[go: nahoru, domu]

1/* bnx2x_init_ops.h: Broadcom Everest network driver.
2 *               Static functions needed during the initialization.
3 *               This file is "included" in bnx2x_main.c.
4 *
5 * Copyright (c) 2007-2013 Broadcom Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Vladislav Zolotarov
13 */
14
15#ifndef BNX2X_INIT_OPS_H
16#define BNX2X_INIT_OPS_H
17
18
19#ifndef BP_ILT
20#define BP_ILT(bp)	NULL
21#endif
22
23#ifndef BP_FUNC
24#define BP_FUNC(bp)	0
25#endif
26
27#ifndef BP_PORT
28#define BP_PORT(bp)	0
29#endif
30
31#ifndef BNX2X_ILT_FREE
32#define BNX2X_ILT_FREE(x, y, sz)
33#endif
34
35#ifndef BNX2X_ILT_ZALLOC
36#define BNX2X_ILT_ZALLOC(x, y, sz)
37#endif
38
39#ifndef ILOG2
40#define ILOG2(x)	x
41#endif
42
43static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
44static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
45static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
46				      dma_addr_t phys_addr, u32 addr,
47				      u32 len);
48
49static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
50			      const u32 *data, u32 len)
51{
52	u32 i;
53
54	for (i = 0; i < len; i++)
55		REG_WR(bp, addr + i*4, data[i]);
56}
57
58static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
59			      const u32 *data, u32 len)
60{
61	u32 i;
62
63	for (i = 0; i < len; i++)
64		bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
65}
66
67static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
68				u8 wb)
69{
70	if (bp->dmae_ready)
71		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
72
73	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
74	else if (wb && CHIP_IS_E1(bp))
75		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
76
77	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
78	else
79		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
80}
81
82static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
83			    u32 len, u8 wb)
84{
85	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
86	u32 buf_len32 = buf_len/4;
87	u32 i;
88
89	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
90
91	for (i = 0; i < len; i += buf_len32) {
92		u32 cur_len = min(buf_len32, len - i);
93
94		bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
95	}
96}
97
98static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
99{
100	if (bp->dmae_ready)
101		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
102
103	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
104	else if (CHIP_IS_E1(bp))
105		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
106
107	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
108	else
109		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
110}
111
112static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
113			     const u32 *data, u32 len64)
114{
115	u32 buf_len32 = FW_BUF_SIZE/4;
116	u32 len = len64*2;
117	u64 data64 = 0;
118	u32 i;
119
120	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
121	data64 = HILO_U64((*(data + 1)), (*data));
122
123	len64 = min((u32)(FW_BUF_SIZE/8), len64);
124	for (i = 0; i < len64; i++) {
125		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
126
127		*pdata = data64;
128	}
129
130	for (i = 0; i < len; i += buf_len32) {
131		u32 cur_len = min(buf_len32, len - i);
132
133		bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
134	}
135}
136
137/*********************************************************
138   There are different blobs for each PRAM section.
139   In addition, each blob write operation is divided into a few operations
140   in order to decrease the amount of phys. contiguous buffer needed.
141   Thus, when we select a blob the address may be with some offset
142   from the beginning of PRAM section.
143   The same holds for the INT_TABLE sections.
144**********************************************************/
145#define IF_IS_INT_TABLE_ADDR(base, addr) \
146			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
147
148#define IF_IS_PRAM_ADDR(base, addr) \
149			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
150
151static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
152				const u8 *data)
153{
154	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
155		data = INIT_TSEM_INT_TABLE_DATA(bp);
156	else
157		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
158			data = INIT_CSEM_INT_TABLE_DATA(bp);
159	else
160		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
161			data = INIT_USEM_INT_TABLE_DATA(bp);
162	else
163		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
164			data = INIT_XSEM_INT_TABLE_DATA(bp);
165	else
166		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
167			data = INIT_TSEM_PRAM_DATA(bp);
168	else
169		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
170			data = INIT_CSEM_PRAM_DATA(bp);
171	else
172		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
173			data = INIT_USEM_PRAM_DATA(bp);
174	else
175		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
176			data = INIT_XSEM_PRAM_DATA(bp);
177
178	return data;
179}
180
181static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
182			     const u32 *data, u32 len)
183{
184	if (bp->dmae_ready)
185		VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
186
187	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
188	else if (CHIP_IS_E1(bp))
189		bnx2x_init_ind_wr(bp, addr, data, len);
190
191	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
192	else
193		bnx2x_init_str_wr(bp, addr, data, len);
194}
195
196static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
197			u32 val_hi)
198{
199	u32 wb_write[2];
200
201	wb_write[0] = val_lo;
202	wb_write[1] = val_hi;
203	REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
204}
205static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
206			     u32 blob_off)
207{
208	const u8 *data = NULL;
209	int rc;
210	u32 i;
211
212	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
213
214	rc = bnx2x_gunzip(bp, data, len);
215	if (rc)
216		return;
217
218	/* gunzip_outlen is in dwords */
219	len = GUNZIP_OUTLEN(bp);
220	for (i = 0; i < len; i++)
221		((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
222				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
223
224	bnx2x_write_big_buf_wb(bp, addr, len);
225}
226
227static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
228{
229	u16 op_start =
230		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
231						     STAGE_START)];
232	u16 op_end =
233		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
234						     STAGE_END)];
235	const union init_op *op;
236	u32 op_idx, op_type, addr, len;
237	const u32 *data, *data_base;
238
239	/* If empty block */
240	if (op_start == op_end)
241		return;
242
243	data_base = INIT_DATA(bp);
244
245	for (op_idx = op_start; op_idx < op_end; op_idx++) {
246
247		op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
248		/* Get generic data */
249		op_type = op->raw.op;
250		addr = op->raw.offset;
251		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
252		 * OP_WR64 (we assume that op_arr_write and op_write have the
253		 * same structure).
