[go: nahoru, domu]

1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
42#include "../cxgb4/t4fw_api.h"
43
44/*
45 * Wait for the device to become ready (signified by our "who am I" register
46 * returning a value other than all 1's).  Return an error if it doesn't
47 * become ready ...
48 */
49int t4vf_wait_dev_ready(struct adapter *adapter)
50{
51	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52	const u32 notready1 = 0xffffffff;
53	const u32 notready2 = 0xeeeeeeee;
54	u32 val;
55
56	val = t4_read_reg(adapter, whoami);
57	if (val != notready1 && val != notready2)
58		return 0;
59	msleep(500);
60	val = t4_read_reg(adapter, whoami);
61	if (val != notready1 && val != notready2)
62		return 0;
63	else
64		return -EIO;
65}
66
67/*
68 * Get the reply to a mailbox command and store it in @rpl in big-endian order
69 * (since the firmware data structures are specified in a big-endian layout).
70 */
71static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72			 u32 mbox_data)
73{
74	for ( ; size; size -= 8, mbox_data += 8)
75		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
76}
77
78/*
79 * Dump contents of mailbox with a leading tag.
80 */
81static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
82{
83	dev_err(adapter->pdev_dev,
84		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
86		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
87		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
93}
94
95/**
96 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
97 *	@adapter: the adapter
98 *	@cmd: the command to write
99 *	@size: command length in bytes
100 *	@rpl: where to optionally store the reply
101 *	@sleep_ok: if true we may sleep while awaiting command completion
102 *
103 *	Sends the given command to FW through the mailbox and waits for the
104 *	FW to execute the command.  If @rpl is not %NULL it is used to store
105 *	the FW's reply to the command.  The command and its optional reply
106 *	are of the same length.  FW can take up to 500 ms to respond.
107 *	@sleep_ok determines whether we may sleep while awaiting the response.
108 *	If sleeping is allowed we use progressive backoff otherwise we spin.
109 *
110 *	The return value is 0 on success or a negative errno on failure.  A
111 *	failure can happen either because we are not able to execute the
112 *	command or FW executes it but signals an error.  In the latter case
113 *	the return value is the error code indicated by FW (negated).
114 */
115int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116		      void *rpl, bool sleep_ok)
117{
118	static const int delay[] = {
119		1, 1, 3, 5, 10, 10, 20, 50, 100
120	};
121
122	u32 v;
123	int i, ms, delay_idx;
124	const __be64 *p;
125	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127
128	/*
129	 * Commands must be multiples of 16 bytes in length and may not be
130	 * larger than the size of the Mailbox Data register array.
131	 */
132	if ((size % 16) != 0 ||
133	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134		return -EINVAL;
135
136	/*
137	 * Loop trying to get ownership of the mailbox.  Return an error
138	 * if we can't gain ownership.
139	 */
140	v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142		v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143	if (v != MBOX_OWNER_DRV)
144		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
145
146	/*
147	 * Write the command array into the Mailbox Data register array and
148	 * transfer ownership of the mailbox to the firmware.
149	 *
150	 * For the VFs, the Mailbox Data "registers" are actually backed by
151	 * T4's "MA" interface rather than PL Registers (as is the case for
152	 * the PFs).  Because these are in different coherency domains, the
153	 * write to the VF's PL-register-backed Mailbox Control can race in
154	 * front of the writes to the MA-backed VF Mailbox Data "registers".
155	 * So we need to do a read-back on at least one byte of the VF Mailbox
156	 * Data registers before doing the write to the VF Mailbox Control
157	 * register.
158	 */
159	for (i = 0, p = cmd; i < size; i += 8)
160		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
161	t4_read_reg(adapter, mbox_data);         /* flush write */
162
163	t4_write_reg(adapter, mbox_ctl,
164		     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165	t4_read_reg(adapter, mbox_ctl);          /* flush write */
166
167	/*
168	 * Spin waiting for firmware to acknowledge processing our command.
169	 */
170	delay_idx = 0;
171	ms = delay[0];
172
173	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
174		if (sleep_ok) {
175			ms = delay[delay_idx];
176			if (delay_idx < ARRAY_SIZE(delay) - 1)
177				delay_idx++;
178			msleep(ms);
179		} else
180			mdelay(ms);
181
182		/*
183		 * If we're the owner, see if this is the reply we wanted.
184		 */
185		v = t4_read_reg(adapter, mbox_ctl);
186		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
187			/*
188			 * If the Message Valid bit isn't on, revoke ownership
189			 * of the mailbox and continue waiting for our reply.
190			 */
191			if ((v & MBMSGVALID) == 0) {
192				t4_write_reg(adapter, mbox_ctl,
193					     MBOWNER(MBOX_OWNER_NONE));
194				continue;
195			}
196
197			/*
198			 * We now have our reply.  Extract the command return
199			 * value, copy the reply back to our caller's buffer
200			 * (if specified) and revoke ownership of the mailbox.
201			 * We return the (negated) firmware command return
202			 * code (this depends on FW_SUCCESS == 0).
