[go: nahoru, domu]

1/* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute  it and/or modify it
16 * under  the terms of  the GNU General  Public License as published by the
17 * Free Software Foundation;  either version 2 of the  License, or (at your
18 * option) any later version.
19 *
20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
21 *  RA 11 31 24.2
22 *  Dec +69 19 52
23 *  V 3.84
24 *  B-V +1.62
25 *
26 *  Theory of operation
27 *
28 *  The driver is initialized through of_device. Configuration information
29 *  is therefore conveyed through an OF-style device tree.
30 *
31 *  The Gianfar Ethernet Controller uses a ring of buffer
32 *  descriptors.  The beginning is indicated by a register
33 *  pointing to the physical address of the start of the ring.
34 *  The end is determined by a "wrap" bit being set in the
35 *  last descriptor of the ring.
36 *
37 *  When a packet is received, the RXF bit in the
38 *  IEVENT register is set, triggering an interrupt when the
39 *  corresponding bit in the IMASK register is also set (if
40 *  interrupt coalescing is active, then the interrupt may not
41 *  happen immediately, but will wait until either a set number
42 *  of frames or amount of time have passed).  In NAPI, the
43 *  interrupt handler will signal there is work to be done, and
44 *  exit. This method will start at the last known empty
45 *  descriptor, and process every subsequent descriptor until there
46 *  are none left with data (NAPI will stop after a set number of
47 *  packets to give time to other tasks, but will eventually
48 *  process all the packets).  The data arrives inside a
49 *  pre-allocated skb, and so after the skb is passed up to the
50 *  stack, a new skb must be allocated, and the address field in
51 *  the buffer descriptor must be updated to indicate this new
52 *  skb.
53 *
54 *  When the kernel requests that a packet be transmitted, the
55 *  driver starts where it left off last time, and points the
56 *  descriptor at the buffer which was passed in.  The driver
57 *  then informs the DMA engine that there are packets ready to
58 *  be transmitted.  Once the controller is finished transmitting
59 *  the packet, an interrupt may be triggered (under the same
60 *  conditions as for reception, but depending on the TXF bit).
61 *  The driver then cleans up the buffer.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65#define DEBUG
66
67#include <linux/kernel.h>
68#include <linux/string.h>
69#include <linux/errno.h>
70#include <linux/unistd.h>
71#include <linux/slab.h>
72#include <linux/interrupt.h>
73#include <linux/delay.h>
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77#include <linux/if_vlan.h>
78#include <linux/spinlock.h>
79#include <linux/mm.h>
80#include <linux/of_address.h>
81#include <linux/of_irq.h>
82#include <linux/of_mdio.h>
83#include <linux/of_platform.h>
84#include <linux/ip.h>
85#include <linux/tcp.h>
86#include <linux/udp.h>
87#include <linux/in.h>
88#include <linux/net_tstamp.h>
89
90#include <asm/io.h>
91#ifdef CONFIG_PPC
92#include <asm/reg.h>
93#include <asm/mpc85xx.h>
94#endif
95#include <asm/irq.h>
96#include <asm/uaccess.h>
97#include <linux/module.h>
98#include <linux/dma-mapping.h>
99#include <linux/crc32.h>
100#include <linux/mii.h>
101#include <linux/phy.h>
102#include <linux/phy_fixed.h>
103#include <linux/of.h>
104#include <linux/of_net.h>
105#include <linux/of_address.h>
106#include <linux/of_irq.h>
107
108#include "gianfar.h"
109
110#define TX_TIMEOUT      (1*HZ)
111
112const char gfar_driver_version[] = "1.3";
113
114static int gfar_enet_open(struct net_device *dev);
115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116static void gfar_reset_task(struct work_struct *work);
117static void gfar_timeout(struct net_device *dev);
118static int gfar_close(struct net_device *dev);
119struct sk_buff *gfar_new_skb(struct net_device *dev);
120static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
121			   struct sk_buff *skb);
122static int gfar_set_mac_address(struct net_device *dev);
123static int gfar_change_mtu(struct net_device *dev, int new_mtu);
124static irqreturn_t gfar_error(int irq, void *dev_id);
125static irqreturn_t gfar_transmit(int irq, void *dev_id);
126static irqreturn_t gfar_interrupt(int irq, void *dev_id);
127static void adjust_link(struct net_device *dev);
128static noinline void gfar_update_link_state(struct gfar_private *priv);
129static int init_phy(struct net_device *dev);
130static int gfar_probe(struct platform_device *ofdev);
131static int gfar_remove(struct platform_device *ofdev);
132static void free_skb_resources(struct gfar_private *priv);
133static void gfar_set_multi(struct net_device *dev);
134static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
135static void gfar_configure_serdes(struct net_device *dev);
136static int gfar_poll_rx(struct napi_struct *napi, int budget);
137static int gfar_poll_tx(struct napi_struct *napi, int budget);
138static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
139static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
140#ifdef CONFIG_NET_POLL_CONTROLLER
141static void gfar_netpoll(struct net_device *dev);
142#endif
143int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
144static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
145static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
146			       int amount_pull, struct napi_struct *napi);
147static void gfar_halt_nodisable(struct gfar_private *priv);
148static void gfar_clear_exact_match(struct net_device *dev);
149static void gfar_set_mac_for_addr(struct net_device *dev, int num,
150				  const u8 *addr);
151static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
152
153MODULE_AUTHOR("Freescale Semiconductor, Inc");
154MODULE_DESCRIPTION("Gianfar Ethernet Driver");
155MODULE_LICENSE("GPL");
156
157static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
158			    dma_addr_t buf)
159{
160	u32 lstatus;
161
162	bdp->bufPtr = buf;
163
164	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
165	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
166		lstatus |= BD_LFLAG(RXBD_WRAP);
167
168	gfar_wmb();
169
170	bdp->lstatus = lstatus;
171}
172
173static int gfar_init_bds(struct net_device *ndev)
174{
175	struct gfar_private *priv = netdev_priv(ndev);
176	struct gfar_priv_tx_q *tx_queue = NULL;
177	struct gfar_priv_rx_q *rx_queue = NULL;
178	struct txbd8 *txbdp;
179	struct rxbd8 *rxbdp;
180	int i, j;
181
182	for (i = 0; i < priv->num_tx_queues; i++) {
183		tx_queue = priv->tx_queue[i];
184		/* Initialize some variables in our dev structure */
185		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
186		tx_queue->dirty_tx = tx_queue->tx_bd_base;
187		tx_queue->cur_tx = tx_queue->tx_bd_base;
188		tx_queue->skb_curtx = 0;
189		tx_queue->skb_dirtytx = 0;
190
191		/* Initialize Transmit Descriptor Ring */
192		txbdp = tx_queue->tx_bd_base;
193		for (j = 0; j < tx_queue->tx_ring_size; j++) {
194			txbdp->lstatus = 0;
195			txbdp->bufPtr = 0;
196			txbdp++;
197		}
198
199		/* Set the last descriptor in the ring to indicate wrap */
200		txbdp--;
201		txbdp->status |= TXBD_WRAP;
202	}
203
204	for (i = 0; i < priv->num_rx_queues; i++) {
205		rx_queue = priv->rx_queue[i];
206		rx_queue->cur_rx = rx_queue->rx_bd_base;
207		rx_queue->skb_currx = 0;
208		rxbdp = rx_queue->rx_bd_base;
209
210		for (j = 0; j < rx_queue->rx_ring_size; j++) {
211			struct sk_buff *skb = rx_queue->rx_skbuff[j];
212
213			if (skb) {
214				gfar_init_rxbdp(rx_queue, rxbdp,
215						rxbdp->bufPtr);
216			} else {
217				skb = gfar_new_skb(ndev);
218				if (!skb) {
219					netdev_err(ndev, "Can't allocate RX buffers\n");
220					return -ENOMEM;
221				}
222				rx_queue->rx_skbuff[j] = skb;
223
224				gfar_new_rxbdp(rx_queue, rxbdp, skb);
225			}
226
227			rxbdp++;
228		}
229
230	}
231
232	return 0;
233}
234
235static int gfar_alloc_skb_resources(struct net_device *ndev)
236{
237	void *vaddr;
238	dma_addr_t addr;
239	int i, j, k;
240	struct gfar_private *priv = netdev_priv(ndev);
241	struct device *dev = priv->dev;
242	struct gfar_priv_tx_q *tx_queue = NULL;
243	struct gfar_priv_rx_q *rx_queue = NULL;
244
245	priv->total_tx_ring_size = 0;
246	for (i = 0; i < priv->num_tx_queues; i++)
247		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249	priv->total_rx_ring_size = 0;
250	for (i = 0; i < priv->num_rx_queues; i++)
251		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253	/* Allocate memory for the buffer descriptors */
254	vaddr = dma_alloc_coherent(dev,
255				   (priv->total_tx_ring_size *
256				    sizeof(struct txbd8)) +
257				   (priv->total_rx_ring_size *
258				    sizeof(struct rxbd8)),
259				   &addr, GFP_KERNEL);
260	if (!vaddr)
261		return -ENOMEM;
262
263	for (i = 0; i < priv->num_tx_queues; i++) {
264		tx_queue = priv->tx_queue[i];
265		tx_queue->tx_bd_base = vaddr;
266		tx_queue->tx_bd_dma_base = addr;
267		tx_queue->dev = ndev;
268		/* enet DMA only understands physical addresses */
269		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
270		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
271	}
272
273	/* Start the rx descriptor ring where the tx ring leaves off */
274	for (i = 0; i < priv->num_rx_queues; i++) {
275		rx_queue = priv->rx_queue[i];
276		rx_queue->rx_bd_base = vaddr;
277		rx_queue->rx_bd_dma_base = addr;
278		rx_queue->dev = ndev;
279		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
280		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
281	}
282
283	/* Setup the skbuff rings */
284	for (i = 0; i < priv->num_tx_queues; i++) {
285		tx_queue = priv->tx_queue[i];
286		tx_queue->tx_skbuff =
287			kmalloc_array(tx_queue->tx_ring_size,
288				      sizeof(*tx_queue->tx_skbuff),
289				      GFP_KERNEL);
290		if (!tx_queue->tx_skbuff)
291			goto cleanup;
292
293		for (k = 0; k < tx_queue->tx_ring_size; k++)
294			tx_queue->tx_skbuff[k] = NULL;
295	}
296
297	for (i = 0; i < priv->num_rx_queues; i++) {
298		rx_queue = priv->rx_queue[i];
299		rx_queue->rx_skbuff =
300			kmalloc_array(rx_queue->rx_ring_size,
301				      sizeof(*rx_queue->rx_skbuff),
302				      GFP_KERNEL);
303		if (!rx_queue->rx_skbuff)
304			goto cleanup;
305
306		for (j = 0; j < rx_queue->rx_ring_size; j++)
307			rx_queue->rx_skbuff[j] = NULL;
308	}
309
310	if (gfar_init_bds(ndev))
311		goto cleanup;
312
313	return 0;
314
315cleanup:
316	free_skb_resources(priv);
317	return -ENOMEM;
318}
319
320static void gfar_init_tx_rx_base(struct gfar_private *priv)
321{
322	struct gfar __iomem *regs = priv->gfargrp[0].regs;
323	u32 __iomem *baddr;
324	int i;
325
326	baddr = &regs->tbase0;
327	for (i = 0; i < priv->num_tx_queues; i++) {
328		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
329		baddr += 2;
330	}
331
332	baddr = &regs->rbase0;
333	for (i = 0; i < priv->num_rx_queues; i++) {
334		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
335		baddr += 2;
336	}
337}
338
339static void gfar_rx_buff_size_config(struct gfar_private *priv)
340{
341	int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
342
343	/* set this when rx hw offload (TOE) functions are being used */
344	priv->uses_rxfcb = 0;
345
346	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
347		priv->uses_rxfcb = 1;
348
349	if (priv->hwts_rx_en)
350		priv->uses_rxfcb = 1;
351
352	if (priv->uses_rxfcb)
353		frame_size += GMAC_FCB_LEN;
354
355	frame_size += priv->padding;
356
357	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
358		     INCREMENTAL_BUFFER_SIZE;
359
360	priv->rx_buffer_size = frame_size;
361}
362
363static void gfar_mac_rx_config(struct gfar_private *priv)
364{
365	struct gfar __iomem *regs = priv->gfargrp[0].regs;
366	u32 rctrl = 0;
367
368	if (priv->rx_filer_enable) {
369		rctrl |= RCTRL_FILREN;
370		/* Program the RIR0 reg with the required distribution */
371		if (priv->poll_mode == GFAR_SQ_POLLING)
372			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
373		else /* GFAR_MQ_POLLING */
374			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
375	}
376
377	/* Restore PROMISC mode */
378	if (priv->ndev->flags & IFF_PROMISC)
379		rctrl |= RCTRL_PROM;
380
381	if (priv->ndev->features & NETIF_F_RXCSUM)
382		rctrl |= RCTRL_CHECKSUMMING;
383
384	if (priv->extended_hash)
385		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
386
387	if (priv->padding) {
388		rctrl &= ~RCTRL_PAL_MASK;
389		rctrl |= RCTRL_PADDING(priv->padding);
390	}
391
392	/* Enable HW time stamping if requested from user space */
393	if (priv->hwts_rx_en)
394		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
395
396	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
397		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
398
399	/* Init rctrl based on our settings */
400	gfar_write(&regs->rctrl, rctrl);
401}
402
403static void gfar_mac_tx_config(struct gfar_private *priv)
404{
405	struct gfar __iomem *regs = priv->gfargrp[0].regs;
406	u32 tctrl = 0;
407
408	if (priv->ndev->features & NETIF_F_IP_CSUM)
409		tctrl |= TCTRL_INIT_CSUM;
410
411	if (priv->prio_sched_en)
412		tctrl |= TCTRL_TXSCHED_PRIO;
413	else {
414		tctrl |= TCTRL_TXSCHED_WRRS;
415		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
416		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
417	}
418
419	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
420		tctrl |= TCTRL_VLINS;
421
422	gfar_write(&regs->tctrl, tctrl);
423}
424
425static void gfar_configure_coalescing(struct gfar_private *priv,
426			       unsigned long tx_mask, unsigned long rx_mask)
427{
428	struct gfar __iomem *regs = priv->gfargrp[0].regs;
429	u32 __iomem *baddr;
430
431	if (priv->mode == MQ_MG_MODE) {
