1/* bnx2x.h: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 */ 13 14#ifndef BNX2X_H 15#define BNX2X_H 16 17#include <linux/pci.h> 18#include <linux/netdevice.h> 19#include <linux/dma-mapping.h> 20#include <linux/types.h> 21#include <linux/pci_regs.h> 22 23#include <linux/ptp_clock_kernel.h> 24#include <linux/net_tstamp.h> 25#include <linux/clocksource.h> 26 27/* compilation time flags */ 28 29/* define this to make the driver freeze on error to allow getting debug info 30 * (you will need to reboot afterwards) */ 31/* #define BNX2X_STOP_ON_ERROR */ 32 33#define DRV_MODULE_VERSION "1.710.51-0" 34#define DRV_MODULE_RELDATE "2014/02/10" 35#define BNX2X_BC_VER 0x040200 36 37#if defined(CONFIG_DCB) 38#define BCM_DCBNL 39#endif 40 41#include "bnx2x_hsi.h" 42 43#include "../cnic_if.h" 44 45#define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt) 46 47#include <linux/mdio.h> 48 49#include "bnx2x_reg.h" 50#include "bnx2x_fw_defs.h" 51#include "bnx2x_mfw_req.h" 52#include "bnx2x_link.h" 53#include "bnx2x_sp.h" 54#include "bnx2x_dcb.h" 55#include "bnx2x_stats.h" 56#include "bnx2x_vfpf.h" 57 58enum bnx2x_int_mode { 59 BNX2X_INT_MODE_MSIX, 60 BNX2X_INT_MODE_INTX, 61 BNX2X_INT_MODE_MSI 62}; 63 64/* error/debug prints */ 65 66#define DRV_MODULE_NAME "bnx2x" 67 68/* for messages that are currently off */ 69#define BNX2X_MSG_OFF 0x0 70#define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */ 71#define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */ 72#define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */ 73#define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */ 74#define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */ 75#define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */ 76#define BNX2X_MSG_IOV 0x0800000 77#define BNX2X_MSG_PTP 0x1000000 78#define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/ 79#define BNX2X_MSG_ETHTOOL 0x4000000 80#define BNX2X_MSG_DCB 0x8000000 81 82/* regular debug print */ 83#define DP_INNER(fmt, ...) \ 84 pr_notice("[%s:%d(%s)]" fmt, \ 85 __func__, __LINE__, \ 86 bp->dev ? (bp->dev->name) : "?", \ 87 ##__VA_ARGS__); 88 89#define DP(__mask, fmt, ...) \ 90do { \ 91 if (unlikely(bp->msg_enable & (__mask))) \ 92 DP_INNER(fmt, ##__VA_ARGS__); \ 93} while (0) 94 95#define DP_AND(__mask, fmt, ...) \ 96do { \ 97 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \ 98 DP_INNER(fmt, ##__VA_ARGS__); \ 99} while (0) 100 101#define DP_CONT(__mask, fmt, ...) \ 102do { \ 103 if (unlikely(bp->msg_enable & (__mask))) \ 104 pr_cont(fmt, ##__VA_ARGS__); \ 105} while (0) 106 107/* errors debug print */ 108#define BNX2X_DBG_ERR(fmt, ...) \ 109do { \ 110 if (unlikely(netif_msg_probe(bp))) \ 111 pr_err("[%s:%d(%s)]" fmt, \ 112 __func__, __LINE__, \ 113 bp->dev ? (bp->dev->name) : "?", \ 114 ##__VA_ARGS__); \ 115} while (0) 116 117/* for errors (never masked) */ 118#define BNX2X_ERR(fmt, ...) \ 119do { \ 120 pr_err("[%s:%d(%s)]" fmt, \ 121 __func__, __LINE__, \ 122 bp->dev ? (bp->dev->name) : "?", \ 123 ##__VA_ARGS__); \ 124} while (0) 125 126#define BNX2X_ERROR(fmt, ...) \ 127 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__) 128 129/* before we have a dev->name use dev_info() */ 130#define BNX2X_DEV_INFO(fmt, ...) \ 131do { \ 132 if (unlikely(netif_msg_probe(bp))) \ 133 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \ 134} while (0) 135 136/* Error handling */ 137void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int); 138#ifdef BNX2X_STOP_ON_ERROR 139#define bnx2x_panic() \ 140do { \ 141 bp->panic = 1; \ 142 BNX2X_ERR("driver assert\n"); \ 143 bnx2x_panic_dump(bp, true); \ 144} while (0) 145#else 146#define bnx2x_panic() \ 147do { \ 148 bp->panic = 1; \ 149 BNX2X_ERR("driver assert\n"); \ 150 bnx2x_panic_dump(bp, false); \ 151} while (0) 152#endif 153 154#define bnx2x_mc_addr(ha) ((ha)->addr) 155#define bnx2x_uc_addr(ha) ((ha)->addr) 156 157#define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff)) 158#define U64_HI(x) ((u32)(((u64)(x)) >> 32)) 159#define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo)) 160 161#define REG_ADDR(bp, offset) ((bp->regview) + (offset)) 162 163#define REG_RD(bp, offset) readl(REG_ADDR(bp, offset)) 164#define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset)) 165#define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset)) 166 167#define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset)) 168#define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset)) 169#define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset)) 170 171#define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset) 172#define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val) 173 174#define REG_RD_DMAE(bp, offset, valp, len32) \ 175 do { \ 176 bnx2x_read_dmae(bp, offset, len32);\ 177 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \ 178 } while (0) 179 180#define REG_WR_DMAE(bp, offset, valp, len32) \ 181 do { \ 182 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \ 183 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \ 184 offset, len32); \ 185 } while (0) 186 187#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \ 188 REG_WR_DMAE(bp, offset, valp, len32) 189 190#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \ 191 do { \ 192 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \ 193 bnx2x_write_big_buf_wb(bp, addr, len32); \ 194 } while (0) 195 196#define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \ 197 offsetof(struct shmem_region, field)) 198#define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field)) 199#define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val) 200 201#define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \ 202 offsetof(struct shmem2_region, field)) 203#define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field)) 204#define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val) 205#define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \ 206 offsetof(struct mf_cfg, field)) 207#define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \ 208 offsetof(struct mf2_cfg, field)) 209 210#define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field)) 211#define MF_CFG_WR(bp, field, val) REG_WR(bp,\ 212 MF_CFG_ADDR(bp, field), (val)) 213#define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field)) 214 215#define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \ 216 (SHMEM2_RD((bp), size) > \ 217 offsetof(struct shmem2_region, field))) 218 219#define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg) 220#define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val) 221 222/* SP SB indices */ 223 224/* General SP events - stats query, cfc delete, etc */ 225#define HC_SP_INDEX_ETH_DEF_CONS 3 226 227/* EQ completions */ 228#define HC_SP_INDEX_EQ_CONS 7 229 230/* FCoE L2 connection completions */ 231#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 232#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 233/* iSCSI L2 */ 234#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 235#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 236 237/* Special clients parameters */ 238 239/* SB indices */ 240/* FCoE L2 */ 241#define BNX2X_FCOE_L2_RX_INDEX \ 242 (&bp->def_status_blk->sp_sb.\ 243 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]) 244 245#define BNX2X_FCOE_L2_TX_INDEX \ 246 (&bp->def_status_blk->sp_sb.\ 247 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS]) 248 249/** 250 * CIDs and CLIDs: 251 * CLIDs below is a CLID for func 0, then the CLID for other 252 * functions will be calculated by the formula: 253 * 254 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X 255 * 256 */ 257enum { 258 BNX2X_ISCSI_ETH_CL_ID_IDX, 259 BNX2X_FCOE_ETH_CL_ID_IDX, 260 BNX2X_MAX_CNIC_ETH_CL_ID_IDX, 261}; 262 263/* use a value high enough to be above all the PFs, which has least significant 264 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to 265 * calculate doorbell address according to old doorbell configuration scheme 266 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number 267 * We must avoid coming up with cid 8 for iscsi since according to this method 268 * the designated UIO cid will come out 0 and it has a special handling for that 269 * case which doesn't suit us. Therefore will will cieling to closes cid which 270 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18. 271 */ 272 273#define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \ 274 (bp)->max_cos) 275/* amount of cids traversed by UIO's DPM addition to doorbell */ 276#define UIO_DPM 8 277/* roundup to DPM offset */ 278#define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \ 279 UIO_DPM)) 280/* offset to nearest value which has lsb nibble matching DPM */ 281#define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \ 282 (UIO_DPM * 2)) 283/* add offset to rounded-up cid to get a value which could be used with UIO */ 284#define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp)) 285/* but wait - avoid UIO special case for cid 0 */ 286#define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \ 287 (UIO_DPM_ALIGN(bp) == UIO_DPM)) 288/* Properly DPM aligned CID dajusted to cid 0 secal case */ 289#define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \ 290 (UIO_DPM_CID0_OFFSET(bp))) 291/* how many cids were wasted - need this value for cid allocation */ 292#define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \ 293 BNX2X_1st_NON_L2_ETH_CID(bp)) 294 /* iSCSI L2 */ 295#define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp)) 296 /* FCoE L2 */ 297#define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1) 298 299#define CNIC_SUPPORT(bp) ((bp)->cnic_support) 300#define CNIC_ENABLED(bp) ((bp)->cnic_enabled) 301#define CNIC_LOADED(bp) ((bp)->cnic_loaded) 302#define FCOE_INIT(bp) ((bp)->fcoe_init) 303 304#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ 305 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR 306 307#define SM_RX_ID 0 308#define SM_TX_ID 1 309 310/* defines for multiple tx priority indices */ 311#define FIRST_TX_ONLY_COS_INDEX 1 312#define FIRST_TX_COS_INDEX 0 313 314/* rules for calculating the cids of tx-only connections */ 315#define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp)) 316#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \ 317 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 318 319/* fp index inside class of service range */ 320#define FP_COS_TO_TXQ(fp, cos, bp) \ 321 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp)) 322 323/* Indexes for transmission queues array: 324 * txdata for RSS i CoS j is at location i + (j * num of RSS) 325 * txdata for FCoE (if exist) is at location max cos * num of RSS 326 * txdata for FWD (if exist) is one location after FCoE 327 * txdata for OOO (if exist) is one location after FWD 328 */ 329enum { 330 FCOE_TXQ_IDX_OFFSET, 331 FWD_TXQ_IDX_OFFSET, 332 OOO_TXQ_IDX_OFFSET, 333}; 334#define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos) 335#define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET) 336 337/* fast path */ 338/* 339 * This driver uses new build_skb() API : 340 * RX ring buffer contains pointer to kmalloc() data only, 341 * skb are built only after Hardware filled the frame. 