254		 */
255		len = op->arr_wr.data_len;
256		data = data_base + op->arr_wr.data_off;
257
258		switch (op_type) {
259		case OP_RD:
260			REG_RD(bp, addr);
261			break;
262		case OP_WR:
263			REG_WR(bp, addr, op->write.val);
264			break;
265		case OP_SW:
266			bnx2x_init_str_wr(bp, addr, data, len);
267			break;
268		case OP_WB:
269			bnx2x_init_wr_wb(bp, addr, data, len);
270			break;
271		case OP_ZR:
272			bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
273			break;
274		case OP_WB_ZR:
275			bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
276			break;
277		case OP_ZP:
278			bnx2x_init_wr_zp(bp, addr, len,
279					 op->arr_wr.data_off);
280			break;
281		case OP_WR_64:
282			bnx2x_init_wr_64(bp, addr, data, len);
283			break;
284		case OP_IF_MODE_AND:
285			/* if any of the flags doesn't match, skip the
286			 * conditional block.
287			 */
288			if ((INIT_MODE_FLAGS(bp) &
289				op->if_mode.mode_bit_map) !=
290				op->if_mode.mode_bit_map)
291				op_idx += op->if_mode.cmd_offset;
292			break;
293		case OP_IF_MODE_OR:
294			/* if all the flags don't match, skip the conditional
295			 * block.
296			 */
297			if ((INIT_MODE_FLAGS(bp) &
298				op->if_mode.mode_bit_map) == 0)
299				op_idx += op->if_mode.cmd_offset;
300			break;
301		default:
302			/* Should never get here! */
303
304			break;
305		}
306	}
307}
308
309
310/****************************************************************************
311* PXP Arbiter
312****************************************************************************/
313/*
314 * This code configures the PCI read/write arbiter
315 * which implements a weighted round robin
316 * between the virtual queues in the chip.
317 *
318 * The values were derived for each PCI max payload and max request size.
319 * since max payload and max request size are only known at run time,
320 * this is done as a separate init stage.
