[go: nahoru, domu]

1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
23 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
24 */
25
26#include "e1000.h"
27
28/* A table for the GG82563 cable length where the range is defined
29 * with a lower bound at "index" and the upper bound at
30 * "index + 5".
31 */
32static const u16 e1000_gg82563_cable_length_table[] = {
33	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
34};
35
36#define GG82563_CABLE_LENGTH_TABLE_SIZE \
37		ARRAY_SIZE(e1000_gg82563_cable_length_table)
38
39static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
40static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
41static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
42static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
43static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
44static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
45static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
46static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
47					   u16 *data);
48static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
49					    u16 data);
50static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
51
52/**
53 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
54 *  @hw: pointer to the HW structure
55 **/
56static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
57{
58	struct e1000_phy_info *phy = &hw->phy;
59	s32 ret_val;
60
61	if (hw->phy.media_type != e1000_media_type_copper) {
62		phy->type = e1000_phy_none;
63		return 0;
64	} else {
65		phy->ops.power_up = e1000_power_up_phy_copper;
66		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
67	}
68
69	phy->addr = 1;
70	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
71	phy->reset_delay_us = 100;
72	phy->type = e1000_phy_gg82563;
73
74	/* This can only be done after all function pointers are setup. */
75	ret_val = e1000e_get_phy_id(hw);
76
77	/* Verify phy id */
78	if (phy->id != GG82563_E_PHY_ID)
79		return -E1000_ERR_PHY;
80
81	return ret_val;
82}
83
84/**
85 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
86 *  @hw: pointer to the HW structure
87 **/
88static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
89{
90	struct e1000_nvm_info *nvm = &hw->nvm;
91	u32 eecd = er32(EECD);
92	u16 size;
93
94	nvm->opcode_bits = 8;
95	nvm->delay_usec = 1;
96	switch (nvm->override) {
97	case e1000_nvm_override_spi_large:
98		nvm->page_size = 32;
99		nvm->address_bits = 16;
100		break;
101	case e1000_nvm_override_spi_small:
102		nvm->page_size = 8;
103		nvm->address_bits = 8;
104		break;
105	default:
106		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
107		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
108		break;
109	}
110
111	nvm->type = e1000_nvm_eeprom_spi;
112
113	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
114		     E1000_EECD_SIZE_EX_SHIFT);
115
116	/* Added to a constant, "size" becomes the left-shift value
117	 * for setting word_size.
118	 */
119	size += NVM_WORD_SIZE_BASE_SHIFT;
120
121	/* EEPROM access above 16k is unsupported */
122	if (size > 14)
123		size = 14;
124	nvm->word_size = 1 << size;
125
126	return 0;
127}
128
129/**
130 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
131 *  @hw: pointer to the HW structure
132 **/
133static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
134{
135	struct e1000_mac_info *mac = &hw->mac;
136
137	/* Set media type and media-dependent function pointers */
138	switch (hw->adapter->pdev->device) {
139	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
140		hw->phy.media_type = e1000_media_type_internal_serdes;
141		mac->ops.check_for_link = e1000e_check_for_serdes_link;
142		mac->ops.setup_physical_interface =
143		    e1000e_setup_fiber_serdes_link;
144		break;
145	default:
146		hw->phy.media_type = e1000_media_type_copper;
147		mac->ops.check_for_link = e1000e_check_for_copper_link;
148		mac->ops.setup_physical_interface =
149		    e1000_setup_copper_link_80003es2lan;
150		break;
151	}
152
153	/* Set mta register count */
154	mac->mta_reg_count = 128;
155	/* Set rar entry count */
156	mac->rar_entry_count = E1000_RAR_ENTRIES;
157	/* FWSM register */
158	mac->has_fwsm = true;
159	/* ARC supported; valid only if manageability features are enabled. */
160	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
161	/* Adaptive IFS not supported */
162	mac->adaptive_ifs = false;
163
164	/* set lan id for port to determine which phy lock to use */
165	hw->mac.ops.set_lan_id(hw);
166
167	return 0;
168}
169
170static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
171{
172	struct e1000_hw *hw = &adapter->hw;
173	s32 rc;
174
175	rc = e1000_init_mac_params_80003es2lan(hw);
176	if (rc)
177		return rc;
178
179	rc = e1000_init_nvm_params_80003es2lan(hw);
180	if (rc)
181		return rc;
182
183	rc = e1000_init_phy_params_80003es2lan(hw);
184	if (rc)
185		return rc;
186
187	return 0;
188}
189
190/**
191 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
192 *  @hw: pointer to the HW structure
193 *
194 *  A wrapper to acquire access rights to the correct PHY.
