[go: nahoru, domu]

1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 */
25
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/vmalloc.h>
31#include <linux/math64.h>
32#include <linux/slab.h>
33#include <linux/errno.h>
34#include <linux/string.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/nand.h>
37#include <linux/mtd/nand_bch.h>
38#include <linux/mtd/partitions.h>
39#include <linux/delay.h>
40#include <linux/list.h>
41#include <linux/random.h>
42#include <linux/sched.h>
43#include <linux/fs.h>
44#include <linux/pagemap.h>
45#include <linux/seq_file.h>
46#include <linux/debugfs.h>
47
48/* Default simulator parameters values */
49#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57#endif
58
59#ifndef CONFIG_NANDSIM_ACCESS_DELAY
60#define CONFIG_NANDSIM_ACCESS_DELAY 25
61#endif
62#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64#endif
65#ifndef CONFIG_NANDSIM_ERASE_DELAY
66#define CONFIG_NANDSIM_ERASE_DELAY 2
67#endif
68#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70#endif
71#ifndef CONFIG_NANDSIM_INPUT_CYCLE
72#define CONFIG_NANDSIM_INPUT_CYCLE  50
73#endif
74#ifndef CONFIG_NANDSIM_BUS_WIDTH
75#define CONFIG_NANDSIM_BUS_WIDTH  8
76#endif
77#ifndef CONFIG_NANDSIM_DO_DELAYS
78#define CONFIG_NANDSIM_DO_DELAYS  0
79#endif
80#ifndef CONFIG_NANDSIM_LOG
81#define CONFIG_NANDSIM_LOG        0
82#endif
83#ifndef CONFIG_NANDSIM_DBG
84#define CONFIG_NANDSIM_DBG        0
85#endif
86#ifndef CONFIG_NANDSIM_MAX_PARTS
87#define CONFIG_NANDSIM_MAX_PARTS  32
88#endif
89
90static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
91static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
92static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
93static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
94static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
95static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
96static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
97static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
98static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
99static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
100static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
101static uint log            = CONFIG_NANDSIM_LOG;
102static uint dbg            = CONFIG_NANDSIM_DBG;
103static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
104static unsigned int parts_num;
105static char *badblocks = NULL;
106static char *weakblocks = NULL;
107static char *weakpages = NULL;
108static unsigned int bitflips = 0;
109static char *gravepages = NULL;
110static unsigned int overridesize = 0;
111static char *cache_file = NULL;
112static unsigned int bbt;
113static unsigned int bch;
114
115module_param(first_id_byte,  uint, 0400);
116module_param(second_id_byte, uint, 0400);
117module_param(third_id_byte,  uint, 0400);
118module_param(fourth_id_byte, uint, 0400);
119module_param(access_delay,   uint, 0400);
120module_param(programm_delay, uint, 0400);
121module_param(erase_delay,    uint, 0400);
122module_param(output_cycle,   uint, 0400);
123module_param(input_cycle,    uint, 0400);
124module_param(bus_width,      uint, 0400);
125module_param(do_delays,      uint, 0400);
126module_param(log,            uint, 0400);
127module_param(dbg,            uint, 0400);
128module_param_array(parts, ulong, &parts_num, 0400);
129module_param(badblocks,      charp, 0400);
130module_param(weakblocks,     charp, 0400);
131module_param(weakpages,      charp, 0400);
132module_param(bitflips,       uint, 0400);
133module_param(gravepages,     charp, 0400);
134module_param(overridesize,   uint, 0400);
135module_param(cache_file,     charp, 0400);
136module_param(bbt,	     uint, 0400);
137module_param(bch,	     uint, 0400);
138
139MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
142MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
144MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
146MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
147MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
148MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
149MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
150MODULE_PARM_DESC(log,            "Perform logging if not zero");
151MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
152MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
153/* Page and erase block positions for the following parameters are independent of any partitions */
154MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
155MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156				 " separated by commas e.g. 113:2 means eb 113"
157				 " can be erased only twice before failing");
158MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
159				 " separated by commas e.g. 1401:2 means page 1401"
160				 " can be written only twice before failing");
161MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
162MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
163				 " separated by commas e.g. 1401:2 means page 1401"
164				 " can be read only twice before failing");
165MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
166				 "The size is specified in erase blocks and as the exponent of a power of two"
167				 " e.g. 5 means a size of 32 erase blocks");
168MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
169MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
170MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
171				 "be correctable in 512-byte blocks");
172
173/* The largest possible page size */
174#define NS_LARGEST_PAGE_SIZE	4096
175
176/* The prefix for simulator output */
177#define NS_OUTPUT_PREFIX "[nandsim]"
178
179/* Simulator's output macros (logging, debugging, warning, error) */
180#define NS_LOG(args...) \
181	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
182#define NS_DBG(args...) \
183	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
184#define NS_WARN(args...) \
185	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
186#define NS_ERR(args...) \
187	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
188#define NS_INFO(args...) \
189	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
190
191/* Busy-wait delay macros (microseconds, milliseconds) */
192#define NS_UDELAY(us) \
193        do { if (do_delays) udelay(us); } while(0)
194#define NS_MDELAY(us) \
195        do { if (do_delays) mdelay(us); } while(0)
196
197/* Is the nandsim structure initialized ? */
198#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
199
200/* Good operation completion status */
201#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
202
203/* Operation failed completion status */
204#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
205
206/* Calculate the page offset in flash RAM image by (row, column) address */
207#define NS_RAW_OFFSET(ns) \
208	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
209
210/* Calculate the OOB offset in flash RAM image by (row, column) address */
211#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
212
213/* After a command is input, the simulator goes to one of the following states */
214#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
215#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
216#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
217#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
218#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
219#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
220#define STATE_CMD_STATUS       0x00000007 /* read status */
221#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
222#define STATE_CMD_READID       0x0000000A /* read ID */
223#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
224#define STATE_CMD_RESET        0x0000000C /* reset */
225#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
226#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
227#define STATE_CMD_MASK         0x0000000F /* command states mask */
228
229/* After an address is input, the simulator goes to one of these states */
230#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
231#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
232#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
233#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
234#define STATE_ADDR_MASK        0x00000070 /* address states mask */
235
236/* During data input/output the simulator is in these states */
237#define STATE_DATAIN           0x00000100 /* waiting for data input */
238#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
239
240#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
241#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
242#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
243#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
244#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
245
246/* Previous operation is done, ready to accept new requests */
247#define STATE_READY            0x00000000
248
249/* This state is used to mark that the next state isn't known yet */
250#define STATE_UNKNOWN          0x10000000
251
252/* Simulator's actions bit masks */
253#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
254#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
255#define ACTION_SECERASE  0x00300000 /* erase sector */
256#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
257#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
258#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
259#define ACTION_MASK      0x00700000 /* action mask */
260
261#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
262#define NS_OPER_STATES   6  /* Maximum number of states in operation */
263
264#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
265#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
266#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
267#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
268#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
269#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
270#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
271#define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
272
273/* Remove action bits from state */
274#define NS_STATE(x) ((x) & ~ACTION_MASK)
275
276/*
277 * Maximum previous states which need to be saved. Currently saving is
278 * only needed for page program operation with preceded read command
279 * (which is only valid for 512-byte pages).
280 */
281#define NS_MAX_PREVSTATES 1
282
283/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
284#define NS_MAX_HELD_PAGES 16
285
286struct nandsim_debug_info {
287	struct dentry *dfs_root;
288	struct dentry *dfs_wear_report;
289};
290
291/*
292 * A union to represent flash memory contents and flash buffer.
293 */
294union ns_mem {
295	u_char *byte;    /* for byte access */
296	uint16_t *word;  /* for 16-bit word access */
297};
298
299/*
300 * The structure which describes all the internal simulator data.
