[go: nahoru, domu]

1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers.  I allocate memory
6 * pages and then divide them into 2K frame buffers.  This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/in.h>
37#include <linux/ip.h>
38#include <net/ip.h>
39#include <net/tso.h>
40#include <linux/tcp.h>
41#include <linux/udp.h>
42#include <linux/icmp.h>
43#include <linux/spinlock.h>
44#include <linux/workqueue.h>
45#include <linux/bitops.h>
46#include <linux/io.h>
47#include <linux/irq.h>
48#include <linux/clk.h>
49#include <linux/platform_device.h>
50#include <linux/phy.h>
51#include <linux/fec.h>
52#include <linux/of.h>
53#include <linux/of_device.h>
54#include <linux/of_gpio.h>
55#include <linux/of_mdio.h>
56#include <linux/of_net.h>
57#include <linux/regulator/consumer.h>
58#include <linux/if_vlan.h>
59#include <linux/pinctrl/consumer.h>
60#include <linux/prefetch.h>
61
62#include <asm/cacheflush.h>
63
64#include "fec.h"
65
66static void set_multicast_list(struct net_device *ndev);
67static void fec_enet_itr_coal_init(struct net_device *ndev);
68
69#define DRIVER_NAME	"fec"
70
71#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72
73/* Pause frame feild and FIFO threshold */
74#define FEC_ENET_FCE	(1 << 5)
75#define FEC_ENET_RSEM_V	0x84
76#define FEC_ENET_RSFL_V	16
77#define FEC_ENET_RAEM_V	0x8
78#define FEC_ENET_RAFL_V	0x8
79#define FEC_ENET_OPD_V	0xFFF0
80
81static struct platform_device_id fec_devtype[] = {
82	{
83		/* keep it for coldfire */
84		.name = DRIVER_NAME,
85		.driver_data = 0,
86	}, {
87		.name = "imx25-fec",
88		.driver_data = FEC_QUIRK_USE_GASKET,
89	}, {
90		.name = "imx27-fec",
91		.driver_data = 0,
92	}, {
93		.name = "imx28-fec",
94		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
95	}, {
96		.name = "imx6q-fec",
97		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
98				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
99				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
100	}, {
101		.name = "mvf600-fec",
102		.driver_data = FEC_QUIRK_ENET_MAC,
103	}, {
104		.name = "imx6sx-fec",
105		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
106				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
107				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
108				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
109	}, {
110		/* sentinel */
111	}
112};
113MODULE_DEVICE_TABLE(platform, fec_devtype);
114
115enum imx_fec_type {
116	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
117	IMX27_FEC,	/* runs on i.mx27/35/51 */
118	IMX28_FEC,
119	IMX6Q_FEC,
120	MVF600_FEC,
121	IMX6SX_FEC,
122};
123
124static const struct of_device_id fec_dt_ids[] = {
125	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
126	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
127	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
128	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
129	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
130	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
131	{ /* sentinel */ }
132};
133MODULE_DEVICE_TABLE(of, fec_dt_ids);
134
135static unsigned char macaddr[ETH_ALEN];
136module_param_array(macaddr, byte, NULL, 0);
137MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
138
139#if defined(CONFIG_M5272)
140/*
141 * Some hardware gets it MAC address out of local flash memory.
142 * if this is non-zero then assume it is the address to get MAC from.
143 */
144#if defined(CONFIG_NETtel)
145#define	FEC_FLASHMAC	0xf0006006
146#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
147#define	FEC_FLASHMAC	0xf0006000
148#elif defined(CONFIG_CANCam)
149#define	FEC_FLASHMAC	0xf0020000
150#elif defined (CONFIG_M5272C3)
151#define	FEC_FLASHMAC	(0xffe04000 + 4)
152#elif defined(CONFIG_MOD5272)
153#define FEC_FLASHMAC	0xffc0406b
154#else
155#define	FEC_FLASHMAC	0
156#endif
157#endif /* CONFIG_M5272 */
158
159/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
160 */
161#define PKT_MAXBUF_SIZE		1522
162#define PKT_MINBUF_SIZE		64
163#define PKT_MAXBLR_SIZE		1536
164
165/* FEC receive acceleration */
166#define FEC_RACC_IPDIS		(1 << 1)
167#define FEC_RACC_PRODIS		(1 << 2)
168#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
169
170/*
171 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172 * size bits. Other FEC hardware does not, so we need to take that into
173 * account when setting it.
174 */
175#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
177#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
178#else
179#define	OPT_FRAME_SIZE	0
180#endif
181
182/* FEC MII MMFR bits definition */
183#define FEC_MMFR_ST		(1 << 30)
184#define FEC_MMFR_OP_READ	(2 << 28)
185#define FEC_MMFR_OP_WRITE	(1 << 28)
186#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
187#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
188#define FEC_MMFR_TA		(2 << 16)
189#define FEC_MMFR_DATA(v)	(v & 0xffff)
190
191#define FEC_MII_TIMEOUT		30000 /* us */
192
193/* Transmitter timeout */
194#define TX_TIMEOUT (2 * HZ)
195
196#define FEC_PAUSE_FLAG_AUTONEG	0x1
197#define FEC_PAUSE_FLAG_ENABLE	0x2
198
199#define COPYBREAK_DEFAULT	256
200
201#define TSO_HEADER_SIZE		128
202/* Max number of allowed TCP segments for software TSO */
203#define FEC_MAX_TSO_SEGS	100
204#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
205
206#define IS_TSO_HEADER(txq, addr) \
207	((addr >= txq->tso_hdrs_dma) && \
208	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
209
210static int mii_cnt;
211
212static inline
213struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
214				      struct fec_enet_private *fep,
215				      int queue_id)
216{
217	struct bufdesc *new_bd = bdp + 1;
218	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
219	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
220	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
221	struct bufdesc_ex *ex_base;
222	struct bufdesc *base;
223	int ring_size;
224
225	if (bdp >= txq->tx_bd_base) {
226		base = txq->tx_bd_base;
227		ring_size = txq->tx_ring_size;
228		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
229	} else {
230		base = rxq->rx_bd_base;
231		ring_size = rxq->rx_ring_size;
232		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
233	}
234
235	if (fep->bufdesc_ex)
236		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
237			ex_base : ex_new_bd);
238	else
239		return (new_bd >= (base + ring_size)) ?
240			base : new_bd;
241}
242
243static inline
244struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
245				      struct fec_enet_private *fep,
246				      int queue_id)
247{
248	struct bufdesc *new_bd = bdp - 1;
249	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
250	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
251	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
252	struct bufdesc_ex *ex_base;
253	struct bufdesc *base;
254	int ring_size;
255
256	if (bdp >= txq->tx_bd_base) {
257		base = txq->tx_bd_base;
258		ring_size = txq->tx_ring_size;
259		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
260	} else {
261		base = rxq->rx_bd_base;
262		ring_size = rxq->rx_ring_size;
263		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
264	}
265
266	if (fep->bufdesc_ex)
267		return (struct bufdesc *)((ex_new_bd < ex_base) ?
268			(ex_new_bd + ring_size) : ex_new_bd);
269	else
270		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
271}
272
273static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
274				struct fec_enet_private *fep)
275{
276	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
277}
278
279static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
280					struct fec_enet_priv_tx_q *txq)
281{
282	int entries;
283
284	entries = ((const char *)txq->dirty_tx -
285			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
286
287	return entries > 0 ? entries : entries + txq->tx_ring_size;
288}
289
290static void *swap_buffer(void *bufaddr, int len)
291{
292	int i;
293	unsigned int *buf = bufaddr;
294
295	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
296		*buf = cpu_to_be32(*buf);
297
298	return bufaddr;
299}
300
301static void swap_buffer2(void *dst_buf, void *src_buf, int len)
302{
303	int i;
304	unsigned int *src = src_buf;
305	unsigned int *dst = dst_buf;
306
307	for (i = 0; i < len; i += 4, src++, dst++)
308		*dst = swab32p(src);
309}
310
311static void fec_dump(struct net_device *ndev)
312{
313	struct fec_enet_private *fep = netdev_priv(ndev);
314	struct bufdesc *bdp;
315	struct fec_enet_priv_tx_q *txq;
316	int index = 0;
317
318	netdev_info(ndev, "TX ring dump\n");
319	pr_info("Nr     SC     addr       len  SKB\n");
320
321	txq = fep->tx_queue[0];
322	bdp = txq->tx_bd_base;
323
324	do {
325		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
326			index,
327			bdp == txq->cur_tx ? 'S' : ' ',
328			bdp == txq->dirty_tx ? 'H' : ' ',
329			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
330			txq->tx_skbuff[index]);
331		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
332		index++;
333	} while (bdp != txq->tx_bd_base);
334}
335
336static inline bool is_ipv4_pkt(struct sk_buff *skb)
337{
338	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
339}
340
341static int
342fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
343{
344	/* Only run for packets requiring a checksum. */
345	if (skb->ip_summed != CHECKSUM_PARTIAL)
346		return 0;
347
348	if (unlikely(skb_cow_head(skb, 0)))
349		return -1;
350
351	if (is_ipv4_pkt(skb))
352		ip_hdr(skb)->check = 0;
353	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
354
355	return 0;
356}
357
358static int
359fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
360			     struct sk_buff *skb,
361			     struct net_device *ndev)
362{
363	struct fec_enet_private *fep = netdev_priv(ndev);
364	const struct platform_device_id *id_entry =
365				platform_get_device_id(fep->pdev);
366	struct bufdesc *bdp = txq->cur_tx;
367	struct bufdesc_ex *ebdp;
368	int nr_frags = skb_shinfo(skb)->nr_frags;
369	unsigned short queue = skb_get_queue_mapping(skb);
370	int frag, frag_len;
371	unsigned short status;
372	unsigned int estatus = 0;
373	skb_frag_t *this_frag;
374	unsigned int index;
375	void *bufaddr;
376	dma_addr_t addr;
377	int i;
378
379	for (frag = 0; frag < nr_frags; frag++) {
380		this_frag = &skb_shinfo(skb)->frags[frag];
381		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
382		ebdp = (struct bufdesc_ex *)bdp;
383
384		status = bdp->cbd_sc;
385		status &= ~BD_ENET_TX_STATS;
386		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
387		frag_len = skb_shinfo(skb)->frags[frag].size;
388
389		/* Handle the last BD specially */
390		if (frag == nr_frags - 1) {
391			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
392			if (fep->bufdesc_ex) {
393				estatus |= BD_ENET_TX_INT;
394				if (unlikely(skb_shinfo(skb)->tx_flags &
395					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
396					estatus |= BD_ENET_TX_TS;
397			}
398		}
399
400		if (fep->bufdesc_ex) {
401			if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
402				estatus |= FEC_TX_BD_FTYPE(queue);
403			if (skb->ip_summed == CHECKSUM_PARTIAL)
404				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
405			ebdp->cbd_bdu = 0;
406			ebdp->cbd_esc = estatus;
407		}
408
409		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
410
411		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
412		if (((unsigned long) bufaddr) & fep->tx_align ||
413			id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
414			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
415			bufaddr = txq->tx_bounce[index];
416
417			if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
418				swap_buffer(bufaddr, frag_len);
419		}
420
421		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
422				      DMA_TO_DEVICE);
423		if (dma_mapping_error(&fep->pdev->dev, addr)) {
424			dev_kfree_skb_any(skb);
425			if (net_ratelimit())
426				netdev_err(ndev, "Tx DMA memory map failed\n");
427			goto dma_mapping_error;
428		}
429
430		bdp->cbd_bufaddr = addr;
431		bdp->cbd_datlen = frag_len;
432		bdp->cbd_sc = status;
433	}
434
435	txq->cur_tx = bdp;
436
437	return 0;
438
439dma_mapping_error:
440	bdp = txq->cur_tx;
441	for (i = 0; i < frag; i++) {
442		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
443		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
444				bdp->cbd_datlen, DMA_TO_DEVICE);
445	}
446	return NETDEV_TX_OK;
447}
448
449static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
450				   struct sk_buff *skb, struct net_device *ndev)
451{
452	struct fec_enet_private *fep = netdev_priv(ndev);
453	const struct platform_device_id *id_entry =
454				platform_get_device_id(fep->pdev);
455	int nr_frags = skb_shinfo(skb)->nr_frags;
456	struct bufdesc *bdp, *last_bdp;
457	void *bufaddr;
458	dma_addr_t addr;
459	unsigned short status;
460	unsigned short buflen;
461	unsigned short queue;
462	unsigned int estatus = 0;
463	unsigned int index;
464	int entries_free;
465	int ret;
466
467	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
468	if (entries_free < MAX_SKB_FRAGS + 1) {
469		dev_kfree_skb_any(skb);
470		if (net_ratelimit())
471			netdev_err(ndev, "NOT enough BD for SG!\n");
472		return NETDEV_TX_OK;
473	}
474
475	/* Protocol checksum off-load for TCP and UDP. */
476	if (fec_enet_clear_csum(skb, ndev)) {
477		dev_kfree_skb_any(skb);
478		return NETDEV_TX_OK;
479	}
480
481	/* Fill in a Tx ring entry */
482	bdp = txq->cur_tx;
483	status = bdp->cbd_sc;
484	status &= ~BD_ENET_TX_STATS;
485
486	/* Set buffer length and buffer pointer */
487	bufaddr = skb->data;
488	buflen = skb_headlen(skb);
489
490	queue = skb_get_queue_mapping(skb);
491	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
492	if (((unsigned long) bufaddr) & fep->tx_align ||
493		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
494		memcpy(txq->tx_bounce[index], skb->data, buflen);
495		bufaddr = txq->tx_bounce[index];
496
497		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
498			swap_buffer(bufaddr, buflen);
499	}
500
501	/* Push the data cache so the CPM does not get stale memory data. */
502	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
503	if (dma_mapping_error(&fep->pdev->dev, addr)) {
504		dev_kfree_skb_any(skb);
505		if (net_ratelimit())
506			netdev_err(ndev, "Tx DMA memory map failed\n");
507		return NETDEV_TX_OK;
508	}
509
510	if (nr_frags) {
511		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
512		if (ret)
513			return ret;
514	} else {
515		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
516		if (fep->bufdesc_ex) {
517			estatus = BD_ENET_TX_INT;
518			if (unlikely(skb_shinfo(skb)->tx_flags &
519				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
520				estatus |= BD_ENET_TX_TS;
521		}
522	}
523
524	if (fep->bufdesc_ex) {
525
526		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
527
528		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
529			fep->hwts_tx_en))
530			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
531
532		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
533			estatus |= FEC_TX_BD_FTYPE(queue);
534
535		if (skb->ip_summed == CHECKSUM_PARTIAL)
536			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
537
538		ebdp->cbd_bdu = 0;
539		ebdp->cbd_esc = estatus;
540	}
541
542	last_bdp = txq->cur_tx;
543	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
544	/* Save skb pointer */
545	txq->tx_skbuff[index] = skb;
546
547	bdp->cbd_datlen = buflen;
548	bdp->cbd_bufaddr = addr;
549
550	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
551	 * it's the last BD of the frame, and to put the CRC on the end.