195 **/
196static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
197{
198	u16 mask;
199
200	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
201	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
202}
203
204/**
205 *  e1000_release_phy_80003es2lan - Release rights to access PHY
206 *  @hw: pointer to the HW structure
207 *
208 *  A wrapper to release access rights to the correct PHY.
209 **/
210static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
211{
212	u16 mask;
213
214	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
215	e1000_release_swfw_sync_80003es2lan(hw, mask);
216}
217
218/**
219 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
220 *  @hw: pointer to the HW structure
221 *
222 *  Acquire the semaphore to access the Kumeran interface.
223 *
224 **/
225static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
226{
227	u16 mask;
228
229	mask = E1000_SWFW_CSR_SM;
230
231	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
232}
233
234/**
235 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
236 *  @hw: pointer to the HW structure
237 *
238 *  Release the semaphore used to access the Kumeran interface
239 **/
240static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
241{
242	u16 mask;
243
244	mask = E1000_SWFW_CSR_SM;
245
246	e1000_release_swfw_sync_80003es2lan(hw, mask);
247}
248
249/**
250 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
251 *  @hw: pointer to the HW structure
252 *
253 *  Acquire the semaphore to access the EEPROM.
254 **/
255static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
256{
257	s32 ret_val;
258
259	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
260	if (ret_val)
261		return ret_val;
262
263	ret_val = e1000e_acquire_nvm(hw);
264
265	if (ret_val)
266		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
267
268	return ret_val;
269}
270
271/**
272 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
273 *  @hw: pointer to the HW structure
274 *
275 *  Release the semaphore used to access the EEPROM.
276 **/
277static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
278{
279	e1000e_release_nvm(hw);
280	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
281}
282
283/**
284 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
285 *  @hw: pointer to the HW structure
286 *  @mask: specifies which semaphore to acquire
287 *
288 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
289 *  will also specify which port we're acquiring the lock for.
290 **/
291static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
292{
293	u32 swfw_sync;
294	u32 swmask = mask;
295	u32 fwmask = mask << 16;
296	s32 i = 0;
297	s32 timeout = 50;
298
299	while (i < timeout) {
300		if (e1000e_get_hw_semaphore(hw))
301			return -E1000_ERR_SWFW_SYNC;
302
303		swfw_sync = er32(SW_FW_SYNC);
304		if (!(swfw_sync & (fwmask | swmask)))
305			break;
306
307		/* Firmware currently using resource (fwmask)
308		 * or other software thread using resource (swmask)
309		 */
310		e1000e_put_hw_semaphore(hw);
311		mdelay(5);
312		i++;
313	}
314
315	if (i == timeout) {
316		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
317		return -E1000_ERR_SWFW_SYNC;
318	}
319
320	swfw_sync |= swmask;
321	ew32(SW_FW_SYNC, swfw_sync);
322
323	e1000e_put_hw_semaphore(hw);
324
325	return 0;
326}
327
328/**
329 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
330 *  @hw: pointer to the HW structure
331 *  @mask: specifies which semaphore to acquire
332 *
333 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
334 *  will also specify which port we're releasing the lock for.
335 **/
336static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
337{
338	u32 swfw_sync;
339
340	while (e1000e_get_hw_semaphore(hw) != 0)
341		; /* Empty */
342
343	swfw_sync = er32(SW_FW_SYNC);
344	swfw_sync &= ~mask;
345	ew32(SW_FW_SYNC, swfw_sync);
346
347	e1000e_put_hw_semaphore(hw);
348}
349
350/**
351 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
352 *  @hw: pointer to the HW structure
353 *  @offset: offset of the register to read
354 *  @data: pointer to the data returned from the operation
355 *
356 *  Read the GG82563 PHY register.
357 **/
358static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
359						  u32 offset, u16 *data)
360{
361	s32 ret_val;
362	u32 page_select;
363	u16 temp;
364
365	ret_val = e1000_acquire_phy_80003es2lan(hw);
366	if (ret_val)
367		return ret_val;
368
369	/* Select Configuration Page */
370	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
371		page_select = GG82563_PHY_PAGE_SELECT;
372	} else {
373		/* Use Alternative Page Select register to access
374		 * registers 30 and 31
375		 */
376		page_select = GG82563_PHY_PAGE_SELECT_ALT;
377	}
378
379	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
380	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
381	if (ret_val) {
382		e1000_release_phy_80003es2lan(hw);
383		return ret_val;
384	}
385
386	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
387		/* The "ready" bit in the MDIC register may be incorrectly set
388		 * before the device has completed the "Page Select" MDI
389		 * transaction.  So we wait 200us after each MDI command...