203			 */
204
205			/* return value in low-order little-endian word */
206			v = t4_read_reg(adapter, mbox_data);
207			if (FW_CMD_RETVAL_GET(v))
208				dump_mbox(adapter, "FW Error", mbox_data);
209
210			if (rpl) {
211				/* request bit in high-order BE word */
212				WARN_ON((be32_to_cpu(*(const u32 *)cmd)
213					 & FW_CMD_REQUEST) == 0);
214				get_mbox_rpl(adapter, rpl, size, mbox_data);
215				WARN_ON((be32_to_cpu(*(u32 *)rpl)
216					 & FW_CMD_REQUEST) != 0);
217			}
218			t4_write_reg(adapter, mbox_ctl,
219				     MBOWNER(MBOX_OWNER_NONE));
220			return -FW_CMD_RETVAL_GET(v);
221		}
222	}
223
224	/*
225	 * We timed out.  Return the error ...
226	 */
227	dump_mbox(adapter, "FW Timeout", mbox_data);
228	return -ETIMEDOUT;
229}
230
231/**
232 *	hash_mac_addr - return the hash value of a MAC address
233 *	@addr: the 48-bit Ethernet MAC address
234 *
235 *	Hashes a MAC address according to the hash function used by hardware
236 *	inexact (hash) address matching.
237 */
238static int hash_mac_addr(const u8 *addr)
239{
240	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242	a ^= b;
243	a ^= (a >> 12);
244	a ^= (a >> 6);
245	return a & 0x3f;
246}
247
248/**
249 *	init_link_config - initialize a link's SW state
250 *	@lc: structure holding the link state
251 *	@caps: link capabilities
252 *
253 *	Initializes the SW state maintained for each link, including the link's
254 *	capabilities and default speed/flow-control/autonegotiation settings.
255 */
256static void init_link_config(struct link_config *lc, unsigned int caps)
257{
258	lc->supported = caps;
259	lc->requested_speed = 0;
260	lc->speed = 0;
261	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
262	if (lc->supported & SUPPORTED_Autoneg) {
263		lc->advertising = lc->supported;
264		lc->autoneg = AUTONEG_ENABLE;
265		lc->requested_fc |= PAUSE_AUTONEG;
266	} else {
267		lc->advertising = 0;
268		lc->autoneg = AUTONEG_DISABLE;
269	}
270}
271
272/**
273 *	t4vf_port_init - initialize port hardware/software state
274 *	@adapter: the adapter
275 *	@pidx: the adapter port index
276 */
277int t4vf_port_init(struct adapter *adapter, int pidx)
278{
279	struct port_info *pi = adap2pinfo(adapter, pidx);
280	struct fw_vi_cmd vi_cmd, vi_rpl;
281	struct fw_port_cmd port_cmd, port_rpl;
282	int v;
283	u32 word;
284
285	/*
286	 * Execute a VI Read command to get our Virtual Interface information
287	 * like MAC address, etc.
288	 */
289	memset(&vi_cmd, 0, sizeof(vi_cmd));
290	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
291				       FW_CMD_REQUEST |
292				       FW_CMD_READ);
293	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
294	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
295	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
296	if (v)
297		return v;
298
299	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
300	pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
301	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
302
303	/*
304	 * If we don't have read access to our port information, we're done
305	 * now.  Otherwise, execute a PORT Read command to get it ...
306	 */
307	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
308		return 0;
309
310	memset(&port_cmd, 0, sizeof(port_cmd));
311	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
312					    FW_CMD_REQUEST |
313					    FW_CMD_READ |
314					    FW_PORT_CMD_PORTID(pi->port_id));
315	port_cmd.action_to_len16 =
316		cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
317			    FW_LEN16(port_cmd));
318	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
319	if (v)
320		return v;
321
322	v = 0;
323	word = be16_to_cpu(port_rpl.u.info.pcap);
324	if (word & FW_PORT_CAP_SPEED_100M)
325		v |= SUPPORTED_100baseT_Full;
326	if (word & FW_PORT_CAP_SPEED_1G)
327		v |= SUPPORTED_1000baseT_Full;
328	if (word & FW_PORT_CAP_SPEED_10G)
329		v |= SUPPORTED_10000baseT_Full;
330	if (word & FW_PORT_CAP_SPEED_40G)
331		v |= SUPPORTED_40000baseSR4_Full;
332	if (word & FW_PORT_CAP_ANEG)
333		v |= SUPPORTED_Autoneg;
334	init_link_config(&pi->link_cfg, v);
335
336	return 0;
337}
338
339/**
340 *      t4vf_fw_reset - issue a reset to FW
341 *      @adapter: the adapter
342 *
343 *	Issues a reset command to FW.  For a Physical Function this would
344 *	result in the Firmware reseting all of its state.  For a Virtual
345 *	Function this just resets the state associated with the VF.
346 */
347int t4vf_fw_reset(struct adapter *adapter)
348{
349	struct fw_reset_cmd cmd;
350
351	memset(&cmd, 0, sizeof(cmd));
352	cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
353				      FW_CMD_WRITE);
354	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
355	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
356}
357
358/**
359 *	t4vf_query_params - query FW or device parameters
360 *	@adapter: the adapter
361 *	@nparams: the number of parameters
362 *	@params: the parameter names
363 *	@vals: the parameter values
364 *
365 *	Reads the values of firmware or device parameters.  Up to 7 parameters
366 *	can be queried at once.