552	 */
553	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
554	bdp->cbd_sc = status;
555
556	/* If this was the last BD in the ring, start at the beginning again. */
557	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
558
559	skb_tx_timestamp(skb);
560
561	txq->cur_tx = bdp;
562
563	/* Trigger transmission start */
564	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
565
566	return 0;
567}
568
569static int
570fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
571			  struct net_device *ndev,
572			  struct bufdesc *bdp, int index, char *data,
573			  int size, bool last_tcp, bool is_last)
574{
575	struct fec_enet_private *fep = netdev_priv(ndev);
576	const struct platform_device_id *id_entry =
577				platform_get_device_id(fep->pdev);
578	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
579	unsigned short queue = skb_get_queue_mapping(skb);
580	unsigned short status;
581	unsigned int estatus = 0;
582	dma_addr_t addr;
583
584	status = bdp->cbd_sc;
585	status &= ~BD_ENET_TX_STATS;
586
587	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
588
589	if (((unsigned long) data) & fep->tx_align ||
590		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
591		memcpy(txq->tx_bounce[index], data, size);
592		data = txq->tx_bounce[index];
593
594		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
595			swap_buffer(data, size);
596	}
597
598	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
599	if (dma_mapping_error(&fep->pdev->dev, addr)) {
600		dev_kfree_skb_any(skb);
601		if (net_ratelimit())
602			netdev_err(ndev, "Tx DMA memory map failed\n");
603		return NETDEV_TX_BUSY;
604	}
605
606	bdp->cbd_datlen = size;
607	bdp->cbd_bufaddr = addr;
608
609	if (fep->bufdesc_ex) {
610		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
611			estatus |= FEC_TX_BD_FTYPE(queue);
612		if (skb->ip_summed == CHECKSUM_PARTIAL)
613			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
614		ebdp->cbd_bdu = 0;
615		ebdp->cbd_esc = estatus;
616	}
617
618	/* Handle the last BD specially */
619	if (last_tcp)
620		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
621	if (is_last) {
622		status |= BD_ENET_TX_INTR;
623		if (fep->bufdesc_ex)
624			ebdp->cbd_esc |= BD_ENET_TX_INT;
625	}
626
627	bdp->cbd_sc = status;
628
629	return 0;
630}
631
632static int
633fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
634			 struct sk_buff *skb, struct net_device *ndev,
635			 struct bufdesc *bdp, int index)
636{
637	struct fec_enet_private *fep = netdev_priv(ndev);
638	const struct platform_device_id *id_entry =
639				platform_get_device_id(fep->pdev);
640	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
641	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
642	unsigned short queue = skb_get_queue_mapping(skb);
643	void *bufaddr;
644	unsigned long dmabuf;
645	unsigned short status;
646	unsigned int estatus = 0;
647
648	status = bdp->cbd_sc;
649	status &= ~BD_ENET_TX_STATS;
650	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
651
652	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
653	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
654	if (((unsigned long)bufaddr) & fep->tx_align ||
655		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
656		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
657		bufaddr = txq->tx_bounce[index];
658
659		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
660			swap_buffer(bufaddr, hdr_len);
661
662		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
663					hdr_len, DMA_TO_DEVICE);
664		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
665			dev_kfree_skb_any(skb);
666			if (net_ratelimit())
667				netdev_err(ndev, "Tx DMA memory map failed\n");
668			return NETDEV_TX_BUSY;
669		}
670	}
671
672	bdp->cbd_bufaddr = dmabuf;
673	bdp->cbd_datlen = hdr_len;
674
675	if (fep->bufdesc_ex) {
676		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
677			estatus |= FEC_TX_BD_FTYPE(queue);
678		if (skb->ip_summed == CHECKSUM_PARTIAL)
679			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
680		ebdp->cbd_bdu = 0;
681		ebdp->cbd_esc = estatus;
682	}
683
684	bdp->cbd_sc = status;
685
686	return 0;
687}
688
689static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
690				   struct sk_buff *skb,
691				   struct net_device *ndev)
692{
693	struct fec_enet_private *fep = netdev_priv(ndev);
694	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
695	int total_len, data_left;
696	struct bufdesc *bdp = txq->cur_tx;
697	unsigned short queue = skb_get_queue_mapping(skb);
698	struct tso_t tso;
699	unsigned int index = 0;
700	int ret;
701	const struct platform_device_id *id_entry =
702				platform_get_device_id(fep->pdev);
703
704	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
705		dev_kfree_skb_any(skb);
706		if (net_ratelimit())
707			netdev_err(ndev, "NOT enough BD for TSO!\n");
708		return NETDEV_TX_OK;
709	}
710
711	/* Protocol checksum off-load for TCP and UDP. */
712	if (fec_enet_clear_csum(skb, ndev)) {
713		dev_kfree_skb_any(skb);
714		return NETDEV_TX_OK;
715	}
716
717	/* Initialize the TSO handler, and prepare the first payload */
718	tso_start(skb, &tso);
719
720	total_len = skb->len - hdr_len;
721	while (total_len > 0) {
722		char *hdr;
723
724		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
725		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
726		total_len -= data_left;
727
728		/* prepare packet headers: MAC + IP + TCP */
729		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
730		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
731		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
732		if (ret)
733			goto err_release;
734
735		while (data_left > 0) {
736			int size;
737
738			size = min_t(int, tso.size, data_left);
739			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
740			index = fec_enet_get_bd_index(txq->tx_bd_base,
741						      bdp, fep);
742			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
743							bdp, index,
744							tso.data, size,
745							size == data_left,
746							total_len == 0);
747			if (ret)
748				goto err_release;
749
750			data_left -= size;
751			tso_build_data(skb, &tso, size);
752		}
753
754		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
755	}
756
757	/* Save skb pointer */
758	txq->tx_skbuff[index] = skb;
759
760	skb_tx_timestamp(skb);
761	txq->cur_tx = bdp;
762
763	/* Trigger transmission start */
764	if (!(id_entry->driver_data & FEC_QUIRK_ERR007885) ||
765	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
768	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
769		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
770
771	return 0;
772
773err_release:
774	/* TODO: Release all used data descriptors for TSO */
775	return ret;
776}
777
778static netdev_tx_t
779fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
780{
781	struct fec_enet_private *fep = netdev_priv(ndev);
782	int entries_free;
783	unsigned short queue;
784	struct fec_enet_priv_tx_q *txq;
785	struct netdev_queue *nq;
786	int ret;
787
788	queue = skb_get_queue_mapping(skb);
789	txq = fep->tx_queue[queue];
790	nq = netdev_get_tx_queue(ndev, queue);
791
792	if (skb_is_gso(skb))
793		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
794	else
795		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
796	if (ret)
797		return ret;
798
799	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
800	if (entries_free <= txq->tx_stop_threshold)
801		netif_tx_stop_queue(nq);
802
803	return NETDEV_TX_OK;
804}
805
806/* Init RX & TX buffer descriptors
807 */
808static void fec_enet_bd_init(struct net_device *dev)
809{
810	struct fec_enet_private *fep = netdev_priv(dev);
811	struct fec_enet_priv_tx_q *txq;
812	struct fec_enet_priv_rx_q *rxq;
813	struct bufdesc *bdp;
814	unsigned int i;
815	unsigned int q;
816
817	for (q = 0; q < fep->num_rx_queues; q++) {
818		/* Initialize the receive buffer descriptors. */
819		rxq = fep->rx_queue[q];
820		bdp = rxq->rx_bd_base;
821
822		for (i = 0; i < rxq->rx_ring_size; i++) {
823
824			/* Initialize the BD for every fragment in the page. */
825			if (bdp->cbd_bufaddr)
826				bdp->cbd_sc = BD_ENET_RX_EMPTY;
827			else
828				bdp->cbd_sc = 0;
829			bdp = fec_enet_get_nextdesc(bdp, fep, q);
830		}
831
832		/* Set the last buffer to wrap */
833		bdp = fec_enet_get_prevdesc(bdp, fep, q);
834		bdp->cbd_sc |= BD_SC_WRAP;
835
836		rxq->cur_rx = rxq->rx_bd_base;
837	}
838
839	for (q = 0; q < fep->num_tx_queues; q++) {
840		/* ...and the same for transmit */
841		txq = fep->tx_queue[q];
842		bdp = txq->tx_bd_base;
843		txq->cur_tx = bdp;
844
845		for (i = 0; i < txq->tx_ring_size; i++) {
846			/* Initialize the BD for every fragment in the page. */
847			bdp->cbd_sc = 0;
848			if (txq->tx_skbuff[i]) {
849				dev_kfree_skb_any(txq->tx_skbuff[i]);
850				txq->tx_skbuff[i] = NULL;
851			}
852			bdp->cbd_bufaddr = 0;
853			bdp = fec_enet_get_nextdesc(bdp, fep, q);
854		}
855
856		/* Set the last buffer to wrap */
857		bdp = fec_enet_get_prevdesc(bdp, fep, q);
858		bdp->cbd_sc |= BD_SC_WRAP;
859		txq->dirty_tx = bdp;
860	}
861}
862
863static void fec_enet_active_rxring(struct net_device *ndev)
864{
865	struct fec_enet_private *fep = netdev_priv(ndev);
866	int i;
867
868	for (i = 0; i < fep->num_rx_queues; i++)
869		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
870}
871
872static void fec_enet_enable_ring(struct net_device *ndev)
873{
874	struct fec_enet_private *fep = netdev_priv(ndev);
875	struct fec_enet_priv_tx_q *txq;
876	struct fec_enet_priv_rx_q *rxq;
877	int i;
878
879	for (i = 0; i < fep->num_rx_queues; i++) {
880		rxq = fep->rx_queue[i];
881		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
882
883		/* enable DMA1/2 */
884		if (i)
885			writel(RCMR_MATCHEN | RCMR_CMP(i),
886			       fep->hwp + FEC_RCMR(i));
887	}
888
889	for (i = 0; i < fep->num_tx_queues; i++) {
890		txq = fep->tx_queue[i];
891		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892
893		/* enable DMA1/2 */
894		if (i)
895			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896			       fep->hwp + FEC_DMA_CFG(i));
897	}
898}
899
900static void fec_enet_reset_skb(struct net_device *ndev)
901{
902	struct fec_enet_private *fep = netdev_priv(ndev);
903	struct fec_enet_priv_tx_q *txq;
904	int i, j;
905
906	for (i = 0; i < fep->num_tx_queues; i++) {
907		txq = fep->tx_queue[i];
908
909		for (j = 0; j < txq->tx_ring_size; j++) {
910			if (txq->tx_skbuff[j]) {
911				dev_kfree_skb_any(txq->tx_skbuff[j]);
912				txq->tx_skbuff[j] = NULL;
913			}
914		}
915	}
916}
917
918/*
919 * This function is called to start or restart the FEC during a link
920 * change, transmit timeout, or to reconfigure the FEC.  The network
921 * packet processing for this device must be stopped before this call.