301 */
302struct nandsim {
303	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
304	unsigned int nbparts;
305
306	uint busw;              /* flash chip bus width (8 or 16) */
307	u_char ids[4];          /* chip's ID bytes */
308	uint32_t options;       /* chip's characteristic bits */
309	uint32_t state;         /* current chip state */
310	uint32_t nxstate;       /* next expected state */
311
312	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
313	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
314	uint16_t npstates;      /* number of previous states saved */
315	uint16_t stateidx;      /* current state index */
316
317	/* The simulated NAND flash pages array */
318	union ns_mem *pages;
319
320	/* Slab allocator for nand pages */
321	struct kmem_cache *nand_pages_slab;
322
323	/* Internal buffer of page + OOB size bytes */
324	union ns_mem buf;
325
326	/* NAND flash "geometry" */
327	struct {
328		uint64_t totsz;     /* total flash size, bytes */
329		uint32_t secsz;     /* flash sector (erase block) size, bytes */
330		uint pgsz;          /* NAND flash page size, bytes */
331		uint oobsz;         /* page OOB area size, bytes */
332		uint64_t totszoob;  /* total flash size including OOB, bytes */
333		uint pgszoob;       /* page size including OOB , bytes*/
334		uint secszoob;      /* sector size including OOB, bytes */
335		uint pgnum;         /* total number of pages */
336		uint pgsec;         /* number of pages per sector */
337		uint secshift;      /* bits number in sector size */
338		uint pgshift;       /* bits number in page size */
339		uint pgaddrbytes;   /* bytes per page address */
340		uint secaddrbytes;  /* bytes per sector address */
341		uint idbytes;       /* the number ID bytes that this chip outputs */
342	} geom;
343
344	/* NAND flash internal registers */
345	struct {
346		unsigned command; /* the command register */
347		u_char   status;  /* the status register */
348		uint     row;     /* the page number */
349		uint     column;  /* the offset within page */
350		uint     count;   /* internal counter */
351		uint     num;     /* number of bytes which must be processed */
352		uint     off;     /* fixed page offset */
353	} regs;
354
355	/* NAND flash lines state */
356        struct {
357                int ce;  /* chip Enable */
358                int cle; /* command Latch Enable */
359                int ale; /* address Latch Enable */
360                int wp;  /* write Protect */
361        } lines;
362
363	/* Fields needed when using a cache file */
364	struct file *cfile; /* Open file */
365	unsigned long *pages_written; /* Which pages have been written */
366	void *file_buf;
367	struct page *held_pages[NS_MAX_HELD_PAGES];
368	int held_cnt;
369
370	struct nandsim_debug_info dbg;
371};
372
373/*
374 * Operations array. To perform any operation the simulator must pass
375 * through the correspondent states chain.
376 */
377static struct nandsim_operations {
378	uint32_t reqopts;  /* options which are required to perform the operation */
379	uint32_t states[NS_OPER_STATES]; /* operation's states */
380} ops[NS_OPER_NUM] = {
381	/* Read page + OOB from the beginning */
382	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
383			STATE_DATAOUT, STATE_READY}},
384	/* Read page + OOB from the second half */
385	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
386			STATE_DATAOUT, STATE_READY}},
387	/* Read OOB */
388	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
389			STATE_DATAOUT, STATE_READY}},
390	/* Program page starting from the beginning */
391	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
392			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
393	/* Program page starting from the beginning */
394	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
395			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396	/* Program page starting from the second half */
397	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
398			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399	/* Program OOB */
400	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
401			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402	/* Erase sector */
403	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
404	/* Read status */
405	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
406	/* Read ID */
407	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
408	/* Large page devices read page */
409	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
410			       STATE_DATAOUT, STATE_READY}},
411	/* Large page devices random page read */
412	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
413			       STATE_DATAOUT, STATE_READY}},
414};
415
416struct weak_block {
417	struct list_head list;
418	unsigned int erase_block_no;
419	unsigned int max_erases;
420	unsigned int erases_done;
421};
422
423static LIST_HEAD(weak_blocks);
424
425struct weak_page {
426	struct list_head list;
427	unsigned int page_no;
428	unsigned int max_writes;
429	unsigned int writes_done;
430};
431
432static LIST_HEAD(weak_pages);
433
434struct grave_page {
435	struct list_head list;
436	unsigned int page_no;
437	unsigned int max_reads;
438	unsigned int reads_done;
439};
440
441static LIST_HEAD(grave_pages);
442
443static unsigned long *erase_block_wear = NULL;
444static unsigned int wear_eb_count = 0;
445static unsigned long total_wear = 0;
446
447/* MTD structure for NAND controller */
448static struct mtd_info *nsmtd;
449
450static int nandsim_debugfs_show(struct seq_file *m, void *private)
451{
452	unsigned long wmin = -1, wmax = 0, avg;
453	unsigned long deciles[10], decile_max[10], tot = 0;
454	unsigned int i;
455
456	/* Calc wear stats */
457	for (i = 0; i < wear_eb_count; ++i) {
458		unsigned long wear = erase_block_wear[i];
459		if (wear < wmin)
460			wmin = wear;
461		if (wear > wmax)
462			wmax = wear;
463		tot += wear;
464	}
465
466	for (i = 0; i < 9; ++i) {
467		deciles[i] = 0;
468		decile_max[i] = (wmax * (i + 1) + 5) / 10;
469	}
470	deciles[9] = 0;
471	decile_max[9] = wmax;
472	for (i = 0; i < wear_eb_count; ++i) {
473		int d;
474		unsigned long wear = erase_block_wear[i];
475		for (d = 0; d < 10; ++d)
476			if (wear <= decile_max[d]) {
477				deciles[d] += 1;
478				break;
479			}
480	}
481	avg = tot / wear_eb_count;
482
483	/* Output wear report */
484	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
485	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
486	seq_printf(m, "Average number of erases: %lu\n", avg);
487	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
488	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
489	for (i = 0; i < 10; ++i) {
490		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
491		if (from > decile_max[i])
492			continue;
493		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
494			from,
495			decile_max[i],
496			deciles[i]);
497	}
498
499	return 0;
500}
501
502static int nandsim_debugfs_open(struct inode *inode, struct file *file)
503{
504	return single_open(file, nandsim_debugfs_show, inode->i_private);
505}
506
507static const struct file_operations dfs_fops = {
508	.open		= nandsim_debugfs_open,
509	.read		= seq_read,
510	.llseek		= seq_lseek,
511	.release	= single_release,
512};
513
514/**
515 * nandsim_debugfs_create - initialize debugfs
516 * @dev: nandsim device description object
517 *
518 * This function creates all debugfs files for UBI device @ubi. Returns zero in
519 * case of success and a negative error code in case of failure.
520 */
521static int nandsim_debugfs_create(struct nandsim *dev)
522{
523	struct nandsim_debug_info *dbg = &dev->dbg;
524	struct dentry *dent;
525	int err;
526
527	if (!IS_ENABLED(CONFIG_DEBUG_FS))
528		return 0;
529
530	dent = debugfs_create_dir("nandsim", NULL);
531	if (IS_ERR_OR_NULL(dent)) {
532		int err = dent ? -ENODEV : PTR_ERR(dent);
533
534		NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
535			err);
536		return err;
537	}
538	dbg->dfs_root = dent;
539
540	dent = debugfs_create_file("wear_report", S_IRUSR,
541				   dbg->dfs_root, dev, &dfs_fops);
542	if (IS_ERR_OR_NULL(dent))
543		goto out_remove;
544	dbg->dfs_wear_report = dent;
545
546	return 0;
547
548out_remove:
549	debugfs_remove_recursive(dbg->dfs_root);
550	err = dent ? PTR_ERR(dent) : -ENODEV;
551	return err;
552}
553
554/**
555 * nandsim_debugfs_remove - destroy all debugfs files
556 */
557static void nandsim_debugfs_remove(struct nandsim *ns)
558{
559	if (IS_ENABLED(CONFIG_DEBUG_FS))
560		debugfs_remove_recursive(ns->dbg.dfs_root);
561}
562
563/*
564 * Allocate array of page pointers, create slab allocation for an array
565 * and initialize the array by NULL pointers.
566 *
567 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
568 */
569static int alloc_device(struct nandsim *ns)
570{
571	struct file *cfile;
572	int i, err;
573
574	if (cache_file) {
575		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
576		if (IS_ERR(cfile))
577			return PTR_ERR(cfile);
578		if (!(cfile->f_mode & FMODE_CAN_READ)) {
579			NS_ERR("alloc_device: cache file not readable\n");
580			err = -EINVAL;
581			goto err_close;
582		}
583		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
584			NS_ERR("alloc_device: cache file not writeable\n");
585			err = -EINVAL;
586			goto err_close;
587		}
588		ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
589					    sizeof(unsigned long));
590		if (!ns->pages_written) {
591			NS_ERR("alloc_device: unable to allocate pages written array\n");
592			err = -ENOMEM;
593			goto err_close;
594		}
595		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
596		if (!ns->file_buf) {
597			NS_ERR("alloc_device: unable to allocate file buf\n");
598			err = -ENOMEM;
599			goto err_free;
600		}
601		ns->cfile = cfile;
602		return 0;
603	}
604
605	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
606	if (!ns->pages) {
607		NS_ERR("alloc_device: unable to allocate page array\n");
608		return -ENOMEM;
609	}
610	for (i = 0; i < ns->geom.pgnum; i++) {
611		ns->pages[i].byte = NULL;
612	}
613	ns->nand_pages_slab = kmem_cache_create("nandsim",
614						ns->geom.pgszoob, 0, 0, NULL);
615	if (!ns->nand_pages_slab) {
616		NS_ERR("cache_create: unable to create kmem_cache\n");
617		return -ENOMEM;
618	}
619
620	return 0;
621
622err_free:
623	vfree(ns->pages_written);
624err_close:
625	filp_close(cfile, NULL);
626	return err;
627}
628
629/*
630 * Free any allocated pages, and free the array of page pointers.