367 */
368static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
369			     const u32 *params, u32 *vals)
370{
371	int i, ret;
372	struct fw_params_cmd cmd, rpl;
373	struct fw_params_param *p;
374	size_t len16;
375
376	if (nparams > 7)
377		return -EINVAL;
378
379	memset(&cmd, 0, sizeof(cmd));
380	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
381				    FW_CMD_REQUEST |
382				    FW_CMD_READ);
383	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
384				      param[nparams].mnem), 16);
385	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
386	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
387		p->mnem = htonl(*params++);
388
389	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
390	if (ret == 0)
391		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
392			*vals++ = be32_to_cpu(p->val);
393	return ret;
394}
395
396/**
397 *	t4vf_set_params - sets FW or device parameters
398 *	@adapter: the adapter
399 *	@nparams: the number of parameters
400 *	@params: the parameter names
401 *	@vals: the parameter values
402 *
403 *	Sets the values of firmware or device parameters.  Up to 7 parameters
404 *	can be specified at once.
405 */
406int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
407		    const u32 *params, const u32 *vals)
408{
409	int i;
410	struct fw_params_cmd cmd;
411	struct fw_params_param *p;
412	size_t len16;
413
414	if (nparams > 7)
415		return -EINVAL;
416
417	memset(&cmd, 0, sizeof(cmd));
418	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
419				    FW_CMD_REQUEST |
420				    FW_CMD_WRITE);
421	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
422				      param[nparams]), 16);
423	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
424	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
425		p->mnem = cpu_to_be32(*params++);
426		p->val = cpu_to_be32(*vals++);
427	}
428
429	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
430}
431
432/**
433 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
434 *	@adapter: the adapter
435 *
436 *	Retrieves various core SGE parameters in the form of hardware SGE
437 *	register values.  The caller is responsible for decoding these as
438 *	needed.  The SGE parameters are stored in @adapter->params.sge.
439 */
440int t4vf_get_sge_params(struct adapter *adapter)
441{
442	struct sge_params *sge_params = &adapter->params.sge;
443	u32 params[7], vals[7];
444	int v;
445
446	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
447		     FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
448	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
449		     FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
450	params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
451		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
452	params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
453		     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
454	params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
455		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
456	params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
457		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
458	params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
459		     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
460	v = t4vf_query_params(adapter, 7, params, vals);
461	if (v)
462		return v;
463	sge_params->sge_control = vals[0];
464	sge_params->sge_host_page_size = vals[1];
465	sge_params->sge_fl_buffer_size[0] = vals[2];
466	sge_params->sge_fl_buffer_size[1] = vals[3];
467	sge_params->sge_timer_value_0_and_1 = vals[4];
468	sge_params->sge_timer_value_2_and_3 = vals[5];
469	sge_params->sge_timer_value_4_and_5 = vals[6];
470
471	/* T4 uses a single control field to specify both the PCIe Padding and
472	 * Packing Boundary.  T5 introduced the ability to specify these
473	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
474	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
475	 * SGE_CONTROL in order to determine how ingress packet data will be
476	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
477	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
478	 * failure grabbing it we throw an error since we can't figure out the
479	 * right value.
480	 */
481	if (!is_t4(adapter->params.chip)) {
482		params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
483			     FW_PARAMS_PARAM_XYZ(SGE_CONTROL2_A));
484		v = t4vf_query_params(adapter, 1, params, vals);
485		if (v != FW_SUCCESS) {
486			dev_err(adapter->pdev_dev,
487				"Unable to get SGE Control2; "
488				"probably old firmware.\n");
489			return v;
490		}
491		sge_params->sge_control2 = vals[0];
492	}
493
494	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
495		     FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
496	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
497		     FW_PARAMS_PARAM_XYZ(SGE_CONM_CTRL));
498	v = t4vf_query_params(adapter, 2, params, vals);
499	if (v)
500		return v;
501	sge_params->sge_ingress_rx_threshold = vals[0];
502	sge_params->sge_congestion_control = vals[1];
503
504	return 0;
505}
506
507/**
508 *	t4vf_get_vpd_params - retrieve device VPD paremeters
509 *	@adapter: the adapter
510 *
511 *	Retrives various device Vital Product Data parameters.  The parameters
512 *	are stored in @adapter->params.vpd.
513 */
514int t4vf_get_vpd_params(struct adapter *adapter)
515{
516	struct vpd_params *vpd_params = &adapter->params.vpd;
517	u32 params[7], vals[7];
518	int v;
519
520	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
521		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
522	v = t4vf_query_params(adapter, 1, params, vals);
523	if (v)
524		return v;
525	vpd_params->cclk = vals[0];
526
527	return 0;
528}
529
530/**
531 *	t4vf_get_dev_params - retrieve device paremeters
532 *	@adapter: the adapter
533 *
534 *	Retrives various device parameters.  The parameters are stored in
535 *	@adapter->params.dev.