922 */
923static void
924fec_restart(struct net_device *ndev)
925{
926	struct fec_enet_private *fep = netdev_priv(ndev);
927	const struct platform_device_id *id_entry =
928				platform_get_device_id(fep->pdev);
929	u32 val;
930	u32 temp_mac[2];
931	u32 rcntl = OPT_FRAME_SIZE | 0x04;
932	u32 ecntl = 0x2; /* ETHEREN */
933
934	/* Whack a reset.  We should wait for this.
935	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
936	 * instead of reset MAC itself.
937	 */
938	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
939		writel(0, fep->hwp + FEC_ECNTRL);
940	} else {
941		writel(1, fep->hwp + FEC_ECNTRL);
942		udelay(10);
943	}
944
945	/*
946	 * enet-mac reset will reset mac address registers too,
947	 * so need to reconfigure it.
948	 */
949	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
950		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
951		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
952		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
953	}
954
955	/* Clear any outstanding interrupt. */
956	writel(0xffc00000, fep->hwp + FEC_IEVENT);
957
958	/* Set maximum receive buffer size. */
959	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
960
961	fec_enet_bd_init(ndev);
962
963	fec_enet_enable_ring(ndev);
964
965	/* Reset tx SKB buffers. */
966	fec_enet_reset_skb(ndev);
967
968	/* Enable MII mode */
969	if (fep->full_duplex == DUPLEX_FULL) {
970		/* FD enable */
971		writel(0x04, fep->hwp + FEC_X_CNTRL);
972	} else {
973		/* No Rcv on Xmit */
974		rcntl |= 0x02;
975		writel(0x0, fep->hwp + FEC_X_CNTRL);
976	}
977
978	/* Set MII speed */
979	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
980
981#if !defined(CONFIG_M5272)
982	/* set RX checksum */
983	val = readl(fep->hwp + FEC_RACC);
984	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
985		val |= FEC_RACC_OPTIONS;
986	else
987		val &= ~FEC_RACC_OPTIONS;
988	writel(val, fep->hwp + FEC_RACC);
989#endif
990
991	/*
992	 * The phy interface and speed need to get configured
993	 * differently on enet-mac.
994	 */
995	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
996		/* Enable flow control and length check */
997		rcntl |= 0x40000000 | 0x00000020;
998
999		/* RGMII, RMII or MII */
1000		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
1001			rcntl |= (1 << 6);
1002		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003			rcntl |= (1 << 8);
1004		else
1005			rcntl &= ~(1 << 8);
1006
1007		/* 1G, 100M or 10M */
1008		if (fep->phy_dev) {
1009			if (fep->phy_dev->speed == SPEED_1000)
1010				ecntl |= (1 << 5);
1011			else if (fep->phy_dev->speed == SPEED_100)
1012				rcntl &= ~(1 << 9);
1013			else
1014				rcntl |= (1 << 9);
1015		}
1016	} else {
1017#ifdef FEC_MIIGSK_ENR
1018		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
1019			u32 cfgr;
1020			/* disable the gasket and wait */
1021			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023				udelay(1);
1024
1025			/*
1026			 * configure the gasket:
1027			 *   RMII, 50 MHz, no loopback, no echo
1028			 *   MII, 25 MHz, no loopback, no echo
1029			 */
1030			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035
1036			/* re-enable the gasket */
1037			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038		}
1039#endif
1040	}
1041
1042#if !defined(CONFIG_M5272)
1043	/* enable pause frame*/
1044	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046	     fep->phy_dev && fep->phy_dev->pause)) {
1047		rcntl |= FEC_ENET_FCE;
1048
1049		/* set FIFO threshold parameter to reduce overrun */
1050		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054
1055		/* OPD */
1056		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057	} else {
1058		rcntl &= ~FEC_ENET_FCE;
1059	}
1060#endif /* !defined(CONFIG_M5272) */
1061
1062	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063
1064	/* Setup multicast filter. */
1065	set_multicast_list(ndev);
1066#ifndef CONFIG_M5272
1067	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069#endif
1070
1071	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1072		/* enable ENET endian swap */
1073		ecntl |= (1 << 8);
1074		/* enable ENET store and forward mode */
1075		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076	}
1077
1078	if (fep->bufdesc_ex)
1079		ecntl |= (1 << 4);
1080
1081#ifndef CONFIG_M5272
1082	/* Enable the MIB statistic event counters */
1083	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084#endif
1085
1086	/* And last, enable the transmit and receive processing */
1087	writel(ecntl, fep->hwp + FEC_ECNTRL);
1088	fec_enet_active_rxring(ndev);
1089
1090	if (fep->bufdesc_ex)
1091		fec_ptp_start_cyclecounter(ndev);
1092
1093	/* Enable interrupts we wish to service */
1094	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1095
1096	/* Init the interrupt coalescing */
1097	fec_enet_itr_coal_init(ndev);
1098
1099}
1100
1101static void
1102fec_stop(struct net_device *ndev)
1103{
1104	struct fec_enet_private *fep = netdev_priv(ndev);
1105	const struct platform_device_id *id_entry =
1106				platform_get_device_id(fep->pdev);
1107	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1108
1109	/* We cannot expect a graceful transmit stop without link !!! */
1110	if (fep->link) {
1111		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1112		udelay(10);
1113		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1114			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1115	}
1116
1117	/* Whack a reset.  We should wait for this.
1118	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1119	 * instead of reset MAC itself.
1120	 */
1121	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
1122		writel(0, fep->hwp + FEC_ECNTRL);
1123	} else {
1124		writel(1, fep->hwp + FEC_ECNTRL);
1125		udelay(10);
1126	}
1127	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1128	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1129
1130	/* We have to keep ENET enabled to have MII interrupt stay working */
1131	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1132		writel(2, fep->hwp + FEC_ECNTRL);
1133		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1134	}
1135}
1136
1137
1138static void
1139fec_timeout(struct net_device *ndev)
1140{
1141	struct fec_enet_private *fep = netdev_priv(ndev);
1142
1143	fec_dump(ndev);
1144
1145	ndev->stats.tx_errors++;
1146
1147	schedule_work(&fep->tx_timeout_work);
1148}
1149
1150static void fec_enet_timeout_work(struct work_struct *work)
1151{
1152	struct fec_enet_private *fep =
1153		container_of(work, struct fec_enet_private, tx_timeout_work);
1154	struct net_device *ndev = fep->netdev;
1155
1156	rtnl_lock();
1157	if (netif_device_present(ndev) || netif_running(ndev)) {
1158		napi_disable(&fep->napi);
1159		netif_tx_lock_bh(ndev);
1160		fec_restart(ndev);
1161		netif_wake_queue(ndev);
1162		netif_tx_unlock_bh(ndev);
1163		napi_enable(&fep->napi);
1164	}
1165	rtnl_unlock();
1166}
1167
1168static void
1169fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1170	struct skb_shared_hwtstamps *hwtstamps)
1171{
1172	unsigned long flags;
1173	u64 ns;
1174
1175	spin_lock_irqsave(&fep->tmreg_lock, flags);
1176	ns = timecounter_cyc2time(&fep->tc, ts);
1177	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1178
1179	memset(hwtstamps, 0, sizeof(*hwtstamps));
1180	hwtstamps->hwtstamp = ns_to_ktime(ns);
1181}
1182
1183static void
1184fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1185{
1186	struct	fec_enet_private *fep;
1187	struct bufdesc *bdp;
1188	unsigned short status;
1189	struct	sk_buff	*skb;
1190	struct fec_enet_priv_tx_q *txq;
1191	struct netdev_queue *nq;
1192	int	index = 0;
1193	int	entries_free;
1194
1195	fep = netdev_priv(ndev);
1196
1197	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1198
1199	txq = fep->tx_queue[queue_id];
1200	/* get next bdp of dirty_tx */
1201	nq = netdev_get_tx_queue(ndev, queue_id);
1202	bdp = txq->dirty_tx;
1203
1204	/* get next bdp of dirty_tx */
1205	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1206
1207	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1208
1209		/* current queue is empty */
1210		if (bdp == txq->cur_tx)
1211			break;
1212
1213		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1214
1215		skb = txq->tx_skbuff[index];
1216		txq->tx_skbuff[index] = NULL;
1217		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1218			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1219					bdp->cbd_datlen, DMA_TO_DEVICE);
1220		bdp->cbd_bufaddr = 0;
1221		if (!skb) {
1222			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1223			continue;
1224		}
1225
1226		/* Check for errors. */
1227		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1229				   BD_ENET_TX_CSL)) {
1230			ndev->stats.tx_errors++;
1231			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1232				ndev->stats.tx_heartbeat_errors++;
1233			if (status & BD_ENET_TX_LC)  /* Late collision */
1234				ndev->stats.tx_window_errors++;
1235			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1236				ndev->stats.tx_aborted_errors++;
1237			if (status & BD_ENET_TX_UN)  /* Underrun */
1238				ndev->stats.tx_fifo_errors++;
1239			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240				ndev->stats.tx_carrier_errors++;
1241		} else {
1242			ndev->stats.tx_packets++;
1243			ndev->stats.tx_bytes += skb->len;
1244		}
1245
1246		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247			fep->bufdesc_ex) {
1248			struct skb_shared_hwtstamps shhwtstamps;
1249			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250
1251			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1252			skb_tstamp_tx(skb, &shhwtstamps);
1253		}
1254
1255		/* Deferred means some collisions occurred during transmit,
1256		 * but we eventually sent the packet OK.
1257		 */
1258		if (status & BD_ENET_TX_DEF)
1259			ndev->stats.collisions++;
1260
1261		/* Free the sk buffer associated with this last transmit */
1262		dev_kfree_skb_any(skb);
1263
1264		txq->dirty_tx = bdp;
1265
1266		/* Update pointer to next buffer descriptor to be transmitted */
1267		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1268
1269		/* Since we have freed up a buffer, the ring is no longer full
1270		 */
1271		if (netif_queue_stopped(ndev)) {
1272			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1273			if (entries_free >= txq->tx_wake_threshold)
1274				netif_tx_wake_queue(nq);
1275		}
1276	}
1277
1278	/* ERR006538: Keep the transmitter going */
1279	if (bdp != txq->cur_tx &&
1280	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1281		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1282}
1283
1284static void
1285fec_enet_tx(struct net_device *ndev)
1286{
1287	struct fec_enet_private *fep = netdev_priv(ndev);
1288	u16 queue_id;
1289	/* First process class A queue, then Class B and Best Effort queue */
1290	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1291		clear_bit(queue_id, &fep->work_tx);
1292		fec_enet_tx_queue(ndev, queue_id);
1293	}
1294	return;
1295}
1296
1297static int
1298fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1299{
1300	struct  fec_enet_private *fep = netdev_priv(ndev);
1301	int off;
1302
1303	off = ((unsigned long)skb->data) & fep->rx_align;
1304	if (off)
1305		skb_reserve(skb, fep->rx_align + 1 - off);
1306
1307	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1308					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1309					  DMA_FROM_DEVICE);
1310	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1311		if (net_ratelimit())
1312			netdev_err(ndev, "Rx DMA memory map failed\n");
1313		return -ENOMEM;
1314	}
1315
1316	return 0;
1317}
1318
1319static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1320			       struct bufdesc *bdp, u32 length, bool swap)
1321{
1322	struct  fec_enet_private *fep = netdev_priv(ndev);
1323	struct sk_buff *new_skb;
1324
1325	if (length > fep->rx_copybreak)
1326		return false;
1327
1328	new_skb = netdev_alloc_skb(ndev, length);
1329	if (!new_skb)
1330		return false;
1331
1332	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1333				FEC_ENET_RX_FRSIZE - fep->rx_align,
1334				DMA_FROM_DEVICE);
1335	if (!swap)
1336		memcpy(new_skb->data, (*skb)->data, length);
1337	else
1338		swap_buffer2(new_skb->data, (*skb)->data, length);
1339	*skb = new_skb;
1340
1341	return true;
1342}
1343
1344/* During a receive, the cur_rx points to the current incoming buffer.
1345 * When we update through the ring, if the next incoming buffer has
1346 * not been given to the system, we just set the empty indicator,
1347 * effectively tossing the packet.
1348 */
1349static int
1350fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1351{
1352	struct fec_enet_private *fep = netdev_priv(ndev);
1353	const struct platform_device_id *id_entry =
1354				platform_get_device_id(fep->pdev);
1355	struct fec_enet_priv_rx_q *rxq;
1356	struct bufdesc *bdp;
1357	unsigned short status;
1358	struct  sk_buff *skb_new = NULL;
1359	struct  sk_buff *skb;
1360	ushort	pkt_len;
1361	__u8 *data;
1362	int	pkt_received = 0;
1363	struct	bufdesc_ex *ebdp = NULL;
1364	bool	vlan_packet_rcvd = false;
1365	u16	vlan_tag;
1366	int	index = 0;
1367	bool	is_copybreak;
1368	bool	need_swap = id_entry->driver_data & FEC_QUIRK_SWAP_FRAME;
1369
1370#ifdef CONFIG_M532x
1371	flush_cache_all();
1372#endif
1373	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1374	rxq = fep->rx_queue[queue_id];
1375
1376	/* First, grab all of the stats for the incoming packet.