390		 */
391		usleep_range(200, 400);
392
393		/* ...and verify the command was successful. */
394		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
395
396		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
397			e1000_release_phy_80003es2lan(hw);
398			return -E1000_ERR_PHY;
399		}
400
401		usleep_range(200, 400);
402
403		ret_val = e1000e_read_phy_reg_mdic(hw,
404						   MAX_PHY_REG_ADDRESS & offset,
405						   data);
406
407		usleep_range(200, 400);
408	} else {
409		ret_val = e1000e_read_phy_reg_mdic(hw,
410						   MAX_PHY_REG_ADDRESS & offset,
411						   data);
412	}
413
414	e1000_release_phy_80003es2lan(hw);
415
416	return ret_val;
417}
418
419/**
420 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
421 *  @hw: pointer to the HW structure
422 *  @offset: offset of the register to read
423 *  @data: value to write to the register
424 *
425 *  Write to the GG82563 PHY register.
426 **/
427static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
428						   u32 offset, u16 data)
429{
430	s32 ret_val;
431	u32 page_select;
432	u16 temp;
433
434	ret_val = e1000_acquire_phy_80003es2lan(hw);
435	if (ret_val)
436		return ret_val;
437
438	/* Select Configuration Page */
439	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
440		page_select = GG82563_PHY_PAGE_SELECT;
441	} else {
442		/* Use Alternative Page Select register to access
443		 * registers 30 and 31
444		 */
445		page_select = GG82563_PHY_PAGE_SELECT_ALT;
446	}
447
448	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
449	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
450	if (ret_val) {
451		e1000_release_phy_80003es2lan(hw);
452		return ret_val;
453	}
454
455	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
456		/* The "ready" bit in the MDIC register may be incorrectly set
457		 * before the device has completed the "Page Select" MDI
458		 * transaction.  So we wait 200us after each MDI command...
459		 */
460		usleep_range(200, 400);
461
462		/* ...and verify the command was successful. */
463		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
464
465		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
466			e1000_release_phy_80003es2lan(hw);
467			return -E1000_ERR_PHY;
468		}
469
470		usleep_range(200, 400);
471
472		ret_val = e1000e_write_phy_reg_mdic(hw,
473						    MAX_PHY_REG_ADDRESS &
474						    offset, data);
475
476		usleep_range(200, 400);
477	} else {
478		ret_val = e1000e_write_phy_reg_mdic(hw,
479						    MAX_PHY_REG_ADDRESS &
480						    offset, data);
481	}
482
483	e1000_release_phy_80003es2lan(hw);
484
485	return ret_val;
486}
487
488/**
489 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
490 *  @hw: pointer to the HW structure
491 *  @offset: offset of the register to read
492 *  @words: number of words to write
493 *  @data: buffer of data to write to the NVM
494 *
495 *  Write "words" of data to the ESB2 NVM.
496 **/
497static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
498				       u16 words, u16 *data)
499{
500	return e1000e_write_nvm_spi(hw, offset, words, data);
501}
502
503/**
504 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
505 *  @hw: pointer to the HW structure
506 *
507 *  Wait a specific amount of time for manageability processes to complete.
508 *  This is a function pointer entry point called by the phy module.
509 **/
510static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
511{
512	s32 timeout = PHY_CFG_TIMEOUT;
513	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
514
515	if (hw->bus.func == 1)
516		mask = E1000_NVM_CFG_DONE_PORT_1;
517
518	while (timeout) {
519		if (er32(EEMNGCTL) & mask)
520			break;
521		usleep_range(1000, 2000);
522		timeout--;
523	}
524	if (!timeout) {
525		e_dbg("MNG configuration cycle has not completed.\n");
526		return -E1000_ERR_RESET;
527	}
528
529	return 0;
530}
531
532/**
533 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
534 *  @hw: pointer to the HW structure
535 *
536 *  Force the speed and duplex settings onto the PHY.  This is a
537 *  function pointer entry point called by the phy module.
538 **/
539static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
540{
541	s32 ret_val;
542	u16 phy_data;
543	bool link;
544
545	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
546	 * forced whenever speed and duplex are forced.