432		int i = 0;
433
434		baddr = &regs->txic0;
435		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
436			gfar_write(baddr + i, 0);
437			if (likely(priv->tx_queue[i]->txcoalescing))
438				gfar_write(baddr + i, priv->tx_queue[i]->txic);
439		}
440
441		baddr = &regs->rxic0;
442		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
443			gfar_write(baddr + i, 0);
444			if (likely(priv->rx_queue[i]->rxcoalescing))
445				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
446		}
447	} else {
448		/* Backward compatible case -- even if we enable
449		 * multiple queues, there's only single reg to program
450		 */
451		gfar_write(&regs->txic, 0);
452		if (likely(priv->tx_queue[0]->txcoalescing))
453			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
454
455		gfar_write(&regs->rxic, 0);
456		if (unlikely(priv->rx_queue[0]->rxcoalescing))
457			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
458	}
459}
460
461void gfar_configure_coalescing_all(struct gfar_private *priv)
462{
463	gfar_configure_coalescing(priv, 0xFF, 0xFF);
464}
465
466static struct net_device_stats *gfar_get_stats(struct net_device *dev)
467{
468	struct gfar_private *priv = netdev_priv(dev);
469	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
470	unsigned long tx_packets = 0, tx_bytes = 0;
471	int i;
472
473	for (i = 0; i < priv->num_rx_queues; i++) {
474		rx_packets += priv->rx_queue[i]->stats.rx_packets;
475		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
476		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
477	}
478
479	dev->stats.rx_packets = rx_packets;
480	dev->stats.rx_bytes   = rx_bytes;
481	dev->stats.rx_dropped = rx_dropped;
482
483	for (i = 0; i < priv->num_tx_queues; i++) {
484		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
485		tx_packets += priv->tx_queue[i]->stats.tx_packets;
486	}
487
488	dev->stats.tx_bytes   = tx_bytes;
489	dev->stats.tx_packets = tx_packets;
490
491	return &dev->stats;
492}
493
494static const struct net_device_ops gfar_netdev_ops = {
495	.ndo_open = gfar_enet_open,
496	.ndo_start_xmit = gfar_start_xmit,
497	.ndo_stop = gfar_close,
498	.ndo_change_mtu = gfar_change_mtu,
499	.ndo_set_features = gfar_set_features,
500	.ndo_set_rx_mode = gfar_set_multi,
501	.ndo_tx_timeout = gfar_timeout,
502	.ndo_do_ioctl = gfar_ioctl,
503	.ndo_get_stats = gfar_get_stats,
504	.ndo_set_mac_address = eth_mac_addr,
505	.ndo_validate_addr = eth_validate_addr,
506#ifdef CONFIG_NET_POLL_CONTROLLER
507	.ndo_poll_controller = gfar_netpoll,
508#endif
509};
510
511static void gfar_ints_disable(struct gfar_private *priv)
512{
513	int i;
514	for (i = 0; i < priv->num_grps; i++) {
515		struct gfar __iomem *regs = priv->gfargrp[i].regs;
516		/* Clear IEVENT */
517		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
518
519		/* Initialize IMASK */
520		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
521	}
522}
523
524static void gfar_ints_enable(struct gfar_private *priv)
525{
526	int i;
527	for (i = 0; i < priv->num_grps; i++) {
528		struct gfar __iomem *regs = priv->gfargrp[i].regs;
529		/* Unmask the interrupts we look for */
530		gfar_write(&regs->imask, IMASK_DEFAULT);
531	}
532}
533
534void lock_tx_qs(struct gfar_private *priv)
535{
536	int i;
537
538	for (i = 0; i < priv->num_tx_queues; i++)
539		spin_lock(&priv->tx_queue[i]->txlock);
540}
541
542void unlock_tx_qs(struct gfar_private *priv)
543{
544	int i;
545
546	for (i = 0; i < priv->num_tx_queues; i++)
547		spin_unlock(&priv->tx_queue[i]->txlock);
548}
549
550static int gfar_alloc_tx_queues(struct gfar_private *priv)
551{
552	int i;
553
554	for (i = 0; i < priv->num_tx_queues; i++) {
555		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
556					    GFP_KERNEL);
557		if (!priv->tx_queue[i])
558			return -ENOMEM;
559
560		priv->tx_queue[i]->tx_skbuff = NULL;
561		priv->tx_queue[i]->qindex = i;
562		priv->tx_queue[i]->dev = priv->ndev;
563		spin_lock_init(&(priv->tx_queue[i]->txlock));
564	}
565	return 0;
566}
567
568static int gfar_alloc_rx_queues(struct gfar_private *priv)
569{
570	int i;
571
572	for (i = 0; i < priv->num_rx_queues; i++) {
573		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
574					    GFP_KERNEL);
575		if (!priv->rx_queue[i])
576			return -ENOMEM;
577
578		priv->rx_queue[i]->rx_skbuff = NULL;
579		priv->rx_queue[i]->qindex = i;
580		priv->rx_queue[i]->dev = priv->ndev;
581	}
582	return 0;
583}
584
585static void gfar_free_tx_queues(struct gfar_private *priv)
586{
587	int i;
588
589	for (i = 0; i < priv->num_tx_queues; i++)
590		kfree(priv->tx_queue[i]);
591}
592
593static void gfar_free_rx_queues(struct gfar_private *priv)
594{
595	int i;
596
597	for (i = 0; i < priv->num_rx_queues; i++)
598		kfree(priv->rx_queue[i]);
599}
600
601static void unmap_group_regs(struct gfar_private *priv)
602{
603	int i;
604
605	for (i = 0; i < MAXGROUPS; i++)
606		if (priv->gfargrp[i].regs)
607			iounmap(priv->gfargrp[i].regs);
608}
609
610static void free_gfar_dev(struct gfar_private *priv)
611{
612	int i, j;
613
614	for (i = 0; i < priv->num_grps; i++)
615		for (j = 0; j < GFAR_NUM_IRQS; j++) {
616			kfree(priv->gfargrp[i].irqinfo[j]);
617			priv->gfargrp[i].irqinfo[j] = NULL;
618		}
619
620	free_netdev(priv->ndev);
621}
622
623static void disable_napi(struct gfar_private *priv)
624{
625	int i;
626
627	for (i = 0; i < priv->num_grps; i++) {
628		napi_disable(&priv->gfargrp[i].napi_rx);
629		napi_disable(&priv->gfargrp[i].napi_tx);
630	}
631}
632
633static void enable_napi(struct gfar_private *priv)
634{
635	int i;
636
637	for (i = 0; i < priv->num_grps; i++) {
638		napi_enable(&priv->gfargrp[i].napi_rx);
639		napi_enable(&priv->gfargrp[i].napi_tx);
640	}
641}
642
643static int gfar_parse_group(struct device_node *np,
644			    struct gfar_private *priv, const char *model)
645{
646	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
647	int i;
648
649	for (i = 0; i < GFAR_NUM_IRQS; i++) {
650		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
651					  GFP_KERNEL);
652		if (!grp->irqinfo[i])
653			return -ENOMEM;
654	}
655
656	grp->regs = of_iomap(np, 0);
657	if (!grp->regs)
658		return -ENOMEM;
659
660	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
661
662	/* If we aren't the FEC we have multiple interrupts */
663	if (model && strcasecmp(model, "FEC")) {
664		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
665		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
666		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
667		    gfar_irq(grp, RX)->irq == NO_IRQ ||
668		    gfar_irq(grp, ER)->irq == NO_IRQ)
669			return -EINVAL;
670	}
671
672	grp->priv = priv;
673	spin_lock_init(&grp->grplock);
674	if (priv->mode == MQ_MG_MODE) {
675		u32 *rxq_mask, *txq_mask;
676		rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
677		txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
678
679		if (priv->poll_mode == GFAR_SQ_POLLING) {
680			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
681			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
682			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
683		} else { /* GFAR_MQ_POLLING */
684			grp->rx_bit_map = rxq_mask ?
685			*rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
686			grp->tx_bit_map = txq_mask ?
687			*txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
688		}
689	} else {
690		grp->rx_bit_map = 0xFF;
691		grp->tx_bit_map = 0xFF;
692	}
693
694	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
695	 * right to left, so we need to revert the 8 bits to get the q index
696	 */
697	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
698	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
699
700	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
701	 * also assign queues to groups
702	 */
703	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
704		if (!grp->rx_queue)
705			grp->rx_queue = priv->rx_queue[i];
706		grp->num_rx_queues++;
707		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
708		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
709		priv->rx_queue[i]->grp = grp;
710	}
711
712	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
713		if (!grp->tx_queue)
714			grp->tx_queue = priv->tx_queue[i];
715		grp->num_tx_queues++;
716		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
717		priv->tqueue |= (TQUEUE_EN0 >> i);
718		priv->tx_queue[i]->grp = grp;
719	}
720
721	priv->num_grps++;
722
723	return 0;
724}
725
726static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
727{
728	const char *model;
729	const char *ctype;
730	const void *mac_addr;
731	int err = 0, i;
732	struct net_device *dev = NULL;
733	struct gfar_private *priv = NULL;
734	struct device_node *np = ofdev->dev.of_node;
735	struct device_node *child = NULL;
736	const u32 *stash;
737	const u32 *stash_len;
738	const u32 *stash_idx;
739	unsigned int num_tx_qs, num_rx_qs;
740	u32 *tx_queues, *rx_queues;
741	unsigned short mode, poll_mode;
742
743	if (!np || !of_device_is_available(np))
744		return -ENODEV;
745
746	if (of_device_is_compatible(np, "fsl,etsec2")) {
747		mode = MQ_MG_MODE;
748		poll_mode = GFAR_SQ_POLLING;
749	} else {
750		mode = SQ_SG_MODE;
751		poll_mode = GFAR_SQ_POLLING;
752	}
753
754	/* parse the num of HW tx and rx queues */
755	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
756	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
757
758	if (mode == SQ_SG_MODE) {
759		num_tx_qs = 1;
760		num_rx_qs = 1;
761	} else { /* MQ_MG_MODE */
762		/* get the actual number of supported groups */
763		unsigned int num_grps = of_get_available_child_count(np);
764
765		if (num_grps == 0 || num_grps > MAXGROUPS) {
766			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767				num_grps);
768			pr_err("Cannot do alloc_etherdev, aborting\n");
769			return -EINVAL;
770		}
771
772		if (poll_mode == GFAR_SQ_POLLING) {
773			num_tx_qs = num_grps; /* one txq per int group */
774			num_rx_qs = num_grps; /* one rxq per int group */
775		} else { /* GFAR_MQ_POLLING */
776			num_tx_qs = tx_queues ? *tx_queues : 1;
777			num_rx_qs = rx_queues ? *rx_queues : 1;
778		}
779	}
780
781	if (num_tx_qs > MAX_TX_QS) {
782		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
783		       num_tx_qs, MAX_TX_QS);
784		pr_err("Cannot do alloc_etherdev, aborting\n");
785		return -EINVAL;
786	}
787
788	if (num_rx_qs > MAX_RX_QS) {
789		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
790		       num_rx_qs, MAX_RX_QS);
791		pr_err("Cannot do alloc_etherdev, aborting\n");
792		return -EINVAL;
793	}
794
795	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
796	dev = *pdev;
797	if (NULL == dev)
798		return -ENOMEM;
799
800	priv = netdev_priv(dev);
801	priv->ndev = dev;
802
803	priv->mode = mode;
804	priv->poll_mode = poll_mode;
805
806	priv->num_tx_queues = num_tx_qs;
807	netif_set_real_num_rx_queues(dev, num_rx_qs);
808	priv->num_rx_queues = num_rx_qs;
809
810	err = gfar_alloc_tx_queues(priv);
811	if (err)
812		goto tx_alloc_failed;
813
814	err = gfar_alloc_rx_queues(priv);
815	if (err)
816		goto rx_alloc_failed;
817
818	/* Init Rx queue filer rule set linked list */
819	INIT_LIST_HEAD(&priv->rx_list.list);
820	priv->rx_list.count = 0;
821	mutex_init(&priv->rx_queue_access);
822
823	model = of_get_property(np, "model", NULL);
824
825	for (i = 0; i < MAXGROUPS; i++)
826		priv->gfargrp[i].regs = NULL;
827
828	/* Parse and initialize group specific information */
829	if (priv->mode == MQ_MG_MODE) {
830		for_each_child_of_node(np, child) {
831			err = gfar_parse_group(child, priv, model);
832			if (err)
833				goto err_grp_init;
834		}
835	} else { /* SQ_SG_MODE */
836		err = gfar_parse_group(np, priv, model);
837		if (err)
838			goto err_grp_init;
839	}
840
841	stash = of_get_property(np, "bd-stash", NULL);
842
843	if (stash) {
844		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
845		priv->bd_stash_en = 1;
846	}
847
848	stash_len = of_get_property(np, "rx-stash-len", NULL);
849
850	if (stash_len)
851		priv->rx_stash_size = *stash_len;
852
853	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
854
855	if (stash_idx)
856		priv->rx_stash_index = *stash_idx;
857
858	if (stash_len || stash_idx)
859		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
860
861	mac_addr = of_get_mac_address(np);
862
863	if (mac_addr)
864		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
865
866	if (model && !strcasecmp(model, "TSEC"))
867		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
868				     FSL_GIANFAR_DEV_HAS_COALESCE |
869				     FSL_GIANFAR_DEV_HAS_RMON |
870				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
871
872	if (model && !strcasecmp(model, "eTSEC"))
873		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
874				     FSL_GIANFAR_DEV_HAS_COALESCE |
875				     FSL_GIANFAR_DEV_HAS_RMON |
876				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
877				     FSL_GIANFAR_DEV_HAS_CSUM |
878				     FSL_GIANFAR_DEV_HAS_VLAN |
879				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
880				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
881				     FSL_GIANFAR_DEV_HAS_TIMER;
882
883	ctype = of_get_property(np, "phy-connection-type", NULL);
884
885	/* We only care about rgmii-id.  The rest are autodetected */
886	if (ctype && !strcmp(ctype, "rgmii-id"))
887		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
888	else
889		priv->interface = PHY_INTERFACE_MODE_MII;
890
891	if (of_get_property(np, "fsl,magic-packet", NULL))
892		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
893
894	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
895
896	/* In the case of a fixed PHY, the DT node associated
897	 * to the PHY is the Ethernet MAC DT node.