342 */ 343struct sw_rx_bd { 344 u8 *data; 345 DEFINE_DMA_UNMAP_ADDR(mapping); 346}; 347 348struct sw_tx_bd { 349 struct sk_buff *skb; 350 u16 first_bd; 351 u8 flags; 352/* Set on the first BD descriptor when there is a split BD */ 353#define BNX2X_TSO_SPLIT_BD (1<<0) 354#define BNX2X_HAS_SECOND_PBD (1<<1) 355}; 356 357struct sw_rx_page { 358 struct page *page; 359 DEFINE_DMA_UNMAP_ADDR(mapping); 360}; 361 362union db_prod { 363 struct doorbell_set_prod data; 364 u32 raw; 365}; 366 367/* dropless fc FW/HW related params */ 368#define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512) 369#define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \ 370 ETH_MAX_AGGREGATION_QUEUES_E1 :\ 371 ETH_MAX_AGGREGATION_QUEUES_E1H_E2) 372#define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp)) 373#define FW_PREFETCH_CNT 16 374#define DROPLESS_FC_HEADROOM 100 375 376/* MC hsi */ 377#define BCM_PAGE_SHIFT 12 378#define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) 379#define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) 380#define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) 381 382#define PAGES_PER_SGE_SHIFT 0 383#define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) 384#define SGE_PAGE_SIZE PAGE_SIZE 385#define SGE_PAGE_SHIFT PAGE_SHIFT 386#define SGE_PAGE_ALIGN(addr) PAGE_ALIGN((typeof(PAGE_SIZE))(addr)) 387#define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) 388#define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \ 389 SGE_PAGES), 0xffff) 390 391/* SGE ring related macros */ 392#define NUM_RX_SGE_PAGES 2 393#define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) 394#define NEXT_PAGE_SGE_DESC_CNT 2 395#define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT) 396/* RX_SGE_CNT is promised to be a power of 2 */ 397#define RX_SGE_MASK (RX_SGE_CNT - 1) 398#define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES) 399#define MAX_RX_SGE (NUM_RX_SGE - 1) 400#define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \ 401 (MAX_RX_SGE_CNT - 1)) ? \ 402 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \ 403 (x) + 1) 404#define RX_SGE(x) ((x) & MAX_RX_SGE) 405 406/* 407 * Number of required SGEs is the sum of two: 408 * 1. Number of possible opened aggregations (next packet for 409 * these aggregations will probably consume SGE immediately) 410 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only 411 * after placement on BD for new TPA aggregation) 412 * 413 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page 414 */ 415#define NUM_SGE_REQ (MAX_AGG_QS(bp) + \ 416 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2) 417#define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \ 418 MAX_RX_SGE_CNT) 419#define SGE_TH_LO(bp) (NUM_SGE_REQ + \ 420 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT) 421#define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM) 422 423/* Manipulate a bit vector defined as an array of u64 */ 424 425/* Number of bits in one sge_mask array element */ 426#define BIT_VEC64_ELEM_SZ 64 427#define BIT_VEC64_ELEM_SHIFT 6 428#define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1) 429 430#define __BIT_VEC64_SET_BIT(el, bit) \ 431 do { \ 432 el = ((el) | ((u64)0x1 << (bit))); \ 433 } while (0) 434 435#define __BIT_VEC64_CLEAR_BIT(el, bit) \ 436 do { \ 437 el = ((el) & (~((u64)0x1 << (bit)))); \ 438 } while (0) 439 440#define BIT_VEC64_SET_BIT(vec64, idx) \ 441 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 442 (idx) & BIT_VEC64_ELEM_MASK) 443 444#define BIT_VEC64_CLEAR_BIT(vec64, idx) \ 445 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \ 446 (idx) & BIT_VEC64_ELEM_MASK) 447 448#define BIT_VEC64_TEST_BIT(vec64, idx) \ 449 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \ 450 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1) 451 452/* Creates a bitmask of all ones in less significant bits. 453 idx - index of the most significant bit in the created mask */ 454#define BIT_VEC64_ONES_MASK(idx) \ 455 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1) 456#define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0)) 457 458/*******************************************************/ 459 460/* Number of u64 elements in SGE mask array */ 461#define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ) 462#define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) 463#define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) 464 465union host_hc_status_block { 466 /* pointer to fp status block e1x */ 467 struct host_hc_status_block_e1x *e1x_sb; 468 /* pointer to fp status block e2 */ 469 struct host_hc_status_block_e2 *e2_sb; 470}; 471 472struct bnx2x_agg_info { 473 /* 474 * First aggregation buffer is a data buffer, the following - are pages. 475 * We will preallocate the data buffer for each aggregation when 476 * we open the interface and will replace the BD at the consumer 477 * with this one when we receive the TPA_START CQE in order to 478 * keep the Rx BD ring consistent. 479 */ 480 struct sw_rx_bd first_buf; 481 u8 tpa_state; 482#define BNX2X_TPA_START 1 483#define BNX2X_TPA_STOP 2 484#define BNX2X_TPA_ERROR 3 485 u8 placement_offset; 486 u16 parsing_flags; 487 u16 vlan_tag; 488 u16 len_on_bd; 489 u32 rxhash; 490 enum pkt_hash_types rxhash_type; 491 u16 gro_size; 492 u16 full_page; 493}; 494 495#define Q_STATS_OFFSET32(stat_name) \ 496 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4) 497 498struct bnx2x_fp_txdata { 499 500 struct sw_tx_bd *tx_buf_ring; 501 502 union eth_tx_bd_types *tx_desc_ring; 503 dma_addr_t tx_desc_mapping; 504 505 u32 cid; 506 507 union db_prod tx_db; 508 509 u16 tx_pkt_prod; 510 u16 tx_pkt_cons; 511 u16 tx_bd_prod; 512 u16 tx_bd_cons; 513 514 unsigned long tx_pkt; 515 516 __le16 *tx_cons_sb; 517 518 int txq_index; 519 struct bnx2x_fastpath *parent_fp; 520 int tx_ring_size; 521}; 522 523enum bnx2x_tpa_mode_t { 524 TPA_MODE_LRO, 525 TPA_MODE_GRO 526}; 527 528struct bnx2x_fastpath { 529 struct bnx2x *bp; /* parent */ 530 531 struct napi_struct napi; 532 533#ifdef CONFIG_NET_RX_BUSY_POLL 534 unsigned int state; 535#define BNX2X_FP_STATE_IDLE 0 536#define BNX2X_FP_STATE_NAPI (1 << 0) /* NAPI owns this FP */ 537#define BNX2X_FP_STATE_POLL (1 << 1) /* poll owns this FP */ 538#define BNX2X_FP_STATE_DISABLED (1 << 2) 539#define BNX2X_FP_STATE_NAPI_YIELD (1 << 3) /* NAPI yielded this FP */ 540#define BNX2X_FP_STATE_POLL_YIELD (1 << 4) /* poll yielded this FP */ 541#define BNX2X_FP_OWNED (BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL) 542#define BNX2X_FP_YIELD (BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD) 543#define BNX2X_FP_LOCKED (BNX2X_FP_OWNED | BNX2X_FP_STATE_DISABLED) 544#define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD) 545 /* protect state */ 546 spinlock_t lock; 547#endif /* CONFIG_NET_RX_BUSY_POLL */ 548 549 union host_hc_status_block status_blk; 550 /* chip independent shortcuts into sb structure */ 551 __le16 *sb_index_values; 552 __le16 *sb_running_index; 553 /* chip independent shortcut into rx_prods_offset memory */ 554 u32 ustorm_rx_prods_offset; 555 556 u32 rx_buf_size; 557 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */ 558 dma_addr_t status_blk_mapping; 559 560 enum bnx2x_tpa_mode_t mode; 561 562 u8 max_cos; /* actual number of active tx coses */ 563 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS]; 564 565 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */ 566 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */ 567 568 struct eth_rx_bd *rx_desc_ring; 569 dma_addr_t rx_desc_mapping; 570 571 union eth_rx_cqe *rx_comp_ring; 572 dma_addr_t rx_comp_mapping; 573 574 /* SGE ring */ 575 struct eth_rx_sge *rx_sge_ring; 576 dma_addr_t rx_sge_mapping; 577 578 u64 sge_mask[RX_SGE_MASK_LEN]; 579 580 u32 cid; 581 582 __le16 fp_hc_idx; 583 584 u8 index; /* number in fp array */ 585 u8 rx_queue; /* index for skb_record */ 586 u8 cl_id; /* eth client id */ 587 u8 cl_qzone_id; 588 u8 fw_sb_id; /* status block number in FW */ 589 u8 igu_sb_id; /* status block number in HW */ 590 591 u16 rx_bd_prod; 592 u16 rx_bd_cons; 593 u16 rx_comp_prod; 594 u16 rx_comp_cons; 595 u16 rx_sge_prod; 596 /* The last maximal completed SGE */ 597 u16 last_max_sge; 598 __le16 *rx_cons_sb; 599 unsigned long rx_pkt, 600 rx_calls; 601 602 /* TPA related */ 603 struct bnx2x_agg_info *tpa_info; 604 u8 disable_tpa; 605#ifdef BNX2X_STOP_ON_ERROR 606 u64 tpa_queue_used; 607#endif 608 /* The size is calculated using the following: 609 sizeof name field from netdev structure + 610 4 ('-Xx-' string) + 611 4 (for the digits and to make it DWORD aligned) */ 612#define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8) 613 char name[FP_NAME_SIZE]; 614}; 615 616#define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var) 617#define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index]) 618#define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index])) 619#define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats)) 620 621#ifdef CONFIG_NET_RX_BUSY_POLL 622static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp) 623{ 624 spin_lock_init(&fp->lock); 625 fp->state = BNX2X_FP_STATE_IDLE; 626} 627 628/* called from the device poll routine to get ownership of a FP */ 629static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp) 630{ 631 bool rc = true; 632 633 spin_lock_bh(&fp->lock); 634 if (fp->state & BNX2X_FP_LOCKED) { 635 WARN_ON(fp->state & BNX2X_FP_STATE_NAPI); 636 fp->state |= BNX2X_FP_STATE_NAPI_YIELD; 637 rc = false; 638 } else { 639 /* we don't care if someone yielded */ 640 fp->state = BNX2X_FP_STATE_NAPI; 641 } 642 spin_unlock_bh(&fp->lock); 643 return rc; 644} 645 646/* returns true is someone tried to get the FP while napi had it */ 647static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp) 648{ 649 bool rc = false; 650 651 spin_lock_bh(&fp->lock); 652 WARN_ON(fp->state & 653 (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD)); 654 655 if (fp->state & BNX2X_FP_STATE_POLL_YIELD) 656 rc = true; 657 658 /* state ==> idle, unless currently disabled */ 659 fp->state &= BNX2X_FP_STATE_DISABLED; 660 spin_unlock_bh(&fp->lock); 661 return rc; 662} 663 664/* called from bnx2x_low_latency_poll() */ 665static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp) 666{ 667 bool rc = true; 668 669 spin_lock_bh(&fp->lock); 670 if ((fp->state & BNX2X_FP_LOCKED)) { 671 fp->state |= BNX2X_FP_STATE_POLL_YIELD; 672 rc = false; 673 } else { 674 /* preserve yield marks */ 675 fp->state |= BNX2X_FP_STATE_POLL; 676 } 677 spin_unlock_bh(&fp->lock); 678 return rc; 679} 680 681/* returns true if someone tried to get the FP while it was locked */ 682static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp) 683{ 684 bool rc = false; 685 686 spin_lock_bh(&fp->lock); 687 WARN_ON(fp->state & BNX2X_FP_STATE_NAPI); 688 689 if (fp->state & BNX2X_FP_STATE_POLL_YIELD) 690 rc = true; 691 692 /* state ==> idle, unless currently disabled */ 693 fp->state &= BNX2X_FP_STATE_DISABLED; 694 spin_unlock_bh(&fp->lock); 695 return rc; 696} 697 698/* true if a socket is polling, even if it did not get the lock */ 699static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp) 700{ 701 WARN_ON(!