631 */
632static void free_device(struct nandsim *ns)
633{
634	int i;
635
636	if (ns->cfile) {
637		kfree(ns->file_buf);
638		vfree(ns->pages_written);
639		filp_close(ns->cfile, NULL);
640		return;
641	}
642
643	if (ns->pages) {
644		for (i = 0; i < ns->geom.pgnum; i++) {
645			if (ns->pages[i].byte)
646				kmem_cache_free(ns->nand_pages_slab,
647						ns->pages[i].byte);
648		}
649		kmem_cache_destroy(ns->nand_pages_slab);
650		vfree(ns->pages);
651	}
652}
653
654static char *get_partition_name(int i)
655{
656	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
657}
658
659/*
660 * Initialize the nandsim structure.
661 *
662 * RETURNS: 0 if success, -ERRNO if failure.
663 */
664static int init_nandsim(struct mtd_info *mtd)
665{
666	struct nand_chip *chip = mtd->priv;
667	struct nandsim   *ns   = chip->priv;
668	int i, ret = 0;
669	uint64_t remains;
670	uint64_t next_offset;
671
672	if (NS_IS_INITIALIZED(ns)) {
673		NS_ERR("init_nandsim: nandsim is already initialized\n");
674		return -EIO;
675	}
676
677	/* Force mtd to not do delays */
678	chip->chip_delay = 0;
679
680	/* Initialize the NAND flash parameters */
681	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
682	ns->geom.totsz    = mtd->size;
683	ns->geom.pgsz     = mtd->writesize;
684	ns->geom.oobsz    = mtd->oobsize;
685	ns->geom.secsz    = mtd->erasesize;
686	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
687	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
688	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
689	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
690	ns->geom.pgshift  = chip->page_shift;
691	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
692	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
693	ns->options = 0;
694
695	if (ns->geom.pgsz == 512) {
696		ns->options |= OPT_PAGE512;
697		if (ns->busw == 8)
698			ns->options |= OPT_PAGE512_8BIT;
699	} else if (ns->geom.pgsz == 2048) {
700		ns->options |= OPT_PAGE2048;
701	} else if (ns->geom.pgsz == 4096) {
702		ns->options |= OPT_PAGE4096;
703	} else {
704		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
705		return -EIO;
706	}
707
708	if (ns->options & OPT_SMALLPAGE) {
709		if (ns->geom.totsz <= (32 << 20)) {
710			ns->geom.pgaddrbytes  = 3;
711			ns->geom.secaddrbytes = 2;
712		} else {
713			ns->geom.pgaddrbytes  = 4;
714			ns->geom.secaddrbytes = 3;
715		}
716	} else {
717		if (ns->geom.totsz <= (128 << 20)) {
718			ns->geom.pgaddrbytes  = 4;
719			ns->geom.secaddrbytes = 2;
720		} else {
721			ns->geom.pgaddrbytes  = 5;
722			ns->geom.secaddrbytes = 3;
723		}
724	}
725
726	/* Fill the partition_info structure */
727	if (parts_num > ARRAY_SIZE(ns->partitions)) {
728		NS_ERR("too many partitions.\n");
729		ret = -EINVAL;
730		goto error;
731	}
732	remains = ns->geom.totsz;
733	next_offset = 0;
734	for (i = 0; i < parts_num; ++i) {
735		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
736
737		if (!part_sz || part_sz > remains) {
738			NS_ERR("bad partition size.\n");
739			ret = -EINVAL;
740			goto error;
741		}
742		ns->partitions[i].name   = get_partition_name(i);
743		ns->partitions[i].offset = next_offset;
744		ns->partitions[i].size   = part_sz;
745		next_offset += ns->partitions[i].size;
746		remains -= ns->partitions[i].size;
747	}
748	ns->nbparts = parts_num;
749	if (remains) {
750		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
751			NS_ERR("too many partitions.\n");
752			ret = -EINVAL;
753			goto error;
754		}
755		ns->partitions[i].name   = get_partition_name(i);
756		ns->partitions[i].offset = next_offset;
757		ns->partitions[i].size   = remains;
758		ns->nbparts += 1;
759	}
760
761	if (ns->busw == 16)
762		NS_WARN("16-bit flashes support wasn't tested\n");
763
764	printk("flash size: %llu MiB\n",
765			(unsigned long long)ns->geom.totsz >> 20);
766	printk("page size: %u bytes\n",         ns->geom.pgsz);
767	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
768	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
769	printk("pages number: %u\n",            ns->geom.pgnum);
770	printk("pages per sector: %u\n",        ns->geom.pgsec);
771	printk("bus width: %u\n",               ns->busw);
772	printk("bits in sector size: %u\n",     ns->geom.secshift);
773	printk("bits in page size: %u\n",       ns->geom.pgshift);
774	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
775	printk("flash size with OOB: %llu KiB\n",
776			(unsigned long long)ns->geom.totszoob >> 10);
777	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
778	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
779	printk("options: %#x\n",                ns->options);
780
781	if ((ret = alloc_device(ns)) != 0)
782		goto error;
783
784	/* Allocate / initialize the internal buffer */
785	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
786	if (!ns->buf.byte) {
787		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
788			ns->geom.pgszoob);
789		ret = -ENOMEM;
790		goto error;
791	}
792	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
793
794	return 0;
795
796error:
797	free_device(ns);
798
799	return ret;
800}
801
802/*
803 * Free the nandsim structure.
804 */
805static void free_nandsim(struct nandsim *ns)
806{
807	kfree(ns->buf.byte);
808	free_device(ns);
809
810	return;
811}
812
813static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
814{
815	char *w;
816	int zero_ok;
817	unsigned int erase_block_no;
818	loff_t offset;
819
820	if (!badblocks)
821		return 0;
822	w = badblocks;
823	do {
824		zero_ok = (*w == '0' ? 1 : 0);
825		erase_block_no = simple_strtoul(w, &w, 0);
826		if (!zero_ok && !erase_block_no) {
827			NS_ERR("invalid badblocks.\n");
828			return -EINVAL;
829		}
830		offset = (loff_t)erase_block_no * ns->geom.secsz;
831		if (mtd_block_markbad(mtd, offset)) {
832			NS_ERR("invalid badblocks.\n");
833			return -EINVAL;
834		}
835		if (*w == ',')
836			w += 1;
837	} while (*w);
838	return 0;
839}
840
841static int parse_weakblocks(void)
842{
843	char *w;
844	int zero_ok;
845	unsigned int erase_block_no;
846	unsigned int max_erases;
847	struct weak_block *wb;
848
849	if (!weakblocks)
850		return 0;
851	w = weakblocks;
852	do {
853		zero_ok = (*w == '0' ? 1 : 0);
854		erase_block_no = simple_strtoul(w, &w, 0);
855		if (!zero_ok && !erase_block_no) {
856			NS_ERR("invalid weakblocks.\n");
857			return -EINVAL;
858		}
859		max_erases = 3;
860		if (*w == ':') {
861			w += 1;
862			max_erases = simple_strtoul(w, &w, 0);
863		}
864		if (*w == ',')
865			w += 1;
866		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
867		if (!wb) {
868			NS_ERR("unable to allocate memory.\n");
869			return -ENOMEM;
870		}
871		wb->erase_block_no = erase_block_no;
872		wb->max_erases = max_erases;
873		list_add(&wb->list, &weak_blocks);
874	} while (*w);
875	return 0;
876}
877
878static int erase_error(unsigned int erase_block_no)
879{
880	struct weak_block *wb;
881
882	list_for_each_entry(wb, &weak_blocks, list)
883		if (wb->erase_block_no == erase_block_no) {
884			if (wb->erases_done >= wb->max_erases)
885				return 1;
886			wb->erases_done += 1;
887			return 0;
888		}
889	return 0;
890}
891
892static int parse_weakpages(void)
893{
894	char *w;
895	int zero_ok;
896	unsigned int page_no;