547	 */
548	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
549	if (ret_val)
550		return ret_val;
551
552	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
553	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
554	if (ret_val)
555		return ret_val;
556
557	e_dbg("GG82563 PSCR: %X\n", phy_data);
558
559	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
560	if (ret_val)
561		return ret_val;
562
563	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
564
565	/* Reset the phy to commit changes. */
566	phy_data |= BMCR_RESET;
567
568	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
569	if (ret_val)
570		return ret_val;
571
572	udelay(1);
573
574	if (hw->phy.autoneg_wait_to_complete) {
575		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
576
577		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
578						      100000, &link);
579		if (ret_val)
580			return ret_val;
581
582		if (!link) {
583			/* We didn't get link.
584			 * Reset the DSP and cross our fingers.
585			 */
586			ret_val = e1000e_phy_reset_dsp(hw);
587			if (ret_val)
588				return ret_val;
589		}
590
591		/* Try once more */
592		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
593						      100000, &link);
594		if (ret_val)
595			return ret_val;
596	}
597
598	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
599	if (ret_val)
600		return ret_val;
601
602	/* Resetting the phy means we need to verify the TX_CLK corresponds
603	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
604	 */
605	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
606	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
607		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
608	else
609		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
610
611	/* In addition, we must re-enable CRS on Tx for both half and full
612	 * duplex.
613	 */
614	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
615	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
616
617	return ret_val;
618}
619
620/**
621 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
622 *  @hw: pointer to the HW structure
623 *
624 *  Find the approximate cable length as measured by the GG82563 PHY.
625 *  This is a function pointer entry point called by the phy module.
626 **/
627static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
628{
629	struct e1000_phy_info *phy = &hw->phy;
630	s32 ret_val;
631	u16 phy_data, index;
632
633	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
634	if (ret_val)
635		return ret_val;
636
637	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
638
639	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
640		return -E1000_ERR_PHY;
641
642	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
643	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
644
645	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
646
647	return 0;
648}
649
650/**
651 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
652 *  @hw: pointer to the HW structure
653 *  @speed: pointer to speed buffer
654 *  @duplex: pointer to duplex buffer
655 *
656 *  Retrieve the current speed and duplex configuration.
657 **/
658static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
659					      u16 *duplex)
660{
661	s32 ret_val;
662
663	if (hw->phy.media_type == e1000_media_type_copper) {
664		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
665		hw->phy.ops.cfg_on_link_up(hw);
666	} else {
667		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
668								   speed,
669								   duplex);
670	}
671
672	return ret_val;
673}
674
675/**
676 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
677 *  @hw: pointer to the HW structure
678 *
679 *  Perform a global reset to the ESB2 controller.
680 **/
681static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
682{
683	u32 ctrl;
684	s32 ret_val;
685	u16 kum_reg_data;
686
687	/* Prevent the PCI-E bus from sticking if there is no TLP connection
688	 * on the last TLP read/write transaction when MAC is reset.
689	 */
690	ret_val = e1000e_disable_pcie_master(hw);
691	if (ret_val)
692		e_dbg("PCI-E Master disable polling has failed.\n");
693
694	e_dbg("Masking off all interrupts\n");
695	ew32(IMC, 0xffffffff);
696
697	ew32(RCTL, 0);
698	ew32(TCTL, E1000_TCTL_PSP);
699	e1e_flush();
700
701	usleep_range(10000, 20000);
702
703	ctrl = er32(CTRL);
704
705	ret_val = e1000_acquire_phy_80003es2lan(hw);
706	if (ret_val)
707		return ret_val;
708
709	e_dbg("Issuing a global reset to MAC\n");
710	ew32(CTRL, ctrl | E1000_CTRL_RST);
711	e1000_release_phy_80003es2lan(hw);
712
713	/* Disable IBIST slave mode (far-end loopback) */
714	ret_val =
715	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
716					    &kum_reg_data);
717	if (ret_val)
718		return ret_val;
719	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
720	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
721					 kum_reg_data);
722
723	ret_val = e1000e_get_auto_rd_done(hw);
724	if (ret_val)
725		/* We don't want to continue accessing MAC registers. */
726		return ret_val;
727
728	/* Clear any pending interrupt events. */
729	ew32(IMC, 0xffffffff);
730	er32(ICR);
731
732	return e1000_check_alt_mac_addr_generic(hw);
733}
734
735/**