(fp->state & BNX2X_FP_OWNED)); 702 return fp->state & BNX2X_FP_USER_PEND; 703} 704 705/* false if fp is currently owned */ 706static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp) 707{ 708 int rc = true; 709 710 spin_lock_bh(&fp->lock); 711 if (fp->state & BNX2X_FP_OWNED) 712 rc = false; 713 fp->state |= BNX2X_FP_STATE_DISABLED; 714 spin_unlock_bh(&fp->lock); 715 716 return rc; 717} 718#else 719static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp) 720{ 721} 722 723static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp) 724{ 725 return true; 726} 727 728static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp) 729{ 730 return false; 731} 732 733static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp) 734{ 735 return false; 736} 737 738static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp) 739{ 740 return false; 741} 742 743static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp) 744{ 745 return false; 746} 747static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp) 748{ 749 return true; 750} 751#endif /* CONFIG_NET_RX_BUSY_POLL */ 752 753/* Use 2500 as a mini-jumbo MTU for FCoE */ 754#define BNX2X_FCOE_MINI_JUMBO_MTU 2500 755 756#define FCOE_IDX_OFFSET 0 757 758#define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \ 759 FCOE_IDX_OFFSET) 760#define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)]) 761#define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var) 762#define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)]) 763#define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var) 764#define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \ 765 txdata_ptr[FIRST_TX_COS_INDEX] \ 766 ->var) 767 768#define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp)) 769#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp)) 770#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp)) 771 772/* MC hsi */ 773#define MAX_FETCH_BD 13 /* HW max BDs per packet */ 774#define RX_COPY_THRESH 92 775 776#define NUM_TX_RINGS 16 777#define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) 778#define NEXT_PAGE_TX_DESC_CNT 1 779#define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT) 780#define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS) 781#define MAX_TX_BD (NUM_TX_BD - 1) 782#define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2) 783#define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \ 784 (MAX_TX_DESC_CNT - 1)) ? \ 785 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \ 786 (x) + 1) 787#define TX_BD(x) ((x) & MAX_TX_BD) 788#define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT) 789 790/* number of NEXT_PAGE descriptors may be required during placement */ 791#define NEXT_CNT_PER_TX_PKT(bds) \ 792 (((bds) + MAX_TX_DESC_CNT - 1) / \ 793 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT) 794/* max BDs per tx packet w/o next_pages: 795 * START_BD - describes packed 796 * START_BD(splitted) - includes unpaged data segment for GSO 797 * PARSING_BD - for TSO and CSUM data 798 * PARSING_BD2 - for encapsulation data 799 * Frag BDs - describes pages for frags 800 */ 801#define BDS_PER_TX_PKT 4 802#define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT) 803/* max BDs per tx packet including next pages */ 804#define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \ 805 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT)) 806 807/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */ 808#define NUM_RX_RINGS 8 809#define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) 810#define NEXT_PAGE_RX_DESC_CNT 2 811#define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT) 812#define RX_DESC_MASK (RX_DESC_CNT - 1) 813#define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS) 814#define MAX_RX_BD (NUM_RX_BD - 1) 815#define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2) 816 817/* dropless fc calculations for BDs 818 * 819 * Number of BDs should as number of buffers in BRB: 820 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT 821 * "next" elements on each page 822 */ 823#define NUM_BD_REQ BRB_SIZE(bp) 824#define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \ 825 MAX_RX_DESC_CNT) 826#define BD_TH_LO(bp) (NUM_BD_REQ + \ 827 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \ 828 FW_DROP_LEVEL(bp)) 829#define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM) 830 831#define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128) 832 833#define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \ 834 ETH_MIN_RX_CQES_WITH_TPA_E1 : \ 835 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) 836#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA 837#define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL)) 838#define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\ 839 MIN_RX_AVAIL)) 840 841#define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \ 842 (MAX_RX_DESC_CNT - 1)) ? \ 843 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \ 844 (x) + 1) 845#define RX_BD(x) ((x) & MAX_RX_BD) 846 847/* 848 * As long as CQE is X times bigger than BD entry we have to allocate X times 849 * more pages for CQ ring in order to keep it balanced with BD ring 850 */ 851#define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd)) 852#define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL) 853#define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) 854#define NEXT_PAGE_RCQ_DESC_CNT 1 855#define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT) 856#define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS) 857#define MAX_RCQ_BD (NUM_RCQ_BD - 1) 858#define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2) 859#define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \ 860 (MAX_RCQ_DESC_CNT - 1)) ? \ 861 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \ 862 (x) + 1) 863#define RCQ_BD(x) ((x) & MAX_RCQ_BD) 864 865/* dropless fc calculations for RCQs 866 * 867 * Number of RCQs should be as number of buffers in BRB: 868 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT 869 * "next" elements on each page 870 */ 871#define NUM_RCQ_REQ BRB_SIZE(bp) 872#define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \ 873 MAX_RCQ_DESC_CNT) 874#define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \ 875 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \ 876 FW_DROP_LEVEL(bp)) 877#define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM) 878 879/* This is needed for determining of last_max */ 880#define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b)) 881#define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b)) 882 883#define BNX2X_SWCID_SHIFT 17 884#define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1) 885 886/* used on a CID received from the HW */ 887#define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK) 888#define CQE_CMD(x) (le32_to_cpu(x) >> \ 889 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) 890 891#define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \ 892 le32_to_cpu((bd)->addr_lo)) 893#define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes)) 894 895#define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */ 896#define BNX2X_DB_SHIFT 3 /* 8 bytes*/ 897#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT) 898#error "Min DB doorbell stride is 8" 899#endif 900#define DOORBELL(bp, cid, val) \ 901 do { \ 902 writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \ 903 } while (0) 904 905/* TX CSUM helpers */ 906#define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \ 907 skb->csum_offset) 908#define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \ 909 skb->csum_offset)) 910 911#define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff) 912 913#define XMIT_PLAIN 0 914#define XMIT_CSUM_V4 (1 << 0) 915#define XMIT_CSUM_V6 (1 << 1) 916#define XMIT_CSUM_TCP (1 << 2) 917#define XMIT_GSO_V4 (1 << 3) 918#define XMIT_GSO_V6 (1 << 4) 919#define XMIT_CSUM_ENC_V4 (1 << 5) 920#define XMIT_CSUM_ENC_V6 (1 << 6) 921#define XMIT_GSO_ENC_V4 (1 << 7) 922#define XMIT_GSO_ENC_V6 (1 << 8) 923 924#define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6) 925#define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6) 926 927#define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC) 928#define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC) 929 930/* stuff added to make the code fit 80Col */ 931#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) 932#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) 933#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) 934#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) 935#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) 936 937#define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG 938 939#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \ 940 (((le16_to_cpu(flags) & \ 941 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \ 942 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \ 943 == PRS_FLAG_OVERETH_IPV4) 944#define BNX2X_RX_SUM_FIX(cqe) \ 945 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags) 946 947#define FP_USB_FUNC_OFF \ 948 offsetof(struct cstorm_status_block_u, func) 949#define FP_CSB_FUNC_OFF \ 950 offsetof(struct cstorm_status_block_c, func) 951 952#define HC_INDEX_ETH_RX_CQ_CONS 1 953 954#define HC_INDEX_OOO_TX_CQ_CONS 4 955 956#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 957 958#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 959 960#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 961 962#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 963 964#define BNX2X_RX_SB_INDEX \ 965 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]) 966 967#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0 968 969#define BNX2X_TX_SB_INDEX_COS0 \ 970 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]) 971 972/* end of fast path */ 973 974/* common */ 975 976struct bnx2x_common { 977 978 u32 chip_id; 979/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 980#define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0) 981 982#define CHIP_NUM(bp) (bp->common.chip_id >> 16) 983#define CHIP_NUM_57710 0x164e 984#define CHIP_NUM_57711 0x164f 985#define CHIP_NUM_57711E 0x1650 986#define CHIP_NUM_57712 0x1662 987#define CHIP_NUM_57712_MF 0x1663 988#define CHIP_NUM_57712_VF 0x166f 989#define CHIP_NUM_57713 0x1651 990#define CHIP_NUM_57713E 0x1652 991#define CHIP_NUM_57800 0x168a 992#define CHIP_NUM_57800_MF 0x16a5 993#define CHIP_NUM_57800_VF 0x16a9 994#define CHIP_NUM_57810 0x168e 995#define CHIP_NUM_57810_MF 0x16ae 996#define CHIP_NUM_57810_VF 0x16af 997#define CHIP_NUM_57811 0x163d 998#define CHIP_NUM_57811_MF 0x163e 999#define CHIP_NUM_57811_VF 0x163f 1000#define CHIP_NUM_57840_OBSOLETE 0x168d 1001#define CHIP_NUM_57840_MF_OBSOLETE 0x16ab 1002#define CHIP_NUM_57840_4_10 0x16a1 1003#define CHIP_NUM_57840_2_20 0x16a2 1004#define CHIP_NUM_57840_MF 0x16a4 1005#define CHIP_NUM_57840_VF 0x16ad 1006#define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710) 