1377	 * These get messed up if we get called due to a busy condition.
1378	 */
1379	bdp = rxq->cur_rx;
1380
1381	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1382
1383		if (pkt_received >= budget)
1384			break;
1385		pkt_received++;
1386
1387		/* Since we have allocated space to hold a complete frame,
1388		 * the last indicator should be set.
1389		 */
1390		if ((status & BD_ENET_RX_LAST) == 0)
1391			netdev_err(ndev, "rcv is not +last\n");
1392
1393
1394		/* Check for errors. */
1395		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1396			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1397			ndev->stats.rx_errors++;
1398			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1399				/* Frame too long or too short. */
1400				ndev->stats.rx_length_errors++;
1401			}
1402			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1403				ndev->stats.rx_frame_errors++;
1404			if (status & BD_ENET_RX_CR)	/* CRC Error */
1405				ndev->stats.rx_crc_errors++;
1406			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1407				ndev->stats.rx_fifo_errors++;
1408		}
1409
1410		/* Report late collisions as a frame error.
1411		 * On this error, the BD is closed, but we don't know what we
1412		 * have in the buffer.  So, just drop this frame on the floor.
1413		 */
1414		if (status & BD_ENET_RX_CL) {
1415			ndev->stats.rx_errors++;
1416			ndev->stats.rx_frame_errors++;
1417			goto rx_processing_done;
1418		}
1419
1420		/* Process the incoming frame. */
1421		ndev->stats.rx_packets++;
1422		pkt_len = bdp->cbd_datlen;
1423		ndev->stats.rx_bytes += pkt_len;
1424
1425		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1426		skb = rxq->rx_skbuff[index];
1427
1428		/* The packet length includes FCS, but we don't want to
1429		 * include that when passing upstream as it messes up
1430		 * bridging applications.
1431		 */
1432		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1433						  need_swap);
1434		if (!is_copybreak) {
1435			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1436			if (unlikely(!skb_new)) {
1437				ndev->stats.rx_dropped++;
1438				goto rx_processing_done;
1439			}
1440			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1441					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1442					 DMA_FROM_DEVICE);
1443		}
1444
1445		prefetch(skb->data - NET_IP_ALIGN);
1446		skb_put(skb, pkt_len - 4);
1447		data = skb->data;
1448		if (!is_copybreak && need_swap)
1449			swap_buffer(data, pkt_len);
1450
1451		/* Extract the enhanced buffer descriptor */
1452		ebdp = NULL;
1453		if (fep->bufdesc_ex)
1454			ebdp = (struct bufdesc_ex *)bdp;
1455
1456		/* If this is a VLAN packet remove the VLAN Tag */
1457		vlan_packet_rcvd = false;
1458		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1459			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1460			/* Push and remove the vlan tag */
1461			struct vlan_hdr *vlan_header =
1462					(struct vlan_hdr *) (data + ETH_HLEN);
1463			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1464
1465			vlan_packet_rcvd = true;
1466
1467			skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1468						       data, (2 * ETH_ALEN));
1469			skb_pull(skb, VLAN_HLEN);
1470		}
1471
1472		skb->protocol = eth_type_trans(skb, ndev);
1473
1474		/* Get receive timestamp from the skb */
1475		if (fep->hwts_rx_en && fep->bufdesc_ex)
1476			fec_enet_hwtstamp(fep, ebdp->ts,
1477					  skb_hwtstamps(skb));
1478
1479		if (fep->bufdesc_ex &&
1480		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1481			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1482				/* don't check it */
1483				skb->ip_summed = CHECKSUM_UNNECESSARY;
1484			} else {
1485				skb_checksum_none_assert(skb);
1486			}
1487		}
1488
1489		/* Handle received VLAN packets */
1490		if (vlan_packet_rcvd)
1491			__vlan_hwaccel_put_tag(skb,
1492					       htons(ETH_P_8021Q),
1493					       vlan_tag);
1494
1495		napi_gro_receive(&fep->napi, skb);
1496
1497		if (is_copybreak) {
1498			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1499						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1500						   DMA_FROM_DEVICE);
1501		} else {
1502			rxq->rx_skbuff[index] = skb_new;
1503			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1504		}
1505
1506rx_processing_done:
1507		/* Clear the status flags for this buffer */
1508		status &= ~BD_ENET_RX_STATS;
1509
1510		/* Mark the buffer empty */
1511		status |= BD_ENET_RX_EMPTY;
1512		bdp->cbd_sc = status;
1513
1514		if (fep->bufdesc_ex) {
1515			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1516
1517			ebdp->cbd_esc = BD_ENET_RX_INT;
1518			ebdp->cbd_prot = 0;
1519			ebdp->cbd_bdu = 0;
1520		}
1521
1522		/* Update BD pointer to next entry */
1523		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1524
1525		/* Doing this here will keep the FEC running while we process
1526		 * incoming frames.  On a heavily loaded network, we should be
1527		 * able to keep up at the expense of system resources.
1528		 */
1529		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1530	}
1531	rxq->cur_rx = bdp;
1532	return pkt_received;
1533}
1534
1535static int
1536fec_enet_rx(struct net_device *ndev, int budget)
1537{
1538	int     pkt_received = 0;
1539	u16	queue_id;
1540	struct fec_enet_private *fep = netdev_priv(ndev);
1541
1542	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1543		clear_bit(queue_id, &fep->work_rx);
1544		pkt_received += fec_enet_rx_queue(ndev,
1545					budget - pkt_received, queue_id);
1546	}
1547	return pkt_received;
1548}
1549
1550static bool
1551fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1552{
1553	if (int_events == 0)
1554		return false;
1555
1556	if (int_events & FEC_ENET_RXF)
1557		fep->work_rx |= (1 << 2);
1558	if (int_events & FEC_ENET_RXF_1)
1559		fep->work_rx |= (1 << 0);
1560	if (int_events & FEC_ENET_RXF_2)
1561		fep->work_rx |= (1 << 1);
1562
1563	if (int_events & FEC_ENET_TXF)
1564		fep->work_tx |= (1 << 2);
1565	if (int_events & FEC_ENET_TXF_1)
1566		fep->work_tx |= (1 << 0);
1567	if (int_events & FEC_ENET_TXF_2)
1568		fep->work_tx |= (1 << 1);
1569
1570	return true;
1571}
1572
1573static irqreturn_t
1574fec_enet_interrupt(int irq, void *dev_id)
1575{
1576	struct net_device *ndev = dev_id;
1577	struct fec_enet_private *fep = netdev_priv(ndev);
1578	const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1579	uint int_events;
1580	irqreturn_t ret = IRQ_NONE;
1581
1582	int_events = readl(fep->hwp + FEC_IEVENT);
1583	writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1584	fec_enet_collect_events(fep, int_events);
1585
1586	if (int_events & napi_mask) {
1587		ret = IRQ_HANDLED;
1588
1589		/* Disable the NAPI interrupts */
1590		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1591		napi_schedule(&fep->napi);
1592	}
1593
1594	if (int_events & FEC_ENET_MII) {
1595		ret = IRQ_HANDLED;
1596		complete(&fep->mdio_done);
1597	}
1598
1599	if (fep->ptp_clock)
1600		fec_ptp_check_pps_event(fep);
1601
1602	return ret;
1603}
1604
1605static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1606{
1607	struct net_device *ndev = napi->dev;
1608	struct fec_enet_private *fep = netdev_priv(ndev);
1609	int pkts;
1610
1611	/*
1612	 * Clear any pending transmit or receive interrupts before
1613	 * processing the rings to avoid racing with the hardware.
1614	 */
1615	writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1616
1617	pkts = fec_enet_rx(ndev, budget);
1618
1619	fec_enet_tx(ndev);
1620
1621	if (pkts < budget) {
1622		napi_complete(napi);
1623		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1624	}
1625	return pkts;
1626}
1627
1628/* ------------------------------------------------------------------------- */
1629static void fec_get_mac(struct net_device *ndev)
1630{
1631	struct fec_enet_private *fep = netdev_priv(ndev);
1632	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1633	unsigned char *iap, tmpaddr[ETH_ALEN];
1634
1635	/*
1636	 * try to get mac address in following order:
1637	 *
1638	 * 1) module parameter via kernel command line in form
1639	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1640	 */
1641	iap = macaddr;
1642
1643	/*
1644	 * 2) from device tree data
1645	 */
1646	if (!is_valid_ether_addr(iap)) {
1647		struct device_node *np = fep->pdev->dev.of_node;
1648		if (np) {
1649			const char *mac = of_get_mac_address(np);
1650			if (mac)
1651				iap = (unsigned char *) mac;
1652		}
1653	}
1654
1655	/*
1656	 * 3) from flash or fuse (via platform data)
1657	 */
1658	if (!is_valid_ether_addr(iap)) {
1659#ifdef CONFIG_M5272
1660		if (FEC_FLASHMAC)
1661			iap = (unsigned char *)FEC_FLASHMAC;
1662#else
1663		if (pdata)
1664			iap = (unsigned char *)&pdata->mac;
1665#endif
1666	}
1667
1668	/*
1669	 * 4) FEC mac registers set by bootloader
1670	 */
1671	if (!is_valid_ether_addr(iap)) {
1672		*((__be32 *) &tmpaddr[0]) =
1673			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1674		*((__be16 *) &tmpaddr[4]) =
1675			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1676		iap = &tmpaddr[0];
1677	}
1678
1679	/*
1680	 * 5) random mac address
1681	 */
1682	if (!is_valid_ether_addr(iap)) {
1683		/* Report it and use a random ethernet address instead */
1684		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1685		eth_hw_addr_random(ndev);
1686		netdev_info(ndev, "Using random MAC address: %pM\n",
1687			    ndev->dev_addr);
1688		return;
1689	}
1690
1691	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1692
1693	/* Adjust MAC if using macaddr */
1694	if (iap == macaddr)
1695		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1696}
1697
1698/* ------------------------------------------------------------------------- */
1699
1700/*
1701 * Phy section
1702 */
1703static void fec_enet_adjust_link(struct net_device *ndev)
1704{
1705	struct fec_enet_private *fep = netdev_priv(ndev);
1706	struct phy_device *phy_dev = fep->phy_dev;
1707	int status_change = 0;
1708
1709	/* Prevent a state halted on mii error */
1710	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1711		phy_dev->state = PHY_RESUMING;
1712		return;
1713	}
1714
1715	/*
1716	 * If the netdev is down, or is going down, we're not interested
1717	 * in link state events, so just mark our idea of the link as down
1718	 * and ignore the event.