897	unsigned int max_writes;
898	struct weak_page *wp;
899
900	if (!weakpages)
901		return 0;
902	w = weakpages;
903	do {
904		zero_ok = (*w == '0' ? 1 : 0);
905		page_no = simple_strtoul(w, &w, 0);
906		if (!zero_ok && !page_no) {
907			NS_ERR("invalid weakpagess.\n");
908			return -EINVAL;
909		}
910		max_writes = 3;
911		if (*w == ':') {
912			w += 1;
913			max_writes = simple_strtoul(w, &w, 0);
914		}
915		if (*w == ',')
916			w += 1;
917		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
918		if (!wp) {
919			NS_ERR("unable to allocate memory.\n");
920			return -ENOMEM;
921		}
922		wp->page_no = page_no;
923		wp->max_writes = max_writes;
924		list_add(&wp->list, &weak_pages);
925	} while (*w);
926	return 0;
927}
928
929static int write_error(unsigned int page_no)
930{
931	struct weak_page *wp;
932
933	list_for_each_entry(wp, &weak_pages, list)
934		if (wp->page_no == page_no) {
935			if (wp->writes_done >= wp->max_writes)
936				return 1;
937			wp->writes_done += 1;
938			return 0;
939		}
940	return 0;
941}
942
943static int parse_gravepages(void)
944{
945	char *g;
946	int zero_ok;
947	unsigned int page_no;
948	unsigned int max_reads;
949	struct grave_page *gp;
950
951	if (!gravepages)
952		return 0;
953	g = gravepages;
954	do {
955		zero_ok = (*g == '0' ? 1 : 0);
956		page_no = simple_strtoul(g, &g, 0);
957		if (!zero_ok && !page_no) {
958			NS_ERR("invalid gravepagess.\n");
959			return -EINVAL;
960		}
961		max_reads = 3;
962		if (*g == ':') {
963			g += 1;
964			max_reads = simple_strtoul(g, &g, 0);
965		}
966		if (*g == ',')
967			g += 1;
968		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
969		if (!gp) {
970			NS_ERR("unable to allocate memory.\n");
971			return -ENOMEM;
972		}
973		gp->page_no = page_no;
974		gp->max_reads = max_reads;
975		list_add(&gp->list, &grave_pages);
976	} while (*g);
977	return 0;
978}
979
980static int read_error(unsigned int page_no)
981{
982	struct grave_page *gp;
983
984	list_for_each_entry(gp, &grave_pages, list)
985		if (gp->page_no == page_no) {
986			if (gp->reads_done >= gp->max_reads)
987				return 1;
988			gp->reads_done += 1;
989			return 0;
990		}
991	return 0;
992}
993
994static void free_lists(void)
995{
996	struct list_head *pos, *n;
997	list_for_each_safe(pos, n, &weak_blocks) {
998		list_del(pos);
999		kfree(list_entry(pos, struct weak_block, list));
1000	}
1001	list_for_each_safe(pos, n, &weak_pages) {
1002		list_del(pos);
1003		kfree(list_entry(pos, struct weak_page, list));
1004	}
1005	list_for_each_safe(pos, n, &grave_pages) {
1006		list_del(pos);
1007		kfree(list_entry(pos, struct grave_page, list));
1008	}
1009	kfree(erase_block_wear);
1010}
1011
1012static int setup_wear_reporting(struct mtd_info *mtd)
1013{
1014	size_t mem;
1015
1016	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1017	mem = wear_eb_count * sizeof(unsigned long);
1018	if (mem / sizeof(unsigned long) != wear_eb_count) {
1019		NS_ERR("Too many erase blocks for wear reporting\n");
1020		return -ENOMEM;
1021	}
1022	erase_block_wear = kzalloc(mem, GFP_KERNEL);
1023	if (!erase_block_wear) {
1024		NS_ERR("Too many erase blocks for wear reporting\n");
1025		return -ENOMEM;
1026	}
1027	return 0;
1028}
1029
1030static void update_wear(unsigned int erase_block_no)
1031{
1032	if (!erase_block_wear)
1033		return;
1034	total_wear += 1;
1035	/*
1036	 * TODO: Notify this through a debugfs entry,
1037	 * instead of showing an error message.
1038	 */
1039	if (total_wear == 0)
1040		NS_ERR("Erase counter total overflow\n");
1041	erase_block_wear[erase_block_no] += 1;
1042	if (erase_block_wear[erase_block_no] == 0)
1043		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1044}
1045
1046/*
1047 * Returns the string representation of 'state' state.
1048 */
1049static char *get_state_name(uint32_t state)
1050{
1051	switch (NS_STATE(state)) {
1052		case STATE_CMD_READ0:
1053			return "STATE_CMD_READ0";
1054		case STATE_CMD_READ1:
1055			return "STATE_CMD_READ1";
1056		case STATE_CMD_PAGEPROG:
1057			return "STATE_CMD_PAGEPROG";
1058		case STATE_CMD_READOOB:
1059			return "STATE_CMD_READOOB";
1060		case STATE_CMD_READSTART:
1061			return "STATE_CMD_READSTART";
1062		case STATE_CMD_ERASE1:
1063			return "STATE_CMD_ERASE1";
1064		case STATE_CMD_STATUS:
1065			return "STATE_CMD_STATUS";
1066		case STATE_CMD_SEQIN:
1067			return "STATE_CMD_SEQIN";
1068		case STATE_CMD_READID:
1069			return "STATE_CMD_READID";
1070		case STATE_CMD_ERASE2:
1071			return "STATE_CMD_ERASE2";
1072		case STATE_CMD_RESET:
1073			return "STATE_CMD_RESET";
1074		case STATE_CMD_RNDOUT:
1075			return "STATE_CMD_RNDOUT";
1076		case STATE_CMD_RNDOUTSTART:
1077			return "STATE_CMD_RNDOUTSTART";
1078		case STATE_ADDR_PAGE:
1079			return "STATE_ADDR_PAGE";
1080		case STATE_ADDR_SEC:
1081			return "STATE_ADDR_SEC";
1082		case STATE_ADDR_ZERO:
1083			return "STATE_ADDR_ZERO";
1084		case STATE_ADDR_COLUMN:
1085			return "STATE_ADDR_COLUMN";
1086		case STATE_DATAIN:
1087			return "STATE_DATAIN";
1088		case STATE_DATAOUT:
1089			return "STATE_DATAOUT";
1090		case STATE_DATAOUT_ID:
1091			return "STATE_DATAOUT_ID";
1092		case STATE_DATAOUT_STATUS:
1093			return "STATE_DATAOUT_STATUS";
1094		case STATE_DATAOUT_STATUS_M:
1095			return "STATE_DATAOUT_STATUS_M";
1096		case STATE_READY:
1097			return "STATE_READY";
1098		case STATE_UNKNOWN:
1099			return "STATE_UNKNOWN";
1100	}
1101
1102	NS_ERR("get_state_name: unknown state, BUG\n");
1103	return NULL;
1104}
1105
1106/*
1107 * Check if command is valid.
1108 *
1109 * RETURNS: 1 if wrong command, 0 if right.
1110 */
1111static int check_command(int cmd)
1112{
1113	switch (cmd) {
1114
1115	case NAND_CMD_READ0:
1116	case NAND_CMD_READ1:
1117	case NAND_CMD_READSTART:
1118	case NAND_CMD_PAGEPROG:
1119	case NAND_CMD_READOOB:
1120	case NAND_CMD_ERASE1:
1121	case NAND_CMD_STATUS:
1122	case NAND_CMD_SEQIN:
1123	case NAND_CMD_READID:
1124	case NAND_CMD_ERASE2:
1125	case NAND_CMD_RESET:
1126	case NAND_CMD_RNDOUT:
1127	case NAND_CMD_RNDOUTSTART:
1128		return 0;
1129
1130	default:
1131		return 1;
1132	}
1133}
1134
1135/*
1136 * Returns state after command is accepted by command number.
1137 */
1138static uint32_t get_state_by_command(unsigned command)
1139{
1140	switch (command) {
1141		case NAND_CMD_READ0:
1142			return STATE_CMD_READ0;
1143		case NAND_CMD_READ1:
1144			return STATE_CMD_READ1;
1145		case NAND_CMD_PAGEPROG:
1146			return STATE_CMD_PAGEPROG;
1147		case NAND_CMD_READSTART:
1148			return STATE_CMD_READSTART;
1149		case NAND_CMD_READOOB:
1150			return STATE_CMD_READOOB;
1151		case NAND_CMD_ERASE1:
1152			return STATE_CMD_ERASE1;
1153		case NAND_CMD_STATUS:
1154			return STATE_CMD_STATUS;
1155		case NAND_CMD_SEQIN:
1156			return STATE_CMD_SEQIN;
1157		case NAND_CMD_READID:
1158			return STATE_CMD_READID;
1159		case NAND_CMD_ERASE2:
1160			return STATE_CMD_ERASE2;
1161		case NAND_CMD_RESET:
1162			return STATE_CMD_RESET;
1163		case NAND_CMD_RNDOUT:
1164			return STATE_CMD_RNDOUT;
1165		case NAND_CMD_RNDOUTSTART:
1166			return STATE_CMD_RNDOUTSTART;
1167	}
1168
1169	NS_ERR("get_state_by_command: unknown command, BUG\n");
1170	return 0;
1171}
1172
1173/*
1174 * Move an address byte to the correspondent internal register.
