmp;
3439
3440		/* Calc pagesize */
3441		mtd->writesize = 2048 << (extid & 0x03);
3442		extid >>= 2;
3443		/* Calc oobsize */
3444		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3445		case 0:
3446			mtd->oobsize = 128;
3447			break;
3448		case 1:
3449			mtd->oobsize = 224;
3450			break;
3451		case 2:
3452			mtd->oobsize = 448;
3453			break;
3454		case 3:
3455			mtd->oobsize = 64;
3456			break;
3457		case 4:
3458			mtd->oobsize = 32;
3459			break;
3460		case 5:
3461			mtd->oobsize = 16;
3462			break;
3463		default:
3464			mtd->oobsize = 640;
3465			break;
3466		}
3467		extid >>= 2;
3468		/* Calc blocksize */
3469		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3470		if (tmp < 0x03)
3471			mtd->erasesize = (128 * 1024) << tmp;
3472		else if (tmp == 0x03)
3473			mtd->erasesize = 768 * 1024;
3474		else
3475			mtd->erasesize = (64 * 1024) << tmp;
3476		*busw = 0;
3477	} else {
3478		/* Calc pagesize */
3479		mtd->writesize = 1024 << (extid & 0x03);
3480		extid >>= 2;
3481		/* Calc oobsize */
3482		mtd->oobsize = (8 << (extid & 0x01)) *
3483			(mtd->writesize >> 9);
3484		extid >>= 2;
3485		/* Calc blocksize. Blocksize is multiples of 64KiB */
3486		mtd->erasesize = (64 * 1024) << (extid & 0x03);
3487		extid >>= 2;
3488		/* Get buswidth information */
3489		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3490
3491		/*
3492		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3493		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3494		 * follows:
3495		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3496		 *                         110b -> 24nm
3497		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3498		 */
3499		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3500				nand_is_slc(chip) &&
3501				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3502				!(id_data[4] & 0x80) /* !BENAND */) {
3503			mtd->oobsize = 32 * mtd->writesize >> 9;
3504		}
3505
3506	}
3507}
3508
3509/*
3510 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3511 * decodes a matching ID table entry and assigns the MTD size parameters for
3512 * the chip.
3513 */
3514static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3515				struct nand_flash_dev *type, u8 id_data[8],
3516				int *busw)
3517{
3518	int maf_id = id_data[0];
3519
3520	mtd->erasesize = type->erasesize;
3521	mtd->writesize = type->pagesize;
3522	mtd->oobsize = mtd->writesize / 32;
3523	*busw = type->options & NAND_BUSWIDTH_16;
3524
3525	/* All legacy ID NAND are small-page, SLC */
3526	chip->bits_per_cell = 1;
3527
3528	/*
3529	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3530	 * some Spansion chips have erasesize that conflicts with size
3531	 * listed in nand_ids table.
3532	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3533	 */
3534	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3535			&& id_data[6] == 0x00 && id_data[7] == 0x00
3536			&& mtd->writesize == 512) {
3537		mtd->erasesize = 128 * 1024;
3538		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3539	}
3540}
3541
3542/*
3543 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3544 * heuristic patterns using various detected parameters (e.g., manufacturer,
3545 * page size, cell-type information).
3546 */
3547static void nand_decode_bbm_options(struct mtd_info *mtd,
3548				    struct nand_chip *chip, u8 id_data[8])
3549{
3550	int maf_id = id_data[0];
3551
3552	/* Set the bad block position */
3553	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3554		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3555	else
3556		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3557
3558	/*
3559	 * Bad block marker is stored in the last page of each block on Samsung
3560	 * and Hynix MLC devices; stored in first two pages of each block on
3561	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3562	 * AMD/Spansion, and Macronix.  All others scan only the first page.