536 */
537int t4vf_get_dev_params(struct adapter *adapter)
538{
539	struct dev_params *dev_params = &adapter->params.dev;
540	u32 params[7], vals[7];
541	int v;
542
543	params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
544		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
545	params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
546		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
547	v = t4vf_query_params(adapter, 2, params, vals);
548	if (v)
549		return v;
550	dev_params->fwrev = vals[0];
551	dev_params->tprev = vals[1];
552
553	return 0;
554}
555
556/**
557 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
558 *	@adapter: the adapter
559 *
560 *	Retrieves global RSS mode and parameters with which we have to live
561 *	and stores them in the @adapter's RSS parameters.
562 */
563int t4vf_get_rss_glb_config(struct adapter *adapter)
564{
565	struct rss_params *rss = &adapter->params.rss;
566	struct fw_rss_glb_config_cmd cmd, rpl;
567	int v;
568
569	/*
570	 * Execute an RSS Global Configuration read command to retrieve
571	 * our RSS configuration.
572	 */
573	memset(&cmd, 0, sizeof(cmd));
574	cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
575				      FW_CMD_REQUEST |
576				      FW_CMD_READ);
577	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
578	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
579	if (v)
580		return v;
581
582	/*
583	 * Transate the big-endian RSS Global Configuration into our
584	 * cpu-endian format based on the RSS mode.  We also do first level
585	 * filtering at this point to weed out modes which don't support
586	 * VF Drivers ...
587	 */
588	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
589			be32_to_cpu(rpl.u.manual.mode_pkd));
590	switch (rss->mode) {
591	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
592		u32 word = be32_to_cpu(
593				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
594
595		rss->u.basicvirtual.synmapen =
596			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
597		rss->u.basicvirtual.syn4tupenipv6 =
598			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
599		rss->u.basicvirtual.syn2tupenipv6 =
600			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
601		rss->u.basicvirtual.syn4tupenipv4 =
602			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
603		rss->u.basicvirtual.syn2tupenipv4 =
604			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
605
606		rss->u.basicvirtual.ofdmapen =
607			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
608
609		rss->u.basicvirtual.tnlmapen =
610			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
611		rss->u.basicvirtual.tnlalllookup =
612			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
613
614		rss->u.basicvirtual.hashtoeplitz =
615			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
616
617		/* we need at least Tunnel Map Enable to be set */
618		if (!rss->u.basicvirtual.tnlmapen)
619			return -EINVAL;
620		break;
621	}
622
623	default:
624		/* all unknown/unsupported RSS modes result in an error */
625		return -EINVAL;
626	}
627
628	return 0;
629}
630
631/**
632 *	t4vf_get_vfres - retrieve VF resource limits
633 *	@adapter: the adapter
634 *
635 *	Retrieves configured resource limits and capabilities for a virtual
636 *	function.  The results are stored in @adapter->vfres.
637 */
638int t4vf_get_vfres(struct adapter *adapter)
639{
640	struct vf_resources *vfres = &adapter->params.vfres;
641	struct fw_pfvf_cmd cmd, rpl;
642	int v;
643	u32 word;
644
645	/*
646	 * Execute PFVF Read command to get VF resource limits; bail out early
647	 * with error on command failure.
648	 */
649	memset(&cmd, 0, sizeof(cmd));
650	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
651				    FW_CMD_REQUEST |
652				    FW_CMD_READ);
653	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
654	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
655	if (v)
656		return v;
657
658	/*
659	 * Extract VF resource limits and return success.
660	 */
661	word = be32_to_cpu(rpl.niqflint_niq);
662	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
663	vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
664
665	word = be32_to_cpu(rpl.type_to_neq);
666	vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
667	vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
668
669	word = be32_to_cpu(rpl.tc_to_nexactf);
670	vfres->tc = FW_PFVF_CMD_TC_GET(word);
671	vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
672	vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
673
674	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
675	vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
676	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
677	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
678
679	return 0;
680}
681
682/**
683 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
684 *	@adapter: the adapter
685 *	@viid: Virtual Interface ID
686 *	@config: pointer to host-native VI RSS Configuration buffer
687 *
688 *	Reads the Virtual Interface's RSS configuration information and
689 *	translates it into CPU-native format.
690 */
691int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
692			    union rss_vi_config *config)
693{
694	struct fw_rss_vi_config_cmd cmd, rpl;
695	int v;
696
697	memset(&cmd, 0, sizeof(cmd));
698	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
699				     FW_CMD_REQUEST |
700				     FW_CMD_READ |
701				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
702	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
703	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
704	if (v)
705		return v;
706
707	switch (adapter->params.rss.mode) {
708	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
709		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
710
711		config->basicvirtual.ip6fourtupen =
712			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
713		config->basicvirtual.ip6twotupen =
714			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
715		config->basicvirtual.ip4fourtupen =
716			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
717		config->basicvirtual.ip4twotupen =
718			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
719		config->basicvirtual.udpen =
720			((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
721		config->basicvirtual.defaultq =
722			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
723		break;
724	}
725
726	default:
727		return -EINVAL;
728	}
729
730	return 0;
731}
732
733/**
734 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
735 *	@adapter: the adapter
736 *	@viid: Virtual Interface ID
737 *	@config: pointer to host-native VI RSS Configuration buffer
738 *
739 *	Write the Virtual Interface's RSS configuration information
740 *	(translating it into firmware-native format before writing).