898	 */
899	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
900		err = of_phy_register_fixed_link(np);
901		if (err)
902			goto err_grp_init;
903
904		priv->phy_node = of_node_get(np);
905	}
906
907	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
908	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
909
910	return 0;
911
912err_grp_init:
913	unmap_group_regs(priv);
914rx_alloc_failed:
915	gfar_free_rx_queues(priv);
916tx_alloc_failed:
917	gfar_free_tx_queues(priv);
918	free_gfar_dev(priv);
919	return err;
920}
921
922static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
923{
924	struct hwtstamp_config config;
925	struct gfar_private *priv = netdev_priv(netdev);
926
927	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
928		return -EFAULT;
929
930	/* reserved for future extensions */
931	if (config.flags)
932		return -EINVAL;
933
934	switch (config.tx_type) {
935	case HWTSTAMP_TX_OFF:
936		priv->hwts_tx_en = 0;
937		break;
938	case HWTSTAMP_TX_ON:
939		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
940			return -ERANGE;
941		priv->hwts_tx_en = 1;
942		break;
943	default:
944		return -ERANGE;
945	}
946
947	switch (config.rx_filter) {
948	case HWTSTAMP_FILTER_NONE:
949		if (priv->hwts_rx_en) {
950			priv->hwts_rx_en = 0;
951			reset_gfar(netdev);
952		}
953		break;
954	default:
955		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956			return -ERANGE;
957		if (!priv->hwts_rx_en) {
958			priv->hwts_rx_en = 1;
959			reset_gfar(netdev);
960		}
961		config.rx_filter = HWTSTAMP_FILTER_ALL;
962		break;
963	}
964
965	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
966		-EFAULT : 0;
967}
968
969static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
970{
971	struct hwtstamp_config config;
972	struct gfar_private *priv = netdev_priv(netdev);
973
974	config.flags = 0;
975	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
976	config.rx_filter = (priv->hwts_rx_en ?
977			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
978
979	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
980		-EFAULT : 0;
981}
982
983static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
984{
985	struct gfar_private *priv = netdev_priv(dev);
986
987	if (!netif_running(dev))
988		return -EINVAL;
989
990	if (cmd == SIOCSHWTSTAMP)
991		return gfar_hwtstamp_set(dev, rq);
992	if (cmd == SIOCGHWTSTAMP)
993		return gfar_hwtstamp_get(dev, rq);
994
995	if (!priv->phydev)
996		return -ENODEV;
997
998	return phy_mii_ioctl(priv->phydev, rq, cmd);
999}
1000
1001static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1002				   u32 class)
1003{
1004	u32 rqfpr = FPR_FILER_MASK;
1005	u32 rqfcr = 0x0;
1006
1007	rqfar--;
1008	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1009	priv->ftp_rqfpr[rqfar] = rqfpr;
1010	priv->ftp_rqfcr[rqfar] = rqfcr;
1011	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1012
1013	rqfar--;
1014	rqfcr = RQFCR_CMP_NOMATCH;
1015	priv->ftp_rqfpr[rqfar] = rqfpr;
1016	priv->ftp_rqfcr[rqfar] = rqfcr;
1017	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1018
1019	rqfar--;
1020	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1021	rqfpr = class;
1022	priv->ftp_rqfcr[rqfar] = rqfcr;
1023	priv->ftp_rqfpr[rqfar] = rqfpr;
1024	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1025
1026	rqfar--;
1027	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1028	rqfpr = class;
1029	priv->ftp_rqfcr[rqfar] = rqfcr;
1030	priv->ftp_rqfpr[rqfar] = rqfpr;
1031	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1032
1033	return rqfar;
1034}
1035
1036static void gfar_init_filer_table(struct gfar_private *priv)
1037{
1038	int i = 0x0;
1039	u32 rqfar = MAX_FILER_IDX;
1040	u32 rqfcr = 0x0;
1041	u32 rqfpr = FPR_FILER_MASK;
1042
1043	/* Default rule */
1044	rqfcr = RQFCR_CMP_MATCH;
1045	priv->ftp_rqfcr[rqfar] = rqfcr;
1046	priv->ftp_rqfpr[rqfar] = rqfpr;
1047	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048
1049	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1050	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1051	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1052	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1053	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1054	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1055
1056	/* cur_filer_idx indicated the first non-masked rule */
1057	priv->cur_filer_idx = rqfar;
1058
1059	/* Rest are masked rules */
1060	rqfcr = RQFCR_CMP_NOMATCH;
1061	for (i = 0; i < rqfar; i++) {
1062		priv->ftp_rqfcr[i] = rqfcr;
1063		priv->ftp_rqfpr[i] = rqfpr;
1064		gfar_write_filer(priv, i, rqfcr, rqfpr);
1065	}
1066}
1067
1068#ifdef CONFIG_PPC
1069static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1070{
1071	unsigned int pvr = mfspr(SPRN_PVR);
1072	unsigned int svr = mfspr(SPRN_SVR);
1073	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1074	unsigned int rev = svr & 0xffff;
1075
1076	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1077	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1078	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1079		priv->errata |= GFAR_ERRATA_74;
1080
1081	/* MPC8313 and MPC837x all rev */
1082	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1083	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1084		priv->errata |= GFAR_ERRATA_76;
1085
1086	/* MPC8313 Rev < 2.0 */
1087	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1088		priv->errata |= GFAR_ERRATA_12;
1089}
1090
1091static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1092{
1093	unsigned int svr = mfspr(SPRN_SVR);
1094
1095	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1096		priv->errata |= GFAR_ERRATA_12;
1097	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1098	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1099		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1100}
1101#endif
1102
1103static void gfar_detect_errata(struct gfar_private *priv)
1104{
1105	struct device *dev = &priv->ofdev->dev;
1106
1107	/* no plans to fix */
1108	priv->errata |= GFAR_ERRATA_A002;
1109
1110#ifdef CONFIG_PPC
1111	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1112		__gfar_detect_errata_85xx(priv);
1113	else /* non-mpc85xx parts, i.e. e300 core based */
1114		__gfar_detect_errata_83xx(priv);
1115#endif
1116
1117	if (priv->errata)
1118		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1119			 priv->errata);
1120}
1121
1122void gfar_mac_reset(struct gfar_private *priv)
1123{
1124	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1125	u32 tempval;
1126
1127	/* Reset MAC layer */
1128	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1129
1130	/* We need to delay at least 3 TX clocks */
1131	udelay(3);
1132
1133	/* the soft reset bit is not self-resetting, so we need to
1134	 * clear it before resuming normal operation
1135	 */
1136	gfar_write(&regs->maccfg1, 0);
1137
1138	udelay(3);
1139
1140	/* Compute rx_buff_size based on config flags */
1141	gfar_rx_buff_size_config(priv);
1142
1143	/* Initialize the max receive frame/buffer lengths */
1144	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1145	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1146
1147	/* Initialize the Minimum Frame Length Register */
1148	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1149
1150	/* Initialize MACCFG2. */
1151	tempval = MACCFG2_INIT_SETTINGS;
1152
1153	/* If the mtu is larger than the max size for standard
1154	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1155	 * to allow huge frames, and to check the length
1156	 */
1157	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1158	    gfar_has_errata(priv, GFAR_ERRATA_74))
1159		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1160
1161	gfar_write(&regs->maccfg2, tempval);
1162
1163	/* Clear mac addr hash registers */
1164	gfar_write(&regs->igaddr0, 0);
1165	gfar_write(&regs->igaddr1, 0);
1166	gfar_write(&regs->igaddr2, 0);
1167	gfar_write(&regs->igaddr3, 0);
1168	gfar_write(&regs->igaddr4, 0);
1169	gfar_write(&regs->igaddr5, 0);
1170	gfar_write(&regs->igaddr6, 0);
1171	gfar_write(&regs->igaddr7, 0);
1172
1173	gfar_write(&regs->gaddr0, 0);
1174	gfar_write(&regs->gaddr1, 0);
1175	gfar_write(&regs->gaddr2, 0);
1176	gfar_write(&regs->gaddr3, 0);
1177	gfar_write(&regs->gaddr4, 0);
1178	gfar_write(&regs->gaddr5, 0);
1179	gfar_write(&regs->gaddr6, 0);
1180	gfar_write(&regs->gaddr7, 0);
1181
1182	if (priv->extended_hash)
1183		gfar_clear_exact_match(priv->ndev);
1184
1185	gfar_mac_rx_config(priv);
1186
1187	gfar_mac_tx_config(priv);
1188
1189	gfar_set_mac_address(priv->ndev);
1190
1191	gfar_set_multi(priv->ndev);
1192
1193	/* clear ievent and imask before configuring coalescing */
1194	gfar_ints_disable(priv);
1195
1196	/* Configure the coalescing support */
1197	gfar_configure_coalescing_all(priv);
1198}
1199
1200static void gfar_hw_init(struct gfar_private *priv)
1201{
1202	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1203	u32 attrs;
1204
1205	/* Stop the DMA engine now, in case it was running before
1206	 * (The firmware could have used it, and left it running).