3563	 */
3564	if (!nand_is_slc(chip) &&
3565			(maf_id == NAND_MFR_SAMSUNG ||
3566			 maf_id == NAND_MFR_HYNIX))
3567		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3568	else if ((nand_is_slc(chip) &&
3569				(maf_id == NAND_MFR_SAMSUNG ||
3570				 maf_id == NAND_MFR_HYNIX ||
3571				 maf_id == NAND_MFR_TOSHIBA ||
3572				 maf_id == NAND_MFR_AMD ||
3573				 maf_id == NAND_MFR_MACRONIX)) ||
3574			(mtd->writesize == 2048 &&
3575			 maf_id == NAND_MFR_MICRON))
3576		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3577}
3578
3579static inline bool is_full_id_nand(struct nand_flash_dev *type)
3580{
3581	return type->id_len;
3582}
3583
3584static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3585		   struct nand_flash_dev *type, u8 *id_data, int *busw)
3586{
3587	if (!strncmp(type->id, id_data, type->id_len)) {
3588		mtd->writesize = type->pagesize;
3589		mtd->erasesize = type->erasesize;
3590		mtd->oobsize = type->oobsize;
3591
3592		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3593		chip->chipsize = (uint64_t)type->chipsize << 20;
3594		chip->options |= type->options;
3595		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3596		chip->ecc_step_ds = NAND_ECC_STEP(type);
3597		chip->onfi_timing_mode_default =
3598					type->onfi_timing_mode_default;
3599
3600		*busw = type->options & NAND_BUSWIDTH_16;
3601
3602		if (!mtd->name)
3603			mtd->name = type->name;
3604
3605		return true;
3606	}
3607	return false;
3608}
3609
3610/*
3611 * Get the flash and manufacturer id and lookup if the type is supported.
3612 */
3613static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3614						  struct nand_chip *chip,
3615						  int *maf_id, int *dev_id,
3616						  struct nand_flash_dev *type)
3617{
3618	int busw;
3619	int i, maf_idx;
3620	u8 id_data[8];
3621
3622	/* Select the device */
3623	chip->select_chip(mtd, 0);
3624
3625	/*
3626	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3627	 * after power-up.
3628	 */
3629	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3630
3631	/* Send the command for reading device ID */
3632	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3633
3634	/* Read manufacturer and device IDs */
3635	*maf_id = chip->read_byte(mtd);
3636	*dev_id = chip->read_byte(mtd);
3637
3638	/*
3639	 * Try again to make sure, as some systems the bus-hold or other
3640	 * interface concerns can cause random data which looks like a
3641	 * possibly credible NAND flash to appear. If the two results do
3642	 * not match, ignore the device completely.
3643	 */
3644
3645	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3646
3647	/* Read entire ID string */
3648	for (i = 0; i < 8; i++)
3649		id_data[i] = chip->read_byte(mtd);
3650
3651	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3652		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3653			*maf_id, *dev_id, id_data[0], id_data[1]);
3654		return ERR_PTR(-ENODEV);
3655	}
3656
3657	if (!type)
3658		type = nand_flash_ids;
3659
3660	for (; type->name != NULL; type++) {
3661		if (is_full_id_nand(type)) {
3662			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3663				goto ident_done;
3664		} else if (*dev_id == type->dev_id) {
3665				break;
3666		}
3667	}
3668
3669	chip->onfi_version = 0;
3670	if (!type->name || !type->pagesize) {
3671		/* Check if the chip is ONFI compliant */
3672		if (nand_flash_detect_onfi(mtd, chip, &busw))
3673			goto ident_done;
3674
3675		/* Check if the chip is JEDEC compliant */
3676		if (nand_flash_detect_jedec(mtd, chip, &busw))
3677			goto ident_done;
3678	}
3679
3680	if (!type->name)
3681		return ERR_PTR(-ENODEV);
3682
3683	if (!mtd->name)
3684		mtd->name = type->name;
3685
3686	chip->chipsize = (uint64_t)type->chipsize << 20;
3687
3688	if (!type->pagesize && chip->init_size) {
3689		/* Set the pagesize, oobsize, erasesize by the driver */
3690		busw = chip->init_size(mtd, chip, id_data);
3691	} else if (!type->pagesize) {
3692		/* Decode parameters from extended ID */
3693		nand_decode_ext_id(mtd, chip, id_data, &busw);
3694	} else {
3695		nand_decode_id(mtd, chip, type, id_data, &busw);
3696	}
3697	/* Get chip options */
3698	chip->options |= type->options;
3699
3700	/*
3701	 * Check if chip is not a Samsung device. Do not clear the
3702	 * options for chips which do not have an extended id.