321 */
322
323#define NUM_WR_Q			13
324#define NUM_RD_Q			29
325#define MAX_RD_ORD			3
326#define MAX_WR_ORD			2
327
328/* configuration for one arbiter queue */
329struct arb_line {
330	int l;
331	int add;
332	int ubound;
333};
334
335/* derived configuration for each read queue for each max request size */
336static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
337/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
338	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
339	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
340	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
341	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
342	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
343	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
344	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
345	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
346/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
347	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
348	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
349	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
350	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
351	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
352	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
353	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
354	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
355	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
356/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
357	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
358	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
359	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
360	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
361	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
362	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
363	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
364	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
365	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
366};
367
368/* derived configuration for each write queue for each max request size */
369static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
370/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
371	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
372	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
373	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
374	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
375	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
376	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
377	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
378	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
379/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
380	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
381	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
382	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
383};
384
385/* register addresses for read queues */
386static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
387/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
388		PXP2_REG_RQ_BW_RD_UBOUND0},
389	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
390		PXP2_REG_PSWRQ_BW_UB1},
391	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
392		PXP2_REG_PSWRQ_BW_UB2},
393	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
394		PXP2_REG_PSWRQ_BW_UB3},
395	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
396		PXP2_REG_RQ_BW_RD_UBOUND4},
397	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
398		PXP2_REG_RQ_BW_RD_UBOUND5},
399	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
400		PXP2_REG_PSWRQ_BW_UB6},
401	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
402		PXP2_REG_PSWRQ_BW_UB7},
403	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
404		PXP2_REG_PSWRQ_BW_UB8},
405/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
406		PXP2_REG_PSWRQ_BW_UB9},
407	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
408		PXP2_REG_PSWRQ_BW_UB10},
409	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
410		PXP2_REG_PSWRQ_BW_UB11},
411	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
412		PXP2_REG_RQ_BW_RD_UBOUND12},
413	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
414		PXP2_REG_RQ_BW_RD_UBOUND13},
415	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
416		PXP2_REG_RQ_BW_RD_UBOUND14},
417	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
418		PXP2_REG_RQ_BW_RD_UBOUND15},
419	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
420		PXP2_REG_RQ_BW_RD_UBOUND16},
421	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
422		PXP2_REG_RQ_BW_RD_UBOUND17},
423	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
424		PXP2_REG_RQ_BW_RD_UBOUND18},
425/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
426		PXP2_REG_RQ_BW_RD_UBOUND19},
427	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
428		PXP2_REG_RQ_BW_RD_UBOUND20},
429	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
430		PXP2_REG_RQ_BW_RD_UBOUND22},
431	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
432		PXP2_REG_RQ_BW_RD_UBOUND23},
433	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
434		PXP2_REG_RQ_BW_RD_UBOUND24},
435	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
436		PXP2_REG_RQ_BW_RD_UBOUND25},
437	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
438		PXP2_REG_RQ_BW_RD_UBOUND26},
439	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
440		PXP2_REG_RQ_BW_RD_UBOUND27},
441	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
442		PXP2_REG_PSWRQ_BW_UB28}
443};
444
445/* register addresses for write queues */
446static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
447/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
448		PXP2_REG_PSWRQ_BW_UB1},
449	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
450		PXP2_REG_PSWRQ_BW_UB2},
451	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
452		PXP2_REG_PSWRQ_BW_UB3},
453	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
454		PXP2_REG_PSWRQ_BW_UB6},
455	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
456		PXP2_REG_PSWRQ_BW_UB7},
457	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
458		PXP2_REG_PSWRQ_BW_UB8},
459	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
460		PXP2_REG_PSWRQ_BW_UB9},
461	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
462		PXP2_REG_PSWRQ_BW_UB10},
463	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
464		PXP2_REG_PSWRQ_BW_UB11},
465/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
466		PXP2_REG_PSWRQ_BW_UB28},
467	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
468		PXP2_REG_RQ_BW_WR_UBOUND29},
469	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
470		PXP2_REG_RQ_BW_WR_UBOUND30}
471};
472
473static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
474			       int w_order)
475{
476	u32 val, i;
477
478	if (r_order > MAX_RD_ORD) {
479		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
480		   r_order, MAX_RD_ORD);
481		r_order = MAX_RD_ORD;
482	}
483	if (w_order > MAX_WR_ORD) {
484		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
485		   w_order, MAX_WR_ORD);
486		w_order = MAX_WR_ORD;
487	}
488	if (CHIP_REV_IS_FPGA(bp)) {
489		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
490		w_order = 0;
491	}
492	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
493
494	for (i = 0; i < NUM_RD_Q-1; i++) {
495		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
496		REG_WR(bp, read_arb_addr[i].add,
497		       read_arb_data[i][r_order].add);
498		REG_WR(bp, read_arb_addr[i].ubound,
499		       read_arb_data[i][r_order].ubound);
500	}
501
502	for (i = 0; i < NUM_WR_Q-1; i++) {
503		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
504		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
505
506			REG_WR(bp, write_arb_addr[i].l,
507			       write_arb_data[i][w_order].l);
508
509			REG_WR(bp, write_arb_addr[i].add,
510			       write_arb_data[i][w_order].add);
511
512			REG_WR(bp, write_arb_addr[i].ubound,
513			       write_arb_data[i][w_order].ubound);
514		} else {
515
516			val = REG_RD(bp, write_arb_addr[i].l);
517			REG_WR(bp, write_arb_addr[i].l,
518			       val | (write_arb_data[i][w_order].l << 10));
519
520			val = REG_RD(bp, write_arb_addr[i].add);
521			REG_WR(bp, write_arb_addr[i].add,
522			       val | (write_arb_data[i][w_order].add << 10));
523
524			val = REG_RD(bp, write_arb_addr[i].ubound);
525			REG_WR(bp, write_arb_addr[i].ubound,
526			       val | (write_arb_data[i][w_order].ubound << 7));
527		}
528	}
529
530	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
531	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
532	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
533	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
534
535	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
536	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
537	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
538	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
539
540	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
541	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
542	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
543	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
544
545	if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
546		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
547
548	if (CHIP_IS_E3(bp))
549		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
550	else if (CHIP_IS_E2(bp))
551		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
552	else
553		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
554
555	if (!CHIP_IS_E1(bp)) {
556		/*    MPS      w_order     optimal TH      presently TH
557		 *    128         0             0               2
558		 *    256         1             1               3
559		 *    >=512       2             2               3
560		 */
561		/* DMAE is special */
562		if (!CHIP_IS_E1H(bp)) {
563			/* E2 can use optimal TH */
564			val = w_order;
565			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
566		} else {
567			val = ((w_order == 0) ? 2 : 3);
568			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
569		}
570
571		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
572		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
573		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
574		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
575		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
576		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
577		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
578		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
579		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
580		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
581	}
582
583	/* Validate number of tags suppoted by device */
584#define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
585	val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
586	val &= 0xFF;
587	if (val <= 0x20)
588		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
589}
590
591/****************************************************************************
592* ILT management
593****************************************************************************/
594/*
595 * This codes hides the low level HW interaction for ILT management and
596 * configuration. The API consists of a shadow ILT table which is set by the
597 * driver and a set of routines to use it to configure the HW.