1007#define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711) 1008#define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E) 1009#define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712) 1010#define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF) 1011#define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF) 1012#define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800) 1013#define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF) 1014#define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF) 1015#define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810) 1016#define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF) 1017#define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF) 1018#define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811) 1019#define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF) 1020#define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF) 1021#define CHIP_IS_57840(bp) \ 1022 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \ 1023 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \ 1024 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE)) 1025#define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \ 1026 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE)) 1027#define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF) 1028#define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \ 1029 CHIP_IS_57711E(bp)) 1030#define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \ 1031 CHIP_IS_57811_MF(bp) || \ 1032 CHIP_IS_57811_VF(bp)) 1033#define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \ 1034 CHIP_IS_57712_MF(bp) || \ 1035 CHIP_IS_57712_VF(bp)) 1036#define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \ 1037 CHIP_IS_57800_MF(bp) || \ 1038 CHIP_IS_57800_VF(bp) || \ 1039 CHIP_IS_57810(bp) || \ 1040 CHIP_IS_57810_MF(bp) || \ 1041 CHIP_IS_57810_VF(bp) || \ 1042 CHIP_IS_57811xx(bp) || \ 1043 CHIP_IS_57840(bp) || \ 1044 CHIP_IS_57840_MF(bp) || \ 1045 CHIP_IS_57840_VF(bp)) 1046#define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp))) 1047#define USES_WARPCORE(bp) (CHIP_IS_E3(bp)) 1048#define IS_E1H_OFFSET (!CHIP_IS_E1(bp)) 1049 1050#define CHIP_REV_SHIFT 12 1051#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) 1052#define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK) 1053#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) 1054#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) 1055/* assume maximum 5 revisions */ 1056#define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000) 1057/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */ 1058#define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 1059 !(CHIP_REV_VAL(bp) & 0x00001000)) 1060/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */ 1061#define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \ 1062 (CHIP_REV_VAL(bp) & 0x00001000)) 1063 1064#define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \ 1065 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1)) 1066 1067#define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0) 1068#define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f) 1069#define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\ 1070 (CHIP_REV_SHIFT + 1)) \ 1071 << CHIP_REV_SHIFT) 1072#define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \ 1073 CHIP_REV_SIM(bp) :\ 1074 CHIP_REV_VAL(bp)) 1075#define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \ 1076 (CHIP_REV(bp) == CHIP_REV_Bx)) 1077#define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \ 1078 (CHIP_REV(bp) == CHIP_REV_Ax)) 1079/* This define is used in two main places: 1080 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher 1081 * to nic-only mode or to offload mode. Offload mode is configured if either the 1082 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already 1083 * registered for this port (which means that the user wants storage services). 1084 * 2. During cnic-related load, to know if offload mode is already configured in 1085 * the HW or needs to be configured. 1086 * Since the transition from nic-mode to offload-mode in HW causes traffic 1087 * corruption, nic-mode is configured only in ports on which storage services 1088 * where never requested. 1089 */ 1090#define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp)) 1091 1092 int flash_size; 1093#define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */ 1094#define BNX2X_NVRAM_TIMEOUT_COUNT 30000 1095#define BNX2X_NVRAM_PAGE_SIZE 256 1096 1097 u32 shmem_base; 1098 u32 shmem2_base; 1099 u32 mf_cfg_base; 1100 u32 mf2_cfg_base; 1101 1102 u32 hw_config; 1103 1104 u32 bc_ver; 1105 1106 u8 int_block; 1107#define INT_BLOCK_HC 0 1108#define INT_BLOCK_IGU 1 1109#define INT_BLOCK_MODE_NORMAL 0 1110#define INT_BLOCK_MODE_BW_COMP 2 1111#define CHIP_INT_MODE_IS_NBC(bp) \ 1112 (!CHIP_IS_E1x(bp) && \ 1113 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP)) 1114#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp)) 1115 1116 u8 chip_port_mode; 1117#define CHIP_4_PORT_MODE 0x0 1118#define CHIP_2_PORT_MODE 0x1 1119#define CHIP_PORT_MODE_NONE 0x2 1120#define CHIP_MODE(bp) (bp->common.chip_port_mode) 1121#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE) 1122 1123 u32 boot_mode; 1124}; 1125 1126/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ 1127#define BNX2X_IGU_STAS_MSG_VF_CNT 64 1128#define BNX2X_IGU_STAS_MSG_PF_CNT 4 1129 1130#define MAX_IGU_ATTN_ACK_TO 100 1131/* end of common */ 1132 1133/* port */ 1134 1135struct bnx2x_port { 1136 u32 pmf; 1137 1138 u32 link_config[LINK_CONFIG_SIZE]; 1139 1140 u32 supported[LINK_CONFIG_SIZE]; 1141/* link settings - missing defines */ 1142#define SUPPORTED_2500baseX_Full (1 << 15) 1143 1144 u32 advertising[LINK_CONFIG_SIZE]; 1145/* link settings - missing defines */ 1146#define ADVERTISED_2500baseX_Full (1 << 15) 1147 1148 u32 phy_addr; 1149 1150 /* used to synchronize phy accesses */ 1151 struct mutex phy_mutex; 1152 1153 u32 port_stx; 1154 1155 struct nig_stats old_nig_stats; 1156}; 1157 1158/* end of port */ 1159 1160#define STATS_OFFSET32(stat_name) \ 1161 (offsetof(struct bnx2x_eth_stats, stat_name) / 4) 1162 1163/* slow path */ 1164#define BNX2X_MAX_NUM_OF_VFS 64 1165#define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */ 1166#define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND) 1167 1168/* We need to reserve doorbell addresses for all VF and queue combinations */ 1169#define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF) 1170 1171/* The doorbell is configured to have the same number of CIDs for PFs and for 1172 * VFs. For this reason the PF CID zone is as large as the VF zone. 1173 */ 1174#define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS 1175#define BNX2X_MAX_NUM_VF_QUEUES 64 1176#define BNX2X_VF_ID_INVALID 0xFF 1177 1178/* the number of VF CIDS multiplied by the amount of bytes reserved for each 1179 * cid must not exceed the size of the VF doorbell 1180 */ 1181#define BNX2X_VF_BAR_SIZE 512 1182#if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT)) 1183#error "VF doorbell bar size is 512" 1184#endif 1185 1186/* 1187 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is 1188 * control by the number of fast-path status blocks supported by the 1189 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default 1190 * status block represents an independent interrupts context that can 1191 * serve a regular L2 networking queue. However special L2 queues such 1192 * as the FCoE queue do not require a FP-SB and other components like 1193 * the CNIC may consume FP-SB reducing the number of possible L2 queues 1194 * 1195 * If the maximum number of FP-SB available is X then: 1196 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of 1197 * regular L2 queues is Y=X-1 1198 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor) 1199 * c. If the FCoE L2 queue is supported the actual number of L2 queues 1200 * is Y+1 1201 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for 1202 * slow-path interrupts) or Y+2 if CNIC is supported (one additional 1203 * FP interrupt context for the CNIC). 1204 * e. The number of HW context (CID count) is always X or X+1 if FCoE 1205 * L2 queue is supported. The cid for the FCoE L2 queue is always X. 1206 */ 1207 1208/* fast-path interrupt contexts E1x */ 1209#define FP_SB_MAX_E1x 16 1210/* fast-path interrupt contexts E2 */ 1211#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 1212 1213union cdu_context { 1214 struct eth_context eth; 1215 char pad[1024]; 1216}; 1217 1218/* CDU host DB constants */ 1219#define CDU_ILT_PAGE_SZ_HW 2 1220#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ 1221#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) 1222 1223#define CNIC_ISCSI_CID_MAX 256 1224#define CNIC_FCOE_CID_MAX 2048 1225#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) 1226#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) 1227 1228#define QM_ILT_PAGE_SZ_HW 0 1229#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ 1230#define QM_CID_ROUND 1024 1231 1232/* TM (timers) host DB constants */ 1233#define TM_ILT_PAGE_SZ_HW 0 1234#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ 1235#define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \ 1236 BNX2X_VF_CIDS + \ 1237 CNIC_ISCSI_CID_MAX) 1238#define TM_ILT_SZ (8 * TM_CONN_NUM) 1239#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) 1240 1241/* SRC (Searcher) host DB constants */ 1242#define SRC_ILT_PAGE_SZ_HW 0 1243#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ 1244#define SRC_HASH_BITS 10 1245#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ 1246#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) 1247#define SRC_T2_SZ SRC_ILT_SZ 1248#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) 1249 1250#define MAX_DMAE_C 8 1251 1252/* DMA memory not used in fastpath */ 1253struct bnx2x_slowpath { 1254 union { 1255 struct mac_configuration_cmd e1x; 1256 struct eth_classify_rules_ramrod_data e2; 1257 } mac_rdata; 1258 1259 union { 1260 struct tstorm_eth_mac_filter_config e1x; 1261 struct eth_filter_rules_ramrod_data e2; 1262 } rx_mode_rdata; 1263 1264 union { 1265 struct mac_configuration_cmd e1; 1266 struct eth_multicast_rules_ramrod_data e2; 1267 } mcast_rdata; 1268 1269 struct eth_rss_update_ramrod_data rss_rdata; 1270 1271 /* Queue State related ramrods are always sent under rtnl_lock */ 1272 union { 1273 struct client_init_ramrod_data init_data; 1274 struct client_update_ramrod_data update_data; 1275 struct tpa_update_ramrod_data tpa_data; 1276 } q_rdata; 1277 1278 union { 1279 struct function_start_data func_start; 1280 /* pfc configuration for DCBX ramrod */ 1281 struct flow_control_configuration pfc_config; 1282 } func_rdata; 1283 1284 /* afex ramrod can not be a part of func_rdata union because these 1285 * events might arrive in parallel to other events from func_rdata. 1286 * Therefore, if they would have been defined in the same union, 1287 * data can get corrupted. 