3703	 */
3704	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3705		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3706ident_done:
3707
3708	/* Try to identify manufacturer */
3709	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3710		if (nand_manuf_ids[maf_idx].id == *maf_id)
3711			break;
3712	}
3713
3714	if (chip->options & NAND_BUSWIDTH_AUTO) {
3715		WARN_ON(chip->options & NAND_BUSWIDTH_16);
3716		chip->options |= busw;
3717		nand_set_defaults(chip, busw);
3718	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3719		/*
3720		 * Check, if buswidth is correct. Hardware drivers should set
3721		 * chip correct!
3722		 */
3723		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3724			*maf_id, *dev_id);
3725		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3726		pr_warn("bus width %d instead %d bit\n",
3727			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3728			   busw ? 16 : 8);
3729		return ERR_PTR(-EINVAL);
3730	}
3731
3732	nand_decode_bbm_options(mtd, chip, id_data);
3733
3734	/* Calculate the address shift from the page size */
3735	chip->page_shift = ffs(mtd->writesize) - 1;
3736	/* Convert chipsize to number of pages per chip -1 */
3737	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3738
3739	chip->bbt_erase_shift = chip->phys_erase_shift =
3740		ffs(mtd->erasesize) - 1;
3741	if (chip->chipsize & 0xffffffff)
3742		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3743	else {
3744		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3745		chip->chip_shift += 32 - 1;
3746	}
3747
3748	chip->badblockbits = 8;
3749	chip->erase = single_erase;
3750
3751	/* Do not replace user supplied command function! */
3752	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3753		chip->cmdfunc = nand_command_lp;
3754
3755	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3756		*maf_id, *dev_id);
3757
3758	if (chip->onfi_version)
3759		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3760				chip->onfi_params.model);
3761	else if (chip->jedec_version)
3762		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3763				chip->jedec_params.model);
3764	else
3765		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3766				type->name);
3767
3768	pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3769		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3770		mtd->writesize, mtd->oobsize);
3771	return type;
3772}
3773
3774/**
3775 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3776 * @mtd: MTD device structure
3777 * @maxchips: number of chips to scan for
3778 * @table: alternative NAND ID table
3779 *
3780 * This is the first phase of the normal nand_scan() function. It reads the
3781 * flash ID and sets up MTD fields accordingly.
3782 *
3783 * The mtd->owner field must be set to the module of the caller.
3784 */
3785int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3786		    struct nand_flash_dev *table)
3787{
3788	int i, nand_maf_id, nand_dev_id;
3789	struct nand_chip *chip = mtd->priv;
3790	struct nand_flash_dev *type;
3791
3792	/* Set the default functions */
3793	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3794
3795	/* Read the flash type */
3796	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3797				   &nand_dev_id, table);
3798
3799	if (IS_ERR(type)) {
3800		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3801			pr_warn("No NAND device found\n");
3802		chip->select_chip(mtd, -1);
3803		return PTR_ERR(type);
3804	}
3805
3806	chip->select_chip(mtd, -1);
3807
3808	/* Check for a chip array */
3809	for (i = 1; i < maxchips; i++) {
3810		chip->select_chip(mtd, i);
3811		/* See comment in nand_get_flash_type for reset */
3812		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3813		/* Send the command for reading device ID */
3814		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3815		/* Read manufacturer and device IDs */
3816		if (nand_maf_id != chip->read_byte(mtd) ||
3817		    nand_dev_id != chip->read_byte(mtd)) {
3818			chip->select_chip(mtd, -1);
3819			break;
3820		}
3821		chip->select_chip(mtd, -1);
3822	}
3823	if (i > 1)
3824		pr_info("%d chips detected\n", i);
3825
3826	/* Store the number of chips and calc total size for mtd */
3827	chip->numchips = i;
3828	mtd->size = i * chip->chipsize;
3829
3830	return 0;
3831}
3832EXPORT_SYMBOL(nand_scan_ident);
3833
3834/*
3835 * Check if the chip configuration meet the datasheet requirements.