598 *
599 */
600
601/* ILT HW init operations */
602
603/* ILT memory management operations */
604#define ILT_MEMOP_ALLOC		0
605#define ILT_MEMOP_FREE		1
606
607/* the phys address is shifted right 12 bits and has an added
608 * 1=valid bit added to the 53rd bit
609 * then since this is a wide register(TM)
610 * we split it into two 32 bit writes
611 */
612#define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
613#define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
614#define ILT_RANGE(f, l)		(((l) << 10) | f)
615
616static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
617				 struct ilt_line *line, u32 size, u8 memop)
618{
619	if (memop == ILT_MEMOP_FREE) {
620		BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
621		return 0;
622	}
623	BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
624	if (!line->page)
625		return -1;
626	line->size = size;
627	return 0;
628}
629
630
631static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
632				   u8 memop)
633{
634	int i, rc;
635	struct bnx2x_ilt *ilt = BP_ILT(bp);
636	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
637
638	if (!ilt || !ilt->lines)
639		return -1;
640
641	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
642		return 0;
643
644	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
645		rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
646					   ilt_cli->page_size, memop);
647	}
648	return rc;
649}
650
651static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
652{
653	int rc = 0;
654
655	if (CONFIGURE_NIC_MODE(bp))
656		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
657	if (!rc)
658		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
659
660	return rc;
661}
662
663static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
664{
665	int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
666	if (!rc)
667		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
668	if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
669		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
670
671	return rc;
672}
673
674static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
675			      dma_addr_t page_mapping)
676{
677	u32 reg;
678
679	if (CHIP_IS_E1(bp))
680		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
681	else
682		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
683
684	bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
685}
686
687static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
688				   struct bnx2x_ilt *ilt, int idx, u8 initop)
689{
690	dma_addr_t	null_mapping;
691	int abs_idx = ilt->start_line + idx;
692
693
694	switch (initop) {
695	case INITOP_INIT:
696		/* set in the init-value array */
697	case INITOP_SET:
698		bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
699		break;
700	case INITOP_CLEAR:
701		null_mapping = 0;
702		bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
703		break;
704	}
705}
706
707static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
708				      struct ilt_client_info *ilt_cli,
709				      u32 ilt_start, u8 initop)
710{
711	u32 start_reg = 0;
712	u32 end_reg = 0;
713
714	/* The boundary is either SET or INIT,
715	   CLEAR => SET and for now SET ~~ INIT */
716
717	/* find the appropriate regs */
718	if (CHIP_IS_E1(bp)) {
719		switch (ilt_cli->client_num) {
720		case ILT_CLIENT_CDU:
721			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
722			break;
723		case ILT_CLIENT_QM:
724			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
725			break;
726		case ILT_CLIENT_SRC:
727			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
728			break;
729		case ILT_CLIENT_TM:
730			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
731			break;
732		}
733		REG_WR(bp, start_reg + BP_FUNC(bp)*4,
734		       ILT_RANGE((ilt_start + ilt_cli->start),
735				 (ilt_start + ilt_cli->end)));
736	} else {
737		switch (ilt_cli->client_num) {
738		case ILT_CLIENT_CDU:
739			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
740			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
741			break;
742		case ILT_CLIENT_QM:
743			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
744			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
745			break;
746		case ILT_CLIENT_SRC:
747			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
748			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
749			break;
750		case ILT_CLIENT_TM:
751			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
752			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
753			break;
754		}
755		REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
756		REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
757	}
758}
759
760static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
761					 struct bnx2x_ilt *ilt,
762					 struct ilt_client_info *ilt_cli,
763					 u8 initop)
764{
765	int i;
766
767	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
768		return;
769
770	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
771		bnx2x_ilt_line_init_op(bp, ilt, i, initop);
772
773	/* init/clear the ILT boundries */