741 */
742int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
743			     union rss_vi_config *config)
744{
745	struct fw_rss_vi_config_cmd cmd, rpl;
746
747	memset(&cmd, 0, sizeof(cmd));
748	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
749				     FW_CMD_REQUEST |
750				     FW_CMD_WRITE |
751				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
752	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
753	switch (adapter->params.rss.mode) {
754	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
755		u32 word = 0;
756
757		if (config->basicvirtual.ip6fourtupen)
758			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
759		if (config->basicvirtual.ip6twotupen)
760			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
761		if (config->basicvirtual.ip4fourtupen)
762			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
763		if (config->basicvirtual.ip4twotupen)
764			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
765		if (config->basicvirtual.udpen)
766			word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
767		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
768				config->basicvirtual.defaultq);
769		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
770		break;
771	}
772
773	default:
774		return -EINVAL;
775	}
776
777	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
778}
779
780/**
781 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
782 *	@adapter: the adapter
783 *	@viid: Virtual Interface of RSS Table Slice
784 *	@start: starting entry in the table to write
785 *	@n: how many table entries to write
786 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
787 *	@nrspq: number of values in @rspq
788 *
789 *	Programs the selected part of the VI's RSS mapping table with the
790 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
791 *	until the full table range is populated.
792 *
793 *	The caller must ensure the values in @rspq are in the range 0..1023.
794 */
795int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
796			  int start, int n, const u16 *rspq, int nrspq)
797{
798	const u16 *rsp = rspq;
799	const u16 *rsp_end = rspq+nrspq;
800	struct fw_rss_ind_tbl_cmd cmd;
801
802	/*
803	 * Initialize firmware command template to write the RSS table.
804	 */
805	memset(&cmd, 0, sizeof(cmd));
806	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
807				     FW_CMD_REQUEST |
808				     FW_CMD_WRITE |
809				     FW_RSS_IND_TBL_CMD_VIID(viid));
810	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
811
812	/*
813	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
814	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
815	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
816	 * reserved.
817	 */
818	while (n > 0) {
819		__be32 *qp = &cmd.iq0_to_iq2;
820		int nq = min(n, 32);
821		int ret;
822
823		/*
824		 * Set up the firmware RSS command header to send the next
825		 * "nq" Ingress Queue IDs to the firmware.
826		 */
827		cmd.niqid = cpu_to_be16(nq);
828		cmd.startidx = cpu_to_be16(start);
829
830		/*
831		 * "nq" more done for the start of the next loop.
832		 */
833		start += nq;
834		n -= nq;
835
836		/*
837		 * While there are still Ingress Queue IDs to stuff into the
838		 * current firmware RSS command, retrieve them from the
839		 * Ingress Queue ID array and insert them into the command.
840		 */
841		while (nq > 0) {
842			/*
843			 * Grab up to the next 3 Ingress Queue IDs (wrapping
844			 * around the Ingress Queue ID array if necessary) and
845			 * insert them into the firmware RSS command at the
846			 * current 3-tuple position within the commad.
847			 */
848			u16 qbuf[3];
849			u16 *qbp = qbuf;
850			int nqbuf = min(3, nq);
851
852			nq -= nqbuf;
853			qbuf[0] = qbuf[1] = qbuf[2] = 0;
854			while (nqbuf) {
855				nqbuf--;
856				*qbp++ = *rsp++;
857				if (rsp >= rsp_end)
858					rsp = rspq;
859			}
860			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
861					    FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
862					    FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
863		}
864
865		/*
866		 * Send this portion of the RRS table update to the firmware;
867		 * bail out on any errors.
868		 */
869		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
870		if (ret)
871			return ret;
872	}
873	return 0;
874}
875
876/**
877 *	t4vf_alloc_vi - allocate a virtual interface on a port
878 *	@adapter: the adapter
879 *	@port_id: physical port associated with the VI
880 *
881 *	Allocate a new Virtual Interface and bind it to the indicated
882 *	physical port.  Return the new Virtual Interface Identifier on
883 *	success, or a [negative] error number on failure.
884 */
885int t4vf_alloc_vi(struct adapter *adapter, int port_id)
886{
887	struct fw_vi_cmd cmd, rpl;
888	int v;
889
890	/*
891	 * Execute a VI command to allocate Virtual Interface and return its
892	 * VIID.
893	 */
894	memset(&cmd, 0, sizeof(cmd));
895	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
896				    FW_CMD_REQUEST |
897				    FW_CMD_WRITE |
898				    FW_CMD_EXEC);
899	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
900					 FW_VI_CMD_ALLOC);
901	cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
902	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
903	if (v)
904		return v;
905
906	return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
907}
908
909/**
910 *	t4vf_free_vi -- free a virtual interface
911 *	@adapter: the adapter
912 *	@viid: the virtual interface identifier
913 *
914 *	Free a previously allocated Virtual Interface.  Return an error on
915 *	failure.