3836
3837 * If our configuration corrects A bits per B bytes and the minimum
3838 * required correction level is X bits per Y bytes, then we must ensure
3839 * both of the following are true:
3840 *
3841 * (1) A / B >= X / Y
3842 * (2) A >= X
3843 *
3844 * Requirement (1) ensures we can correct for the required bitflip density.
3845 * Requirement (2) ensures we can correct even when all bitflips are clumped
3846 * in the same sector.
3847 */
3848static bool nand_ecc_strength_good(struct mtd_info *mtd)
3849{
3850	struct nand_chip *chip = mtd->priv;
3851	struct nand_ecc_ctrl *ecc = &chip->ecc;
3852	int corr, ds_corr;
3853
3854	if (ecc->size == 0 || chip->ecc_step_ds == 0)
3855		/* Not enough information */
3856		return true;
3857
3858	/*
3859	 * We get the number of corrected bits per page to compare
3860	 * the correction density.
3861	 */
3862	corr = (mtd->writesize * ecc->strength) / ecc->size;
3863	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3864
3865	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3866}
3867
3868/**
3869 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3870 * @mtd: MTD device structure
3871 *
3872 * This is the second phase of the normal nand_scan() function. It fills out
3873 * all the uninitialized function pointers with the defaults and scans for a
3874 * bad block table if appropriate.
3875 */
3876int nand_scan_tail(struct mtd_info *mtd)
3877{
3878	int i;
3879	struct nand_chip *chip = mtd->priv;
3880	struct nand_ecc_ctrl *ecc = &chip->ecc;
3881	struct nand_buffers *nbuf;
3882
3883	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
3884	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3885			!(chip->bbt_options & NAND_BBT_USE_FLASH));
3886
3887	if (!(chip->options & NAND_OWN_BUFFERS)) {
3888		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3889				+ mtd->oobsize * 3, GFP_KERNEL);
3890		if (!nbuf)
3891			return -ENOMEM;
3892		nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3893		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3894		nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3895
3896		chip->buffers = nbuf;
3897	} else {
3898		if (!chip->buffers)
3899			return -ENOMEM;
3900	}
3901
3902	/* Set the internal oob buffer location, just after the page data */
3903	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3904
3905	/*
3906	 * If no default placement scheme is given, select an appropriate one.