1207	 */
1208	gfar_halt(priv);
1209
1210	gfar_mac_reset(priv);
1211
1212	/* Zero out the rmon mib registers if it has them */
1213	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1214		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1215
1216		/* Mask off the CAM interrupts */
1217		gfar_write(&regs->rmon.cam1, 0xffffffff);
1218		gfar_write(&regs->rmon.cam2, 0xffffffff);
1219	}
1220
1221	/* Initialize ECNTRL */
1222	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1223
1224	/* Set the extraction length and index */
1225	attrs = ATTRELI_EL(priv->rx_stash_size) |
1226		ATTRELI_EI(priv->rx_stash_index);
1227
1228	gfar_write(&regs->attreli, attrs);
1229
1230	/* Start with defaults, and add stashing
1231	 * depending on driver parameters
1232	 */
1233	attrs = ATTR_INIT_SETTINGS;
1234
1235	if (priv->bd_stash_en)
1236		attrs |= ATTR_BDSTASH;
1237
1238	if (priv->rx_stash_size != 0)
1239		attrs |= ATTR_BUFSTASH;
1240
1241	gfar_write(&regs->attr, attrs);
1242
1243	/* FIFO configs */
1244	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1245	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1246	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1247
1248	/* Program the interrupt steering regs, only for MG devices */
1249	if (priv->num_grps > 1)
1250		gfar_write_isrg(priv);
1251}
1252
1253static void gfar_init_addr_hash_table(struct gfar_private *priv)
1254{
1255	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1256
1257	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1258		priv->extended_hash = 1;
1259		priv->hash_width = 9;
1260
1261		priv->hash_regs[0] = &regs->igaddr0;
1262		priv->hash_regs[1] = &regs->igaddr1;
1263		priv->hash_regs[2] = &regs->igaddr2;
1264		priv->hash_regs[3] = &regs->igaddr3;
1265		priv->hash_regs[4] = &regs->igaddr4;
1266		priv->hash_regs[5] = &regs->igaddr5;
1267		priv->hash_regs[6] = &regs->igaddr6;
1268		priv->hash_regs[7] = &regs->igaddr7;
1269		priv->hash_regs[8] = &regs->gaddr0;
1270		priv->hash_regs[9] = &regs->gaddr1;
1271		priv->hash_regs[10] = &regs->gaddr2;
1272		priv->hash_regs[11] = &regs->gaddr3;
1273		priv->hash_regs[12] = &regs->gaddr4;
1274		priv->hash_regs[13] = &regs->gaddr5;
1275		priv->hash_regs[14] = &regs->gaddr6;
1276		priv->hash_regs[15] = &regs->gaddr7;
1277
1278	} else {
1279		priv->extended_hash = 0;
1280		priv->hash_width = 8;
1281
1282		priv->hash_regs[0] = &regs->gaddr0;
1283		priv->hash_regs[1] = &regs->gaddr1;
1284		priv->hash_regs[2] = &regs->gaddr2;
1285		priv->hash_regs[3] = &regs->gaddr3;
1286		priv->hash_regs[4] = &regs->gaddr4;
1287		priv->hash_regs[5] = &regs->gaddr5;
1288		priv->hash_regs[6] = &regs->gaddr6;
1289		priv->hash_regs[7] = &regs->gaddr7;
1290	}
1291}
1292
1293/* Set up the ethernet device structure, private data,
1294 * and anything else we need before we start
1295 */
1296static int gfar_probe(struct platform_device *ofdev)
1297{
1298	struct net_device *dev = NULL;
1299	struct gfar_private *priv = NULL;
1300	int err = 0, i;
1301
1302	err = gfar_of_init(ofdev, &dev);
1303
1304	if (err)
1305		return err;
1306
1307	priv = netdev_priv(dev);
1308	priv->ndev = dev;
1309	priv->ofdev = ofdev;
1310	priv->dev = &ofdev->dev;
1311	SET_NETDEV_DEV(dev, &ofdev->dev);
1312
1313	spin_lock_init(&priv->bflock);
1314	INIT_WORK(&priv->reset_task, gfar_reset_task);
1315
1316	platform_set_drvdata(ofdev, priv);
1317
1318	gfar_detect_errata(priv);
1319
1320	/* Set the dev->base_addr to the gfar reg region */
1321	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1322
1323	/* Fill in the dev structure */
1324	dev->watchdog_timeo = TX_TIMEOUT;
1325	dev->mtu = 1500;
1326	dev->netdev_ops = &gfar_netdev_ops;
1327	dev->ethtool_ops = &gfar_ethtool_ops;
1328
1329	/* Register for napi ...We are registering NAPI for each grp */
1330	for (i = 0; i < priv->num_grps; i++) {
1331		if (priv->poll_mode == GFAR_SQ_POLLING) {
1332			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1333				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1334			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1335				       gfar_poll_tx_sq, 2);
1336		} else {
1337			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1338				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1339			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1340				       gfar_poll_tx, 2);
1341		}
1342	}
1343
1344	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1345		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1346				   NETIF_F_RXCSUM;
1347		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1348				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1349	}
1350
1351	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1352		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1353				    NETIF_F_HW_VLAN_CTAG_RX;
1354		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1355	}
1356
1357	gfar_init_addr_hash_table(priv);
1358
1359	/* Insert receive time stamps into padding alignment bytes */
1360	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1361		priv->padding = 8;
1362
1363	if (dev->features & NETIF_F_IP_CSUM ||
1364	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1365		dev->needed_headroom = GMAC_FCB_LEN;
1366
1367	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1368
1369	/* Initializing some of the rx/tx queue level parameters */
1370	for (i = 0; i < priv->num_tx_queues; i++) {
1371		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1372		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1373		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1374		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1375	}
1376
1377	for (i = 0; i < priv->num_rx_queues; i++) {
1378		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1379		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1380		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1381	}
1382
1383	/* always enable rx filer */
1384	priv->rx_filer_enable = 1;
1385	/* Enable most messages by default */
1386	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1387	/* use pritority h/w tx queue scheduling for single queue devices */
1388	if (priv->num_tx_queues == 1)
1389		priv->prio_sched_en = 1;
1390
1391	set_bit(GFAR_DOWN, &priv->state);
1392
1393	gfar_hw_init(priv);
1394
1395	/* Carrier starts down, phylib will bring it up */
1396	netif_carrier_off(dev);
1397
1398	err = register_netdev(dev);
1399
1400	if (err) {
1401		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1402		goto register_fail;
1403	}
1404
1405	device_init_wakeup(&dev->dev,
1406			   priv->device_flags &
1407			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1408
1409	/* fill out IRQ number and name fields */
1410	for (i = 0; i < priv->num_grps; i++) {
1411		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1412		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1413			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1414				dev->name, "_g", '0' + i, "_tx");
1415			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1416				dev->name, "_g", '0' + i, "_rx");
1417			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1418				dev->name, "_g", '0' + i, "_er");
1419		} else
1420			strcpy(gfar_irq(grp, TX)->name, dev->name);
1421	}
1422
1423	/* Initialize the filer table */
1424	gfar_init_filer_table(priv);
1425
1426	/* Print out the device info */
1427	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1428
1429	/* Even more device info helps when determining which kernel
1430	 * provided which set of benchmarks.
1431	 */
1432	netdev_info(dev, "Running with NAPI enabled\n");
1433	for (i = 0; i < priv->num_rx_queues; i++)
1434		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1435			    i, priv->rx_queue[i]->rx_ring_size);
1436	for (i = 0; i < priv->num_tx_queues; i++)
1437		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1438			    i, priv->tx_queue[i]->tx_ring_size);
1439
1440	return 0;
1441
1442register_fail:
1443	unmap_group_regs(priv);
1444	gfar_free_rx_queues(priv);
1445	gfar_free_tx_queues(priv);
1446	of_node_put(priv->phy_node);
1447	of_node_put(priv->tbi_node);
1448	free_gfar_dev(priv);
1449	return err;
1450}
1451
1452static int gfar_remove(struct platform_device *ofdev)
1453{
1454	struct gfar_private *priv = platform_get_drvdata(ofdev);
1455
1456	of_node_put(priv->phy_node);
1457	of_node_put(priv->tbi_node);
1458
1459	unregister_netdev(priv->ndev);
1460	unmap_group_regs(priv);
1461	gfar_free_rx_queues(priv);
1462	gfar_free_tx_queues(priv);
1463	free_gfar_dev(priv);
1464
1465	return 0;
1466}
1467
1468#ifdef CONFIG_PM
1469
1470static int gfar_suspend(struct device *dev)
1471{
1472	struct gfar_private *priv = dev_get_drvdata(dev);
1473	struct net_device *ndev = priv->ndev;
1474	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1475	unsigned long flags;
1476	u32 tempval;
1477
1478	int magic_packet = priv->wol_en &&
1479			   (priv->device_flags &
1480			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1481
1482	netif_device_detach(ndev);
1483
1484	if (netif_running(ndev)) {
1485
1486		local_irq_save(flags);
1487		lock_tx_qs(priv);
1488
1489		gfar_halt_nodisable(priv);
1490
1491		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1492		tempval = gfar_read(&regs->maccfg1);
1493
1494		tempval &= ~MACCFG1_TX_EN;
1495
1496		if (!magic_packet)
1497			tempval &= ~MACCFG1_RX_EN;
1498
1499		gfar_write(&regs->maccfg1, tempval);
1500
1501		unlock_tx_qs(priv);
1502		local_irq_restore(flags);
1503
1504		disable_napi(priv);
1505
1506		if (magic_packet) {
1507			/* Enable interrupt on Magic Packet */
1508			gfar_write(&regs->imask, IMASK_MAG);
1509
1510			/* Enable Magic Packet mode */
1511			tempval = gfar_read(&regs->maccfg2);
1512			tempval |= MACCFG2_MPEN;
1513			gfar_write(&regs->maccfg2, tempval);
1514		} else {
1515			phy_stop(priv->phydev);
1516		}
1517	}
1518
1519	return 0;
1520}
1521
1522static int gfar_resume(struct device *dev)
1523{
1524	struct gfar_private *priv = dev_get_drvdata(dev);
1525	struct net_device *ndev = priv->ndev;
1526	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1527	unsigned long flags;
1528	u32 tempval;
1529	int magic_packet = priv->wol_en &&
1530			   (priv->device_flags &
1531			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1532
1533	if (!netif_running(ndev)) {
1534		netif_device_attach(ndev);
1535		return 0;
1536	}
1537
1538	if (!magic_packet && priv->phydev)
1539		phy_start(priv->phydev);
1540
1541	/* Disable Magic Packet mode, in case something
1542	 * else woke us up.
1543	 */
1544	local_irq_save(flags);
1545	lock_tx_qs(priv);
1546
1547	tempval = gfar_read(&regs->maccfg2);
1548	tempval &= ~MACCFG2_MPEN;
1549	gfar_write(&regs->maccfg2, tempval);
1550
1551	gfar_start(priv);
1552
1553	unlock_tx_qs(priv);
1554	local_irq_restore(flags);
1555
1556	netif_device_attach(ndev);
1557
1558	enable_napi(priv);
1559
1560	return 0;
1561}
1562
1563static int gfar_restore(struct device *dev)
1564{
1565	struct gfar_private *priv = dev_get_drvdata(dev);
1566	struct net_device *ndev = priv->ndev;
1567
1568	if (!netif_running(ndev)) {
1569		netif_device_attach(ndev);
1570
1571		return 0;
1572	}
1573
1574	if (gfar_init_bds(ndev)) {
1575		free_skb_resources(priv);
1576		return -ENOMEM;
1577	}
1578
1579	gfar_mac_reset(priv);
1580
1581	gfar_init_tx_rx_base(priv);
1582
1583	gfar_start(priv);
1584
1585	priv->oldlink = 0;
1586	priv->oldspeed = 0;
1587	priv->oldduplex = -1;
1588
1589	if (priv->phydev)
1590		phy_start(priv->phydev);
1591
1592	netif_device_attach(ndev);
1593	enable_napi(priv);
1594
1595	return 0;
1596}
1597
1598static struct dev_pm_ops gfar_pm_ops = {
1599	.suspend = gfar_suspend,
1600	.resume = gfar_resume,
1601	.freeze = gfar_suspend,
1602	.thaw = gfar_resume,
1603	.restore = gfar_restore,
1604};
1605
1606#define GFAR_PM_OPS (&gfar_pm_ops)
1607
1608#else
1609
1610#define GFAR_PM_OPS NULL
1611
1612#endif
1613
1614/* Reads the controller's registers to determine what interface
1615 * connects it to the PHY.
1616 */
1617static phy_interface_t gfar_get_interface(struct net_device *dev)
1618{
1619	struct gfar_private *priv = netdev_priv(dev);
1620	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1621	u32 ecntrl;
1622
1623	ecntrl = gfar_read(&regs->ecntrl);
1624
1625	if (ecntrl & ECNTRL_SGMII_MODE)
1626		return PHY_INTERFACE_MODE_SGMII;
1627
1628	if (ecntrl & ECNTRL_TBI_MODE) {
1629		if (ecntrl & ECNTRL_REDUCED_MODE)
1630			return PHY_INTERFACE_MODE_RTBI;
1631		else
1632			return PHY_INTERFACE_MODE_TBI;
1633	}
1634
1635	if (ecntrl & ECNTRL_REDUCED_MODE) {
1636		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1637			return PHY_INTERFACE_MODE_RMII;
1638		}
1639		else {
1640			phy_interface_t interface = priv->interface;
1641
1642			/* This isn't autodetected right now, so it must
1643			 * be set by the device tree or platform code.
1644			 */
1645			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1646				return PHY_INTERFACE_MODE_RGMII_ID;
1647
1648			return PHY_INTERFACE_MODE_RGMII;
1649		}
1650	}
1651
1652	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1653		return PHY_INTERFACE_MODE_GMII;
1654
1655	return PHY_INTERFACE_MODE_MII;
1656}
1657
1658
1659/* Initializes driver's PHY state, and attaches to the PHY.
1660 * Returns 0 on success.
1661 */
1662static int init_phy(struct net_device *dev)
1663{
1664	struct gfar_private *priv = netdev_priv(dev);
1665	uint gigabit_support =
1666		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1667		GFAR_SUPPORTED_GBIT : 0;
1668	phy_interface_t interface;
1669
1670	priv->oldlink = 0;
1671	priv->oldspeed = 0;
1672	priv->oldduplex = -1;
1673
1674	interface = gfar_get_interface(dev);
1675
1676	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1677				      interface);
1678	if (!priv->phydev) {
1679		dev_err(&dev->dev, "could not attach to PHY\n");
1680		return -ENODEV;
1681	}
1682
1683	if (interface == PHY_INTERFACE_MODE_SGMII)
1684		gfar_configure_serdes(dev);
1685
1686	/* Remove any features not supported by the controller */
1687	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1688	priv->phydev->advertising = priv->phydev->supported;
1689
1690	return 0;
1691}
1692
1693/* Initialize TBI PHY interface for communicating with the
1694 * SERDES lynx PHY on the chip.  We communicate with this PHY
1695 * through the MDIO bus on each controller, treating it as a
1696 * "normal" PHY at the address found in the TBIPA register.  We assume
1697 * that the TBIPA register is valid.  Either the MDIO bus code will set
1698 * it to a value that doesn't conflict with other PHYs on the bus, or the
1699 * value doesn't matter, as there are no other PHYs on the bus.
1700 */
1701static void gfar_configure_serdes(struct net_device *dev)
1702{
1703	struct gfar_private *priv = netdev_priv(dev);
1704	struct phy_device *tbiphy;
1705
1706	if (!priv->tbi_node) {
1707		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1708				    "device tree specify a tbi-handle\n");
1709		return;
1710	}
1711
1712	tbiphy = of_phy_find_device(priv->tbi_node);
1713	if (!tbiphy) {
1714		dev_err(&dev->dev, "error: Could not get TBI device\n");
1715		return;
1716	}
1717
1718	/* If the link is already up, we must already be ok, and don't need to
1719	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1720	 * everything for us?  Resetting it takes the link down and requires
1721	 * several seconds for it to come back.
1722	 */
1723	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1724		return;
1725
1726	/* Single clk mode, mii mode off(for serdes communication) */
1727	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1728
1729	phy_write(tbiphy, MII_ADVERTISE,
1730		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1731		  ADVERTISE_1000XPSE_ASYM);
1732
1733	phy_write(tbiphy, MII_BMCR,
1734		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1735		  BMCR_SPEED1000);
1736}
1737
1738static int __gfar_is_rx_idle(struct gfar_private *priv)
1739{
1740	u32 res;
1741
1742	/* Normaly TSEC should not hang on GRS commands, so we should
1743	 * actually wait for IEVENT_GRSC flag.
1744	 */
1745	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1746		return 0;
1747
1748	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1749	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1750	 * and the Rx can be safely reset.