916 */
917int t4vf_free_vi(struct adapter *adapter, int viid)
918{
919	struct fw_vi_cmd cmd;
920
921	/*
922	 * Execute a VI command to free the Virtual Interface.
923	 */
924	memset(&cmd, 0, sizeof(cmd));
925	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
926				    FW_CMD_REQUEST |
927				    FW_CMD_EXEC);
928	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
929					 FW_VI_CMD_FREE);
930	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
931	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
932}
933
934/**
935 *	t4vf_enable_vi - enable/disable a virtual interface
936 *	@adapter: the adapter
937 *	@viid: the Virtual Interface ID
938 *	@rx_en: 1=enable Rx, 0=disable Rx
939 *	@tx_en: 1=enable Tx, 0=disable Tx
940 *
941 *	Enables/disables a virtual interface.
942 */
943int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
944		   bool rx_en, bool tx_en)
945{
946	struct fw_vi_enable_cmd cmd;
947
948	memset(&cmd, 0, sizeof(cmd));
949	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
950				     FW_CMD_REQUEST |
951				     FW_CMD_EXEC |
952				     FW_VI_ENABLE_CMD_VIID(viid));
953	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
954				       FW_VI_ENABLE_CMD_EEN(tx_en) |
955				       FW_LEN16(cmd));
956	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
957}
958
959/**
960 *	t4vf_identify_port - identify a VI's port by blinking its LED
961 *	@adapter: the adapter
962 *	@viid: the Virtual Interface ID
963 *	@nblinks: how many times to blink LED at 2.5 Hz
964 *
965 *	Identifies a VI's port by blinking its LED.
966 */
967int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
968		       unsigned int nblinks)
969{
970	struct fw_vi_enable_cmd cmd;
971
972	memset(&cmd, 0, sizeof(cmd));
973	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
974				     FW_CMD_REQUEST |
975				     FW_CMD_EXEC |
976				     FW_VI_ENABLE_CMD_VIID(viid));
977	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
978				       FW_LEN16(cmd));
979	cmd.blinkdur = cpu_to_be16(nblinks);
980	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
981}
982
983/**
984 *	t4vf_set_rxmode - set Rx properties of a virtual interface
985 *	@adapter: the adapter
986 *	@viid: the VI id
987 *	@mtu: the new MTU or -1 for no change
988 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
989 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
990 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
991 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
992 *		-1 no change
993 *
994 *	Sets Rx properties of a virtual interface.
995 */
996int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
997		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
998		    bool sleep_ok)
999{
1000	struct fw_vi_rxmode_cmd cmd;
1001
1002	/* convert to FW values */
1003	if (mtu < 0)
1004		mtu = FW_VI_RXMODE_CMD_MTU_MASK;
1005	if (promisc < 0)
1006		promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
1007	if (all_multi < 0)
1008		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
1009	if (bcast < 0)
1010		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
1011	if (vlanex < 0)
1012		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
1013
1014	memset(&cmd, 0, sizeof(cmd));
1015	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
1016				     FW_CMD_REQUEST |
1017				     FW_CMD_WRITE |
1018				     FW_VI_RXMODE_CMD_VIID(viid));
1019	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1020	cmd.mtu_to_vlanexen =
1021		cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
1022			    FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
1023			    FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
1024			    FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
1025			    FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
1026	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1027}
1028
1029/**
1030 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1031 *	@adapter: the adapter
1032 *	@viid: the Virtual Interface Identifier
1033 *	@free: if true any existing filters for this VI id are first removed
1034 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1035 *	@addr: the MAC address(es)
1036 *	@idx: where to store the index of each allocated filter
1037 *	@hash: pointer to hash address filter bitmap
1038 *	@sleep_ok: call is allowed to sleep
1039 *
1040 *	Allocates an exact-match filter for each of the supplied addresses and
1041 *	sets it to the corresponding address.  If @idx is not %NULL it should
1042 *	have at least @naddr entries, each of which will be set to the index of
1043 *	the filter allocated for the corresponding MAC address.  If a filter
1044 *	could not be allocated for an address its index is set to 0xffff.
1045 *	If @hash is not %NULL addresses that fail to allocate an exact filter
1046 *	are hashed and update the hash filter bitmap pointed at by @hash.
1047 *
1048 *	Returns a negative error number or the number of filters allocated.