3907	 */
3908	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3909		switch (mtd->oobsize) {
3910		case 8:
3911			ecc->layout = &nand_oob_8;
3912			break;
3913		case 16:
3914			ecc->layout = &nand_oob_16;
3915			break;
3916		case 64:
3917			ecc->layout = &nand_oob_64;
3918			break;
3919		case 128:
3920			ecc->layout = &nand_oob_128;
3921			break;
3922		default:
3923			pr_warn("No oob scheme defined for oobsize %d\n",
3924				   mtd->oobsize);
3925			BUG();
3926		}
3927	}
3928
3929	if (!chip->write_page)
3930		chip->write_page = nand_write_page;
3931
3932	/*
3933	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3934	 * selected and we have 256 byte pagesize fallback to software ECC
3935	 */
3936
3937	switch (ecc->mode) {
3938	case NAND_ECC_HW_OOB_FIRST:
3939		/* Similar to NAND_ECC_HW, but a separate read_page handle */
3940		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3941			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3942			BUG();
3943		}
3944		if (!ecc->read_page)
3945			ecc->read_page = nand_read_page_hwecc_oob_first;
3946
3947	case NAND_ECC_HW:
3948		/* Use standard hwecc read page function? */
3949		if (!ecc->read_page)
3950			ecc->read_page = nand_read_page_hwecc;
3951		if (!ecc->write_page)
3952			ecc->write_page = nand_write_page_hwecc;
3953		if (!ecc->read_page_raw)
3954			ecc->read_page_raw = nand_read_page_raw;
3955		if (!ecc->write_page_raw)
3956			ecc->write_page_raw = nand_write_page_raw;
3957		if (!ecc->read_oob)
3958			ecc->read_oob = nand_read_oob_std;
3959		if (!ecc->write_oob)
3960			ecc->write_oob = nand_write_oob_std;
3961		if (!ecc->read_subpage)
3962			ecc->read_subpage = nand_read_subpage;
3963		if (!ecc->write_subpage)
3964			ecc->write_subpage = nand_write_subpage_hwecc;
3965
3966	case NAND_ECC_HW_SYNDROME:
3967		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3968		    (!ecc->read_page ||
3969		     ecc->read_page == nand_read_page_hwecc ||
3970		     !ecc->write_page ||
3971		     ecc->write_page == nand_write_page_hwecc)) {
3972			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3973			BUG();
3974		}
3975		/* Use standard syndrome read/write page function? */
3976		if (!ecc->read_page)
3977			ecc->read_page = nand_read_page_syndrome;
3978		if (!ecc->write_page)
3979			ecc->write_page = nand_write_page_syndrome;
3980		if (!ecc->read_page_raw)
3981			ecc->read_page_raw = nand_read_page_raw_syndrome;
3982		if (!ecc->write_page_raw)
3983			ecc->write_page_raw = nand_write_page_raw_syndrome;
3984		if (!ecc->read_oob)
3985			ecc->read_oob = nand_read_oob_syndrome;
3986		if (!ecc->write_oob)
3987			ecc->write_oob = nand_write_oob_syndrome;
3988
3989		if (mtd->writesize >= ecc->size) {
3990			if (!ecc->strength) {
3991				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3992				BUG();
3993			}
3994			break;
3995		}
3996		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
3997			ecc->size, mtd->writesize);
3998		ecc->mode = NAND_ECC_SOFT;
3999
4000	case NAND_ECC_SOFT:
4001		ecc->calculate = nand_calculate_ecc;
4002		ecc->correct = nand_correct_data;
4003		ecc->read_page = nand_read_page_swecc;
4004		ecc->read_subpage = nand_read_subpage;
4005		ecc->write_page = nand_write_page_swecc;
4006		ecc->read_page_raw = nand_read_page_raw;
4007		ecc->write_page_raw = nand_write_page_raw;
4008		ecc->read_oob = nand_read_oob_std;
4009		ecc->write_oob = nand_write_oob_std;
4010		if (!ecc->size)
4011			ecc->size = 256;
4012		ecc->bytes = 3;
4013		ecc->strength = 1;
4014		break;
4015
4016	case NAND_ECC_SOFT_BCH:
4017		if (!mtd_nand_has_bch()) {
4018			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4019			BUG();
4020		}
4021		ecc->calculate = nand_bch_calculate_ecc;
4022		ecc->correct = nand_bch_correct_data;
4023		ecc->read_page = nand_read_page_swecc;
4024		ecc->read_subpage = nand_read_subpage;
4025		ecc->write_page = nand_write_page_swecc;
4026		ecc->read_page_raw = nand_read_page_raw;
4027		ecc->write_page_raw = nand_write_page_raw;
4028		ecc->read_oob = nand_read_oob_std;
4029		ecc->write_oob = nand_write_oob_std;
4030		/*
4031		 * Board driver should supply ecc.size and ecc.bytes values to
4032		 * select how many bits are correctable; see nand_bch_init()
4033		 * for details. Otherwise, default to 4 bits for large page
4034		 * devices.