1751	 */
1752	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1753	res &= 0x7f807f80;
1754	if ((res & 0xffff) == (res >> 16))
1755		return 1;
1756
1757	return 0;
1758}
1759
1760/* Halt the receive and transmit queues */
1761static void gfar_halt_nodisable(struct gfar_private *priv)
1762{
1763	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1764	u32 tempval;
1765	unsigned int timeout;
1766	int stopped;
1767
1768	gfar_ints_disable(priv);
1769
1770	if (gfar_is_dma_stopped(priv))
1771		return;
1772
1773	/* Stop the DMA, and wait for it to stop */
1774	tempval = gfar_read(&regs->dmactrl);
1775	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1776	gfar_write(&regs->dmactrl, tempval);
1777
1778retry:
1779	timeout = 1000;
1780	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1781		cpu_relax();
1782		timeout--;
1783	}
1784
1785	if (!timeout)
1786		stopped = gfar_is_dma_stopped(priv);
1787
1788	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1789	    !__gfar_is_rx_idle(priv))
1790		goto retry;
1791}
1792
1793/* Halt the receive and transmit queues */
1794void gfar_halt(struct gfar_private *priv)
1795{
1796	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1797	u32 tempval;
1798
1799	/* Dissable the Rx/Tx hw queues */
1800	gfar_write(&regs->rqueue, 0);
1801	gfar_write(&regs->tqueue, 0);
1802
1803	mdelay(10);
1804
1805	gfar_halt_nodisable(priv);
1806
1807	/* Disable Rx/Tx DMA */
1808	tempval = gfar_read(&regs->maccfg1);
1809	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1810	gfar_write(&regs->maccfg1, tempval);
1811}
1812
1813void stop_gfar(struct net_device *dev)
1814{
1815	struct gfar_private *priv = netdev_priv(dev);
1816
1817	netif_tx_stop_all_queues(dev);
1818
1819	smp_mb__before_atomic();
1820	set_bit(GFAR_DOWN, &priv->state);
1821	smp_mb__after_atomic();
1822
1823	disable_napi(priv);
1824
1825	/* disable ints and gracefully shut down Rx/Tx DMA */
1826	gfar_halt(priv);
1827
1828	phy_stop(priv->phydev);
1829
1830	free_skb_resources(priv);
1831}
1832
1833static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1834{
1835	struct txbd8 *txbdp;
1836	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1837	int i, j;
1838
1839	txbdp = tx_queue->tx_bd_base;
1840
1841	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1842		if (!tx_queue->tx_skbuff[i])
1843			continue;
1844
1845		dma_unmap_single(priv->dev, txbdp->bufPtr,
1846				 txbdp->length, DMA_TO_DEVICE);
1847		txbdp->lstatus = 0;
1848		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1849		     j++) {
1850			txbdp++;
1851			dma_unmap_page(priv->dev, txbdp->bufPtr,
1852				       txbdp->length, DMA_TO_DEVICE);
1853		}
1854		txbdp++;
1855		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1856		tx_queue->tx_skbuff[i] = NULL;
1857	}
1858	kfree(tx_queue->tx_skbuff);
1859	tx_queue->tx_skbuff = NULL;
1860}
1861
1862static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1863{
1864	struct rxbd8 *rxbdp;
1865	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1866	int i;
1867
1868	rxbdp = rx_queue->rx_bd_base;
1869
1870	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1871		if (rx_queue->rx_skbuff[i]) {
1872			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1873					 priv->rx_buffer_size,
1874					 DMA_FROM_DEVICE);
1875			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1876			rx_queue->rx_skbuff[i] = NULL;
1877		}
1878		rxbdp->lstatus = 0;
1879		rxbdp->bufPtr = 0;
1880		rxbdp++;
1881	}
1882	kfree(rx_queue->rx_skbuff);
1883	rx_queue->rx_skbuff = NULL;
1884}
1885
1886/* If there are any tx skbs or rx skbs still around, free them.
1887 * Then free tx_skbuff and rx_skbuff
1888 */
1889static void free_skb_resources(struct gfar_private *priv)
1890{
1891	struct gfar_priv_tx_q *tx_queue = NULL;
1892	struct gfar_priv_rx_q *rx_queue = NULL;
1893	int i;
1894
1895	/* Go through all the buffer descriptors and free their data buffers */
1896	for (i = 0; i < priv->num_tx_queues; i++) {
1897		struct netdev_queue *txq;
1898
1899		tx_queue = priv->tx_queue[i];
1900		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1901		if (tx_queue->tx_skbuff)
1902			free_skb_tx_queue(tx_queue);
1903		netdev_tx_reset_queue(txq);
1904	}
1905
1906	for (i = 0; i < priv->num_rx_queues; i++) {
1907		rx_queue = priv->rx_queue[i];
1908		if (rx_queue->rx_skbuff)
1909			free_skb_rx_queue(rx_queue);
1910	}
1911
1912	dma_free_coherent(priv->dev,
1913			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1914			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1915			  priv->tx_queue[0]->tx_bd_base,
1916			  priv->tx_queue[0]->tx_bd_dma_base);
1917}
1918
1919void gfar_start(struct gfar_private *priv)
1920{
1921	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1922	u32 tempval;
1923	int i = 0;
1924
1925	/* Enable Rx/Tx hw queues */
1926	gfar_write(&regs->rqueue, priv->rqueue);
1927	gfar_write(&regs->tqueue, priv->tqueue);
1928
1929	/* Initialize DMACTRL to have WWR and WOP */
1930	tempval = gfar_read(&regs->dmactrl);
1931	tempval |= DMACTRL_INIT_SETTINGS;
1932	gfar_write(&regs->dmactrl, tempval);
1933
1934	/* Make sure we aren't stopped */
1935	tempval = gfar_read(&regs->dmactrl);
1936	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1937	gfar_write(&regs->dmactrl, tempval);
1938
1939	for (i = 0; i < priv->num_grps; i++) {
1940		regs = priv->gfargrp[i].regs;
1941		/* Clear THLT/RHLT, so that the DMA starts polling now */
1942		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1943		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1944	}
1945
1946	/* Enable Rx/Tx DMA */
1947	tempval = gfar_read(&regs->maccfg1);
1948	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1949	gfar_write(&regs->maccfg1, tempval);
1950
1951	gfar_ints_enable(priv);
1952
1953	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1954}
1955
1956static void free_grp_irqs(struct gfar_priv_grp *grp)
1957{
1958	free_irq(gfar_irq(grp, TX)->irq, grp);
1959	free_irq(gfar_irq(grp, RX)->irq, grp);
1960	free_irq(gfar_irq(grp, ER)->irq, grp);
1961}
1962
1963static int register_grp_irqs(struct gfar_priv_grp *grp)
1964{
1965	struct gfar_private *priv = grp->priv;
1966	struct net_device *dev = priv->ndev;
1967	int err;
1968
1969	/* If the device has multiple interrupts, register for
1970	 * them.  Otherwise, only register for the one
1971	 */
1972	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1973		/* Install our interrupt handlers for Error,
1974		 * Transmit, and Receive
1975		 */
1976		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1977				  gfar_irq(grp, ER)->name, grp);
1978		if (err < 0) {
1979			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1980				  gfar_irq(grp, ER)->irq);
1981
1982			goto err_irq_fail;
1983		}
1984		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1985				  gfar_irq(grp, TX)->name, grp);
1986		if (err < 0) {
1987			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1988				  gfar_irq(grp, TX)->irq);
1989			goto tx_irq_fail;
1990		}
1991		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1992				  gfar_irq(grp, RX)->name, grp);
1993		if (err < 0) {
1994			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1995				  gfar_irq(grp, RX)->irq);
1996			goto rx_irq_fail;
1997		}
1998	} else {
1999		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2000				  gfar_irq(grp, TX)->name, grp);
2001		if (err < 0) {
2002			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2003				  gfar_irq(grp, TX)->irq);
2004			goto err_irq_fail;
2005		}
2006	}
2007
2008	return 0;
2009
2010rx_irq_fail:
2011	free_irq(gfar_irq(grp, TX)->irq, grp);
2012tx_irq_fail:
2013	free_irq(gfar_irq(grp, ER)->irq, grp);
2014err_irq_fail:
2015	return err;
2016
2017}
2018
2019static void gfar_free_irq(struct gfar_private *priv)
2020{
2021	int i;
2022
2023	/* Free the IRQs */
2024	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2025		for (i = 0; i < priv->num_grps; i++)
2026			free_grp_irqs(&priv->gfargrp[i]);
2027	} else {
2028		for (i = 0; i < priv->num_grps; i++)
2029			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2030				 &priv->gfargrp[i]);
2031	}
2032}
2033
2034static int gfar_request_irq(struct gfar_private *priv)
2035{
2036	int err, i, j;
2037
2038	for (i = 0; i < priv->num_grps; i++) {
2039		err = register_grp_irqs(&priv->gfargrp[i]);
2040		if (err) {
2041			for (j = 0; j < i; j++)
2042				free_grp_irqs(&priv->gfargrp[j]);
2043			return err;
2044		}
2045	}
2046
2047	return 0;
2048}
2049
2050/* Bring the controller up and running */
2051int startup_gfar(struct net_device *ndev)
2052{
2053	struct gfar_private *priv = netdev_priv(ndev);
2054	int err;
2055
2056	gfar_mac_reset(priv);
2057
2058	err = gfar_alloc_skb_resources(ndev);
2059	if (err)
2060		return err;
2061
2062	gfar_init_tx_rx_base(priv);
2063
2064	smp_mb__before_atomic();
2065	clear_bit(GFAR_DOWN, &priv->state);
2066	smp_mb__after_atomic();
2067
2068	/* Start Rx/Tx DMA and enable the interrupts */
2069	gfar_start(priv);
2070
2071	phy_start(priv->phydev);
2072
2073	enable_napi(priv);
2074
2075	netif_tx_wake_all_queues(ndev);
2076
2077	return 0;
2078}
2079
2080/* Called when something needs to use the ethernet device
2081 * Returns 0 for success.
2082 */
2083static int gfar_enet_open(struct net_device *dev)
2084{
2085	struct gfar_private *priv = netdev_priv(dev);
2086	int err;
2087
2088	err = init_phy(dev);
2089	if (err)
2090		return err;
2091
2092	err = gfar_request_irq(priv);
2093	if (err)
2094		return err;
2095
2096	err = startup_gfar(dev);
2097	if (err)
2098		return err;
2099
2100	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2101
2102	return err;
2103}
2104
2105static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2106{
2107	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2108
2109	memset(fcb, 0, GMAC_FCB_LEN);
2110
2111	return fcb;
2112}
2113
2114static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2115				    int fcb_length)
2116{
2117	/* If we're here, it's a IP packet with a TCP or UDP
2118	 * payload.  We set it to checksum, using a pseudo-header
2119	 * we provide
2120	 */
2121	u8 flags = TXFCB_DEFAULT;
2122
2123	/* Tell the controller what the protocol is
2124	 * And provide the already calculated phcs
2125	 */
2126	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2127		flags |= TXFCB_UDP;
2128		fcb->phcs = udp_hdr(skb)->check;
2129	} else
2130		fcb->phcs = tcp_hdr(skb)->check;
2131
2132	/* l3os is the distance between the start of the
2133	 * frame (skb->data) and the start of the IP hdr.
2134	 * l4os is the distance between the start of the
2135	 * l3 hdr and the l4 hdr
2136	 */
2137	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2138	fcb->l4os = skb_network_header_len(skb);
2139
2140	fcb->flags = flags;
2141}
2142
2143void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2144{
2145	fcb->flags |= TXFCB_VLN;
2146	fcb->vlctl = vlan_tx_tag_get(skb);
2147}
2148
2149static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2150				      struct txbd8 *base, int ring_size)
2151{
2152	struct txbd8 *new_bd = bdp + stride;
2153
2154	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2155}
2156
2157static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2158				      int ring_size)
2159{
2160	return skip_txbd(bdp, 1, base, ring_size);
2161}
2162
2163/* eTSEC12: csum generation not supported for some fcb offsets */
2164static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2165				       unsigned long fcb_addr)
2166{
2167	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2168	       (fcb_addr % 0x20) > 0x18);
2169}
2170
2171/* eTSEC76: csum generation for frames larger than 2500 may
2172 * cause excess delays before start of transmission
2173 */
2174static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2175				       unsigned int len)
2176{
2177	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2178	       (len > 2500));
2179}
2180
2181/* This is called by the kernel when a frame is ready for transmission.