1288 */ 1289 union { 1290 struct afex_vif_list_ramrod_data viflist_data; 1291 struct function_update_data func_update; 1292 } func_afex_rdata; 1293 1294 /* used by dmae command executer */ 1295 struct dmae_command dmae[MAX_DMAE_C]; 1296 1297 u32 stats_comp; 1298 union mac_stats mac_stats; 1299 struct nig_stats nig_stats; 1300 struct host_port_stats port_stats; 1301 struct host_func_stats func_stats; 1302 1303 u32 wb_comp; 1304 u32 wb_data[4]; 1305 1306 union drv_info_to_mcp drv_info_to_mcp; 1307}; 1308 1309#define bnx2x_sp(bp, var) (&bp->slowpath->var) 1310#define bnx2x_sp_mapping(bp, var) \ 1311 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var)) 1312 1313/* attn group wiring */ 1314#define MAX_DYNAMIC_ATTN_GRPS 8 1315 1316struct attn_route { 1317 u32 sig[5]; 1318}; 1319 1320struct iro { 1321 u32 base; 1322 u16 m1; 1323 u16 m2; 1324 u16 m3; 1325 u16 size; 1326}; 1327 1328struct hw_context { 1329 union cdu_context *vcxt; 1330 dma_addr_t cxt_mapping; 1331 size_t size; 1332}; 1333 1334/* forward */ 1335struct bnx2x_ilt; 1336 1337struct bnx2x_vfdb; 1338 1339enum bnx2x_recovery_state { 1340 BNX2X_RECOVERY_DONE, 1341 BNX2X_RECOVERY_INIT, 1342 BNX2X_RECOVERY_WAIT, 1343 BNX2X_RECOVERY_FAILED, 1344 BNX2X_RECOVERY_NIC_LOADING 1345}; 1346 1347/* 1348 * Event queue (EQ or event ring) MC hsi 1349 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2 1350 */ 1351#define NUM_EQ_PAGES 1 1352#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) 1353#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) 1354#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) 1355#define EQ_DESC_MASK (NUM_EQ_DESC - 1) 1356#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) 1357 1358/* depends on EQ_DESC_CNT_PAGE being a power of 2 */ 1359#define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \ 1360 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1) 1361 1362/* depends on the above and on NUM_EQ_PAGES being a power of 2 */ 1363#define EQ_DESC(x) ((x) & EQ_DESC_MASK) 1364 1365#define BNX2X_EQ_INDEX \ 1366 (&bp->def_status_blk->sp_sb.\ 1367 index_values[HC_SP_INDEX_EQ_CONS]) 1368 1369/* This is a data that will be used to create a link report message. 1370 * We will keep the data used for the last link report in order 1371 * to prevent reporting the same link parameters twice. 1372 */ 1373struct bnx2x_link_report_data { 1374 u16 line_speed; /* Effective line speed */ 1375 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */ 1376}; 1377 1378enum { 1379 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */ 1380 BNX2X_LINK_REPORT_LINK_DOWN, 1381 BNX2X_LINK_REPORT_RX_FC_ON, 1382 BNX2X_LINK_REPORT_TX_FC_ON, 1383}; 1384 1385enum { 1386 BNX2X_PORT_QUERY_IDX, 1387 BNX2X_PF_QUERY_IDX, 1388 BNX2X_FCOE_QUERY_IDX, 1389 BNX2X_FIRST_QUEUE_QUERY_IDX, 1390}; 1391 1392struct bnx2x_fw_stats_req { 1393 struct stats_query_header hdr; 1394 struct stats_query_entry query[FP_SB_MAX_E1x+ 1395 BNX2X_FIRST_QUEUE_QUERY_IDX]; 1396}; 1397 1398struct bnx2x_fw_stats_data { 1399 struct stats_counter storm_counters; 1400 struct per_port_stats port; 1401 struct per_pf_stats pf; 1402 struct fcoe_statistics_params fcoe; 1403 struct per_queue_stats queue_stats[1]; 1404}; 1405 1406/* Public slow path states */ 1407enum sp_rtnl_flag { 1408 BNX2X_SP_RTNL_SETUP_TC, 1409 BNX2X_SP_RTNL_TX_TIMEOUT, 1410 BNX2X_SP_RTNL_FAN_FAILURE, 1411 BNX2X_SP_RTNL_AFEX_F_UPDATE, 1412 BNX2X_SP_RTNL_ENABLE_SRIOV, 1413 BNX2X_SP_RTNL_VFPF_MCAST, 1414 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 1415 BNX2X_SP_RTNL_RX_MODE, 1416 BNX2X_SP_RTNL_HYPERVISOR_VLAN, 1417 BNX2X_SP_RTNL_TX_STOP, 1418 BNX2X_SP_RTNL_GET_DRV_VERSION, 1419}; 1420 1421enum bnx2x_iov_flag { 1422 BNX2X_IOV_HANDLE_VF_MSG, 1423 BNX2X_IOV_HANDLE_FLR, 1424}; 1425 1426struct bnx2x_prev_path_list { 1427 struct list_head list; 1428 u8 bus; 1429 u8 slot; 1430 u8 path; 1431 u8 aer; 1432 u8 undi; 1433}; 1434 1435struct bnx2x_sp_objs { 1436 /* MACs object */ 1437 struct bnx2x_vlan_mac_obj mac_obj; 1438 1439 /* Queue State object */ 1440 struct bnx2x_queue_sp_obj q_obj; 1441}; 1442 1443struct bnx2x_fp_stats { 1444 struct tstorm_per_queue_stats old_tclient; 1445 struct ustorm_per_queue_stats old_uclient; 1446 struct xstorm_per_queue_stats old_xclient; 1447 struct bnx2x_eth_q_stats eth_q_stats; 1448 struct bnx2x_eth_q_stats_old eth_q_stats_old; 1449}; 1450 1451enum { 1452 SUB_MF_MODE_UNKNOWN = 0, 1453 SUB_MF_MODE_UFP, 1454 SUB_MF_MODE_NPAR1_DOT_5, 1455}; 1456 1457struct bnx2x { 1458 /* Fields used in the tx and intr/napi performance paths 1459 * are grouped together in the beginning of the structure 1460 */ 1461 struct bnx2x_fastpath *fp; 1462 struct bnx2x_sp_objs *sp_objs; 1463 struct bnx2x_fp_stats *fp_stats; 1464 struct bnx2x_fp_txdata *bnx2x_txq; 1465 void __iomem *regview; 1466 void __iomem *doorbells; 1467 u16 db_size; 1468 1469 u8 pf_num; /* absolute PF number */ 1470 u8 pfid; /* per-path PF number */ 1471 int base_fw_ndsb; /**/ 1472#define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1)) 1473#define BP_PORT(bp) (bp->pfid & 1) 1474#define BP_FUNC(bp) (bp->pfid) 1475#define BP_ABS_FUNC(bp) (bp->pf_num) 1476#define BP_VN(bp) ((bp)->pfid >> 1) 1477#define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4) 1478#define BP_L_ID(bp) (BP_VN(bp) << 2) 1479#define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\ 1480 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1)) 1481#define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp)) 1482 1483#ifdef CONFIG_BNX2X_SRIOV 1484 /* protects vf2pf mailbox from simultaneous access */ 1485 struct mutex vf2pf_mutex; 1486 /* vf pf channel mailbox contains request and response buffers */ 1487 struct bnx2x_vf_mbx_msg *vf2pf_mbox; 1488 dma_addr_t vf2pf_mbox_mapping; 1489 1490 /* we set aside a copy of the acquire response */ 1491 struct pfvf_acquire_resp_tlv acquire_resp; 1492 1493 /* bulletin board for messages from pf to vf */ 1494 union pf_vf_bulletin *pf2vf_bulletin; 1495 dma_addr_t pf2vf_bulletin_mapping; 1496 1497 union pf_vf_bulletin shadow_bulletin; 1498 struct pf_vf_bulletin_content old_bulletin; 1499 1500 u16 requested_nr_virtfn; 1501#endif /* CONFIG_BNX2X_SRIOV */ 1502 1503 struct net_device *dev; 1504 struct pci_dev *pdev; 1505 1506 const struct iro *iro_arr; 1507#define IRO (bp->iro_arr) 1508 1509 enum bnx2x_recovery_state recovery_state; 1510 int is_leader; 1511 struct msix_entry *msix_table; 1512 1513 int tx_ring_size; 1514 1515/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ 1516#define ETH_OVREHEAD (ETH_HLEN + 8 + 8) 1517#define ETH_MIN_PACKET_SIZE 60 1518#define ETH_MAX_PACKET_SIZE 1500 1519#define ETH_MAX_JUMBO_PACKET_SIZE 9600 1520/* TCP with Timestamp Option (32) + IPv6 (40) */ 1521#define ETH_MAX_TPA_HEADER_SIZE 72 1522 1523 /* Max supported alignment is 256 (8 shift) 1524 * minimal alignment shift 6 is optimal for 57xxx HW performance 1525 */ 1526#define BNX2X_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT)) 1527 1528 /* FW uses 2 Cache lines Alignment for start packet and size 1529 * 1530 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes 1531 * at the end of skb->data, to avoid wasting a full cache line. 1532 * This reduces memory use (skb->truesize). 1533 */ 1534#define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT) 1535 1536#define BNX2X_FW_RX_ALIGN_END \ 1537 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \ 1538 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 1539 1540#define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5) 1541 1542 struct host_sp_status_block *def_status_blk; 1543#define DEF_SB_IGU_ID 16 1544#define DEF_SB_ID HC_SP_SB_ID 1545 __le16 def_idx; 1546 __le16 def_att_idx; 1547 u32 attn_state; 1548 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; 1549 1550 /* slow path ring */ 1551 struct eth_spe *spq; 1552 dma_addr_t spq_mapping; 1553 u16 spq_prod_idx; 1554 struct eth_spe *spq_prod_bd; 1555 struct eth_spe *spq_last_bd; 1556 __le16 *dsb_sp_prod; 1557 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */ 1558 /* used to synchronize spq accesses */ 1559 spinlock_t spq_lock; 1560 1561 /* event queue */ 1562 union event_ring_elem *eq_ring; 1563 dma_addr_t eq_mapping; 1564 u16 eq_prod; 1565 u16 eq_cons; 1566 __le16 *eq_cons_sb; 1567 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */ 1568 1569 /* Counter for marking that there is a STAT_QUERY ramrod pending */ 1570 u16 stats_pending; 1571 /* Counter for completed statistics ramrods */ 1572 u16 stats_comp; 1573 1574 /* End of fields used in the performance code paths */ 1575 1576 int panic; 1577 int msg_enable; 1578 1579 u32 flags; 1580#define PCIX_FLAG (1 << 0) 1581#define PCI_32BIT_FLAG (1 << 1) 1582#define ONE_PORT_FLAG (1 << 2) 1583#define NO_WOL_FLAG (1 << 3) 1584#define USING_MSIX_FLAG (1 << 5) 1585#define USING_MSI_FLAG (1 << 6) 1586#define DISABLE_MSI_FLAG (1 << 7) 1587#define TPA_ENABLE_FLAG (1 << 8) 1588#define NO_MCP_FLAG (1 << 9) 1589#define GRO_ENABLE_FLAG (1 << 10) 1590#define MF_FUNC_DIS (1 << 11) 1591#define OWN_CNIC_IRQ (1 << 12) 1592#define NO_ISCSI_OOO_FLAG (1 << 13) 1593#define NO_ISCSI_FLAG (1 << 14) 1594#define NO_FCOE_FLAG (1 << 15) 1595#define BC_SUPPORTS_PFC_STATS (1 << 17) 1596#define TX_SWITCHING (1 << 18) 1597#define BC_SUPPORTS_FCOE_FEATURES (1 << 19) 1598#define USING_SINGLE_MSIX_FLAG (1 << 20) 1599#define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21) 1600#define IS_VF_FLAG (1 << 22) 1601#define BC_SUPPORTS_RMMOD_CMD (1 << 23) 1602#define HAS_PHYS_PORT_ID (1 << 24) 1603#define AER_ENABLED (1 << 25) 1604#define PTP_SUPPORTED (1 << 26) 1605#define TX_TIMESTAMPING_EN (1 << 27) 1606 1607#define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG) 1608 1609#ifdef CONFIG_BNX2X_SRIOV 1610#define IS_VF(bp) ((bp)->flags & IS_VF_FLAG) 1611#define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG)) 1612#else 1613#define IS_VF(bp) false 1614#define IS_PF(bp) true 1615#endif 1616 1617#define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG) 1618#define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG) 1619#define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG) 1620 1621 u8 cnic_support; 1622 bool cnic_enabled; 1623 bool cnic_loaded; 1624 struct cnic_eth_dev *(*cnic_probe)(struct net_device *); 1625 1626 /* Flag that indicates that we can start looking for FCoE L2 queue 1627 * completions in the default status block. 