1175 */
1176static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1177{
1178	uint byte = (uint)bt;
1179
1180	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1181		ns->regs.column |= (byte << 8 * ns->regs.count);
1182	else {
1183		ns->regs.row |= (byte << 8 * (ns->regs.count -
1184						ns->geom.pgaddrbytes +
1185						ns->geom.secaddrbytes));
1186	}
1187
1188	return;
1189}
1190
1191/*
1192 * Switch to STATE_READY state.
1193 */
1194static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1195{
1196	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1197
1198	ns->state       = STATE_READY;
1199	ns->nxstate     = STATE_UNKNOWN;
1200	ns->op          = NULL;
1201	ns->npstates    = 0;
1202	ns->stateidx    = 0;
1203	ns->regs.num    = 0;
1204	ns->regs.count  = 0;
1205	ns->regs.off    = 0;
1206	ns->regs.row    = 0;
1207	ns->regs.column = 0;
1208	ns->regs.status = status;
1209}
1210
1211/*
1212 * If the operation isn't known yet, try to find it in the global array
1213 * of supported operations.
1214 *
1215 * Operation can be unknown because of the following.
1216 *   1. New command was accepted and this is the first call to find the
1217 *      correspondent states chain. In this case ns->npstates = 0;
1218 *   2. There are several operations which begin with the same command(s)
1219 *      (for example program from the second half and read from the
1220 *      second half operations both begin with the READ1 command). In this
1221 *      case the ns->pstates[] array contains previous states.
1222 *
1223 * Thus, the function tries to find operation containing the following
1224 * states (if the 'flag' parameter is 0):
1225 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1226 *
1227 * If (one and only one) matching operation is found, it is accepted (
1228 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1229 * zeroed).
1230 *
1231 * If there are several matches, the current state is pushed to the
1232 * ns->pstates.
1233 *
1234 * The operation can be unknown only while commands are input to the chip.
1235 * As soon as address command is accepted, the operation must be known.
1236 * In such situation the function is called with 'flag' != 0, and the
1237 * operation is searched using the following pattern:
1238 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1239 *
1240 * It is supposed that this pattern must either match one operation or
1241 * none. There can't be ambiguity in that case.
1242 *
1243 * If no matches found, the function does the following:
1244 *   1. if there are saved states present, try to ignore them and search
1245 *      again only using the last command. If nothing was found, switch
1246 *      to the STATE_READY state.
1247 *   2. if there are no saved states, switch to the STATE_READY state.
1248 *
1249 * RETURNS: -2 - no matched operations found.
1250 *          -1 - several matches.
1251 *           0 - operation is found.
1252 */
1253static int find_operation(struct nandsim *ns, uint32_t flag)
1254{
1255	int opsfound = 0;
1256	int i, j, idx = 0;
1257
1258	for (i = 0; i < NS_OPER_NUM; i++) {
1259
1260		int found = 1;
1261
1262		if (!(ns->options & ops[i].reqopts))
1263			/* Ignore operations we can't perform */
1264			continue;
1265
1266		if (flag) {
1267			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1268				continue;
1269		} else {
1270			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1271				continue;
1272		}
1273
1274		for (j = 0; j < ns->npstates; j++)
1275			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1276				&& (ns->options & ops[idx].reqopts)) {
1277				found = 0;
1278				break;
1279			}
1280
1281		if (found) {
1282			idx = i;
1283			opsfound += 1;
1284		}
1285	}
1286
1287	if (opsfound == 1) {
1288		/* Exact match */
1289		ns->op = &ops[idx].states[0];
1290		if (flag) {
1291			/*
1292			 * In this case the find_operation function was
1293			 * called when address has just began input. But it isn't
1294			 * yet fully input and the current state must
1295			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1296			 * state must be the next state (ns->nxstate).
1297			 */
1298			ns->stateidx = ns->npstates - 1;
1299		} else {
1300			ns->stateidx = ns->npstates;
1301		}
1302		ns->npstates = 0;
1303		ns->state = ns->op[ns->stateidx];
1304		ns->nxstate = ns->op[ns->stateidx + 1];
1305		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1306				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1307		return 0;
1308	}
1309
1310	if (opsfound == 0) {
1311		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1312		if (ns->npstates != 0) {
1313			NS_DBG("find_operation: no operation found, try again with state %s\n",
1314					get_state_name(ns->state));
1315			ns->npstates = 0;
1316			return find_operation(ns, 0);
1317
1318		}
1319		NS_DBG("find_operation: no operations found\n");
1320		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1321		return -2;
1322	}
1323
1324	if (flag) {
1325		/* This shouldn't happen */
1326		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1327		return -2;
1328	}
1329
1330	NS_DBG("find_operation: there is still ambiguity\n");
1331
1332	ns->pstates[ns->npstates++] = ns->state;
1333
1334	return -1;
1335}
1336
1337static void put_pages(struct nandsim *ns)
1338{
1339	int i;
1340
1341	for (i = 0; i < ns->held_cnt; i++)
1342		page_cache_release(ns->held_pages[i]);
1343}
1344
1345/* Get page cache pages in advance to provide NOFS memory allocation */
1346static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1347{
1348	pgoff_t index, start_index, end_index;
1349	struct page *page;
1350	struct address_space *mapping = file->f_mapping;
1351
1352	start_index = pos >> PAGE_CACHE_SHIFT;
1353	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1354	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1355		return -EINVAL;
1356	ns->held_cnt = 0;
1357	for (index = start_index; index <= end_index; index++) {
1358		page = find_get_page(mapping, index);
1359		if (page == NULL) {
1360			page = find_or_create_page(mapping, index, GFP_NOFS);
1361			if (page == NULL) {
1362				write_inode_now(mapping->host, 1);
1363				page = find_or_create_page(mapping, index, GFP_NOFS);
1364			}
1365			if (page == NULL) {
1366				put_pages(ns);
1367				return -ENOMEM;
1368			}
1369			unlock_page(page);
1370		}
1371		ns->held_pages[ns->held_cnt++] = page;
1372	}
1373	return 0;
1374}
1375
1376static int set_memalloc(void)
1377{
1378	if (current->flags & PF_MEMALLOC)
1379		return 0;
1380	current->flags |= PF_MEMALLOC;
1381	return 1;
1382}
1383
1384static void clear_memalloc(int memalloc)
1385{
1386	if (memalloc)
1387		current->flags &= ~PF_MEMALLOC;
1388}
1389
1390static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1391{
1392	ssize_t tx;
1393	int err, memalloc;
1394
1395	err = get_pages(ns, file, count, pos);
1396	if (err)
1397		return err;
1398	memalloc = set_memalloc();
1399	tx = kernel_read(file, pos, buf, count);
1400	clear_memalloc(memalloc);
1401	put_pages(ns);
1402	return tx;
1403}
1404
1405static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1406{
1407	ssize_t tx;
1408	int err, memalloc;
1409
1410	err = get_pages(ns, file, count, pos);
1411	if (err)
1412		return err;
1413	memalloc = set_memalloc();
1414	tx = kernel_write(file, buf, count, pos);
1415	clear_memalloc(memalloc);
1416	put_pages(ns);
1417	return tx;
1418}
1419
1420/*
1421 * Returns a pointer to the current page.
1422 */
1423static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1424{
1425	return &(ns->pages[ns->regs.row]);
1426}
1427
1428/*
1429 * Retuns a pointer to the current byte, within the current page.
1430 */
1431static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1432{
1433	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1434}
1435
1436static int do_read_error(struct nandsim *ns, int num)
1437{
1438	unsigned int page_no = ns->regs.row;
1439
1440	if (read_error(page_no)) {
1441		prandom_bytes(ns->buf.byte, num);
1442		NS_WARN("simulating read error in page %u\n", page_no);
1443		return 1;
1444	}
1445	return 0;
1446}
1447
1448static void do_bit_flips(struct nandsim *ns, int num)
1449{
1450	if (bitflips && prandom_u32() < (1 << 22)) {
1451		int flips = 1;
1452		if (bitflips > 1)
1453			flips = (prandom_u32() % (int) bitflips) + 1;
1454		while (flips--) {
1455			int pos = prandom_u32() % (num * 8);
1456			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1457			NS_WARN("read_page: flipping bit %d in page %d "
1458				"reading from %d ecc: corrected=%u failed=%u\n",
1459				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1460				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1461		}
1462	}
1463}
1464
1465/*
1466 * Fill the NAND buffer with data read from the specified page.