2182 * It is pointed to by the dev->hard_start_xmit function pointer
2183 */
2184static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2185{
2186	struct gfar_private *priv = netdev_priv(dev);
2187	struct gfar_priv_tx_q *tx_queue = NULL;
2188	struct netdev_queue *txq;
2189	struct gfar __iomem *regs = NULL;
2190	struct txfcb *fcb = NULL;
2191	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2192	u32 lstatus;
2193	int i, rq = 0;
2194	int do_tstamp, do_csum, do_vlan;
2195	u32 bufaddr;
2196	unsigned long flags;
2197	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2198
2199	rq = skb->queue_mapping;
2200	tx_queue = priv->tx_queue[rq];
2201	txq = netdev_get_tx_queue(dev, rq);
2202	base = tx_queue->tx_bd_base;
2203	regs = tx_queue->grp->regs;
2204
2205	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2206	do_vlan = vlan_tx_tag_present(skb);
2207	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2208		    priv->hwts_tx_en;
2209
2210	if (do_csum || do_vlan)
2211		fcb_len = GMAC_FCB_LEN;
2212
2213	/* check if time stamp should be generated */
2214	if (unlikely(do_tstamp))
2215		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2216
2217	/* make space for additional header when fcb is needed */
2218	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2219		struct sk_buff *skb_new;
2220
2221		skb_new = skb_realloc_headroom(skb, fcb_len);
2222		if (!skb_new) {
2223			dev->stats.tx_errors++;
2224			dev_kfree_skb_any(skb);
2225			return NETDEV_TX_OK;
2226		}
2227
2228		if (skb->sk)
2229			skb_set_owner_w(skb_new, skb->sk);
2230		dev_consume_skb_any(skb);
2231		skb = skb_new;
2232	}
2233
2234	/* total number of fragments in the SKB */
2235	nr_frags = skb_shinfo(skb)->nr_frags;
2236
2237	/* calculate the required number of TxBDs for this skb */
2238	if (unlikely(do_tstamp))
2239		nr_txbds = nr_frags + 2;
2240	else
2241		nr_txbds = nr_frags + 1;
2242
2243	/* check if there is space to queue this packet */
2244	if (nr_txbds > tx_queue->num_txbdfree) {
2245		/* no space, stop the queue */
2246		netif_tx_stop_queue(txq);
2247		dev->stats.tx_fifo_errors++;
2248		return NETDEV_TX_BUSY;
2249	}
2250
2251	/* Update transmit stats */
2252	bytes_sent = skb->len;
2253	tx_queue->stats.tx_bytes += bytes_sent;
2254	/* keep Tx bytes on wire for BQL accounting */
2255	GFAR_CB(skb)->bytes_sent = bytes_sent;
2256	tx_queue->stats.tx_packets++;
2257
2258	txbdp = txbdp_start = tx_queue->cur_tx;
2259	lstatus = txbdp->lstatus;
2260
2261	/* Time stamp insertion requires one additional TxBD */
2262	if (unlikely(do_tstamp))
2263		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2264						 tx_queue->tx_ring_size);
2265
2266	if (nr_frags == 0) {
2267		if (unlikely(do_tstamp))
2268			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2269							  TXBD_INTERRUPT);
2270		else
2271			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2272	} else {
2273		/* Place the fragment addresses and lengths into the TxBDs */
2274		for (i = 0; i < nr_frags; i++) {
2275			unsigned int frag_len;
2276			/* Point at the next BD, wrapping as needed */
2277			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2278
2279			frag_len = skb_shinfo(skb)->frags[i].size;
2280
2281			lstatus = txbdp->lstatus | frag_len |
2282				  BD_LFLAG(TXBD_READY);
2283
2284			/* Handle the last BD specially */
2285			if (i == nr_frags - 1)
2286				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2287
2288			bufaddr = skb_frag_dma_map(priv->dev,
2289						   &skb_shinfo(skb)->frags[i],
2290						   0,
2291						   frag_len,
2292						   DMA_TO_DEVICE);
2293
2294			/* set the TxBD length and buffer pointer */
2295			txbdp->bufPtr = bufaddr;
2296			txbdp->lstatus = lstatus;
2297		}
2298
2299		lstatus = txbdp_start->lstatus;
2300	}
2301
2302	/* Add TxPAL between FCB and frame if required */
2303	if (unlikely(do_tstamp)) {
2304		skb_push(skb, GMAC_TXPAL_LEN);
2305		memset(skb->data, 0, GMAC_TXPAL_LEN);
2306	}
2307
2308	/* Add TxFCB if required */
2309	if (fcb_len) {
2310		fcb = gfar_add_fcb(skb);
2311		lstatus |= BD_LFLAG(TXBD_TOE);
2312	}
2313
2314	/* Set up checksumming */
2315	if (do_csum) {
2316		gfar_tx_checksum(skb, fcb, fcb_len);
2317
2318		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2319		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2320			__skb_pull(skb, GMAC_FCB_LEN);
2321			skb_checksum_help(skb);
2322			if (do_vlan || do_tstamp) {
2323				/* put back a new fcb for vlan/tstamp TOE */
2324				fcb = gfar_add_fcb(skb);
2325			} else {
2326				/* Tx TOE not used */
2327				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2328				fcb = NULL;
2329			}
2330		}
2331	}
2332
2333	if (do_vlan)
2334		gfar_tx_vlan(skb, fcb);
2335
2336	/* Setup tx hardware time stamping if requested */
2337	if (unlikely(do_tstamp)) {
2338		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2339		fcb->ptp = 1;
2340	}
2341
2342	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2343					     skb_headlen(skb), DMA_TO_DEVICE);
2344
2345	/* If time stamping is requested one additional TxBD must be set up. The
2346	 * first TxBD points to the FCB and must have a data length of
2347	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2348	 * the full frame length.
2349	 */
2350	if (unlikely(do_tstamp)) {
2351		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2352		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2353					 (skb_headlen(skb) - fcb_len);
2354		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2355	} else {
2356		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2357	}
2358
2359	netdev_tx_sent_queue(txq, bytes_sent);
2360
2361	/* We can work in parallel with gfar_clean_tx_ring(), except
2362	 * when modifying num_txbdfree. Note that we didn't grab the lock
2363	 * when we were reading the num_txbdfree and checking for available
2364	 * space, that's because outside of this function it can only grow,
2365	 * and once we've got needed space, it cannot suddenly disappear.
2366	 *
2367	 * The lock also protects us from gfar_error(), which can modify
2368	 * regs->tstat and thus retrigger the transfers, which is why we
2369	 * also must grab the lock before setting ready bit for the first
2370	 * to be transmitted BD.
2371	 */
2372	spin_lock_irqsave(&tx_queue->txlock, flags);
2373
2374	gfar_wmb();
2375
2376	txbdp_start->lstatus = lstatus;
2377
2378	gfar_wmb(); /* force lstatus write before tx_skbuff */
2379
2380	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2381
2382	/* Update the current skb pointer to the next entry we will use
2383	 * (wrapping if necessary)
2384	 */
2385	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2386			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2387
2388	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2389
2390	/* reduce TxBD free count */
2391	tx_queue->num_txbdfree -= (nr_txbds);
2392
2393	/* If the next BD still needs to be cleaned up, then the bds
2394	 * are full.  We need to tell the kernel to stop sending us stuff.
2395	 */
2396	if (!tx_queue->num_txbdfree) {
2397		netif_tx_stop_queue(txq);
2398
2399		dev->stats.tx_fifo_errors++;
2400	}
2401
2402	/* Tell the DMA to go go go */
2403	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2404
2405	/* Unlock priv */
2406	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2407
2408	return NETDEV_TX_OK;
2409}
2410
2411/* Stops the kernel queue, and halts the controller */
2412static int gfar_close(struct net_device *dev)
2413{
2414	struct gfar_private *priv = netdev_priv(dev);
2415
2416	cancel_work_sync(&priv->reset_task);
2417	stop_gfar(dev);
2418
2419	/* Disconnect from the PHY */
2420	phy_disconnect(priv->phydev);
2421	priv->phydev = NULL;
2422
2423	gfar_free_irq(priv);
2424
2425	return 0;
2426}
2427
2428/* Changes the mac address if the controller is not running. */
2429static int gfar_set_mac_address(struct net_device *dev)
2430{
2431	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2432
2433	return 0;
2434}
2435
2436static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2437{
2438	struct gfar_private *priv = netdev_priv(dev);
2439	int frame_size = new_mtu + ETH_HLEN;
2440
2441	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2442		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2443		return -EINVAL;
2444	}
2445
2446	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2447		cpu_relax();
2448
2449	if (dev->flags & IFF_UP)
2450		stop_gfar(dev);
2451
2452	dev->mtu = new_mtu;
2453
2454	if (dev->flags & IFF_UP)
2455		startup_gfar(dev);
2456
2457	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2458
2459	return 0;
2460}
2461
2462void reset_gfar(struct net_device *ndev)
2463{
2464	struct gfar_private *priv = netdev_priv(ndev);
2465
2466	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2467		cpu_relax();
2468
2469	stop_gfar(ndev);
2470	startup_gfar(ndev);
2471
2472	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2473}
2474
2475/* gfar_reset_task gets scheduled when a packet has not been
2476 * transmitted after a set amount of time.
2477 * For now, assume that clearing out all the structures, and
2478 * starting over will fix the problem.
2479 */
2480static void gfar_reset_task(struct work_struct *work)
2481{
2482	struct gfar_private *priv = container_of(work, struct gfar_private,
2483						 reset_task);
2484	reset_gfar(priv->ndev);
2485}
2486
2487static void gfar_timeout(struct net_device *dev)
2488{
2489	struct gfar_private *priv = netdev_priv(dev);
2490
2491	dev->stats.tx_errors++;
2492	schedule_work(&priv->reset_task);
2493}
2494
2495static void gfar_align_skb(struct sk_buff *skb)
2496{
2497	/* We need the data buffer to be aligned properly.  We will reserve
2498	 * as many bytes as needed to align the data properly
2499	 */
2500	skb_reserve(skb, RXBUF_ALIGNMENT -
2501		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2502}
2503
2504/* Interrupt Handler for Transmit complete */
2505static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2506{
2507	struct net_device *dev = tx_queue->dev;
2508	struct netdev_queue *txq;
2509	struct gfar_private *priv = netdev_priv(dev);
2510	struct txbd8 *bdp, *next = NULL;
2511	struct txbd8 *lbdp = NULL;
2512	struct txbd8 *base = tx_queue->tx_bd_base;
2513	struct sk_buff *skb;
2514	int skb_dirtytx;
2515	int tx_ring_size = tx_queue->tx_ring_size;
2516	int frags = 0, nr_txbds = 0;
2517	int i;
2518	int howmany = 0;
2519	int tqi = tx_queue->qindex;
2520	unsigned int bytes_sent = 0;
2521	u32 lstatus;
2522	size_t buflen;
2523
2524	txq = netdev_get_tx_queue(dev, tqi);
2525	bdp = tx_queue->dirty_tx;
2526	skb_dirtytx = tx_queue->skb_dirtytx;
2527
2528	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2529		unsigned long flags;
2530
2531		frags = skb_shinfo(skb)->nr_frags;
2532
2533		/* When time stamping, one additional TxBD must be freed.
2534		 * Also, we need to dma_unmap_single() the TxPAL.
2535		 */
2536		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2537			nr_txbds = frags + 2;
2538		else
2539			nr_txbds = frags + 1;
2540
2541		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2542
2543		lstatus = lbdp->lstatus;
2544
2545		/* Only clean completed frames */
2546		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2547		    (lstatus & BD_LENGTH_MASK))
2548			break;
2549
2550		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2551			next = next_txbd(bdp, base, tx_ring_size);
2552			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2553		} else
2554			buflen = bdp->length;
2555
2556		dma_unmap_single(priv->dev, bdp->bufPtr,
2557				 buflen, DMA_TO_DEVICE);
2558
2559		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2560			struct skb_shared_hwtstamps shhwtstamps;
2561			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2562
2563			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2564			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2565			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2566			skb_tstamp_tx(skb, &shhwtstamps);
2567			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2568			bdp = next;
2569		}
2570
2571		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2572		bdp = next_txbd(bdp, base, tx_ring_size);
2573
2574		for (i = 0; i < frags; i++) {
2575			dma_unmap_page(priv->dev, bdp->bufPtr,
2576				       bdp->length, DMA_TO_DEVICE);
2577			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2578			bdp = next_txbd(bdp, base, tx_ring_size);
2579		}
2580
2581		bytes_sent += GFAR_CB(skb)->bytes_sent;
2582
2583		dev_kfree_skb_any(skb);
2584
2585		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2586
2587		skb_dirtytx = (skb_dirtytx + 1) &
2588			      TX_RING_MOD_MASK(tx_ring_size);
2589
2590		howmany++;
2591		spin_lock_irqsave(&tx_queue->txlock, flags);
2592		tx_queue->num_txbdfree += nr_txbds;
2593		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2594	}
2595
2596	/* If we freed a buffer, we can restart transmission, if necessary */
2597	if (tx_queue->num_txbdfree &&
2598	    netif_tx_queue_stopped(txq) &&
2599	    !(test_bit(GFAR_DOWN, &priv->state)))
2600		netif_wake_subqueue(priv->ndev, tqi);
2601
2602	/* Update dirty indicators */
2603	tx_queue->skb_dirtytx = skb_dirtytx;
2604	tx_queue->dirty_tx = bdp;
2605
2606	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2607}
2608
2609static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2610			   struct sk_buff *skb)
2611{
2612	struct net_device *dev = rx_queue->dev;
2613	struct gfar_private *priv = netdev_priv(dev);
2614	dma_addr_t buf;
2615
2616	buf = dma_map_single(priv->dev, skb->data,
2617			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2618	gfar_init_rxbdp(rx_queue, bdp, buf);
2619}
2620
2621static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2622{
2623	struct gfar_private *priv = netdev_priv(dev);
2624	struct sk_buff *skb;
2625
2626	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2627	if (!skb)
2628		return NULL;
2629
2630	gfar_align_skb(skb);
2631
2632	return skb;
2633}
2634
2635struct sk_buff *gfar_new_skb(struct net_device *dev)
2636{
2637	return gfar_alloc_skb(dev);
2638}
2639
2640static inline void count_errors(unsigned short status, struct net_device *dev)
2641{
2642	struct gfar_private *priv = netdev_priv(dev);
2643	struct net_device_stats *stats = &dev->stats;
2644	struct gfar_extra_stats *estats = &priv->extra_stats;
2645
2646	/* If the packet was truncated, none of the other errors matter */
2647	if (status & RXBD_TRUNCATED) {
2648		stats->rx_length_errors++;
2649
2650		atomic64_inc(&estats->rx_trunc);
2651
2652		return;
2653	}
2654	/* Count the errors, if there were any */
2655	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2656		stats->rx_length_errors++;
2657
2658		if (status & RXBD_LARGE)
2659			atomic64_inc(&estats->rx_large);
2660		else
2661			atomic64_inc(&estats->rx_short);
2662	}
2663	if (status & RXBD_NONOCTET) {
2664		stats->rx_frame_errors++;
2665		atomic64_inc(&estats->rx_nonoctet);
2666	}
2667	if (status & RXBD_CRCERR) {
2668		atomic64_inc(&estats->rx_crcerr);
2669		stats->rx_crc_errors++;
2670	}
2671	if (status & RXBD_OVERRUN) {
2672		atomic64_inc(&estats->rx_overrun);
2673		stats->rx_crc_errors++;
2674	}
2675}
2676
2677irqreturn_t gfar_receive(int irq, void *grp_id)
2678{
2679	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2680	unsigned long flags;
2681	u32 imask;
2682
2683	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2684		spin_lock_irqsave(&grp->grplock, flags);
2685		imask = gfar_read(&grp->regs->imask);
2686		imask &= IMASK_RX_DISABLED;
2687		gfar_write(&grp->regs->imask, imask);
2688		spin_unlock_irqrestore(&grp->grplock, flags);
2689		__napi_schedule(&grp->napi_rx);
2690	} else {
2691		/* Clear IEVENT, so interrupts aren't called again
2692		 * because of the packets that have already arrived.