1719	 */
1720	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1721		fep->link = 0;
1722	} else if (phy_dev->link) {
1723		if (!fep->link) {
1724			fep->link = phy_dev->link;
1725			status_change = 1;
1726		}
1727
1728		if (fep->full_duplex != phy_dev->duplex) {
1729			fep->full_duplex = phy_dev->duplex;
1730			status_change = 1;
1731		}
1732
1733		if (phy_dev->speed != fep->speed) {
1734			fep->speed = phy_dev->speed;
1735			status_change = 1;
1736		}
1737
1738		/* if any of the above changed restart the FEC */
1739		if (status_change) {
1740			napi_disable(&fep->napi);
1741			netif_tx_lock_bh(ndev);
1742			fec_restart(ndev);
1743			netif_wake_queue(ndev);
1744			netif_tx_unlock_bh(ndev);
1745			napi_enable(&fep->napi);
1746		}
1747	} else {
1748		if (fep->link) {
1749			napi_disable(&fep->napi);
1750			netif_tx_lock_bh(ndev);
1751			fec_stop(ndev);
1752			netif_tx_unlock_bh(ndev);
1753			napi_enable(&fep->napi);
1754			fep->link = phy_dev->link;
1755			status_change = 1;
1756		}
1757	}
1758
1759	if (status_change)
1760		phy_print_status(phy_dev);
1761}
1762
1763static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1764{
1765	struct fec_enet_private *fep = bus->priv;
1766	unsigned long time_left;
1767
1768	fep->mii_timeout = 0;
1769	init_completion(&fep->mdio_done);
1770
1771	/* start a read op */
1772	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1773		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1774		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1775
1776	/* wait for end of transfer */
1777	time_left = wait_for_completion_timeout(&fep->mdio_done,
1778			usecs_to_jiffies(FEC_MII_TIMEOUT));
1779	if (time_left == 0) {
1780		fep->mii_timeout = 1;
1781		netdev_err(fep->netdev, "MDIO read timeout\n");
1782		return -ETIMEDOUT;
1783	}
1784
1785	/* return value */
1786	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1787}
1788
1789static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1790			   u16 value)
1791{
1792	struct fec_enet_private *fep = bus->priv;
1793	unsigned long time_left;
1794
1795	fep->mii_timeout = 0;
1796	init_completion(&fep->mdio_done);
1797
1798	/* start a write op */
1799	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1800		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1802		fep->hwp + FEC_MII_DATA);
1803
1804	/* wait for end of transfer */
1805	time_left = wait_for_completion_timeout(&fep->mdio_done,
1806			usecs_to_jiffies(FEC_MII_TIMEOUT));
1807	if (time_left == 0) {
1808		fep->mii_timeout = 1;
1809		netdev_err(fep->netdev, "MDIO write timeout\n");
1810		return -ETIMEDOUT;
1811	}
1812
1813	return 0;
1814}
1815
1816static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1817{
1818	struct fec_enet_private *fep = netdev_priv(ndev);
1819	int ret;
1820
1821	if (enable) {
1822		ret = clk_prepare_enable(fep->clk_ahb);
1823		if (ret)
1824			return ret;
1825		ret = clk_prepare_enable(fep->clk_ipg);
1826		if (ret)
1827			goto failed_clk_ipg;
1828		if (fep->clk_enet_out) {
1829			ret = clk_prepare_enable(fep->clk_enet_out);
1830			if (ret)
1831				goto failed_clk_enet_out;
1832		}
1833		if (fep->clk_ptp) {
1834			mutex_lock(&fep->ptp_clk_mutex);
1835			ret = clk_prepare_enable(fep->clk_ptp);
1836			if (ret) {
1837				mutex_unlock(&fep->ptp_clk_mutex);
1838				goto failed_clk_ptp;
1839			} else {
1840				fep->ptp_clk_on = true;
1841			}
1842			mutex_unlock(&fep->ptp_clk_mutex);
1843		}
1844		if (fep->clk_ref) {
1845			ret = clk_prepare_enable(fep->clk_ref);
1846			if (ret)
1847				goto failed_clk_ref;
1848		}
1849	} else {
1850		clk_disable_unprepare(fep->clk_ahb);
1851		clk_disable_unprepare(fep->clk_ipg);
1852		if (fep->clk_enet_out)
1853			clk_disable_unprepare(fep->clk_enet_out);
1854		if (fep->clk_ptp) {
1855			mutex_lock(&fep->ptp_clk_mutex);
1856			clk_disable_unprepare(fep->clk_ptp);
1857			fep->ptp_clk_on = false;
1858			mutex_unlock(&fep->ptp_clk_mutex);
1859		}
1860		if (fep->clk_ref)
1861			clk_disable_unprepare(fep->clk_ref);
1862	}
1863
1864	return 0;
1865
1866failed_clk_ref:
1867	if (fep->clk_ref)
1868		clk_disable_unprepare(fep->clk_ref);
1869failed_clk_ptp:
1870	if (fep->clk_enet_out)
1871		clk_disable_unprepare(fep->clk_enet_out);
1872failed_clk_enet_out:
1873		clk_disable_unprepare(fep->clk_ipg);
1874failed_clk_ipg:
1875		clk_disable_unprepare(fep->clk_ahb);
1876
1877	return ret;
1878}
1879
1880static int fec_enet_mii_probe(struct net_device *ndev)
1881{
1882	struct fec_enet_private *fep = netdev_priv(ndev);
1883	const struct platform_device_id *id_entry =
1884				platform_get_device_id(fep->pdev);
1885	struct phy_device *phy_dev = NULL;
1886	char mdio_bus_id[MII_BUS_ID_SIZE];
1887	char phy_name[MII_BUS_ID_SIZE + 3];
1888	int phy_id;
1889	int dev_id = fep->dev_id;
1890
1891	fep->phy_dev = NULL;
1892
1893	if (fep->phy_node) {
1894		phy_dev = of_phy_connect(ndev, fep->phy_node,
1895					 &fec_enet_adjust_link, 0,
1896					 fep->phy_interface);
1897	} else {
1898		/* check for attached phy */
1899		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1900			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1901				continue;
1902			if (fep->mii_bus->phy_map[phy_id] == NULL)
1903				continue;
1904			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1905				continue;
1906			if (dev_id--)
1907				continue;
1908			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1909			break;
1910		}
1911
1912		if (phy_id >= PHY_MAX_ADDR) {
1913			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1914			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1915			phy_id = 0;
1916		}
1917
1918		snprintf(phy_name, sizeof(phy_name),
1919			 PHY_ID_FMT, mdio_bus_id, phy_id);
1920		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1921				      fep->phy_interface);
1922	}
1923
1924	if (IS_ERR(phy_dev)) {
1925		netdev_err(ndev, "could not attach to PHY\n");
1926		return PTR_ERR(phy_dev);
1927	}
1928
1929	/* mask with MAC supported features */
1930	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1931		phy_dev->supported &= PHY_GBIT_FEATURES;
1932		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1933#if !defined(CONFIG_M5272)
1934		phy_dev->supported |= SUPPORTED_Pause;
1935#endif
1936	}
1937	else
1938		phy_dev->supported &= PHY_BASIC_FEATURES;
1939
1940	phy_dev->advertising = phy_dev->supported;
1941
1942	fep->phy_dev = phy_dev;
1943	fep->link = 0;
1944	fep->full_duplex = 0;
1945
1946	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1947		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1948		    fep->phy_dev->irq);
1949
1950	return 0;
1951}
1952
1953static int fec_enet_mii_init(struct platform_device *pdev)
1954{
1955	static struct mii_bus *fec0_mii_bus;
1956	struct net_device *ndev = platform_get_drvdata(pdev);
1957	struct fec_enet_private *fep = netdev_priv(ndev);
1958	const struct platform_device_id *id_entry =
1959				platform_get_device_id(fep->pdev);
1960	struct device_node *node;
1961	int err = -ENXIO, i;
1962
1963	/*
1964	 * The dual fec interfaces are not equivalent with enet-mac.
1965	 * Here are the differences:
1966	 *
1967	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1968	 *  - fec0 acts as the 1588 time master while fec1 is slave
1969	 *  - external phys can only be configured by fec0
1970	 *
1971	 * That is to say fec1 can not work independently. It only works
1972	 * when fec0 is working. The reason behind this design is that the
1973	 * second interface is added primarily for Switch mode.
1974	 *
1975	 * Because of the last point above, both phys are attached on fec0
1976	 * mdio interface in board design, and need to be configured by
1977	 * fec0 mii_bus.
1978	 */
1979	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1980		/* fec1 uses fec0 mii_bus */
1981		if (mii_cnt && fec0_mii_bus) {
1982			fep->mii_bus = fec0_mii_bus;
1983			mii_cnt++;
1984			return 0;
1985		}
1986		return -ENOENT;
1987	}
1988
1989	fep->mii_timeout = 0;
1990
1991	/*
1992	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1993	 *
1994	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1995	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1996	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1997	 * document.
1998	 */
1999	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2000	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2001		fep->phy_speed--;
2002	fep->phy_speed <<= 1;
2003	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2004
2005	fep->mii_bus = mdiobus_alloc();
2006	if (fep->mii_bus == NULL) {
2007		err = -ENOMEM;
2008		goto err_out;
2009	}
2010
2011	fep->mii_bus->name = "fec_enet_mii_bus";
2012	fep->mii_bus->read = fec_enet_mdio_read;
2013	fep->mii_bus->write = fec_enet_mdio_write;
2014	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2015		pdev->name, fep->dev_id + 1);
2016	fep->mii_bus->priv = fep;
2017	fep->mii_bus->parent = &pdev->dev;
2018
2019	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2020	if (!fep->mii_bus->irq) {
2021		err = -ENOMEM;
2022		goto err_out_free_mdiobus;
2023	}
2024
2025	for (i = 0; i < PHY_MAX_ADDR; i++)
2026		fep->mii_bus->irq[i] = PHY_POLL;
2027
2028	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2029	if (node) {
2030		err = of_mdiobus_register(fep->mii_bus, node);
2031		of_node_put(node);
2032	} else {
2033		err = mdiobus_register(fep->mii_bus);
2034	}
2035
2036	if (err)
2037		goto err_out_free_mdio_irq;
2038
2039	mii_cnt++;
2040
2041	/* save fec0 mii_bus */
2042	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2043		fec0_mii_bus = fep->mii_bus;
2044
2045	return 0;
2046
2047err_out_free_mdio_irq:
2048	kfree(fep->mii_bus->irq);
2049err_out_free_mdiobus:
2050	mdiobus_free(fep->mii_bus);
2051err_out:
2052	return err;
2053}
2054
2055static void fec_enet_mii_remove(struct fec_enet_private *fep)
2056{
2057	if (--mii_cnt == 0) {
2058		mdiobus_unregister(fep->mii_bus);
2059		kfree(fep->mii_bus->irq);
2060		mdiobus_free(fep->mii_bus);
2061	}
2062}
2063
2064static int fec_enet_get_settings(struct net_device *ndev,
2065				  struct ethtool_cmd *cmd)
2066{
2067	struct fec_enet_private *fep = netdev_priv(ndev);
2068	struct phy_device *phydev = fep->phy_dev;
2069
2070	if (!phydev)
2071		return -ENODEV;
2072
2073	return phy_ethtool_gset(phydev, cmd);
2074}
2075
2076static int fec_enet_set_settings(struct net_device *ndev,
2077				 struct ethtool_cmd *cmd)
2078{
2079	struct fec_enet_private *fep = netdev_priv(ndev);
2080	struct phy_device *phydev = fep->phy_dev;
2081
2082	if (!phydev)
2083		return -ENODEV;
2084
2085	return phy_ethtool_sset(phydev, cmd);
2086}
2087
2088static void fec_enet_get_drvinfo(struct net_device *ndev,
2089				 struct ethtool_drvinfo *info)
2090{
2091	struct fec_enet_private *fep = netdev_priv(ndev);
2092
2093	strlcpy(info->driver, fep->pdev->dev.driver->name,
2094		sizeof(info->driver));
2095	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2096	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2097}
2098
2099static int fec_enet_get_ts_info(struct net_device *ndev,
2100				struct ethtool_ts_info *info)
2101{
2102	struct fec_enet_private *fep = netdev_priv(ndev);
2103
2104	if (fep->bufdesc_ex) {
2105
2106		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2107					SOF_TIMESTAMPING_RX_SOFTWARE |
2108					SOF_TIMESTAMPING_SOFTWARE |
2109					SOF_TIMESTAMPING_TX_HARDWARE |
2110					SOF_TIMESTAMPING_RX_HARDWARE |
2111					SOF_TIMESTAMPING_RAW_HARDWARE;
2112		if (fep->ptp_clock)
2113			info->phc_index = ptp_clock_index(fep->ptp_clock);
2114		else
2115			info->phc_index = -1;
2116
2117		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2118				 (1 << HWTSTAMP_TX_ON);
2119
2120		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2121				   (1 << HWTSTAMP_FILTER_ALL);
2122		return 0;
2123	} else {
2124		return ethtool_op_get_ts_info(ndev, info);
2125	}
2126}
2127
2128#if !defined(CONFIG_M5272)
2129
2130static void fec_enet_get_pauseparam(struct net_device *ndev,
2131				    struct ethtool_pauseparam *pause)
2132{
2133	struct fec_enet_private *fep = netdev_priv(ndev);
2134