1628 */ 1629 bool fcoe_init; 1630 1631 int mrrs; 1632 1633 struct delayed_work sp_task; 1634 struct delayed_work iov_task; 1635 1636 atomic_t interrupt_occurred; 1637 struct delayed_work sp_rtnl_task; 1638 1639 struct delayed_work period_task; 1640 struct timer_list timer; 1641 int current_interval; 1642 1643 u16 fw_seq; 1644 u16 fw_drv_pulse_wr_seq; 1645 u32 func_stx; 1646 1647 struct link_params link_params; 1648 struct link_vars link_vars; 1649 u32 link_cnt; 1650 struct bnx2x_link_report_data last_reported_link; 1651 1652 struct mdio_if_info mdio; 1653 1654 struct bnx2x_common common; 1655 struct bnx2x_port port; 1656 1657 struct cmng_init cmng; 1658 1659 u32 mf_config[E1HVN_MAX]; 1660 u32 mf_ext_config; 1661 u32 path_has_ovlan; /* E3 */ 1662 u16 mf_ov; 1663 u8 mf_mode; 1664#define IS_MF(bp) (bp->mf_mode != 0) 1665#define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI) 1666#define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD) 1667#define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX) 1668 u8 mf_sub_mode; 1669#define IS_MF_UFP(bp) (IS_MF_SD(bp) && \ 1670 bp->mf_sub_mode == SUB_MF_MODE_UFP) 1671 1672 u8 wol; 1673 1674 int rx_ring_size; 1675 1676 u16 tx_quick_cons_trip_int; 1677 u16 tx_quick_cons_trip; 1678 u16 tx_ticks_int; 1679 u16 tx_ticks; 1680 1681 u16 rx_quick_cons_trip_int; 1682 u16 rx_quick_cons_trip; 1683 u16 rx_ticks_int; 1684 u16 rx_ticks; 1685/* Maximal coalescing timeout in us */ 1686#define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR) 1687 1688 u32 lin_cnt; 1689 1690 u16 state; 1691#define BNX2X_STATE_CLOSED 0 1692#define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000 1693#define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000 1694#define BNX2X_STATE_OPEN 0x3000 1695#define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000 1696#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000 1697 1698#define BNX2X_STATE_DIAG 0xe000 1699#define BNX2X_STATE_ERROR 0xf000 1700 1701#define BNX2X_MAX_PRIORITY 8 1702 int num_queues; 1703 uint num_ethernet_queues; 1704 uint num_cnic_queues; 1705 int disable_tpa; 1706 1707 u32 rx_mode; 1708#define BNX2X_RX_MODE_NONE 0 1709#define BNX2X_RX_MODE_NORMAL 1 1710#define BNX2X_RX_MODE_ALLMULTI 2 1711#define BNX2X_RX_MODE_PROMISC 3 1712#define BNX2X_MAX_MULTICAST 64 1713 1714 u8 igu_dsb_id; 1715 u8 igu_base_sb; 1716 u8 igu_sb_cnt; 1717 u8 min_msix_vec_cnt; 1718 1719 u32 igu_base_addr; 1720 dma_addr_t def_status_blk_mapping; 1721 1722 struct bnx2x_slowpath *slowpath; 1723 dma_addr_t slowpath_mapping; 1724 1725 /* Mechanism protecting the drv_info_to_mcp */ 1726 struct mutex drv_info_mutex; 1727 bool drv_info_mng_owner; 1728 1729 /* Total number of FW statistics requests */ 1730 u8 fw_stats_num; 1731 1732 /* 1733 * This is a memory buffer that will contain both statistics 1734 * ramrod request and data. 1735 */ 1736 void *fw_stats; 1737 dma_addr_t fw_stats_mapping; 1738 1739 /* 1740 * FW statistics request shortcut (points at the 1741 * beginning of fw_stats buffer). 1742 */ 1743 struct bnx2x_fw_stats_req *fw_stats_req; 1744 dma_addr_t fw_stats_req_mapping; 1745 int fw_stats_req_sz; 1746 1747 /* 1748 * FW statistics data shortcut (points at the beginning of 1749 * fw_stats buffer + fw_stats_req_sz). 1750 */ 1751 struct bnx2x_fw_stats_data *fw_stats_data; 1752 dma_addr_t fw_stats_data_mapping; 1753 int fw_stats_data_sz; 1754 1755 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB 1756 * context size we need 8 ILT entries. 1757 */ 1758#define ILT_MAX_L2_LINES 32 1759 struct hw_context context[ILT_MAX_L2_LINES]; 1760 1761 struct bnx2x_ilt *ilt; 1762#define BP_ILT(bp) ((bp)->ilt) 1763#define ILT_MAX_LINES 256 1764/* 1765 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes 1766 * to CNIC. 1767 */ 1768#define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp)) 1769 1770/* 1771 * Maximum CID count that might be required by the bnx2x: 1772 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI 1773 */ 1774 1775#define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \ 1776 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1777#define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \ 1778 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp))) 1779#define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\ 1780 ILT_PAGE_CIDS)) 1781 1782 int qm_cid_count; 1783 1784 bool dropless_fc; 1785 1786 void *t2; 1787 dma_addr_t t2_mapping; 1788 struct cnic_ops __rcu *cnic_ops; 1789 void *cnic_data; 1790 u32 cnic_tag; 1791 struct cnic_eth_dev cnic_eth_dev; 1792 union host_hc_status_block cnic_sb; 1793 dma_addr_t cnic_sb_mapping; 1794 struct eth_spe *cnic_kwq; 1795 struct eth_spe *cnic_kwq_prod; 1796 struct eth_spe *cnic_kwq_cons; 1797 struct eth_spe *cnic_kwq_last; 1798 u16 cnic_kwq_pending; 1799 u16 cnic_spq_pending; 1800 u8 fip_mac[ETH_ALEN]; 1801 struct mutex cnic_mutex; 1802 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj; 1803 1804 /* Start index of the "special" (CNIC related) L2 clients */ 1805 u8 cnic_base_cl_id; 1806 1807 int dmae_ready; 1808 /* used to synchronize dmae accesses */ 1809 spinlock_t dmae_lock; 1810 1811 /* used to protect the FW mail box */ 1812 struct mutex fw_mb_mutex; 1813 1814 /* used to synchronize stats collecting */ 1815 int stats_state; 1816 1817 /* used for synchronization of concurrent threads statistics handling */ 1818 spinlock_t stats_lock; 1819 1820 /* used by dmae command loader */ 1821 struct dmae_command stats_dmae; 1822 int executer_idx; 1823 1824 u16 stats_counter; 1825 struct bnx2x_eth_stats eth_stats; 1826 struct host_func_stats func_stats; 1827 struct bnx2x_eth_stats_old eth_stats_old; 1828 struct bnx2x_net_stats_old net_stats_old; 1829 struct bnx2x_fw_port_stats_old fw_stats_old; 1830 bool stats_init; 1831 1832 struct z_stream_s *strm; 1833 void *gunzip_buf; 1834 dma_addr_t gunzip_mapping; 1835 int gunzip_outlen; 1836#define FW_BUF_SIZE 0x8000 1837#define GUNZIP_BUF(bp) (bp->gunzip_buf) 1838#define GUNZIP_PHYS(bp) (bp->gunzip_mapping) 1839#define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen) 1840 1841 struct raw_op *init_ops; 1842 /* Init blocks offsets inside init_ops */ 1843 u16 *init_ops_offsets; 1844 /* Data blob - has 32 bit granularity */ 1845 u32 *init_data; 1846 u32 init_mode_flags; 1847#define INIT_MODE_FLAGS(bp) (bp->init_mode_flags) 1848 /* Zipped PRAM blobs - raw data */ 1849 const u8 *tsem_int_table_data; 1850 const u8 *tsem_pram_data; 1851 const u8 *usem_int_table_data; 1852 const u8 *usem_pram_data; 1853 const u8 *xsem_int_table_data; 1854 const u8 *xsem_pram_data; 1855 const u8 *csem_int_table_data; 1856 const u8 *csem_pram_data; 1857#define INIT_OPS(bp) (bp->init_ops) 1858#define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets) 1859#define INIT_DATA(bp) (bp->init_data) 1860#define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data) 1861#define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data) 1862#define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data) 1863#define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data) 1864#define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data) 1865#define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data) 1866#define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data) 1867#define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data) 1868 1869#define PHY_FW_VER_LEN 20 1870 char fw_ver[32]; 1871 const struct firmware *firmware; 1872 1873 struct bnx2x_vfdb *vfdb; 1874#define IS_SRIOV(bp) ((bp)->vfdb) 1875 1876 /* DCB support on/off */ 1877 u16 dcb_state; 1878#define BNX2X_DCB_STATE_OFF 0 1879#define BNX2X_DCB_STATE_ON 1 1880 1881 /* DCBX engine mode */ 1882 int dcbx_enabled; 1883#define BNX2X_DCBX_ENABLED_OFF 0 1884#define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1 1885#define BNX2X_DCBX_ENABLED_ON_NEG_ON 2 1886#define BNX2X_DCBX_ENABLED_INVALID (-1) 1887 1888 bool dcbx_mode_uset; 1889 1890 struct bnx2x_config_dcbx_params dcbx_config_params; 1891 struct bnx2x_dcbx_port_params dcbx_port_params; 1892 int dcb_version; 1893 1894 /* CAM credit pools */ 1895 1896 /* used only in sriov */ 1897 struct bnx2x_credit_pool_obj vlans_pool; 1898 1899 struct bnx2x_credit_pool_obj macs_pool; 1900 1901 /* RX_MODE object */ 1902 struct bnx2x_rx_mode_obj rx_mode_obj; 1903 1904 /* MCAST object */ 1905 struct bnx2x_mcast_obj mcast_obj; 1906 1907 /* RSS configuration object */ 1908 struct bnx2x_rss_config_obj rss_conf_obj; 1909 1910 /* Function State controlling object */ 1911 struct bnx2x_func_sp_obj func_obj; 1912 1913 unsigned long sp_state; 1914 1915 /* operation indication for the sp_rtnl task */ 1916 unsigned long sp_rtnl_state; 1917 1918 /* Indication of the IOV tasks */ 1919 unsigned long iov_task_state; 1920 1921 /* DCBX Negotiation results */ 1922 struct dcbx_features dcbx_local_feat; 1923 u32 dcbx_error; 1924 1925#ifdef BCM_DCBNL 1926 struct dcbx_features dcbx_remote_feat; 1927 u32 dcbx_remote_flags; 1928#endif 1929 /* AFEX: store default vlan used */ 1930 int afex_def_vlan_tag; 1931 enum mf_cfg_afex_vlan_mode afex_vlan_mode; 1932 u32 pending_max; 1933 1934 /* multiple tx classes of service */ 1935 u8 max_cos; 1936 1937 /* priority to cos mapping */ 1938 u8 prio_to_cos[8]; 1939 1940 int fp_array_size; 1941 u32 dump_preset_idx; 1942 bool stats_started; 1943 struct semaphore stats_sema; 1944 1945 u8 phys_port_id[ETH_ALEN]; 1946 1947 /* PTP related context */ 1948 struct ptp_clock *ptp_clock; 1949 struct ptp_clock_info ptp_clock_info; 1950 struct work_struct ptp_task; 1951 struct cyclecounter cyclecounter; 1952 struct timecounter timecounter; 1953 bool timecounter_init_done; 1954 struct sk_buff *ptp_tx_skb; 1955 unsigned long ptp_tx_start; 1956 bool hwtstamp_ioctl_called; 1957 u16 tx_type; 1958 u16 rx_filter; 1959 1960 struct bnx2x_link_report_data vf_link_vars; 1961}; 1962 1963/* Tx queues may be less or equal to Rx queues */ 1964extern int num_queues; 1965#define BNX2X_NUM_QUEUES(bp) (bp->num_queues) 1966#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues) 1967#define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \ 1968 (bp)->num_cnic_queues) 1969#define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp) 1970 1971#define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1) 1972 1973#define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp) 1974/* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */ 1975 1976#define RSS_IPV4_CAP_MASK \ 1977 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY 1978 1979#define RSS_IPV4_TCP_CAP_MASK \ 1980 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY 1981 1982#define RSS_IPV6_CAP_MASK \ 1983 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY 1984 1985#define RSS_IPV6_TCP_CAP_MASK \ 1986 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY 1987 1988/* func init flags */ 1989#define FUNC_FLG_RSS 0x0001 1990#define FUNC_FLG_STATS 0x0002 1991/* removed FUNC_FLG_UNMATCHED 0x0004 */ 1992#define FUNC_FLG_TPA 0x0008 1993#define FUNC_FLG_SPQ 0x0010 1994#define FUNC_FLG_LEADING 0x0020 /* PF only */ 1995#define FUNC_FLG_LEADING_STATS 0x0040 1996struct bnx2x_func_init_params { 1997 /* dma */ 1998 dma_addr_t fw_stat_map; /* valid iff FUNC_FLG_STATS */ 1999 dma_addr_t spq_map; /* valid iff FUNC_FLG_SPQ */ 2000 2001 u16 func_flgs; 2002 u16 func_id; /* abs fid */ 2003 u16 pf_id; 2004 u16 spq_prod; /* valid iff FUNC_FLG_SPQ */ 2005}; 2006 2007#define for_each_cnic_queue(bp, var) \ 2008 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 2009 (var)++) \ 2010 if (skip_queue(bp, var)) \ 2011 continue; \ 2012 else 2013 2014#define for_each_eth_queue(bp, var) \ 2015 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 2016 2017#define for_each_nondefault_eth_queue(bp, var) \ 2018 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++) 2019 2020#define for_each_queue(bp, var) \ 2021 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 2022 if (skip_queue(bp, var)) \ 2023 continue; \ 2024 else 2025 2026/* Skip forwarding FP */ 2027#define for_each_valid_rx_queue(bp, var) \ 