2693		 */
2694		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2695	}
2696
2697	return IRQ_HANDLED;
2698}
2699
2700/* Interrupt Handler for Transmit complete */
2701static irqreturn_t gfar_transmit(int irq, void *grp_id)
2702{
2703	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2704	unsigned long flags;
2705	u32 imask;
2706
2707	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2708		spin_lock_irqsave(&grp->grplock, flags);
2709		imask = gfar_read(&grp->regs->imask);
2710		imask &= IMASK_TX_DISABLED;
2711		gfar_write(&grp->regs->imask, imask);
2712		spin_unlock_irqrestore(&grp->grplock, flags);
2713		__napi_schedule(&grp->napi_tx);
2714	} else {
2715		/* Clear IEVENT, so interrupts aren't called again
2716		 * because of the packets that have already arrived.
2717		 */
2718		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2719	}
2720
2721	return IRQ_HANDLED;
2722}
2723
2724static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2725{
2726	/* If valid headers were found, and valid sums
2727	 * were verified, then we tell the kernel that no
2728	 * checksumming is necessary.  Otherwise, it is [FIXME]
2729	 */
2730	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2731		skb->ip_summed = CHECKSUM_UNNECESSARY;
2732	else
2733		skb_checksum_none_assert(skb);
2734}
2735
2736
2737/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2738static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2739			       int amount_pull, struct napi_struct *napi)
2740{
2741	struct gfar_private *priv = netdev_priv(dev);
2742	struct rxfcb *fcb = NULL;
2743
2744	/* fcb is at the beginning if exists */
2745	fcb = (struct rxfcb *)skb->data;
2746
2747	/* Remove the FCB from the skb
2748	 * Remove the padded bytes, if there are any
2749	 */
2750	if (amount_pull) {
2751		skb_record_rx_queue(skb, fcb->rq);
2752		skb_pull(skb, amount_pull);
2753	}
2754
2755	/* Get receive timestamp from the skb */
2756	if (priv->hwts_rx_en) {
2757		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2758		u64 *ns = (u64 *) skb->data;
2759
2760		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2761		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2762	}
2763
2764	if (priv->padding)
2765		skb_pull(skb, priv->padding);
2766
2767	if (dev->features & NETIF_F_RXCSUM)
2768		gfar_rx_checksum(skb, fcb);
2769
2770	/* Tell the skb what kind of packet this is */
2771	skb->protocol = eth_type_trans(skb, dev);
2772
2773	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2774	 * Even if vlan rx accel is disabled, on some chips
2775	 * RXFCB_VLN is pseudo randomly set.
2776	 */
2777	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2778	    fcb->flags & RXFCB_VLN)
2779		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2780
2781	/* Send the packet up the stack */
2782	napi_gro_receive(napi, skb);
2783
2784}
2785
2786/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2787 * until the budget/quota has been reached. Returns the number
2788 * of frames handled
2789 */
2790int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2791{
2792	struct net_device *dev = rx_queue->dev;
2793	struct rxbd8 *bdp, *base;
2794	struct sk_buff *skb;
2795	int pkt_len;
2796	int amount_pull;
2797	int howmany = 0;
2798	struct gfar_private *priv = netdev_priv(dev);
2799
2800	/* Get the first full descriptor */
2801	bdp = rx_queue->cur_rx;
2802	base = rx_queue->rx_bd_base;
2803
2804	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2805
2806	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2807		struct sk_buff *newskb;
2808
2809		rmb();
2810
2811		/* Add another skb for the future */
2812		newskb = gfar_new_skb(dev);
2813
2814		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2815
2816		dma_unmap_single(priv->dev, bdp->bufPtr,
2817				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2818
2819		if (unlikely(!(bdp->status & RXBD_ERR) &&
2820			     bdp->length > priv->rx_buffer_size))
2821			bdp->status = RXBD_LARGE;
2822
2823		/* We drop the frame if we failed to allocate a new buffer */
2824		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2825			     bdp->status & RXBD_ERR)) {
2826			count_errors(bdp->status, dev);
2827
2828			if (unlikely(!newskb))
2829				newskb = skb;
2830			else if (skb)
2831				dev_kfree_skb(skb);
2832		} else {
2833			/* Increment the number of packets */
2834			rx_queue->stats.rx_packets++;
2835			howmany++;
2836
2837			if (likely(skb)) {
2838				pkt_len = bdp->length - ETH_FCS_LEN;
2839				/* Remove the FCS from the packet length */
2840				skb_put(skb, pkt_len);
2841				rx_queue->stats.rx_bytes += pkt_len;
2842				skb_record_rx_queue(skb, rx_queue->qindex);
2843				gfar_process_frame(dev, skb, amount_pull,
2844						   &rx_queue->grp->napi_rx);
2845
2846			} else {
2847				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2848				rx_queue->stats.rx_dropped++;
2849				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2850			}
2851
2852		}
2853
2854		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2855
2856		/* Setup the new bdp */
2857		gfar_new_rxbdp(rx_queue, bdp, newskb);
2858
2859		/* Update to the next pointer */
2860		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2861
2862		/* update to point at the next skb */
2863		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2864				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2865	}
2866
2867	/* Update the current rxbd pointer to be the next one */
2868	rx_queue->cur_rx = bdp;
2869
2870	return howmany;
2871}
2872
2873static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2874{
2875	struct gfar_priv_grp *gfargrp =
2876		container_of(napi, struct gfar_priv_grp, napi_rx);
2877	struct gfar __iomem *regs = gfargrp->regs;
2878	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2879	int work_done = 0;
2880
2881	/* Clear IEVENT, so interrupts aren't called again
2882	 * because of the packets that have already arrived
2883	 */
2884	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2885
2886	work_done = gfar_clean_rx_ring(rx_queue, budget);
2887
2888	if (work_done < budget) {
2889		u32 imask;
2890		napi_complete(napi);
2891		/* Clear the halt bit in RSTAT */
2892		gfar_write(&regs->rstat, gfargrp->rstat);
2893
2894		spin_lock_irq(&gfargrp->grplock);
2895		imask = gfar_read(&regs->imask);
2896		imask |= IMASK_RX_DEFAULT;
2897		gfar_write(&regs->imask, imask);
2898		spin_unlock_irq(&gfargrp->grplock);
2899	}
2900
2901	return work_done;
2902}
2903
2904static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2905{
2906	struct gfar_priv_grp *gfargrp =
2907		container_of(napi, struct gfar_priv_grp, napi_tx);
2908	struct gfar __iomem *regs = gfargrp->regs;
2909	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2910	u32 imask;
2911
2912	/* Clear IEVENT, so interrupts aren't called again
2913	 * because of the packets that have already arrived
2914	 */
2915	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2916
2917	/* run Tx cleanup to completion */
2918	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2919		gfar_clean_tx_ring(tx_queue);
2920
2921	napi_complete(napi);
2922
2923	spin_lock_irq(&gfargrp->grplock);
2924	imask = gfar_read(&regs->imask);
2925	imask |= IMASK_TX_DEFAULT;
2926	gfar_write(&regs->imask, imask);
2927	spin_unlock_irq(&gfargrp->grplock);
2928
2929	return 0;
2930}
2931
2932static int gfar_poll_rx(struct napi_struct *napi, int budget)
2933{
2934	struct gfar_priv_grp *gfargrp =
2935		container_of(napi, struct gfar_priv_grp, napi_rx);
2936	struct gfar_private *priv = gfargrp->priv;
2937	struct gfar __iomem *regs = gfargrp->regs;
2938	struct gfar_priv_rx_q *rx_queue = NULL;
2939	int work_done = 0, work_done_per_q = 0;
2940	int i, budget_per_q = 0;
2941	unsigned long rstat_rxf;
2942	int num_act_queues;
2943
2944	/* Clear IEVENT, so interrupts aren't called again
2945	 * because of the packets that have already arrived
2946	 */
2947	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2948
2949	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2950
2951	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2952	if (num_act_queues)
2953		budget_per_q = budget/num_act_queues;
2954
2955	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2956		/* skip queue if not active */
2957		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2958			continue;
2959
2960		rx_queue = priv->rx_queue[i];
2961		work_done_per_q =
2962			gfar_clean_rx_ring(rx_queue, budget_per_q);
2963		work_done += work_done_per_q;
2964
2965		/* finished processing this queue */
2966		if (work_done_per_q < budget_per_q) {
2967			/* clear active queue hw indication */
2968			gfar_write(&regs->rstat,
2969				   RSTAT_CLEAR_RXF0 >> i);
2970			num_act_queues--;
2971
2972			if (!num_act_queues)
2973				break;
2974		}
2975	}
2976
2977	if (!num_act_queues) {
2978		u32 imask;
2979		napi_complete(napi);
2980
2981		/* Clear the halt bit in RSTAT */
2982		gfar_write(&regs->rstat, gfargrp->rstat);
2983
2984		spin_lock_irq(&gfargrp->grplock);
2985		imask = gfar_read(&regs->imask);
2986		imask |= IMASK_RX_DEFAULT;
2987		gfar_write(&regs->imask, imask);
2988		spin_unlock_irq(&gfargrp->grplock);
2989	}
2990
2991	return work_done;
2992}
2993
2994static int gfar_poll_tx(struct napi_struct *napi, int budget)
2995{
2996	struct gfar_priv_grp *gfargrp =
2997		container_of(napi, struct gfar_priv_grp, napi_tx);
2998	struct gfar_private *priv = gfargrp->priv;
2999	struct gfar __iomem *regs = gfargrp->regs;
3000	struct gfar_priv_tx_q *tx_queue = NULL;
3001	int has_tx_work = 0;
3002	int i;
3003
3004	/* Clear IEVENT, so interrupts aren't called again
3005	 * because of the packets that have already arrived
3006	 */
3007	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3008
3009	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3010		tx_queue = priv->tx_queue[i];
3011		/* run Tx cleanup to completion */
3012		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3013			gfar_clean_tx_ring(tx_queue);
3014			has_tx_work = 1;
3015		}
3016	}
3017
3018	if (!has_tx_work) {
3019		u32 imask;
3020		napi_complete(napi);
3021
3022		spin_lock_irq(&gfargrp->grplock);
3023		imask = gfar_read(&regs->imask);
3024		imask |= IMASK_TX_DEFAULT;
3025		gfar_write(&regs->imask, imask);
3026		spin_unlock_irq(&gfargrp->grplock);
3027	}
3028
3029	return 0;
3030}
3031
3032
3033#ifdef CONFIG_NET_POLL_CONTROLLER
3034/* Polling 'interrupt' - used by things like netconsole to send skbs
3035 * without having to re-enable interrupts. It's not called while
3036 * the interrupt routine is executing.
3037 */
3038static void gfar_netpoll(struct net_device *dev)
3039{
3040	struct gfar_private *priv = netdev_priv(dev);
3041	int i;
3042
3043	/* If the device has multiple interrupts, run tx/rx */
3044	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3045		for (i = 0; i < priv->num_grps; i++) {
3046			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3047
3048			disable_irq(gfar_irq(grp, TX)->irq);
3049			disable_irq(gfar_irq(grp, RX)->irq);
3050			disable_irq(gfar_irq(grp, ER)->irq);
3051			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3052			enable_irq(gfar_irq(grp, ER)->irq);
3053			enable_irq(gfar_irq(grp, RX)->irq);
3054			enable_irq(gfar_irq(grp, TX)->irq);
3055		}
3056	} else {
3057		for (i = 0; i < priv->num_grps; i++) {
3058			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3059
3060			disable_irq(gfar_irq(grp, TX)->irq);
3061			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3062			enable_irq(gfar_irq(grp, TX)->irq);
3063		}
3064	}
3065}
3066#endif
3067
3068/* The interrupt handler for devices with one interrupt */
3069static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3070{
3071	struct gfar_priv_grp *gfargrp = grp_id;
3072
3073	/* Save ievent for future reference */
3074	u32 events = gfar_read(&gfargrp->regs->ievent);
3075
3076	/* Check for reception */
3077	if (events & IEVENT_RX_MASK)
3078		gfar_receive(irq, grp_id);
3079
3080	/* Check for transmit completion */
3081	if (events & IEVENT_TX_MASK)
3082		gfar_transmit(irq, grp_id);
3083
3084	/* Check for errors */
3085	if (events & IEVENT_ERR_MASK)
3086		gfar_error(irq, grp_id);
3087
3088	return IRQ_HANDLED;
3089}
3090
3091/* Called every time the controller might need to be made
3092 * aware of new link state.  The PHY code conveys this
3093 * information through variables in the phydev structure, and this
3094 * function converts those variables into the appropriate
3095 * register values, and can bring down the device if needed.