4035		 */
4036		if (!ecc->size && (mtd->oobsize >= 64)) {
4037			ecc->size = 512;
4038			ecc->bytes = 7;
4039		}
4040		ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4041					       &ecc->layout);
4042		if (!ecc->priv) {
4043			pr_warn("BCH ECC initialization failed!\n");
4044			BUG();
4045		}
4046		ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
4047		break;
4048
4049	case NAND_ECC_NONE:
4050		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4051		ecc->read_page = nand_read_page_raw;
4052		ecc->write_page = nand_write_page_raw;
4053		ecc->read_oob = nand_read_oob_std;
4054		ecc->read_page_raw = nand_read_page_raw;
4055		ecc->write_page_raw = nand_write_page_raw;
4056		ecc->write_oob = nand_write_oob_std;
4057		ecc->size = mtd->writesize;
4058		ecc->bytes = 0;
4059		ecc->strength = 0;
4060		break;
4061
4062	default:
4063		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4064		BUG();
4065	}
4066
4067	/* For many systems, the standard OOB write also works for raw */
4068	if (!ecc->read_oob_raw)
4069		ecc->read_oob_raw = ecc->read_oob;
4070	if (!ecc->write_oob_raw)
4071		ecc->write_oob_raw = ecc->write_oob;
4072
4073	/*
4074	 * The number of bytes available for a client to place data into
4075	 * the out of band area.
4076	 */
4077	ecc->layout->oobavail = 0;
4078	for (i = 0; ecc->layout->oobfree[i].length
4079			&& i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4080		ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4081	mtd->oobavail = ecc->layout->oobavail;
4082
4083	/* ECC sanity check: warn if it's too weak */
4084	if (!nand_ecc_strength_good(mtd))
4085		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4086			mtd->name);
4087
4088	/*
4089	 * Set the number of read / write steps for one page depending on ECC
4090	 * mode.
4091	 */
4092	ecc->steps = mtd->writesize / ecc->size;
4093	if (ecc->steps * ecc->size != mtd->writesize) {
4094		pr_warn("Invalid ECC parameters\n");
4095		BUG();
4096	}
4097	ecc->total = ecc->steps * ecc->bytes;
4098
4099	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4100	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4101		switch (ecc->steps) {
4102		case 2:
4103			mtd->subpage_sft = 1;
4104			break;
4105		case 4:
4106		case 8:
4107		case 16:
4108			mtd->subpage_sft = 2;
4109			break;
4110		}
4111	}
4112	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4113
4114	/* Initialize state */
4115	chip->state = FL_READY;
4116
4117	/* Invalidate the pagebuffer reference */
4118	chip->pagebuf = -1;
4119
4120	/* Large page NAND with SOFT_ECC should support subpage reads */
4121	switch (ecc->mode) {
4122	case NAND_ECC_SOFT:
4123	case NAND_ECC_SOFT_BCH:
4124		if (chip->page_shift > 9)
4125			chip->options |= NAND_SUBPAGE_READ;
4126		break;
4127
4128	default:
4129		break;
4130	}
4131
4132	/* Fill in remaining MTD driver data */
4133	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4134	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4135						MTD_CAP_NANDFLASH;
4136	mtd->_erase = nand_erase;
4137	mtd->_point = NULL;
4138	mtd->_unpoint = NULL;
4139	mtd->_read = nand_read;
4140	mtd->_write = nand_write;
4141	mtd->_panic_write = panic_nand_write;
4142	mtd->_read_oob = nand_read_oob;
4143	mtd->_write_oob = nand_write_oob;
4144	mtd->_sync = nand_sync;
4145	mtd->_lock = NULL;
4146	mtd->_unlock = NULL;
4147	mtd->_suspend = nand_suspend;
4148	mtd->_resume = nand_resume;
4149	mtd->_block_isreserved = nand_block_isreserved;
4150	mtd->_block_isbad = nand_block_isbad;
4151	mtd->_block_markbad = nand_block_markbad;
4152	mtd->writebufsize = mtd->writesize;
4153
4154	/* propagate ecc info to mtd_info */
4155	mtd->ecclayout = ecc->layout;
4156	mtd->ecc_strength = ecc->strength;
4157	mtd->ecc_step_size = ecc->size;
4158	/*
4159	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4160	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4161	 * properly set.