2028 for ((var) = 0; \ 2029 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 2030 BNX2X_NUM_ETH_QUEUES(bp)); \ 2031 (var)++) \ 2032 if (skip_rx_queue(bp, var)) \ 2033 continue; \ 2034 else 2035 2036#define for_each_rx_queue_cnic(bp, var) \ 2037 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 2038 (var)++) \ 2039 if (skip_rx_queue(bp, var)) \ 2040 continue; \ 2041 else 2042 2043#define for_each_rx_queue(bp, var) \ 2044 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 2045 if (skip_rx_queue(bp, var)) \ 2046 continue; \ 2047 else 2048 2049/* Skip OOO FP */ 2050#define for_each_valid_tx_queue(bp, var) \ 2051 for ((var) = 0; \ 2052 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \ 2053 BNX2X_NUM_ETH_QUEUES(bp)); \ 2054 (var)++) \ 2055 if (skip_tx_queue(bp, var)) \ 2056 continue; \ 2057 else 2058 2059#define for_each_tx_queue_cnic(bp, var) \ 2060 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \ 2061 (var)++) \ 2062 if (skip_tx_queue(bp, var)) \ 2063 continue; \ 2064 else 2065 2066#define for_each_tx_queue(bp, var) \ 2067 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 2068 if (skip_tx_queue(bp, var)) \ 2069 continue; \ 2070 else 2071 2072#define for_each_nondefault_queue(bp, var) \ 2073 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \ 2074 if (skip_queue(bp, var)) \ 2075 continue; \ 2076 else 2077 2078#define for_each_cos_in_tx_queue(fp, var) \ 2079 for ((var) = 0; (var) < (fp)->max_cos; (var)++) 2080 2081/* skip rx queue 2082 * if FCOE l2 support is disabled and this is the fcoe L2 queue 2083 */ 2084#define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 2085 2086/* skip tx queue 2087 * if FCOE l2 support is disabled and this is the fcoe L2 queue 2088 */ 2089#define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 2090 2091#define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx)) 2092 2093/** 2094 * bnx2x_set_mac_one - configure a single MAC address 2095 * 2096 * @bp: driver handle 2097 * @mac: MAC to configure 2098 * @obj: MAC object handle 2099 * @set: if 'true' add a new MAC, otherwise - delete 2100 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list) 2101 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT) 2102 * 2103 * Configures one MAC according to provided parameters or continues the 2104 * execution of previously scheduled commands if RAMROD_CONT is set in 2105 * ramrod_flags. 2106 * 2107 * Returns zero if operation has successfully completed, a positive value if the 2108 * operation has been successfully scheduled and a negative - if a requested 2109 * operations has failed. 2110 */ 2111int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 2112 struct bnx2x_vlan_mac_obj *obj, bool set, 2113 int mac_type, unsigned long *ramrod_flags); 2114/** 2115 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object 2116 * 2117 * @bp: driver handle 2118 * @mac_obj: MAC object handle 2119 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC) 2120 * @wait_for_comp: if 'true' block until completion 2121 * 2122 * Deletes all MACs of the specific type (e.g. ETH, UC list). 2123 * 2124 * Returns zero if operation has successfully completed, a positive value if the 2125 * operation has been successfully scheduled and a negative - if a requested 2126 * operations has failed. 2127 */ 2128int bnx2x_del_all_macs(struct bnx2x *bp, 2129 struct bnx2x_vlan_mac_obj *mac_obj, 2130 int mac_type, bool wait_for_comp); 2131 2132/* Init Function API */ 2133void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p); 2134void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 2135 u8 vf_valid, int fw_sb_id, int igu_sb_id); 2136int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port); 2137int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2138int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode); 2139int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port); 2140void bnx2x_read_mf_cfg(struct bnx2x *bp); 2141 2142int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val); 2143 2144/* dmae */ 2145void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32); 2146void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 2147 u32 len32); 2148void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx); 2149u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type); 2150u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode); 2151u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 2152 bool with_comp, u8 comp_type); 2153 2154void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2155 u8 src_type, u8 dst_type); 2156int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 2157 u32 *comp); 2158 2159/* FLR related routines */ 2160u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp); 2161void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count); 2162int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt); 2163u8 bnx2x_is_pcie_pending(struct pci_dev *dev); 2164int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 2165 char *msg, u32 poll_cnt); 2166 2167void bnx2x_calc_fc_adv(struct bnx2x *bp); 2168int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 2169 u32 data_hi, u32 data_lo, int cmd_type); 2170void bnx2x_update_coalesce(struct bnx2x *bp); 2171int bnx2x_get_cur_phy_idx(struct bnx2x *bp); 2172 2173bool bnx2x_port_after_undi(struct bnx2x *bp); 2174 2175static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms, 2176 int wait) 2177{ 2178 u32 val; 2179 2180 do { 2181 val = REG_RD(bp, reg); 2182 if (val == expected) 2183 break; 2184 ms -= wait; 2185 msleep(wait); 2186 2187 } while (ms > 0); 2188 2189 return val; 2190} 2191 2192void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, 2193 bool is_pf); 2194 2195#define BNX2X_ILT_ZALLOC(x, y, size) \ 2196 x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL) 2197 2198#define BNX2X_ILT_FREE(x, y, size) \ 2199 do { \ 2200 if (x) { \ 2201 dma_free_coherent(&bp->pdev->dev, size, x, y); \ 2202 x = NULL; \ 2203 y = 0; \ 2204 } \ 2205 } while (0) 2206 2207#define ILOG2(x) (ilog2((x))) 2208 2209#define ILT_NUM_PAGE_ENTRIES (3072) 2210/* In 57710/11 we use whole table since we have 8 func 2211 * In 57712 we have only 4 func, but use same size per func, then only half of 2212 * the table in use 2213 */ 2214#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8) 2215 2216#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) 2217/* 2218 * the phys address is shifted right 12 bits and has an added 2219 * 1=valid bit added to the 53rd bit 2220 * then since this is a wide register(TM) 2221 * we split it into two 32 bit writes 2222 */ 2223#define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) 2224#define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) 2225 2226/* load/unload mode */ 2227#define LOAD_NORMAL 0 2228#define LOAD_OPEN 1 2229#define LOAD_DIAG 2 2230#define LOAD_LOOPBACK_EXT 3 2231#define UNLOAD_NORMAL 0 2232#define UNLOAD_CLOSE 1 2233#define UNLOAD_RECOVERY 2 2234 2235/* DMAE command defines */ 2236#define DMAE_TIMEOUT -1 2237#define DMAE_PCI_ERROR -2 /* E2 and onward */ 2238#define DMAE_NOT_RDY -3 2239#define DMAE_PCI_ERR_FLAG 0x80000000 2240 2241#define DMAE_SRC_PCI 0 2242#define DMAE_SRC_GRC 1 2243 2244#define DMAE_DST_NONE 0 2245#define DMAE_DST_PCI 1 2246#define DMAE_DST_GRC 2 2247 2248#define DMAE_COMP_PCI 0 2249#define DMAE_COMP_GRC 1 2250 2251/* E2 and onward - PCI error handling in the completion */ 2252 2253#define DMAE_COMP_REGULAR 0 2254#define DMAE_COM_SET_ERR 1 2255 2256#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \ 2257 DMAE_COMMAND_SRC_SHIFT) 2258#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \ 2259 DMAE_COMMAND_SRC_SHIFT) 2260 2261#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \ 2262 DMAE_COMMAND_DST_SHIFT) 2263#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \ 2264 DMAE_COMMAND_DST_SHIFT) 2265 2266#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \ 2267 DMAE_COMMAND_C_DST_SHIFT) 2268#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \ 2269 DMAE_COMMAND_C_DST_SHIFT) 2270 2271#define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE 2272 2273#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT) 2274#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT) 2275#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT) 2276#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT) 2277 2278#define DMAE_CMD_PORT_0 0 2279#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT 2280 2281#define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET 2282#define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET 2283#define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT 2284 2285#define DMAE_SRC_PF 0 2286#define DMAE_SRC_VF 1 2287 2288#define DMAE_DST_PF 0 2289#define DMAE_DST_VF 1 2290 2291#define DMAE_C_SRC 0 2292#define DMAE_C_DST 1 2293 2294#define DMAE_LEN32_RD_MAX 0x80 2295#define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000) 2296 2297#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit 2298 * indicates error 2299 */ 2300 2301#define MAX_DMAE_C_PER_PORT 8 2302#define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2303 BP_VN(bp)) 2304#define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \ 2305 E1HVN_MAX) 2306 2307/* PCIE link and speed */ 2308#define PCICFG_LINK_WIDTH 0x1f00000 2309#define PCICFG_LINK_WIDTH_SHIFT 20 2310#define PCICFG_LINK_SPEED 0xf0000 2311#define PCICFG_LINK_SPEED_SHIFT 16 2312 2313#define BNX2X_NUM_TESTS_SF 7 2314#define BNX2X_NUM_TESTS_MF 3 2315#define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \ 2316 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF) 2317 2318#define BNX2X_PHY_LOOPBACK 0 2319#define BNX2X_MAC_LOOPBACK 1 2320#define BNX2X_EXT_LOOPBACK 2 2321#define BNX2X_PHY_LOOPBACK_FAILED 1 2322#define BNX2X_MAC_LOOPBACK_FAILED 2 2323#define BNX2X_EXT_LOOPBACK_FAILED 3 2324#define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \ 2325 BNX2X_PHY_LOOPBACK_FAILED) 2326 2327#define STROM_ASSERT_ARRAY_SIZE 50 2328 2329/* must be used on a CID before placing it on a HW ring */ 2330#define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \ 2331 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \ 2332 (x)) 2333 2334#define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) 2335#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) 2336 2337#define BNX2X_BTR 4 2338#define MAX_SPQ_PENDING 8 2339 2340/* CMNG constants, as derived from system spec calculations */ 2341/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ 2342#define DEF_MIN_RATE 100 2343/* resolution of the rate shaping timer - 400 usec */ 2344#define RS_PERIODIC_TIMEOUT_USEC 400 2345/* number of bytes in single QM arbitration cycle - 2346 * coefficient for calculating the fairness timer */ 2347#define QM_ARB_BYTES 160000 2348/* resolution of Min algorithm 1:100 */ 2349#define MIN_RES 100 2350/* how many bytes above threshold for the minimal credit of Min algorithm*/ 2351#define MIN_ABOVE_THRESH 32768 2352/* Fairness algorithm integration time coefficient - 2353 * for calculating the actual Tfair */ 2354#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 2355/* Memory of fairness algorithm . 