1049 */
1050int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1051			unsigned int naddr, const u8 **addr, u16 *idx,
1052			u64 *hash, bool sleep_ok)
1053{
1054	int offset, ret = 0;
1055	unsigned nfilters = 0;
1056	unsigned int rem = naddr;
1057	struct fw_vi_mac_cmd cmd, rpl;
1058	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1059				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1060				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1061
1062	if (naddr > max_naddr)
1063		return -EINVAL;
1064
1065	for (offset = 0; offset < naddr; /**/) {
1066		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1067					 ? rem
1068					 : ARRAY_SIZE(cmd.u.exact));
1069		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1070						     u.exact[fw_naddr]), 16);
1071		struct fw_vi_mac_exact *p;
1072		int i;
1073
1074		memset(&cmd, 0, sizeof(cmd));
1075		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1076					     FW_CMD_REQUEST |
1077					     FW_CMD_WRITE |
1078					     (free ? FW_CMD_EXEC : 0) |
1079					     FW_VI_MAC_CMD_VIID(viid));
1080		cmd.freemacs_to_len16 =
1081			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1082				    FW_CMD_LEN16(len16));
1083
1084		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1085			p->valid_to_idx = cpu_to_be16(
1086				FW_VI_MAC_CMD_VALID |
1087				FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1088			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1089		}
1090
1091
1092		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1093					sleep_ok);
1094		if (ret && ret != -ENOMEM)
1095			break;
1096
1097		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1098			u16 index = FW_VI_MAC_CMD_IDX_GET(
1099				be16_to_cpu(p->valid_to_idx));
1100
1101			if (idx)
1102				idx[offset+i] =
1103					(index >= max_naddr
1104					 ? 0xffff
1105					 : index);
1106			if (index < max_naddr)
1107				nfilters++;
1108			else if (hash)
1109				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1110		}
1111
1112		free = false;
1113		offset += fw_naddr;
1114		rem -= fw_naddr;
1115	}
1116
1117	/*
1118	 * If there were no errors or we merely ran out of room in our MAC
1119	 * address arena, return the number of filters actually written.
1120	 */
1121	if (ret == 0 || ret == -ENOMEM)
1122		ret = nfilters;
1123	return ret;
1124}
1125
1126/**
1127 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1128 *	@adapter: the adapter
1129 *	@viid: the Virtual Interface ID
1130 *	@idx: index of existing filter for old value of MAC address, or -1
1131 *	@addr: the new MAC address value
1132 *	@persist: if idx < 0, the new MAC allocation should be persistent
1133 *
1134 *	Modifies an exact-match filter and sets it to the new MAC address.
1135 *	Note that in general it is not possible to modify the value of a given
1136 *	filter so the generic way to modify an address filter is to free the
1137 *	one being used by the old address value and allocate a new filter for
1138 *	the new address value.  @idx can be -1 if the address is a new
1139 *	addition.
1140 *
1141 *	Returns a negative error number or the index of the filter with the new
1142 *	MAC value.
1143 */
1144int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1145		    int idx, const u8 *addr, bool persist)
1146{
1147	int ret;
1148	struct fw_vi_mac_cmd cmd, rpl;
1149	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1150	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1151					     u.exact[1]), 16);
1152	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1153				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1154				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1155
1156	/*
1157	 * If this is a new allocation, determine whether it should be
1158	 * persistent (across a "freemacs" operation) or not.
1159	 */
1160	if (idx < 0)
1161		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1162
1163	memset(&cmd, 0, sizeof(cmd));
1164	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1165				     FW_CMD_REQUEST |
1166				     FW_CMD_WRITE |
1167				     FW_VI_MAC_CMD_VIID(viid));
1168	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1169	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1170				      FW_VI_MAC_CMD_IDX(idx));
1171	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1172
1173	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1174	if (ret == 0) {
1175		p = &rpl.u.exact[0];
1176		ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1177		if (ret >= max_naddr)
1178			ret = -ENOMEM;
1179	}
1180	return ret;
1181}
1182
1183/**
1184 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1185 *	@adapter: the adapter
1186 *	@viid: the Virtual Interface Identifier
1187 *	@ucast: whether the hash filter should also match unicast addresses
1188 *	@vec: the value to be written to the hash filter
1189 *	@sleep_ok: call is allowed to sleep
1190 *
1191 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1192 */
1193int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1194		       bool ucast, u64 vec, bool sleep_ok)
1195{
1196	struct fw_vi_mac_cmd cmd;
1197	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1198					     u.exact[0]), 16);
1199
1200	memset(&cmd, 0, sizeof(cmd));
1201	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1202				     FW_CMD_REQUEST |
1203				     FW_CMD_WRITE |
1204				     FW_VI_ENABLE_CMD_VIID(viid));
1205	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1206					    FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1207					    FW_CMD_LEN16(len16));
1208	cmd.u.hash.hashvec = cpu_to_be64(vec);
1209	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1210}
1211
1212/**
1213 *	t4vf_get_port_stats - collect "port" statistics
1214 *	@adapter: the adapter
1215 *	@pidx: the port index
1216 *	@s: the stats structure to fill
1217 *
1218 *	Collect statistics for the "port"'s Virtual Interface.
1219 */
1220int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1221			struct t4vf_port_stats *s)
1222{
1223	struct port_info *pi = adap2pinfo(adapter, pidx);
1224	struct fw_vi_stats_vf fwstats;
1225	unsigned int rem = VI_VF_NUM_STATS;
1226	__be64 *fwsp = (__be64 *)&fwstats;
1227
1228	/*
1229	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1230	 * commands.  We could use a Work Request and get all of them at once
1231	 * but that's an asynchronous interface which is awkward to use.