3096 */
3097static void adjust_link(struct net_device *dev)
3098{
3099	struct gfar_private *priv = netdev_priv(dev);
3100	struct phy_device *phydev = priv->phydev;
3101
3102	if (unlikely(phydev->link != priv->oldlink ||
3103		     phydev->duplex != priv->oldduplex ||
3104		     phydev->speed != priv->oldspeed))
3105		gfar_update_link_state(priv);
3106}
3107
3108/* Update the hash table based on the current list of multicast
3109 * addresses we subscribe to.  Also, change the promiscuity of
3110 * the device based on the flags (this function is called
3111 * whenever dev->flags is changed
3112 */
3113static void gfar_set_multi(struct net_device *dev)
3114{
3115	struct netdev_hw_addr *ha;
3116	struct gfar_private *priv = netdev_priv(dev);
3117	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3118	u32 tempval;
3119
3120	if (dev->flags & IFF_PROMISC) {
3121		/* Set RCTRL to PROM */
3122		tempval = gfar_read(&regs->rctrl);
3123		tempval |= RCTRL_PROM;
3124		gfar_write(&regs->rctrl, tempval);
3125	} else {
3126		/* Set RCTRL to not PROM */
3127		tempval = gfar_read(&regs->rctrl);
3128		tempval &= ~(RCTRL_PROM);
3129		gfar_write(&regs->rctrl, tempval);
3130	}
3131
3132	if (dev->flags & IFF_ALLMULTI) {
3133		/* Set the hash to rx all multicast frames */
3134		gfar_write(&regs->igaddr0, 0xffffffff);
3135		gfar_write(&regs->igaddr1, 0xffffffff);
3136		gfar_write(&regs->igaddr2, 0xffffffff);
3137		gfar_write(&regs->igaddr3, 0xffffffff);
3138		gfar_write(&regs->igaddr4, 0xffffffff);
3139		gfar_write(&regs->igaddr5, 0xffffffff);
3140		gfar_write(&regs->igaddr6, 0xffffffff);
3141		gfar_write(&regs->igaddr7, 0xffffffff);
3142		gfar_write(&regs->gaddr0, 0xffffffff);
3143		gfar_write(&regs->gaddr1, 0xffffffff);
3144		gfar_write(&regs->gaddr2, 0xffffffff);
3145		gfar_write(&regs->gaddr3, 0xffffffff);
3146		gfar_write(&regs->gaddr4, 0xffffffff);
3147		gfar_write(&regs->gaddr5, 0xffffffff);
3148		gfar_write(&regs->gaddr6, 0xffffffff);
3149		gfar_write(&regs->gaddr7, 0xffffffff);
3150	} else {
3151		int em_num;
3152		int idx;
3153
3154		/* zero out the hash */
3155		gfar_write(&regs->igaddr0, 0x0);
3156		gfar_write(&regs->igaddr1, 0x0);
3157		gfar_write(&regs->igaddr2, 0x0);
3158		gfar_write(&regs->igaddr3, 0x0);
3159		gfar_write(&regs->igaddr4, 0x0);
3160		gfar_write(&regs->igaddr5, 0x0);
3161		gfar_write(&regs->igaddr6, 0x0);
3162		gfar_write(&regs->igaddr7, 0x0);
3163		gfar_write(&regs->gaddr0, 0x0);
3164		gfar_write(&regs->gaddr1, 0x0);
3165		gfar_write(&regs->gaddr2, 0x0);
3166		gfar_write(&regs->gaddr3, 0x0);
3167		gfar_write(&regs->gaddr4, 0x0);
3168		gfar_write(&regs->gaddr5, 0x0);
3169		gfar_write(&regs->gaddr6, 0x0);
3170		gfar_write(&regs->gaddr7, 0x0);
3171
3172		/* If we have extended hash tables, we need to
3173		 * clear the exact match registers to prepare for
3174		 * setting them
3175		 */
3176		if (priv->extended_hash) {
3177			em_num = GFAR_EM_NUM + 1;
3178			gfar_clear_exact_match(dev);
3179			idx = 1;
3180		} else {
3181			idx = 0;
3182			em_num = 0;
3183		}
3184
3185		if (netdev_mc_empty(dev))
3186			return;
3187
3188		/* Parse the list, and set the appropriate bits */
3189		netdev_for_each_mc_addr(ha, dev) {
3190			if (idx < em_num) {
3191				gfar_set_mac_for_addr(dev, idx, ha->addr);
3192				idx++;
3193			} else
3194				gfar_set_hash_for_addr(dev, ha->addr);
3195		}
3196	}
3197}
3198
3199
3200/* Clears each of the exact match registers to zero, so they
3201 * don't interfere with normal reception
3202 */
3203static void gfar_clear_exact_match(struct net_device *dev)
3204{
3205	int idx;
3206	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3207
3208	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3209		gfar_set_mac_for_addr(dev, idx, zero_arr);
3210}
3211
3212/* Set the appropriate hash bit for the given addr */
3213/* The algorithm works like so:
3214 * 1) Take the Destination Address (ie the multicast address), and
3215 * do a CRC on it (little endian), and reverse the bits of the
3216 * result.
3217 * 2) Use the 8 most significant bits as a hash into a 256-entry
3218 * table.  The table is controlled through 8 32-bit registers:
3219 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3220 * gaddr7.  This means that the 3 most significant bits in the
3221 * hash index which gaddr register to use, and the 5 other bits
3222 * indicate which bit (assuming an IBM numbering scheme, which
3223 * for PowerPC (tm) is usually the case) in the register holds
3224 * the entry.
3225 */
3226static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3227{
3228	u32 tempval;
3229	struct gfar_private *priv = netdev_priv(dev);
3230	u32 result = ether_crc(ETH_ALEN, addr);
3231	int width = priv->hash_width;
3232	u8 whichbit = (result >> (32 - width)) & 0x1f;
3233	u8 whichreg = result >> (32 - width + 5);
3234	u32 value = (1 << (31-whichbit));
3235
3236	tempval = gfar_read(priv->hash_regs[whichreg]);
3237	tempval |= value;
3238	gfar_write(priv->hash_regs[whichreg], tempval);
3239}
3240
3241
3242/* There are multiple MAC Address register pairs on some controllers
3243 * This function sets the numth pair to a given address
3244 */
3245static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3246				  const u8 *addr)
3247{
3248	struct gfar_private *priv = netdev_priv(dev);
3249	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3250	u32 tempval;
3251	u32 __iomem *macptr = &regs->macstnaddr1;
3252
3253	macptr += num*2;
3254
3255	/* For a station address of 0x12345678ABCD in transmission
3256	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3257	 * MACnADDR2 is set to 0x34120000.
3258	 */
3259	tempval = (addr[5] << 24) | (addr[4] << 16) |
3260		  (addr[3] << 8)  |  addr[2];
3261
3262	gfar_write(macptr, tempval);
3263
3264	tempval = (addr[1] << 24) | (addr[0] << 16);
3265
3266	gfar_write(macptr+1, tempval);
3267}
3268
3269/* GFAR error interrupt handler */
3270static irqreturn_t gfar_error(int irq, void *grp_id)
3271{
3272	struct gfar_priv_grp *gfargrp = grp_id;
3273	struct gfar __iomem *regs = gfargrp->regs;
3274	struct gfar_private *priv= gfargrp->priv;
3275	struct net_device *dev = priv->ndev;
3276
3277	/* Save ievent for future reference */
3278	u32 events = gfar_read(&regs->ievent);
3279
3280	/* Clear IEVENT */
3281	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3282
3283	/* Magic Packet is not an error. */
3284	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3285	    (events & IEVENT_MAG))
3286		events &= ~IEVENT_MAG;
3287
3288	/* Hmm... */
3289	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3290		netdev_dbg(dev,
3291			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3292			   events, gfar_read(&regs->imask));
3293
3294	/* Update the error counters */
3295	if (events & IEVENT_TXE) {
3296		dev->stats.tx_errors++;
3297
3298		if (events & IEVENT_LC)
3299			dev->stats.tx_window_errors++;
3300		if (events & IEVENT_CRL)
3301			dev->stats.tx_aborted_errors++;
3302		if (events & IEVENT_XFUN) {
3303			unsigned long flags;
3304
3305			netif_dbg(priv, tx_err, dev,
3306				  "TX FIFO underrun, packet dropped\n");
3307			dev->stats.tx_dropped++;
3308			atomic64_inc(&priv->extra_stats.tx_underrun);
3309
3310			local_irq_save(flags);
3311			lock_tx_qs(priv);
3312
3313			/* Reactivate the Tx Queues */
3314			gfar_write(&regs->tstat, gfargrp->tstat);
3315
3316			unlock_tx_qs(priv);
3317			local_irq_restore(flags);
3318		}
3319		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3320	}
3321	if (events & IEVENT_BSY) {
3322		dev->stats.rx_errors++;
3323		atomic64_inc(&priv->extra_stats.rx_bsy);
3324
3325		gfar_receive(irq, grp_id);
3326
3327		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3328			  gfar_read(&regs->rstat));
3329	}
3330	if (events & IEVENT_BABR) {
3331		dev->stats.rx_errors++;
3332		atomic64_inc(&priv->extra_stats.rx_babr);
3333
3334		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3335	}
3336	if (events & IEVENT_EBERR) {
3337		atomic64_inc(&priv->extra_stats.eberr);
3338		netif_dbg(priv, rx_err, dev, "bus error\n");
3339	}
3340	if (events & IEVENT_RXC)
3341		netif_dbg(priv, rx_status, dev, "control frame\n");
3342
3343	if (events & IEVENT_BABT) {
3344		atomic64_inc(&priv->extra_stats.tx_babt);
3345		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3346	}
3347	return IRQ_HANDLED;
3348}
3349
3350static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3351{
3352	struct phy_device *phydev = priv->phydev;
3353	u32 val = 0;
3354
3355	if (!phydev->duplex)
3356		return val;
3357
3358	if (!priv->pause_aneg_en) {
3359		if (priv->tx_pause_en)
3360			val |= MACCFG1_TX_FLOW;
3361		if (priv->rx_pause_en)
3362			val |= MACCFG1_RX_FLOW;
3363	} else {
3364		u16 lcl_adv, rmt_adv;
3365		u8 flowctrl;
3366		/* get link partner capabilities */
3367		rmt_adv = 0;
3368		if (phydev->pause)
3369			rmt_adv = LPA_PAUSE_CAP;
3370		if (phydev->asym_pause)
3371			rmt_adv |= LPA_PAUSE_ASYM;
3372
3373		lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3374
3375		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3376		if (flowctrl & FLOW_CTRL_TX)
3377			val |= MACCFG1_TX_FLOW;
3378		if (flowctrl & FLOW_CTRL_RX)
3379			val |= MACCFG1_RX_FLOW;
3380	}
3381
3382	return val;
3383}
3384
3385static noinline void gfar_update_link_state(struct gfar_private *priv)
3386{
3387	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3388	struct phy_device *phydev = priv->phydev;
3389
3390	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3391		return;
3392
3393	if (phydev->link) {
3394		u32 tempval1 = gfar_read(&regs->maccfg1);
3395		u32 tempval = gfar_read(&regs->maccfg2);
3396		u32 ecntrl = gfar_read(&regs->ecntrl);
3397
3398		if (phydev->duplex != priv->oldduplex) {
3399			if (!(phydev->duplex))
3400				tempval &= ~(MACCFG2_FULL_DUPLEX);
3401			else
3402				tempval |= MACCFG2_FULL_DUPLEX;
3403
3404			priv->oldduplex = phydev->duplex;
3405		}
3406
3407		if (phydev->speed != priv->oldspeed) {
3408			switch (phydev->speed) {
3409			case 1000:
3410				tempval =
3411				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3412
3413				ecntrl &= ~(ECNTRL_R100);
3414				break;
3415			case 100:
3416			case 10:
3417				tempval =
3418				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3419
3420				/* Reduced mode distinguishes
3421				 * between 10 and 100
3422				 */
3423				if (phydev->speed == SPEED_100)
3424					ecntrl |= ECNTRL_R100;
3425				else
3426					ecntrl &= ~(ECNTRL_R100);
3427				break;
3428			default:
3429				netif_warn(priv, link, priv->ndev,
3430					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3431					   phydev->speed);
3432				break;
3433			}
3434
3435			priv->oldspeed = phydev->speed;
3436		}
3437
3438		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3439		tempval1 |= gfar_get_flowctrl_cfg(priv);
3440
3441		gfar_write(&regs->maccfg1, tempval1);
3442		gfar_write(&regs->maccfg2, tempval);
3443		gfar_write(&regs->ecntrl, ecntrl);
3444
3445		if (!priv->oldlink)
3446			priv->oldlink = 1;
3447
3448	} else if (priv->oldlink) {
3449		priv->oldlink = 0;
3450		priv->oldspeed = 0;
3451		priv->oldduplex = -1;
3452	}
3453
3454	if (netif_msg_link(priv))
3455		phy_print_status(phydev);
3456}
3457
3458static struct of_device_id gfar_match[] =
3459{
3460	{
3461		.type = "network",
3462		.compatible = "gianfar",
3463	},
3464	{
3465		.compatible = "fsl,etsec2",
3466	},
3467	{},
3468};
3469MODULE_DEVICE_TABLE(of, gfar_match);
3470
3471/* Structure for a device driver */
3472static struct platform_driver gfar_driver = {
3473	.driver = {
3474		.name = "fsl-gianfar",
3475		.owner = THIS_MODULE,
3476		.pm = GFAR_PM_OPS,
3477		.of_match_table = gfar_match,
3478	},
3479	.probe = gfar_probe,
3480	.remove = gfar_remove,
3481};
3482
3483module_platform_driver(gfar_driver);
3484