2135	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2136	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2137	pause->rx_pause = pause->tx_pause;
2138}
2139
2140static int fec_enet_set_pauseparam(struct net_device *ndev,
2141				   struct ethtool_pauseparam *pause)
2142{
2143	struct fec_enet_private *fep = netdev_priv(ndev);
2144
2145	if (!fep->phy_dev)
2146		return -ENODEV;
2147
2148	if (pause->tx_pause != pause->rx_pause) {
2149		netdev_info(ndev,
2150			"hardware only support enable/disable both tx and rx");
2151		return -EINVAL;
2152	}
2153
2154	fep->pause_flag = 0;
2155
2156	/* tx pause must be same as rx pause */
2157	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2158	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2159
2160	if (pause->rx_pause || pause->autoneg) {
2161		fep->phy_dev->supported |= ADVERTISED_Pause;
2162		fep->phy_dev->advertising |= ADVERTISED_Pause;
2163	} else {
2164		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2165		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2166	}
2167
2168	if (pause->autoneg) {
2169		if (netif_running(ndev))
2170			fec_stop(ndev);
2171		phy_start_aneg(fep->phy_dev);
2172	}
2173	if (netif_running(ndev)) {
2174		napi_disable(&fep->napi);
2175		netif_tx_lock_bh(ndev);
2176		fec_restart(ndev);
2177		netif_wake_queue(ndev);
2178		netif_tx_unlock_bh(ndev);
2179		napi_enable(&fep->napi);
2180	}
2181
2182	return 0;
2183}
2184
2185static const struct fec_stat {
2186	char name[ETH_GSTRING_LEN];
2187	u16 offset;
2188} fec_stats[] = {
2189	/* RMON TX */
2190	{ "tx_dropped", RMON_T_DROP },
2191	{ "tx_packets", RMON_T_PACKETS },
2192	{ "tx_broadcast", RMON_T_BC_PKT },
2193	{ "tx_multicast", RMON_T_MC_PKT },
2194	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2195	{ "tx_undersize", RMON_T_UNDERSIZE },
2196	{ "tx_oversize", RMON_T_OVERSIZE },
2197	{ "tx_fragment", RMON_T_FRAG },
2198	{ "tx_jabber", RMON_T_JAB },
2199	{ "tx_collision", RMON_T_COL },
2200	{ "tx_64byte", RMON_T_P64 },
2201	{ "tx_65to127byte", RMON_T_P65TO127 },
2202	{ "tx_128to255byte", RMON_T_P128TO255 },
2203	{ "tx_256to511byte", RMON_T_P256TO511 },
2204	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2205	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2206	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2207	{ "tx_octets", RMON_T_OCTETS },
2208
2209	/* IEEE TX */
2210	{ "IEEE_tx_drop", IEEE_T_DROP },
2211	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2212	{ "IEEE_tx_1col", IEEE_T_1COL },
2213	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2214	{ "IEEE_tx_def", IEEE_T_DEF },
2215	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2216	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2217	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2218	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2219	{ "IEEE_tx_sqe", IEEE_T_SQE },
2220	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2221	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2222
2223	/* RMON RX */
2224	{ "rx_packets", RMON_R_PACKETS },
2225	{ "rx_broadcast", RMON_R_BC_PKT },
2226	{ "rx_multicast", RMON_R_MC_PKT },
2227	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2228	{ "rx_undersize", RMON_R_UNDERSIZE },
2229	{ "rx_oversize", RMON_R_OVERSIZE },
2230	{ "rx_fragment", RMON_R_FRAG },
2231	{ "rx_jabber", RMON_R_JAB },
2232	{ "rx_64byte", RMON_R_P64 },
2233	{ "rx_65to127byte", RMON_R_P65TO127 },
2234	{ "rx_128to255byte", RMON_R_P128TO255 },
2235	{ "rx_256to511byte", RMON_R_P256TO511 },
2236	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2237	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2238	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2239	{ "rx_octets", RMON_R_OCTETS },
2240
2241	/* IEEE RX */
2242	{ "IEEE_rx_drop", IEEE_R_DROP },
2243	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2244	{ "IEEE_rx_crc", IEEE_R_CRC },
2245	{ "IEEE_rx_align", IEEE_R_ALIGN },
2246	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2247	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2248	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2249};
2250
2251static void fec_enet_get_ethtool_stats(struct net_device *dev,
2252	struct ethtool_stats *stats, u64 *data)
2253{
2254	struct fec_enet_private *fep = netdev_priv(dev);
2255	int i;
2256
2257	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2258		data[i] = readl(fep->hwp + fec_stats[i].offset);
2259}
2260
2261static void fec_enet_get_strings(struct net_device *netdev,
2262	u32 stringset, u8 *data)
2263{
2264	int i;
2265	switch (stringset) {
2266	case ETH_SS_STATS:
2267		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2268			memcpy(data + i * ETH_GSTRING_LEN,
2269				fec_stats[i].name, ETH_GSTRING_LEN);
2270		break;
2271	}
2272}
2273
2274static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2275{
2276	switch (sset) {
2277	case ETH_SS_STATS:
2278		return ARRAY_SIZE(fec_stats);
2279	default:
2280		return -EOPNOTSUPP;
2281	}
2282}
2283#endif /* !defined(CONFIG_M5272) */
2284
2285static int fec_enet_nway_reset(struct net_device *dev)
2286{
2287	struct fec_enet_private *fep = netdev_priv(dev);
2288	struct phy_device *phydev = fep->phy_dev;
2289
2290	if (!phydev)
2291		return -ENODEV;
2292
2293	return genphy_restart_aneg(phydev);
2294}
2295
2296/* ITR clock source is enet system clock (clk_ahb).
2297 * TCTT unit is cycle_ns * 64 cycle
2298 * So, the ICTT value = X us / (cycle_ns * 64)
2299 */
2300static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2301{
2302	struct fec_enet_private *fep = netdev_priv(ndev);
2303
2304	return us * (fep->itr_clk_rate / 64000) / 1000;
2305}
2306
2307/* Set threshold for interrupt coalescing */
2308static void fec_enet_itr_coal_set(struct net_device *ndev)
2309{
2310	struct fec_enet_private *fep = netdev_priv(ndev);
2311	const struct platform_device_id *id_entry =
2312				platform_get_device_id(fep->pdev);
2313	int rx_itr, tx_itr;
2314
2315	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2316		return;
2317
2318	/* Must be greater than zero to avoid unpredictable behavior */
2319	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2320	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2321		return;
2322
2323	/* Select enet system clock as Interrupt Coalescing
2324	 * timer Clock Source
2325	 */
2326	rx_itr = FEC_ITR_CLK_SEL;
2327	tx_itr = FEC_ITR_CLK_SEL;
2328
2329	/* set ICFT and ICTT */
2330	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2331	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2332	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2333	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2334
2335	rx_itr |= FEC_ITR_EN;
2336	tx_itr |= FEC_ITR_EN;
2337
2338	writel(tx_itr, fep->hwp + FEC_TXIC0);
2339	writel(rx_itr, fep->hwp + FEC_RXIC0);
2340	writel(tx_itr, fep->hwp + FEC_TXIC1);
2341	writel(rx_itr, fep->hwp + FEC_RXIC1);
2342	writel(tx_itr, fep->hwp + FEC_TXIC2);
2343	writel(rx_itr, fep->hwp + FEC_RXIC2);
2344}
2345
2346static int
2347fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2348{
2349	struct fec_enet_private *fep = netdev_priv(ndev);
2350	const struct platform_device_id *id_entry =
2351				platform_get_device_id(fep->pdev);
2352
2353	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2354		return -EOPNOTSUPP;
2355
2356	ec->rx_coalesce_usecs = fep->rx_time_itr;
2357	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2358
2359	ec->tx_coalesce_usecs = fep->tx_time_itr;
2360	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2361
2362	return 0;
2363}
2364
2365static int
2366fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2367{
2368	struct fec_enet_private *fep = netdev_priv(ndev);
2369	const struct platform_device_id *id_entry =
2370				platform_get_device_id(fep->pdev);
2371
2372	unsigned int cycle;
2373
2374	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2375		return -EOPNOTSUPP;
2376
2377	if (ec->rx_max_coalesced_frames > 255) {
2378		pr_err("Rx coalesced frames exceed hardware limiation");
2379		return -EINVAL;
2380	}
2381
2382	if (ec->tx_max_coalesced_frames > 255) {
2383		pr_err("Tx coalesced frame exceed hardware limiation");
2384		return -EINVAL;
2385	}
2386
2387	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2388	if (cycle > 0xFFFF) {
2389		pr_err("Rx coalesed usec exceeed hardware limiation");
2390		return -EINVAL;
2391	}
2392
2393	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2394	if (cycle > 0xFFFF) {
2395		pr_err("Rx coalesed usec exceeed hardware limiation");
2396		return -EINVAL;
2397	}
2398
2399	fep->rx_time_itr = ec->rx_coalesce_usecs;
2400	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2401
2402	fep->tx_time_itr = ec->tx_coalesce_usecs;
2403	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2404
2405	fec_enet_itr_coal_set(ndev);
2406
2407	return 0;
2408}
2409
2410static void fec_enet_itr_coal_init(struct net_device *ndev)
2411{
2412	struct ethtool_coalesce ec;
2413
2414	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2415	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2416
2417	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2418	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2419
2420	fec_enet_set_coalesce(ndev, &ec);
2421}
2422
2423static int fec_enet_get_tunable(struct net_device *netdev,
2424				const struct ethtool_tunable *tuna,
2425				void *data)
2426{
2427	struct fec_enet_private *fep = netdev_priv(netdev);
2428	int ret = 0;
2429
2430	switch (tuna->id) {
2431	case ETHTOOL_RX_COPYBREAK:
2432		*(u32 *)data = fep->rx_copybreak;
2433		break;
2434	default:
2435		ret = -EINVAL;
2436		break;
2437	}
2438
2439	return ret;
2440}
2441
2442static int fec_enet_set_tunable(struct net_device *netdev,
2443				const struct ethtool_tunable *tuna,
2444				const void *data)
2445{
2446	struct fec_enet_private *fep = netdev_priv(netdev);
2447	int ret = 0;
2448
2449	switch (tuna->id) {
2450	case ETHTOOL_RX_COPYBREAK:
2451		fep->rx_copybreak = *(u32 *)data;
2452		break;
2453	default:
2454		ret = -EINVAL;
2455		break;
2456	}
2457
2458	return ret;
2459}
2460
2461static const struct ethtool_ops fec_enet_ethtool_ops = {
2462	.get_settings		= fec_enet_get_settings,
2463	.set_settings		= fec_enet_set_settings,
2464	.get_drvinfo		= fec_enet_get_drvinfo,
2465	.nway_reset		= fec_enet_nway_reset,
2466	.get_link		= ethtool_op_get_link,
2467	.get_coalesce		= fec_enet_get_coalesce,
2468	.set_coalesce		= fec_enet_set_coalesce,
2469#ifndef CONFIG_M5272
2470	.get_pauseparam		= fec_enet_get_pauseparam,
2471	.set_pauseparam		= fec_enet_set_pauseparam,
2472	.get_strings		= fec_enet_get_strings,
2473	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2474	.get_sset_count		= fec_enet_get_sset_count,
2475#endif
2476	.get_ts_info		= fec_enet_get_ts_info,
2477	.get_tunable		= fec_enet_get_tunable,
2478	.set_tunable		= fec_enet_set_tunable,
2479};
2480
2481static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2482{
2483	struct fec_enet_private *fep = netdev_priv(ndev);
2484	struct phy_device *phydev = fep->phy_dev;
2485
2486	if (!netif_running(ndev))
2487		return -EINVAL;
2488
2489	if (!phydev)
2490		return -ENODEV;
2491
2492	if (fep->bufdesc_ex) {
2493		if (cmd == SIOCSHWTSTAMP)
2494			return fec_ptp_set(ndev, rq);
2495		if (cmd == SIOCGHWTSTAMP)
2496			return fec_ptp_get(ndev, rq);
2497	}
2498
2499	return phy_mii_ioctl(phydev, rq, cmd);
2500}
2501
2502static void fec_enet_free_buffers(struct net_device *ndev)
2503{
2504	struct fec_enet_private *fep = netdev_priv(ndev);
2505	unsigned int i;
2506	struct sk_buff *skb;
2507	struct bufdesc	*bdp;
2508	struct fec_enet_priv_tx_q *txq;
2509	struct fec_enet_priv_rx_q *rxq;
2510	unsigned int q;
2511
2512	for (q = 0; q < fep->num_rx_queues; q++) {
2513		rxq = fep->rx_queue[q];
2514		bdp = rxq->rx_bd_base;
2515		for (i = 0; i < rxq->rx_ring_size; i++) {
2516			skb = rxq->rx_skbuff[i];
2517			rxq->rx_skbuff[i] = NULL;
2518			if (skb) {
2519				dma_unmap_single(&fep->pdev->dev,
2520						 bdp->cbd_bufaddr,
2521						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2522						 DMA_FROM_DEVICE);
2523				dev_kfree_skb(skb);
2524			}