1232	 */
1233	while (rem) {
1234		unsigned int ix = VI_VF_NUM_STATS - rem;
1235		unsigned int nstats = min(6U, rem);
1236		struct fw_vi_stats_cmd cmd, rpl;
1237		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1238			      sizeof(struct fw_vi_stats_ctl));
1239		size_t len16 = DIV_ROUND_UP(len, 16);
1240		int ret;
1241
1242		memset(&cmd, 0, sizeof(cmd));
1243		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1244					     FW_VI_STATS_CMD_VIID(pi->viid) |
1245					     FW_CMD_REQUEST |
1246					     FW_CMD_READ);
1247		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1248		cmd.u.ctl.nstats_ix =
1249			cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1250				    FW_VI_STATS_CMD_NSTATS(nstats));
1251		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1252		if (ret)
1253			return ret;
1254
1255		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1256
1257		rem -= nstats;
1258		fwsp += nstats;
1259	}
1260
1261	/*
1262	 * Translate firmware statistics into host native statistics.
1263	 */
1264	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1265	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1266	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1267	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1268	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1269	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1270	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1271	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1272	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1273
1274	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1275	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1276	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1277	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1278	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1279	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1280
1281	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1282
1283	return 0;
1284}
1285
1286/**
1287 *	t4vf_iq_free - free an ingress queue and its free lists
1288 *	@adapter: the adapter
1289 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1290 *	@iqid: ingress queue ID
1291 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1292 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1293 *
1294 *	Frees an ingress queue and its associated free lists, if any.
1295 */
1296int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1297		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1298{
1299	struct fw_iq_cmd cmd;
1300
1301	memset(&cmd, 0, sizeof(cmd));
1302	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1303				    FW_CMD_REQUEST |
1304				    FW_CMD_EXEC);
1305	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1306					 FW_LEN16(cmd));
1307	cmd.type_to_iqandstindex =
1308		cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1309
1310	cmd.iqid = cpu_to_be16(iqid);
1311	cmd.fl0id = cpu_to_be16(fl0id);
1312	cmd.fl1id = cpu_to_be16(fl1id);
1313	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1314}
1315
1316/**
1317 *	t4vf_eth_eq_free - free an Ethernet egress queue
1318 *	@adapter: the adapter
1319 *	@eqid: egress queue ID
1320 *
1321 *	Frees an Ethernet egress queue.
1322 */
1323int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1324{
1325	struct fw_eq_eth_cmd cmd;
1326
1327	memset(&cmd, 0, sizeof(cmd));
1328	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1329				    FW_CMD_REQUEST |
1330				    FW_CMD_EXEC);
1331	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1332					 FW_LEN16(cmd));
1333	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1334	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1335}
1336
1337/**
1338 *	t4vf_handle_fw_rpl - process a firmware reply message
1339 *	@adapter: the adapter
1340 *	@rpl: start of the firmware message
1341 *
1342 *	Processes a firmware message, such as link state change messages.
1343 */
1344int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1345{
1346	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1347	u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1348
1349	switch (opcode) {
1350	case FW_PORT_CMD: {
1351		/*
1352		 * Link/module state change message.
1353		 */
1354		const struct fw_port_cmd *port_cmd =
1355			(const struct fw_port_cmd *)rpl;
1356		u32 word;
1357		int action, port_id, link_ok, speed, fc, pidx;
1358
1359		/*
1360		 * Extract various fields from port status change message.
1361		 */
1362		action = FW_PORT_CMD_ACTION_GET(
1363			be32_to_cpu(port_cmd->action_to_len16));
1364		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1365			dev_err(adapter->pdev_dev,
1366				"Unknown firmware PORT reply action %x\n",
1367				action);
1368			break;
1369		}
1370
1371		port_id = FW_PORT_CMD_PORTID_GET(
1372			be32_to_cpu(port_cmd->op_to_portid));
1373
1374		word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1375		link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1376		speed = 0;
1377		fc = 0;
1378		if (word & FW_PORT_CMD_RXPAUSE)
1379			fc |= PAUSE_RX;
1380		if (word & FW_PORT_CMD_TXPAUSE)
1381			fc |= PAUSE_TX;
1382		if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1383			speed = 100;
1384		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1385			speed = 1000;
1386		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1387			speed = 10000;
1388		else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
1389			speed = 40000;
1390
1391		/*
1392		 * Scan all of our "ports" (Virtual Interfaces) looking for
1393		 * those bound to the physical port which has changed.  If
1394		 * our recorded state doesn't match the current state,
1395		 * signal that change to the OS code.
1396		 */
1397		for_each_port(adapter, pidx) {
1398			struct port_info *pi = adap2pinfo(adapter, pidx);
1399			struct link_config *lc;
1400
1401			if (pi->port_id != port_id)
1402				continue;
1403
1404			lc = &pi->link_cfg;
1405			if (link_ok != lc->link_ok || speed != lc->speed ||
1406			    fc != lc->fc) {
1407				/* something changed */
1408				lc->link_ok = link_ok;
1409				lc->speed = speed;
1410				lc->fc = fc;
1411				t4vf_os_link_changed(adapter, pidx, link_ok);
1412			}
1413		}
1414		break;
1415	}
1416
1417	default:
1418		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1419			opcode);
1420	}
1421	return 0;
1422}
1423