2 cycles */ 2356#define FAIR_MEM 2 2357 2358#define ATTN_NIG_FOR_FUNC (1L << 8) 2359#define ATTN_SW_TIMER_4_FUNC (1L << 9) 2360#define GPIO_2_FUNC (1L << 10) 2361#define GPIO_3_FUNC (1L << 11) 2362#define GPIO_4_FUNC (1L << 12) 2363#define ATTN_GENERAL_ATTN_1 (1L << 13) 2364#define ATTN_GENERAL_ATTN_2 (1L << 14) 2365#define ATTN_GENERAL_ATTN_3 (1L << 15) 2366#define ATTN_GENERAL_ATTN_4 (1L << 13) 2367#define ATTN_GENERAL_ATTN_5 (1L << 14) 2368#define ATTN_GENERAL_ATTN_6 (1L << 15) 2369 2370#define ATTN_HARD_WIRED_MASK 0xff00 2371#define ATTENTION_ID 4 2372 2373#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \ 2374 IS_MF_FCOE_AFEX(bp)) 2375 2376/* stuff added to make the code fit 80Col */ 2377 2378#define BNX2X_PMF_LINK_ASSERT \ 2379 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp)) 2380 2381#define BNX2X_MC_ASSERT_BITS \ 2382 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2383 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2384 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2385 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) 2386 2387#define BNX2X_MCP_ASSERT \ 2388 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) 2389 2390#define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) 2391#define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ 2392 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ 2393 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ 2394 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ 2395 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ 2396 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) 2397 2398#define HW_INTERRUT_ASSERT_SET_0 \ 2399 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \ 2400 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \ 2401 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \ 2402 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \ 2403 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT) 2404#define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \ 2405 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \ 2406 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \ 2407 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\ 2408 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\ 2409 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\ 2410 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR) 2411#define HW_INTERRUT_ASSERT_SET_1 \ 2412 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \ 2413 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \ 2414 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \ 2415 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \ 2416 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \ 2417 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \ 2418 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \ 2419 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \ 2420 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \ 2421 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \ 2422 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT) 2423#define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\ 2424 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \ 2425 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\ 2426 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \ 2427 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\ 2428 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \ 2429 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\ 2430 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\ 2431 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\ 2432 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \ 2433 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \ 2434 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\ 2435 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \ 2436 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \ 2437 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\ 2438 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR) 2439#define HW_INTERRUT_ASSERT_SET_2 \ 2440 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \ 2441 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \ 2442 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \ 2443 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\ 2444 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT) 2445#define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \ 2446 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \ 2447 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\ 2448 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \ 2449 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \ 2450 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\ 2451 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \ 2452 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR) 2453 2454#define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ 2455 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ 2456 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \ 2457 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) 2458 2459#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \ 2460 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR) 2461 2462#define MULTI_MASK 0x7f 2463 2464#define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func) 2465#define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func) 2466#define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func) 2467#define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func) 2468 2469#define DEF_USB_IGU_INDEX_OFF \ 2470 offsetof(struct cstorm_def_status_block_u, igu_index) 2471#define DEF_CSB_IGU_INDEX_OFF \ 2472 offsetof(struct cstorm_def_status_block_c, igu_index) 2473#define DEF_XSB_IGU_INDEX_OFF \ 2474 offsetof(struct xstorm_def_status_block, igu_index) 2475#define DEF_TSB_IGU_INDEX_OFF \ 2476 offsetof(struct tstorm_def_status_block, igu_index) 2477 2478#define DEF_USB_SEGMENT_OFF \ 2479 offsetof(struct cstorm_def_status_block_u, segment) 2480#define DEF_CSB_SEGMENT_OFF \ 2481 offsetof(struct cstorm_def_status_block_c, segment) 2482#define DEF_XSB_SEGMENT_OFF \ 2483 offsetof(struct xstorm_def_status_block, segment) 2484#define DEF_TSB_SEGMENT_OFF \ 2485 offsetof(struct tstorm_def_status_block, segment) 2486 2487#define BNX2X_SP_DSB_INDEX \ 2488 (&bp->def_status_blk->sp_sb.\ 2489 index_values[HC_SP_INDEX_ETH_DEF_CONS]) 2490 2491#define CAM_IS_INVALID(x) \ 2492 (GET_FLAG(x.flags, \ 2493 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \ 2494 (T_ETH_MAC_COMMAND_INVALIDATE)) 2495 2496/* Number of u32 elements in MC hash array */ 2497#define MC_HASH_SIZE 8 2498#define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \ 2499 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4) 2500 2501#ifndef PXP2_REG_PXP2_INT_STS 2502#define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0 2503#endif 2504 2505#ifndef ETH_MAX_RX_CLIENTS_E2 2506#define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H 2507#endif 2508 2509#define BNX2X_VPD_LEN 128 2510#define VENDOR_ID_LEN 4 2511 2512#define VF_ACQUIRE_THRESH 3 2513#define VF_ACQUIRE_MAC_FILTERS 1 2514#define VF_ACQUIRE_MC_FILTERS 10 2515 2516#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \ 2517 (!((me_reg) & ME_REG_VF_ERR))) 2518int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err); 2519 2520/* Congestion management fairness mode */ 2521#define CMNG_FNS_NONE 0 2522#define CMNG_FNS_MINMAX 1 2523 2524#define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/ 2525#define HC_SEG_ACCESS_ATTN 4 2526#define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/ 2527 2528static const u32 dmae_reg_go_c[] = { 2529 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, 2530 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, 2531 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, 2532 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 2533}; 2534 2535void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev); 2536void bnx2x_notify_link_changed(struct bnx2x *bp); 2537 2538#define BNX2X_MF_SD_PROTOCOL(bp) \ 2539 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK) 2540 2541#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \ 2542 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI) 2543 2544#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \ 2545 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE) 2546 2547#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) 2548#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) 2549#define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp)) 2550 2551#define IS_MF_ISCSI_ONLY(bp) (IS_MF_ISCSI_SD(bp) || IS_MF_ISCSI_SI(bp)) 2552 2553#define BNX2X_MF_EXT_PROTOCOL_MASK \ 2554 (MACP_FUNC_CFG_FLAGS_ETHERNET | \ 2555 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD | \ 2556 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2557 2558#define BNX2X_MF_EXT_PROT(bp) ((bp)->mf_ext_config & \ 2559 BNX2X_MF_EXT_PROTOCOL_MASK) 2560 2561#define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp) \ 2562 (BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2563 2564#define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp) \ 2565 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) 2566 2567#define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) \ 2568 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) 2569 2570#define IS_MF_FCOE_AFEX(bp) \ 2571 (IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)) 2572 2573#define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) \ 2574 (IS_MF_SD(bp) && \ 2575 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \ 2576 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 2577 2578#define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp) \ 2579 (IS_MF_SI(bp) && \ 2580 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) || \ 2581 BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))) 2582 2583#define IS_MF_STORAGE_PERSONALITY_ONLY(bp) \ 2584 (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) || \ 2585 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp)) 2586 2587 2588#define SET_FLAG(value, mask, flag) \ 2589 do {\ 2590 (value) &= ~(mask);\ 2591 (value) |= ((flag) << (mask##_SHIFT));\ 2592 } while (0) 2593 2594#define GET_FLAG(value, mask) \ 2595 (((value) & (mask)) >> (mask##_SHIFT)) 2596 2597#define GET_FIELD(value, fname) \ 2598 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 2599 2600enum { 2601 SWITCH_UPDATE, 2602 AFEX_UPDATE, 2603}; 2604 2605#define NUM_MACS 8 2606 2607void bnx2x_set_local_cmng(struct bnx2x *bp); 2608 2609void bnx2x_update_mng_version(struct bnx2x *bp); 2610 2611#define MCPR_SCRATCH_BASE(bp) \ 2612 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) 2613 2614#define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX)) 2615 2616void bnx2x_init_ptp(struct bnx2x *bp); 2617int bnx2x_configure_ptp_filters(struct bnx2x *bp); 2618void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb); 2619 2620#define BNX2X_MAX_PHC_DRIFT 31000000 2621#define BNX2X_PTP_TX_TIMEOUT 2622 2623#endif /* bnx2x.h */ 2624