2525			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2526		}
2527	}
2528
2529	for (q = 0; q < fep->num_tx_queues; q++) {
2530		txq = fep->tx_queue[q];
2531		bdp = txq->tx_bd_base;
2532		for (i = 0; i < txq->tx_ring_size; i++) {
2533			kfree(txq->tx_bounce[i]);
2534			txq->tx_bounce[i] = NULL;
2535			skb = txq->tx_skbuff[i];
2536			txq->tx_skbuff[i] = NULL;
2537			dev_kfree_skb(skb);
2538		}
2539	}
2540}
2541
2542static void fec_enet_free_queue(struct net_device *ndev)
2543{
2544	struct fec_enet_private *fep = netdev_priv(ndev);
2545	int i;
2546	struct fec_enet_priv_tx_q *txq;
2547
2548	for (i = 0; i < fep->num_tx_queues; i++)
2549		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2550			txq = fep->tx_queue[i];
2551			dma_free_coherent(NULL,
2552					  txq->tx_ring_size * TSO_HEADER_SIZE,
2553					  txq->tso_hdrs,
2554					  txq->tso_hdrs_dma);
2555		}
2556
2557	for (i = 0; i < fep->num_rx_queues; i++)
2558		if (fep->rx_queue[i])
2559			kfree(fep->rx_queue[i]);
2560
2561	for (i = 0; i < fep->num_tx_queues; i++)
2562		if (fep->tx_queue[i])
2563			kfree(fep->tx_queue[i]);
2564}
2565
2566static int fec_enet_alloc_queue(struct net_device *ndev)
2567{
2568	struct fec_enet_private *fep = netdev_priv(ndev);
2569	int i;
2570	int ret = 0;
2571	struct fec_enet_priv_tx_q *txq;
2572
2573	for (i = 0; i < fep->num_tx_queues; i++) {
2574		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2575		if (!txq) {
2576			ret = -ENOMEM;
2577			goto alloc_failed;
2578		}
2579
2580		fep->tx_queue[i] = txq;
2581		txq->tx_ring_size = TX_RING_SIZE;
2582		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2583
2584		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2585		txq->tx_wake_threshold =
2586				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2587
2588		txq->tso_hdrs = dma_alloc_coherent(NULL,
2589					txq->tx_ring_size * TSO_HEADER_SIZE,
2590					&txq->tso_hdrs_dma,
2591					GFP_KERNEL);
2592		if (!txq->tso_hdrs) {
2593			ret = -ENOMEM;
2594			goto alloc_failed;
2595		}
2596	}
2597
2598	for (i = 0; i < fep->num_rx_queues; i++) {
2599		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2600					   GFP_KERNEL);
2601		if (!fep->rx_queue[i]) {
2602			ret = -ENOMEM;
2603			goto alloc_failed;
2604		}
2605
2606		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2607		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2608	}
2609	return ret;
2610
2611alloc_failed:
2612	fec_enet_free_queue(ndev);
2613	return ret;
2614}
2615
2616static int
2617fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2618{
2619	struct fec_enet_private *fep = netdev_priv(ndev);
2620	unsigned int i;
2621	struct sk_buff *skb;
2622	struct bufdesc	*bdp;
2623	struct fec_enet_priv_rx_q *rxq;
2624
2625	rxq = fep->rx_queue[queue];
2626	bdp = rxq->rx_bd_base;
2627	for (i = 0; i < rxq->rx_ring_size; i++) {
2628		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2629		if (!skb)
2630			goto err_alloc;
2631
2632		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2633			dev_kfree_skb(skb);
2634			goto err_alloc;
2635		}
2636
2637		rxq->rx_skbuff[i] = skb;
2638		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2639
2640		if (fep->bufdesc_ex) {
2641			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2642			ebdp->cbd_esc = BD_ENET_RX_INT;
2643		}
2644
2645		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2646	}
2647
2648	/* Set the last buffer to wrap. */
2649	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2650	bdp->cbd_sc |= BD_SC_WRAP;
2651	return 0;
2652
2653 err_alloc:
2654	fec_enet_free_buffers(ndev);
2655	return -ENOMEM;
2656}
2657
2658static int
2659fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2660{
2661	struct fec_enet_private *fep = netdev_priv(ndev);
2662	unsigned int i;
2663	struct bufdesc  *bdp;
2664	struct fec_enet_priv_tx_q *txq;
2665
2666	txq = fep->tx_queue[queue];
2667	bdp = txq->tx_bd_base;
2668	for (i = 0; i < txq->tx_ring_size; i++) {
2669		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2670		if (!txq->tx_bounce[i])
2671			goto err_alloc;
2672
2673		bdp->cbd_sc = 0;
2674		bdp->cbd_bufaddr = 0;
2675
2676		if (fep->bufdesc_ex) {
2677			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2678			ebdp->cbd_esc = BD_ENET_TX_INT;
2679		}
2680
2681		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2682	}
2683
2684	/* Set the last buffer to wrap. */
2685	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2686	bdp->cbd_sc |= BD_SC_WRAP;
2687
2688	return 0;
2689
2690 err_alloc:
2691	fec_enet_free_buffers(ndev);
2692	return -ENOMEM;
2693}
2694
2695static int fec_enet_alloc_buffers(struct net_device *ndev)
2696{
2697	struct fec_enet_private *fep = netdev_priv(ndev);
2698	unsigned int i;
2699
2700	for (i = 0; i < fep->num_rx_queues; i++)
2701		if (fec_enet_alloc_rxq_buffers(ndev, i))
2702			return -ENOMEM;
2703
2704	for (i = 0; i < fep->num_tx_queues; i++)
2705		if (fec_enet_alloc_txq_buffers(ndev, i))
2706			return -ENOMEM;
2707	return 0;
2708}
2709
2710static int
2711fec_enet_open(struct net_device *ndev)
2712{
2713	struct fec_enet_private *fep = netdev_priv(ndev);
2714	int ret;
2715
2716	pinctrl_pm_select_default_state(&fep->pdev->dev);
2717	ret = fec_enet_clk_enable(ndev, true);
2718	if (ret)
2719		return ret;
2720
2721	/* I should reset the ring buffers here, but I don't yet know
2722	 * a simple way to do that.
2723	 */
2724
2725	ret = fec_enet_alloc_buffers(ndev);
2726	if (ret)
2727		goto err_enet_alloc;
2728
2729	/* Probe and connect to PHY when open the interface */
2730	ret = fec_enet_mii_probe(ndev);
2731	if (ret)
2732		goto err_enet_mii_probe;
2733
2734	fec_restart(ndev);
2735	napi_enable(&fep->napi);
2736	phy_start(fep->phy_dev);
2737	netif_tx_start_all_queues(ndev);
2738
2739	return 0;
2740
2741err_enet_mii_probe:
2742	fec_enet_free_buffers(ndev);
2743err_enet_alloc:
2744	fec_enet_clk_enable(ndev, false);
2745	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2746	return ret;
2747}
2748
2749static int
2750fec_enet_close(struct net_device *ndev)
2751{
2752	struct fec_enet_private *fep = netdev_priv(ndev);
2753
2754	phy_stop(fep->phy_dev);
2755
2756	if (netif_device_present(ndev)) {
2757		napi_disable(&fep->napi);
2758		netif_tx_disable(ndev);
2759		fec_stop(ndev);
2760	}
2761
2762	phy_disconnect(fep->phy_dev);
2763	fep->phy_dev = NULL;
2764
2765	fec_enet_clk_enable(ndev, false);
2766	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2767	fec_enet_free_buffers(ndev);
2768
2769	return 0;
2770}
2771
2772/* Set or clear the multicast filter for this adaptor.
2773 * Skeleton taken from sunlance driver.
2774 * The CPM Ethernet implementation allows Multicast as well as individual
2775 * MAC address filtering.  Some of the drivers check to make sure it is
2776 * a group multicast address, and discard those that are not.  I guess I
2777 * will do the same for now, but just remove the test if you want
2778 * individual filtering as well (do the upper net layers want or support
2779 * this kind of feature?).
2780 */
2781
2782#define HASH_BITS	6		/* #bits in hash */
2783#define CRC32_POLY	0xEDB88320
2784
2785static void set_multicast_list(struct net_device *ndev)
2786{
2787	struct fec_enet_private *fep = netdev_priv(ndev);
2788	struct netdev_hw_addr *ha;
2789	unsigned int i, bit, data, crc, tmp;
2790	unsigned char hash;
2791
2792	if (ndev->flags & IFF_PROMISC) {
2793		tmp = readl(fep->hwp + FEC_R_CNTRL);
2794		tmp |= 0x8;
2795		writel(tmp, fep->hwp + FEC_R_CNTRL);
2796		return;
2797	}
2798
2799	tmp = readl(fep->hwp + FEC_R_CNTRL);
2800	tmp &= ~0x8;
2801	writel(tmp, fep->hwp + FEC_R_CNTRL);
2802
2803	if (ndev->flags & IFF_ALLMULTI) {
2804		/* Catch all multicast addresses, so set the
2805		 * filter to all 1's
2806		 */
2807		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2808		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2809
2810		return;
2811	}
2812
2813	/* Clear filter and add the addresses in hash register
2814	 */
2815	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2816	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2817
2818	netdev_for_each_mc_addr(ha, ndev) {
2819		/* calculate crc32 value of mac address */
2820		crc = 0xffffffff;
2821
2822		for (i = 0; i < ndev->addr_len; i++) {
2823			data = ha->addr[i];
2824			for (bit = 0; bit < 8; bit++, data >>= 1) {
2825				crc = (crc >> 1) ^
2826				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2827			}
2828		}
2829
2830		/* only upper 6 bits (HASH_BITS) are used
2831		 * which point to specific bit in he hash registers
2832		 */
2833		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2834
2835		if (hash > 31) {
2836			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2837			tmp |= 1 << (hash - 32);
2838			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2839		} else {
2840			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2841			tmp |= 1 << hash;
2842			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2843		}
2844	}
2845}
2846
2847/* Set a MAC change in hardware. */
2848static int
2849fec_set_mac_address(struct net_device *ndev, void *p)
2850{
2851	struct fec_enet_private *fep = netdev_priv(ndev);
2852	struct sockaddr *addr = p;
2853
2854	if (addr) {
2855		if (!is_valid_ether_addr(addr->sa_data))
2856			return -EADDRNOTAVAIL;
2857		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2858	}
2859
2860	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2861		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2862		fep->hwp + FEC_ADDR_LOW);
2863	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2864		fep->hwp + FEC_ADDR_HIGH);
2865	return 0;
2866}
2867
2868#ifdef CONFIG_NET_POLL_CONTROLLER
2869/**
2870 * fec_poll_controller - FEC Poll controller function
2871 * @dev: The FEC network adapter
2872 *
2873 * Polled functionality used by netconsole and others in non interrupt mode
2874 *
2875 */
2876static void fec_poll_controller(struct net_device *dev)
2877{
2878	int i;
2879	struct fec_enet_private *fep = netdev_priv(dev);
2880
2881	for (i = 0; i < FEC_IRQ_NUM; i++) {
2882		if (fep->irq[i] > 0) {
2883			disable_irq(fep->irq[i]);
2884			fec_enet_interrupt(fep->irq[i], dev);
2885			enable_irq(fep->irq[i]);
2886		}
2887	}
2888}
2889#endif
2890
2891#define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2892static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2893	netdev_features_t features)
2894{
2895	struct fec_enet_private *fep = netdev_priv(netdev);
2896	netdev_features_t changed = features ^ netdev->features;
2897
2898	netdev->features = features;
2899
2900	/* Receive checksum has been changed */
2901	if (changed & NETIF_F_RXCSUM) {
2902		if (features & NETIF_F_RXCSUM)
2903			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2904		else
2905			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2906	}
2907}
2908
2909static int fec_set_features(struct net_device *netdev,
2910	netdev_features_t features)
2911{
2912	struct fec_enet_private *fep = netdev_priv(netdev);
2913	netdev_features_t changed = features ^ netdev->features;
2914
2915	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2916		napi_disable(&fep->napi);
2917		netif_tx_lock_bh(netdev);
2918		fec_stop(netdev);
2919		fec_enet_set_netdev_features(netdev, features);
2920		fec_restart(netdev);
2921		netif_tx_wake_all_queues(netdev);
2922		netif_tx_unlock_bh(netdev);
2923		napi_enable(&fep->napi);
2924	} else {
2925		fec_enet_set_netdev_features(netdev, features);
2926	}
2927
2928	return 0;
2929}
2930
2931static const struct net_device_ops fec_netdev_ops = {
2932	.ndo_open		= fec_enet_open,
2933	.ndo_stop		= fec_enet_close,
2934	.ndo_start_xmit		= fec_enet_start_xmit,
2935	.ndo_set_rx_mode	= set_multicast_list,
2936	.ndo_change_mtu		= eth_change_mtu,
2937	.ndo_validate_addr	= eth_validate_addr,
2938	.ndo_tx_timeout		= fec_timeout,
2939	.ndo_set_mac_address	= fec_set_mac_address,
2940	.ndo_do_ioctl		= fec_enet_ioctl,
2941#ifdef CONFIG_NET_POLL_CONTROLLER
2942	.ndo_poll_controller	= fec_poll_controller,
2943#endif
2944	.ndo_set_features	= fec_set_features,
2945};
2946
2947 /*
2948  * XXX:  We need to clean up on failure exits here.