4162	 */
4163	if (!mtd->bitflip_threshold)
4164		mtd->bitflip_threshold = mtd->ecc_strength;
4165
4166	/* Check, if we should skip the bad block table scan */
4167	if (chip->options & NAND_SKIP_BBTSCAN)
4168		return 0;
4169
4170	/* Build bad block table */
4171	return chip->scan_bbt(mtd);
4172}
4173EXPORT_SYMBOL(nand_scan_tail);
4174
4175/*
4176 * is_module_text_address() isn't exported, and it's mostly a pointless
4177 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4178 * to call us from in-kernel code if the core NAND support is modular.
4179 */
4180#ifdef MODULE
4181#define caller_is_module() (1)
4182#else
4183#define caller_is_module() \
4184	is_module_text_address((unsigned long)__builtin_return_address(0))
4185#endif
4186
4187/**
4188 * nand_scan - [NAND Interface] Scan for the NAND device
4189 * @mtd: MTD device structure
4190 * @maxchips: number of chips to scan for
4191 *
4192 * This fills out all the uninitialized function pointers with the defaults.
4193 * The flash ID is read and the mtd/chip structures are filled with the
4194 * appropriate values. The mtd->owner field must be set to the module of the
4195 * caller.
4196 */
4197int nand_scan(struct mtd_info *mtd, int maxchips)
4198{
4199	int ret;
4200
4201	/* Many callers got this wrong, so check for it for a while... */
4202	if (!mtd->owner && caller_is_module()) {
4203		pr_crit("%s called with NULL mtd->owner!\n", __func__);
4204		BUG();
4205	}
4206
4207	ret = nand_scan_ident(mtd, maxchips, NULL);
4208	if (!ret)
4209		ret = nand_scan_tail(mtd);
4210	return ret;
4211}
4212EXPORT_SYMBOL(nand_scan);
4213
4214/**
4215 * nand_release - [NAND Interface] Free resources held by the NAND device
4216 * @mtd: MTD device structure
4217 */
4218void nand_release(struct mtd_info *mtd)
4219{
4220	struct nand_chip *chip = mtd->priv;
4221
4222	if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4223		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4224
4225	mtd_device_unregister(mtd);
4226
4227	/* Free bad block table memory */
4228	kfree(chip->bbt);
4229	if (!(chip->options & NAND_OWN_BUFFERS))
4230		kfree(chip->buffers);
4231
4232	/* Free bad block descriptor memory */
4233	if (chip->badblock_pattern && chip->badblock_pattern->options
4234			& NAND_BBT_DYNAMICSTRUCT)
4235		kfree(chip->badblock_pattern);
4236}
4237EXPORT_SYMBOL_GPL(nand_release);
4238
4239static int __init nand_base_init(void)
4240{
4241	led_trigger_register_simple("nand-disk", &nand_led_trigger);
4242	return 0;
4243}
4244
4245static void __exit nand_base_exit(void)
4246{
4247	led_trigger_unregister_simple(nand_led_trigger);
4248}
4249
4250module_init(nand_base_init);
4251module_exit(nand_base_exit);
4252
4253MODULE_LICENSE("GPL");
4254MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4255MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4256MODULE_DESCRIPTION("Generic NAND flash driver code");
4257