774	bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
775}
776
777static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
778				     struct ilt_client_info *ilt_cli, u8 initop)
779{
780	struct bnx2x_ilt *ilt = BP_ILT(bp);
781
782	bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
783}
784
785static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
786					int cli_num, u8 initop)
787{
788	struct bnx2x_ilt *ilt = BP_ILT(bp);
789	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
790
791	bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
792}
793
794static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
795{
796	if (CONFIGURE_NIC_MODE(bp))
797		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
798	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
799}
800
801static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
802{
803	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
804	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
805	if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
806		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
807}
808
809static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
810				      u32 psz_reg, u8 initop)
811{
812	struct bnx2x_ilt *ilt = BP_ILT(bp);
813	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
814
815	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
816		return;
817
818	switch (initop) {
819	case INITOP_INIT:
820		/* set in the init-value array */
821	case INITOP_SET:
822		REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
823		break;
824	case INITOP_CLEAR:
825		break;
826	}
827}
828
829/*
830 * called during init common stage, ilt clients should be initialized
831 * prioir to calling this function
832 */
833static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
834{
835	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
836				  PXP2_REG_RQ_CDU_P_SIZE, initop);
837	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
838				  PXP2_REG_RQ_QM_P_SIZE, initop);
839	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
840				  PXP2_REG_RQ_SRC_P_SIZE, initop);
841	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
842				  PXP2_REG_RQ_TM_P_SIZE, initop);
843}
844
845/****************************************************************************
846* QM initializations
847****************************************************************************/
848#define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
849#define QM_INIT_MIN_CID_COUNT	31
850#define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
851
852/* called during init port stage */
853static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
854				    u8 initop)
855{
856	int port = BP_PORT(bp);
857
858	if (QM_INIT(qm_cid_count)) {
859		switch (initop) {
860		case INITOP_INIT:
861			/* set in the init-value array */
862		case INITOP_SET:
863			REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
864			       qm_cid_count/16 - 1);
865			break;
866		case INITOP_CLEAR:
867			break;
868		}
869	}
870}
871
872static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
873				   u32 base_reg, u32 reg)
874{
875	int i;
876	u32 wb_data[2] = {0, 0};
877	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
878		REG_WR(bp, base_reg + i*4,
879		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
880		bnx2x_init_wr_wb(bp, reg + i*8,	 wb_data, 2);
881	}
882}
883
884/* called during init common stage */
885static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
886				    u8 initop)
887{
888	if (!QM_INIT(qm_cid_count))
889		return;
890
891	switch (initop) {
892	case INITOP_INIT:
893		/* set in the init-value array */
894	case INITOP_SET:
895		bnx2x_qm_set_ptr_table(bp, qm_cid_count,
896				       QM_REG_BASEADDR, QM_REG_PTRTBL);
897		if (CHIP_IS_E1H(bp))
898			bnx2x_qm_set_ptr_table(bp, qm_cid_count,
899					       QM_REG_BASEADDR_EXT_A,
900					       QM_REG_PTRTBL_EXT_A);
901		break;
902	case INITOP_CLEAR:
903		break;
904	}
905}
906
907/****************************************************************************
908* SRC initializations
909****************************************************************************/
910/* called during init func stage */
911static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
912			      dma_addr_t t2_mapping, int src_cid_count)
913{
914	int i;
915	int port = BP_PORT(bp);
916
917	/* Initialize T2 */
918	for (i = 0; i < src_cid_count-1; i++)
919		t2[i].next = (u64)(t2_mapping +
920			     (i+1)*sizeof(struct src_ent));
921
922	/* tell the searcher where the T2 table is */
923	REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
924
925	bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
926		    U64_LO(t2_mapping), U64_HI(t2_mapping));
927
928	bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
929		    U64_LO((u64)t2_mapping +
930			   (src_cid_count-1) * sizeof(struct src_ent)),
931		    U64_HI((u64)t2_mapping +
932			   (src_cid_count-1) * sizeof(struct src_ent)));
933}
934#endif /* BNX2X_INIT_OPS_H */
935