2949  *
2950  */
2951static int fec_enet_init(struct net_device *ndev)
2952{
2953	struct fec_enet_private *fep = netdev_priv(ndev);
2954	const struct platform_device_id *id_entry =
2955				platform_get_device_id(fep->pdev);
2956	struct fec_enet_priv_tx_q *txq;
2957	struct fec_enet_priv_rx_q *rxq;
2958	struct bufdesc *cbd_base;
2959	dma_addr_t bd_dma;
2960	int bd_size;
2961	unsigned int i;
2962
2963#if defined(CONFIG_ARM)
2964	fep->rx_align = 0xf;
2965	fep->tx_align = 0xf;
2966#else
2967	fep->rx_align = 0x3;
2968	fep->tx_align = 0x3;
2969#endif
2970
2971	fec_enet_alloc_queue(ndev);
2972
2973	if (fep->bufdesc_ex)
2974		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2975	else
2976		fep->bufdesc_size = sizeof(struct bufdesc);
2977	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2978			fep->bufdesc_size;
2979
2980	/* Allocate memory for buffer descriptors. */
2981	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2982				      GFP_KERNEL);
2983	if (!cbd_base) {
2984		return -ENOMEM;
2985	}
2986
2987	memset(cbd_base, 0, bd_size);
2988
2989	/* Get the Ethernet address */
2990	fec_get_mac(ndev);
2991	/* make sure MAC we just acquired is programmed into the hw */
2992	fec_set_mac_address(ndev, NULL);
2993
2994	/* Set receive and transmit descriptor base. */
2995	for (i = 0; i < fep->num_rx_queues; i++) {
2996		rxq = fep->rx_queue[i];
2997		rxq->index = i;
2998		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2999		rxq->bd_dma = bd_dma;
3000		if (fep->bufdesc_ex) {
3001			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3002			cbd_base = (struct bufdesc *)
3003				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3004		} else {
3005			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3006			cbd_base += rxq->rx_ring_size;
3007		}
3008	}
3009
3010	for (i = 0; i < fep->num_tx_queues; i++) {
3011		txq = fep->tx_queue[i];
3012		txq->index = i;
3013		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3014		txq->bd_dma = bd_dma;
3015		if (fep->bufdesc_ex) {
3016			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3017			cbd_base = (struct bufdesc *)
3018			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3019		} else {
3020			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3021			cbd_base += txq->tx_ring_size;
3022		}
3023	}
3024
3025
3026	/* The FEC Ethernet specific entries in the device structure */
3027	ndev->watchdog_timeo = TX_TIMEOUT;
3028	ndev->netdev_ops = &fec_netdev_ops;
3029	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3030
3031	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3032	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3033
3034	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
3035		/* enable hw VLAN support */
3036		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3037
3038	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
3039		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3040
3041		/* enable hw accelerator */
3042		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3043				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3044		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3045	}
3046
3047	if (id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
3048		fep->tx_align = 0;
3049		fep->rx_align = 0x3f;
3050	}
3051
3052	ndev->hw_features = ndev->features;
3053
3054	fec_restart(ndev);
3055
3056	return 0;
3057}
3058
3059#ifdef CONFIG_OF
3060static void fec_reset_phy(struct platform_device *pdev)
3061{
3062	int err, phy_reset;
3063	int msec = 1;
3064	struct device_node *np = pdev->dev.of_node;
3065
3066	if (!np)
3067		return;
3068
3069	of_property_read_u32(np, "phy-reset-duration", &msec);
3070	/* A sane reset duration should not be longer than 1s */
3071	if (msec > 1000)
3072		msec = 1;
3073
3074	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3075	if (!gpio_is_valid(phy_reset))
3076		return;
3077
3078	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3079				    GPIOF_OUT_INIT_LOW, "phy-reset");
3080	if (err) {
3081		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3082		return;
3083	}
3084	msleep(msec);
3085	gpio_set_value(phy_reset, 1);
3086}
3087#else /* CONFIG_OF */
3088static void fec_reset_phy(struct platform_device *pdev)
3089{
3090	/*
3091	 * In case of platform probe, the reset has been done
3092	 * by machine code.
3093	 */
3094}
3095#endif /* CONFIG_OF */
3096
3097static void
3098fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3099{
3100	struct device_node *np = pdev->dev.of_node;
3101	int err;
3102
3103	*num_tx = *num_rx = 1;
3104
3105	if (!np || !of_device_is_available(np))
3106		return;
3107
3108	/* parse the num of tx and rx queues */
3109	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3110	if (err)
3111		*num_tx = 1;
3112
3113	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3114	if (err)
3115		*num_rx = 1;
3116
3117	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3118		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3119			 *num_tx);
3120		*num_tx = 1;
3121		return;
3122	}
3123
3124	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3125		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3126			 *num_rx);
3127		*num_rx = 1;
3128		return;
3129	}
3130
3131}
3132
3133static int
3134fec_probe(struct platform_device *pdev)
3135{
3136	struct fec_enet_private *fep;
3137	struct fec_platform_data *pdata;
3138	struct net_device *ndev;
3139	int i, irq, ret = 0;
3140	struct resource *r;
3141	const struct of_device_id *of_id;
3142	static int dev_id;
3143	struct device_node *np = pdev->dev.of_node, *phy_node;
3144	int num_tx_qs;
3145	int num_rx_qs;
3146
3147	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3148	if (of_id)
3149		pdev->id_entry = of_id->data;
3150
3151	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3152
3153	/* Init network device */
3154	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3155				  num_tx_qs, num_rx_qs);
3156	if (!ndev)
3157		return -ENOMEM;
3158
3159	SET_NETDEV_DEV(ndev, &pdev->dev);
3160
3161	/* setup board info structure */
3162	fep = netdev_priv(ndev);
3163
3164	fep->num_rx_queues = num_rx_qs;
3165	fep->num_tx_queues = num_tx_qs;
3166
3167#if !defined(CONFIG_M5272)
3168	/* default enable pause frame auto negotiation */
3169	if (pdev->id_entry &&
3170	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
3171		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3172#endif
3173
3174	/* Select default pin state */
3175	pinctrl_pm_select_default_state(&pdev->dev);
3176
3177	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3178	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3179	if (IS_ERR(fep->hwp)) {
3180		ret = PTR_ERR(fep->hwp);
3181		goto failed_ioremap;
3182	}
3183
3184	fep->pdev = pdev;
3185	fep->dev_id = dev_id++;
3186
3187	fep->bufdesc_ex = 0;
3188
3189	platform_set_drvdata(pdev, ndev);
3190
3191	phy_node = of_parse_phandle(np, "phy-handle", 0);
3192	if (!phy_node && of_phy_is_fixed_link(np)) {
3193		ret = of_phy_register_fixed_link(np);
3194		if (ret < 0) {
3195			dev_err(&pdev->dev,
3196				"broken fixed-link specification\n");
3197			goto failed_phy;
3198		}
3199		phy_node = of_node_get(np);
3200	}
3201	fep->phy_node = phy_node;
3202
3203	ret = of_get_phy_mode(pdev->dev.of_node);
3204	if (ret < 0) {
3205		pdata = dev_get_platdata(&pdev->dev);
3206		if (pdata)
3207			fep->phy_interface = pdata->phy;
3208		else
3209			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3210	} else {
3211		fep->phy_interface = ret;
3212	}
3213
3214	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3215	if (IS_ERR(fep->clk_ipg)) {
3216		ret = PTR_ERR(fep->clk_ipg);
3217		goto failed_clk;
3218	}
3219
3220	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3221	if (IS_ERR(fep->clk_ahb)) {
3222		ret = PTR_ERR(fep->clk_ahb);
3223		goto failed_clk;
3224	}
3225
3226	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3227
3228	/* enet_out is optional, depends on board */
3229	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3230	if (IS_ERR(fep->clk_enet_out))
3231		fep->clk_enet_out = NULL;
3232
3233	fep->ptp_clk_on = false;
3234	mutex_init(&fep->ptp_clk_mutex);
3235
3236	/* clk_ref is optional, depends on board */
3237	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3238	if (IS_ERR(fep->clk_ref))
3239		fep->clk_ref = NULL;
3240
3241	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3242	fep->bufdesc_ex =
3243		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
3244	if (IS_ERR(fep->clk_ptp)) {
3245		fep->clk_ptp = NULL;
3246		fep->bufdesc_ex = 0;
3247	}
3248
3249	ret = fec_enet_clk_enable(ndev, true);
3250	if (ret)
3251		goto failed_clk;
3252
3253	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3254	if (!IS_ERR(fep->reg_phy)) {
3255		ret = regulator_enable(fep->reg_phy);
3256		if (ret) {
3257			dev_err(&pdev->dev,
3258				"Failed to enable phy regulator: %d\n", ret);
3259			goto failed_regulator;
3260		}
3261	} else {
3262		fep->reg_phy = NULL;
3263	}
3264
3265	fec_reset_phy(pdev);
3266
3267	if (fep->bufdesc_ex)
3268		fec_ptp_init(pdev);
3269
3270	ret = fec_enet_init(ndev);
3271	if (ret)
3272		goto failed_init;
3273
3274	for (i = 0; i < FEC_IRQ_NUM; i++) {
3275		irq = platform_get_irq(pdev, i);
3276		if (irq < 0) {
3277			if (i)
3278				break;
3279			ret = irq;
3280			goto failed_irq;
3281		}
3282		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3283				       0, pdev->name, ndev);
3284		if (ret)
3285			goto failed_irq;
3286	}
3287
3288	init_completion(&fep->mdio_done);
3289	ret = fec_enet_mii_init(pdev);
3290	if (ret)
3291		goto failed_mii_init;
3292
3293	/* Carrier starts down, phylib will bring it up */
3294	netif_carrier_off(ndev);
3295	fec_enet_clk_enable(ndev, false);
3296	pinctrl_pm_select_sleep_state(&pdev->dev);
3297
3298	ret = register_netdev(ndev);
3299	if (ret)
3300		goto failed_register;
3301
3302	if (fep->bufdesc_ex && fep->ptp_clock)
3303		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3304
3305	fep->rx_copybreak = COPYBREAK_DEFAULT;
3306	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3307	return 0;
3308
3309failed_register:
3310	fec_enet_mii_remove(fep);
3311failed_mii_init:
3312failed_irq:
3313failed_init:
3314	if (fep->reg_phy)
3315		regulator_disable(fep->reg_phy);
3316failed_regulator:
3317	fec_enet_clk_enable(ndev, false);
3318failed_clk:
3319failed_phy:
3320	of_node_put(phy_node);
3321failed_ioremap:
3322	free_netdev(ndev);
3323
3324	return ret;
3325}
3326
3327static int
3328fec_drv_remove(struct platform_device *pdev)
3329{
3330	struct net_device *ndev = platform_get_drvdata(pdev);
3331	struct fec_enet_private *fep = netdev_priv(ndev);
3332
3333	cancel_delayed_work_sync(&fep->time_keep);
3334	cancel_work_sync(&fep->tx_timeout_work);
3335	unregister_netdev(ndev);
3336	fec_enet_mii_remove(fep);
3337	if (fep->reg_phy)
3338		regulator_disable(fep->reg_phy);
3339	if (fep->ptp_clock)
3340		ptp_clock_unregister(fep->ptp_clock);
3341	fec_enet_clk_enable(ndev, false);
3342	of_node_put(fep->phy_node);
3343	free_netdev(ndev);
3344
3345	return 0;
3346}
3347
3348static int __maybe_unused fec_suspend(struct device *dev)
3349{
3350	struct net_device *ndev = dev_get_drvdata(dev);
3351	struct fec_enet_private *fep = netdev_priv(ndev);
3352
3353	rtnl_lock();
3354	if (netif_running(ndev)) {
3355		phy_stop(fep->phy_dev);
3356		napi_disable(&fep->napi);
3357		netif_tx_lock_bh(ndev);
3358		netif_device_detach(ndev);
3359		netif_tx_unlock_bh(ndev);
3360		fec_stop(ndev);
3361		fec_enet_clk_enable(ndev, false);
3362		pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3363	}
3364	rtnl_unlock();
3365
3366	if (fep->reg_phy)
3367		regulator_disable(fep->reg_phy);
3368
3369	return 0;
3370}
3371
3372static int __maybe_unused fec_resume(struct device *dev)
3373{
3374	struct net_device *ndev = dev_get_drvdata(dev);
3375	struct fec_enet_private *fep = netdev_priv(ndev);
3376	int ret;
3377
3378	if (fep->reg_phy) {
3379		ret = regulator_enable(fep->reg_phy);
3380		if (ret)
3381			return ret;
3382	}
3383
3384	rtnl_lock();
3385	if (netif_running(ndev)) {
3386		pinctrl_pm_select_default_state(&fep->pdev->dev);
3387		ret = fec_enet_clk_enable(ndev, true);
3388		if (ret) {
3389			rtnl_unlock();
3390			goto failed_clk;
3391		}
3392		fec_restart(ndev);
3393		netif_tx_lock_bh(ndev);
3394		netif_device_attach(ndev);
3395		netif_tx_unlock_bh(ndev);
3396		napi_enable(&fep->napi);
3397		phy_start(fep->phy_dev);
3398	}
3399	rtnl_unlock();
3400
3401	return 0;
3402
3403failed_clk:
3404	if (fep->reg_phy)
3405		regulator_disable(fep->reg_phy);
3406	return ret;
3407}
3408
3409static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3410
3411static struct platform_driver fec_driver = {
3412	.driver	= {
3413		.name	= DRIVER_NAME,
3414		.owner	= THIS_MODULE,
3415		.pm	= &fec_pm_ops,
3416		.of_match_table = fec_dt_ids,
3417	},
3418	.id_table = fec_devtype,
3419	.probe	= fec_probe,
3420	.remove	= fec_drv_remove,
3421};
3422
3423module_platform_driver(fec_driver);
3424
3425MODULE_ALIAS("platform:"DRIVER_NAME);
3426MODULE_LICENSE("GPL");
3427