1467 */
1468static void read_page(struct nandsim *ns, int num)
1469{
1470	union ns_mem *mypage;
1471
1472	if (ns->cfile) {
1473		if (!test_bit(ns->regs.row, ns->pages_written)) {
1474			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1475			memset(ns->buf.byte, 0xFF, num);
1476		} else {
1477			loff_t pos;
1478			ssize_t tx;
1479
1480			NS_DBG("read_page: page %d written, reading from %d\n",
1481				ns->regs.row, ns->regs.column + ns->regs.off);
1482			if (do_read_error(ns, num))
1483				return;
1484			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1485			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1486			if (tx != num) {
1487				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1488				return;
1489			}
1490			do_bit_flips(ns, num);
1491		}
1492		return;
1493	}
1494
1495	mypage = NS_GET_PAGE(ns);
1496	if (mypage->byte == NULL) {
1497		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1498		memset(ns->buf.byte, 0xFF, num);
1499	} else {
1500		NS_DBG("read_page: page %d allocated, reading from %d\n",
1501			ns->regs.row, ns->regs.column + ns->regs.off);
1502		if (do_read_error(ns, num))
1503			return;
1504		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1505		do_bit_flips(ns, num);
1506	}
1507}
1508
1509/*
1510 * Erase all pages in the specified sector.
1511 */
1512static void erase_sector(struct nandsim *ns)
1513{
1514	union ns_mem *mypage;
1515	int i;
1516
1517	if (ns->cfile) {
1518		for (i = 0; i < ns->geom.pgsec; i++)
1519			if (__test_and_clear_bit(ns->regs.row + i,
1520						 ns->pages_written)) {
1521				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1522			}
1523		return;
1524	}
1525
1526	mypage = NS_GET_PAGE(ns);
1527	for (i = 0; i < ns->geom.pgsec; i++) {
1528		if (mypage->byte != NULL) {
1529			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1530			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1531			mypage->byte = NULL;
1532		}
1533		mypage++;
1534	}
1535}
1536
1537/*
1538 * Program the specified page with the contents from the NAND buffer.
1539 */
1540static int prog_page(struct nandsim *ns, int num)
1541{
1542	int i;
1543	union ns_mem *mypage;
1544	u_char *pg_off;
1545
1546	if (ns->cfile) {
1547		loff_t off;
1548		ssize_t tx;
1549		int all;
1550
1551		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1552		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1553		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1554		if (!test_bit(ns->regs.row, ns->pages_written)) {
1555			all = 1;
1556			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1557		} else {
1558			all = 0;
1559			tx = read_file(ns, ns->cfile, pg_off, num, off);
1560			if (tx != num) {
1561				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1562				return -1;
1563			}
1564		}
1565		for (i = 0; i < num; i++)
1566			pg_off[i] &= ns->buf.byte[i];
1567		if (all) {
1568			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1569			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1570			if (tx != ns->geom.pgszoob) {
1571				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1572				return -1;
1573			}
1574			__set_bit(ns->regs.row, ns->pages_written);
1575		} else {
1576			tx = write_file(ns, ns->cfile, pg_off, num, off);
1577			if (tx != num) {
1578				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1579				return -1;
1580			}
1581		}
1582		return 0;
1583	}
1584
1585	mypage = NS_GET_PAGE(ns);
1586	if (mypage->byte == NULL) {
1587		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1588		/*
1589		 * We allocate memory with GFP_NOFS because a flash FS may
1590		 * utilize this. If it is holding an FS lock, then gets here,
1591		 * then kernel memory alloc runs writeback which goes to the FS
1592		 * again and deadlocks. This was seen in practice.
1593		 */
1594		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1595		if (mypage->byte == NULL) {
1596			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1597			return -1;
1598		}
1599		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1600	}
1601
1602	pg_off = NS_PAGE_BYTE_OFF(ns);
1603	for (i = 0; i < num; i++)
1604		pg_off[i] &= ns->buf.byte[i];
1605
1606	return 0;
1607}
1608
1609/*
1610 * If state has any action bit, perform this action.
1611 *
1612 * RETURNS: 0 if success, -1 if error.
1613 */
1614static int do_state_action(struct nandsim *ns, uint32_t action)
1615{
1616	int num;
1617	int busdiv = ns->busw == 8 ? 1 : 2;
1618	unsigned int erase_block_no, page_no;
1619
1620	action &= ACTION_MASK;
1621
1622	/* Check that page address input is correct */
1623	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1624		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1625		return -1;
1626	}
1627
1628	switch (action) {
1629
1630	case ACTION_CPY:
1631		/*
1632		 * Copy page data to the internal buffer.
1633		 */
1634
1635		/* Column shouldn't be very large */
1636		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1637			NS_ERR("do_state_action: column number is too large\n");
1638			break;
1639		}
1640		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1641		read_page(ns, num);
1642
1643		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1644			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1645
1646		if (ns->regs.off == 0)
1647			NS_LOG("read page %d\n", ns->regs.row);
1648		else if (ns->regs.off < ns->geom.pgsz)
1649			NS_LOG("read page %d (second half)\n", ns->regs.row);
1650		else
1651			NS_LOG("read OOB of page %d\n", ns->regs.row);
1652
1653		NS_UDELAY(access_delay);
1654		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1655
1656		break;
1657
1658	case ACTION_SECERASE:
1659		/*
1660		 * Erase sector.
1661		 */
1662
1663		if (ns->lines.wp) {
1664			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1665			return -1;
1666		}
1667
1668		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1669			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1670			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1671			return -1;
1672		}
1673
1674		ns->regs.row = (ns->regs.row <<
1675				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1676		ns->regs.column = 0;
1677
1678		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1679
1680		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1681				ns->regs.row, NS_RAW_OFFSET(ns));
1682		NS_LOG("erase sector %u\n", erase_block_no);
1683
1684		erase_sector(ns);
1685
1686		NS_MDELAY(erase_delay);
1687
1688		if (erase_block_wear)
1689			update_wear(erase_block_no);
1690
1691		if (erase_error(erase_block_no)) {
1692			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1693			return -1;
1694		}
1695
1696		break;
1697
1698	case ACTION_PRGPAGE:
1699		/*
1700		 * Program page - move internal buffer data to the page.
1701		 */
1702
1703		if (ns->lines.wp) {
1704			NS_WARN("do_state_action: device is write-protected, programm\n");
1705			return -1;
1706		}
1707
1708		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1709		if (num != ns->regs.count) {
1710			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1711					ns->regs.count, num);
1712			return -1;
1713		}
1714
1715		if (prog_page(ns, num) == -1)
1716			return -1;
1717
1718		page_no = ns->regs.row;
1719
1720		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1721			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1722		NS_LOG("programm page %d\n", ns->regs.row);
1723
1724		NS_UDELAY(programm_delay);
1725		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1726
1727		if (write_error(page_no)) {
1728			NS_WARN("simulating write failure in page %u\n", page_no);
1729			return -1;
1730		}
1731
1732		break;
1733
1734	case ACTION_ZEROOFF:
1735		NS_DBG("do_state_action: set internal offset to 0\n");
1736		ns->regs.off = 0;
1737		break;
1738
1739	case ACTION_HALFOFF:
1740		if (!(ns->options & OPT_PAGE512_8BIT)) {
1741			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1742				"byte page size 8x chips\n");
1743			return -1;
1744		}
1745		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1746		ns->regs.off = ns->geom.pgsz/2;
1747		break;
1748
1749	case ACTION_OOBOFF:
1750		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1751		ns->regs.off = ns->geom.pgsz;
1752		break;
1753
1754	default:
1755		NS_DBG("do_state_action: BUG! unknown action\n");
1756	}
1757
1758	return 0;
1759}
1760
1761/*
1762 * Switch simulator's state.
1763 */
1764static void switch_state(struct nandsim *ns)
1765{
1766	if (ns->op) {
1767		/*
1768		 * The current operation have already been identified.
1769		 * Just follow the states chain.
1770		 */
1771
1772		ns->stateidx += 1;
1773		ns->state = ns->nxstate;
1774		ns->nxstate = ns->op[ns->stateidx + 1];
1775
1776		NS_DBG("switch_state: operation is known, switch to the next state, "
1777			"state: %s, nxstate: %s\n",
1778			get_state_name(ns->state), get_state_name(ns->nxstate));
1779
1780		/* See, whether we need to do some action */
1781		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1782			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1783			return;
1784		}
1785
1786	} else {
1787		/*
1788		 * We don't yet know which operation we perform.
1789		 * Try to identify it.
1790		 */
1791
1792		/*
1793		 *  The only event causing the switch_state function to
1794		 *  be called with yet unknown operation is new command.
1795		 */
1796		ns->state = get_state_by_command(ns->regs.command);
1797
1798		NS_DBG("switch_state: operation is unknown, try to find it\n");
1799
1800		if (find_operation(ns, 0) != 0)
1801			return;
1802
1803		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1804			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1805			return;
1806		}
1807	}
1808
1809	/* For 16x devices column means the page offset in words */
1810	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1811		NS_DBG("switch_state: double the column number for 16x device\n");
1812		ns->regs.column <<= 1;
1813	}
1814
1815	if (NS_STATE(ns->nxstate) == STATE_READY) {
1816		/*
1817		 * The current state is the last. Return to STATE_READY
1818		 */
1819
1820		u_char status = NS_STATUS_OK(ns);
1821
1822		/* In case of data states, see if all bytes were input/output */
1823		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1824			&& ns->regs.count != ns->regs.num) {
1825			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1826					ns->regs.num - ns->regs.count);
1827			status = NS_STATUS_FAILED(ns);
1828		}
1829
1830		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1831
1832		switch_to_ready_state(ns, status);
1833
1834		return;
1835	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1836		/*
1837		 * If the next state is data input/output, switch to it now
1838		 */
1839
1840		ns->state      = ns->nxstate;
1841		ns->nxstate    = ns->op[++ns->stateidx + 1];
1842		ns->regs.num   = ns->regs.count = 0;
1843
1844		NS_DBG("switch_state: the next state is data I/O, switch, "
1845			"state: %s, nxstate: %s\n",
1846			get_state_name(ns->state), get_state_name(ns->nxstate));
1847
1848		/*
1849		 * Set the internal register to the count of bytes which
1850		 * are expected to be input or output
1851		 */
1852		switch (NS_STATE(ns->state)) {
1853			case STATE_DATAIN:
1854			case STATE_DATAOUT:
1855				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1856				break;
1857
1858			case STATE_DATAOUT_ID:
1859				ns->regs.num = ns->geom.idbytes;
1860				break;
1861
1862			case STATE_DATAOUT_STATUS:
1863			case STATE_DATAOUT_STATUS_M:
1864				ns->regs.count = ns->regs.num = 0;
1865				break;
1866
1867			default:
1868				NS_ERR("switch_state: BUG! unknown data state\n");
1869		}
1870
1871	} else if (ns->nxstate & STATE_ADDR_MASK) {
1872		/*
1873		 * If the next state is address input, set the internal
1874		 * register to the number of expected address bytes
1875		 */
1876
1877		ns->regs.count = 0;
1878
1879		switch (NS_STATE(ns->nxstate)) {
1880			case STATE_ADDR_PAGE:
1881				ns->regs.num = ns->geom.pgaddrbytes;
1882
1883				break;
1884			case STATE_ADDR_SEC:
1885				ns->regs.num = ns->geom.secaddrbytes;
1886				break;
1887
1888			case STATE_ADDR_ZERO:
1889				ns->regs.num = 1;
1890				break;
1891
1892			case STATE_ADDR_COLUMN:
1893				/* Column address is always 2 bytes */
1894				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1895				break;
1896
1897			default:
1898				NS_ERR("switch_state: BUG! unknown address state\n");
1899		}
1900	} else {
1901		/*
1902		 * Just reset internal counters.
1903		 */
1904
1905		ns->regs.num = 0;
1906		ns->regs.count = 0;
1907	}
1908}
1909
1910static u_char ns_nand_read_byte(struct mtd_info *mtd)
1911{
1912	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1913	u_char outb = 0x00;
1914
1915	/* Sanity and correctness checks */
1916	if (!ns->lines.ce) {
1917		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1918		return outb;
1919	}
1920	if (ns->lines.ale || ns->lines.cle) {
1921		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1922		return outb;
1923	}
1924	if (!(ns->state & STATE_DATAOUT_MASK)) {
1925		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1926			"return %#x\n", get_state_name(ns->state), (uint)outb);
1927		return outb;
1928	}
1929
1930	/* Status register may be read as many times as it is wanted */
1931	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1932		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1933		return ns->regs.status;
1934	}
1935
1936	/* Check if there is any data in the internal buffer which may be read */
1937	if (ns->regs.count == ns->regs.num) {
1938		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1939		return outb;
1940	}
1941
1942	switch (NS_STATE(ns->state)) {
1943		case STATE_DATAOUT:
1944			if (ns->busw == 8) {
1945				outb = ns->buf.byte[ns->regs.count];
1946				ns->regs.count += 1;
1947			} else {
1948				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1949				ns->regs.count += 2;
1950			}
1951			break;
1952		case STATE_DATAOUT_ID:
1953			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1954			outb = ns->ids[ns->regs.count];
1955			ns->regs.count += 1;
1956			break;
1957		default:
1958			BUG();
1959	}
1960
1961	if (ns->regs.count == ns->regs.num) {
1962		NS_DBG("read_byte: all bytes were read\n");
1963
1964		if (NS_STATE(ns->nxstate) == STATE_READY)
1965			switch_state(ns);
1966	}
1967
1968	return outb;
1969}
1970
1971static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1972{
1973	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1974
1975	/* Sanity and correctness checks */
1976	if (!ns->lines.ce) {
1977		NS_ERR("write_byte: chip is disabled, ignore write\n");
1978		return;
1979	}
1980	if (ns->lines.ale && ns->lines.cle) {
1981		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1982		return;
1983	}
1984
1985	if (ns->lines.cle == 1) {
1986		/*
1987		 * The byte written is a command.
1988		 */
1989
1990		if (byte == NAND_CMD_RESET) {
1991			NS_LOG("reset chip\n");
1992			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1993			return;
1994		}
1995
1996		/* Check that the command byte is correct */
1997		if (check_command(byte)) {
1998			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1999			return;
2000		}
2001
2002		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2003			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
2004			|| NS_STATE(ns->state) == STATE_DATAOUT) {
2005			int row = ns->regs.row;
2006
2007			switch_state(ns);
2008			if (byte == NAND_CMD_RNDOUT)
2009				ns->regs.row = row;
2010		}
2011
2012		/* Check if chip is expecting command */
2013		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2014			/* Do not warn if only 2 id bytes are read */
2015			if (!(ns->regs.command == NAND_CMD_READID &&
2016			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2017				/*
2018				 * We are in situation when something else (not command)
2019				 * was expected but command was input. In this case ignore
2020				 * previous command(s)/state(s) and accept the last one.
2021				 */
2022				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2023					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2024			}
2025			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2026		}
2027
2028		NS_DBG("command byte corresponding to %s state accepted\n",
2029			get_state_name(get_state_by_command(byte)));
2030		ns->regs.command = byte;
2031		switch_state(ns);
2032
2033	} else if (ns->lines.ale == 1) {
2034		/*
2035		 * The byte written is an address.
2036		 */
2037
2038		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2039
2040			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2041
2042			if (find_operation(ns, 1) < 0)
2043				return;
2044
2045			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2046				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2047				return;
2048			}
2049
2050			ns->regs.count = 0;
2051			switch (NS_STATE(ns->nxstate)) {
2052				case STATE_ADDR_PAGE:
2053					ns->regs.num = ns->geom.pgaddrbytes;
2054					break;
2055				case STATE_ADDR_SEC:
2056					ns->regs.num = ns->geom.secaddrbytes;
2057					break;
2058				case STATE_ADDR_ZERO:
2059					ns->regs.num = 1;
2060					break;
2061				default:
2062					BUG();
2063			}
2064		}
2065
2066		/* Check that chip is expecting address */
2067		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2068			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2069				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2070			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2071			return;
2072		}
2073
2074		/* Check if this is expected byte */
2075		if (ns->regs.count == ns->regs.num) {
2076			NS_ERR("write_byte: no more address bytes expected\n");
2077			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2078			return;
2079		}
2080
2081		accept_addr_byte(ns, byte);
2082
2083		ns->regs.count += 1;
2084
2085		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2086				(uint)byte, ns->regs.count, ns->regs.num);
2087
2088		if (ns->regs.count == ns->regs.num) {
2089			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2090			switch_state(ns);
2091		}
2092
2093	} else {
2094		/*
2095		 * The byte written is an input data.
2096		 */
2097
2098		/* Check that chip is expecting data input */
2099		if (!(ns->state & STATE_DATAIN_MASK)) {
2100			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2101				"switch to %s\n", (uint)byte,
2102				get_state_name(ns->state), get_state_name(STATE_READY));
2103			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2104			return;
2105		}
2106
2107		/* Check if this is expected byte */
2108		if (ns->regs.count == ns->regs.num) {
2109			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2110					ns->regs.num);
2111			return;
2112		}
2113
2114		if (ns->busw == 8) {
2115			ns->buf.byte[ns->regs.count] = byte;
2116			ns->regs.count += 1;
2117		} else {
2118			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2119			ns->regs.count += 2;
2120		}
2121	}
2122
2123	return;
2124}
2125
2126static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2127{
2128	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2129
2130	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2131	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2132	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2133
2134	if (cmd != NAND_CMD_NONE)
2135		ns_nand_write_byte(mtd, cmd);
2136}
2137
2138static int ns_device_ready(struct mtd_info *mtd)
2139{
2140	NS_DBG("device_ready\n");
2141	return 1;
2142}
2143
2144static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2145{
2146	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2147
2148	NS_DBG("read_word\n");
2149
2150	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2151}
2152
2153static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2154{
2155	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2156
2157	/* Check that chip is expecting data input */
2158	if (!(ns->state & STATE_DATAIN_MASK)) {
2159		NS_ERR("write_buf: data input isn't expected, state is %s, "
2160			"switch to STATE_READY\n", get_state_name(ns->state));
2161		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2162		return;
2163	}
2164
2165	/* Check if these are expected bytes */
2166	if (ns->regs.count + len > ns->regs.num) {
2167		NS_ERR("write_buf: too many input bytes\n");
2168		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2169		return;
2170	}
2171
2172	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2173	ns->regs.count += len;
2174
2175	if (ns->regs.count == ns->regs.num) {
2176		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2177	}
2178}
2179
2180static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2181{
2182	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2183
2184	/* Sanity and correctness checks */
2185	if (!ns->lines.ce) {
2186		NS_ERR("read_buf: chip is disabled\n");
2187		return;
2188	}
2189	if (ns->lines.ale || ns->lines.cle) {
2190		NS_ERR("read_buf: ALE or CLE pin is high\n");
2191		return;
2192	}
2193	if (!(ns->state & STATE_DATAOUT_MASK)) {
2194		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2195			get_state_name(ns->state));
2196		return;
2197	}
2198
2199	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2200		int i;
2201
2202		for (i = 0; i < len; i++)
2203			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2204
2205		return;
2206	}
2207
2208	/* Check if these are expected bytes */
2209	if (ns->regs.count + len > ns->regs.num) {
2210		NS_ERR("read_buf: too many bytes to read\n");
2211		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2212		return;
2213	}
2214
2215	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2216	ns->regs.count += len;
2217
2218	if (ns->regs.count == ns->regs.num) {
2219		if (NS_STATE(ns->nxstate) == STATE_READY)
2220			switch_state(ns);
2221	}
2222
2223	return;
2224}
2225
2226/*
2227 * Module initialization function
2228 */
2229static int __init ns_init_module(void)
2230{
2231	struct nand_chip *chip;
2232	struct nandsim *nand;
2233	int retval = -ENOMEM, i;
2234
2235	if (bus_width != 8 && bus_width != 16) {
2236		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2237		return -EINVAL;
2238	}
2239
2240	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2241	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2242				+ sizeof(struct nandsim), GFP_KERNEL);
2243	if (!nsmtd) {
2244		NS_ERR("unable to allocate core structures.\n");
2245		return -ENOMEM;
2246	}
2247	chip        = (struct nand_chip *)(nsmtd + 1);
2248        nsmtd->priv = (void *)chip;
2249	nand        = (struct nandsim *)(chip + 1);
2250	chip->priv  = (void *)nand;
2251
2252	/*
2253	 * Register simulator's callbacks.
2254	 */
2255	chip->cmd_ctrl	 = ns_hwcontrol;
2256	chip->read_byte  = ns_nand_read_byte;
2257	chip->dev_ready  = ns_device_ready;
2258	chip->write_buf  = ns_nand_write_buf;
2259	chip->read_buf   = ns_nand_read_buf;
2260	chip->read_word  = ns_nand_read_word;
2261	chip->ecc.mode   = NAND_ECC_SOFT;
2262	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2263	/* and 'badblocks' parameters to work */
2264	chip->options   |= NAND_SKIP_BBTSCAN;
2265
2266	switch (bbt) {
2267	case 2:
2268		 chip->bbt_options |= NAND_BBT_NO_OOB;
2269	case 1:
2270		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2271	case 0:
2272		break;
2273	default:
2274		NS_ERR("bbt has to be 0..2\n");
2275		retval = -EINVAL;
2276		goto error;
2277	}
2278	/*
2279	 * Perform minimum nandsim structure initialization to handle
2280	 * the initial ID read command correctly
2281	 */
2282	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2283		nand->geom.idbytes = 4;
2284	else
2285		nand->geom.idbytes = 2;
2286	nand->regs.status = NS_STATUS_OK(nand);
2287	nand->nxstate = STATE_UNKNOWN;
2288	nand->options |= OPT_PAGE512; /* temporary value */
2289	nand->ids[0] = first_id_byte;
2290	nand->ids[1] = second_id_byte;
2291	nand->ids[2] = third_id_byte;
2292	nand->ids[3] = fourth_id_byte;
2293	if (bus_width == 16) {
2294		nand->busw = 16;
2295		chip->options |= NAND_BUSWIDTH_16;
2296	}
2297
2298	nsmtd->owner = THIS_MODULE;
2299
2300	if ((retval = parse_weakblocks()) != 0)
2301		goto error;
2302
2303	if ((retval = parse_weakpages()) != 0)
2304		goto error;
2305
2306	if ((retval = parse_gravepages()) != 0)
2307		goto error;
2308
2309	retval = nand_scan_ident(nsmtd, 1, NULL);
2310	if (retval) {
2311		NS_ERR("cannot scan NAND Simulator device\n");
2312		if (retval > 0)
2313			retval = -ENXIO;
2314		goto error;
2315	}
2316
2317	if (bch) {
2318		unsigned int eccsteps, eccbytes;
2319		if (!mtd_nand_has_bch()) {
2320			NS_ERR("BCH ECC support is disabled\n");
2321			retval = -EINVAL;
2322			goto error;
2323		}
2324		/* use 512-byte ecc blocks */
2325		eccsteps = nsmtd->writesize/512;
2326		eccbytes = (bch*13+7)/8;
2327		/* do not bother supporting small page devices */
2328		if ((nsmtd->oobsize < 64) || !eccsteps) {
2329			NS_ERR("bch not available on small page devices\n");
2330			retval = -EINVAL;
2331			goto error;
2332		}
2333		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2334			NS_ERR("invalid bch value %u\n", bch);
2335			retval = -EINVAL;
2336			goto error;
2337		}
2338		chip->ecc.mode = NAND_ECC_SOFT_BCH;
2339		chip->ecc.size = 512;
2340		chip->ecc.bytes = eccbytes;
2341		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2342	}
2343
2344	retval = nand_scan_tail(nsmtd);
2345	if (retval) {
2346		NS_ERR("can't register NAND Simulator\n");
2347		if (retval > 0)
2348			retval = -ENXIO;
2349		goto error;
2350	}
2351
2352	if (overridesize) {
2353		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2354		if (new_size >> overridesize != nsmtd->erasesize) {
2355			NS_ERR("overridesize is too big\n");
2356			retval = -EINVAL;
2357			goto err_exit;
2358		}
2359		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2360		nsmtd->size = new_size;
2361		chip->chipsize = new_size;
2362		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2363		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2364	}
2365
2366	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2367		goto err_exit;
2368
2369	if ((retval = nandsim_debugfs_create(nand)) != 0)
2370		goto err_exit;
2371
2372	if ((retval = init_nandsim(nsmtd)) != 0)
2373		goto err_exit;
2374
2375	if ((retval = chip->scan_bbt(nsmtd)) != 0)
2376		goto err_exit;
2377
2378	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2379		goto err_exit;
2380
2381	/* Register NAND partitions */
2382	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2383				     nand->nbparts);
2384	if (retval != 0)
2385		goto err_exit;
2386
2387        return 0;
2388
2389err_exit:
2390	free_nandsim(nand);
2391	nand_release(nsmtd);
2392	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2393		kfree(nand->partitions[i].name);
2394error:
2395	kfree(nsmtd);
2396	free_lists();
2397
2398	return retval;
2399}
2400
2401module_init(ns_init_module);
2402
2403/*
2404 * Module clean-up function
2405 */
2406static void __exit ns_cleanup_module(void)
2407{
2408	struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2409	int i;
2410
2411	nandsim_debugfs_remove(ns);
2412	free_nandsim(ns);    /* Free nandsim private resources */
2413	nand_release(nsmtd); /* Unregister driver */
2414	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2415		kfree(ns->partitions[i].name);
2416	kfree(nsmtd);        /* Free other structures */
2417	free_lists();
2418}
2419
2420module_exit(ns_cleanup_module);
2421
2422MODULE_LICENSE ("GPL");
2423MODULE_AUTHOR ("Artem B. Bityuckiy");
2424MODULE_DESCRIPTION ("The NAND flash simulator");
2425