736 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
737 *  @hw: pointer to the HW structure
738 *
739 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
740 **/
741static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
742{
743	struct e1000_mac_info *mac = &hw->mac;
744	u32 reg_data;
745	s32 ret_val;
746	u16 kum_reg_data;
747	u16 i;
748
749	e1000_initialize_hw_bits_80003es2lan(hw);
750
751	/* Initialize identification LED */
752	ret_val = mac->ops.id_led_init(hw);
753	/* An error is not fatal and we should not stop init due to this */
754	if (ret_val)
755		e_dbg("Error initializing identification LED\n");
756
757	/* Disabling VLAN filtering */
758	e_dbg("Initializing the IEEE VLAN\n");
759	mac->ops.clear_vfta(hw);
760
761	/* Setup the receive address. */
762	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
763
764	/* Zero out the Multicast HASH table */
765	e_dbg("Zeroing the MTA\n");
766	for (i = 0; i < mac->mta_reg_count; i++)
767		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
768
769	/* Setup link and flow control */
770	ret_val = mac->ops.setup_link(hw);
771	if (ret_val)
772		return ret_val;
773
774	/* Disable IBIST slave mode (far-end loopback) */
775	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
776					&kum_reg_data);
777	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
778	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
779					 kum_reg_data);
780
781	/* Set the transmit descriptor write-back policy */
782	reg_data = er32(TXDCTL(0));
783	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
784		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
785	ew32(TXDCTL(0), reg_data);
786
787	/* ...for both queues. */
788	reg_data = er32(TXDCTL(1));
789	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
790		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
791	ew32(TXDCTL(1), reg_data);
792
793	/* Enable retransmit on late collisions */
794	reg_data = er32(TCTL);
795	reg_data |= E1000_TCTL_RTLC;
796	ew32(TCTL, reg_data);
797
798	/* Configure Gigabit Carry Extend Padding */
799	reg_data = er32(TCTL_EXT);
800	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
801	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
802	ew32(TCTL_EXT, reg_data);
803
804	/* Configure Transmit Inter-Packet Gap */
805	reg_data = er32(TIPG);
806	reg_data &= ~E1000_TIPG_IPGT_MASK;
807	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
808	ew32(TIPG, reg_data);
809
810	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
811	reg_data &= ~0x00100000;
812	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
813
814	/* default to true to enable the MDIC W/A */
815	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
816
817	ret_val =
818	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
819					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
820	if (!ret_val) {
821		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
822		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
823			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
824	}
825
826	/* Clear all of the statistics registers (clear on read).  It is
827	 * important that we do this after we have tried to establish link
828	 * because the symbol error count will increment wildly if there
829	 * is no link.
830	 */
831	e1000_clear_hw_cntrs_80003es2lan(hw);
832
833	return ret_val;
834}
835
836/**
837 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
838 *  @hw: pointer to the HW structure
839 *
840 *  Initializes required hardware-dependent bits needed for normal operation.
841 **/
842static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
843{
844	u32 reg;
845
846	/* Transmit Descriptor Control 0 */
847	reg = er32(TXDCTL(0));
848	reg |= (1 << 22);
849	ew32(TXDCTL(0), reg);
850
851	/* Transmit Descriptor Control 1 */
852	reg = er32(TXDCTL(1));
853	reg |= (1 << 22);
854	ew32(TXDCTL(1), reg);
855
856	/* Transmit Arbitration Control 0 */
857	reg = er32(TARC(0));
858	reg &= ~(0xF << 27);	/* 30:27 */
859	if (hw->phy.media_type != e1000_media_type_copper)
860		reg &= ~(1 << 20);
861	ew32(TARC(0), reg);
862
863	/* Transmit Arbitration Control 1 */
864	reg = er32(TARC(1));
865	if (er32(TCTL) & E1000_TCTL_MULR)
866		reg &= ~(1 << 28);
867	else
868		reg |= (1 << 28);
869	ew32(TARC(1), reg);
870
871	/* Disable IPv6 extension header parsing because some malformed
872	 * IPv6 headers can hang the Rx.
873	 */
874	reg = er32(RFCTL);
875	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
876	ew32(RFCTL, reg);
877}
878
879/**
880 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
881 *  @hw: pointer to the HW structure
882 *
883 *  Setup some GG82563 PHY registers for obtaining link
884 **/
885static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
886{
887	struct e1000_phy_info *phy = &hw->phy;
888	s32 ret_val;
889	u32 reg;
890	u16 data;
891
892	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
893	if (ret_val)
894		return ret_val;
895
896	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
897	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
898	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
899
900	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
901	if (ret_val)
902		return ret_val;
903
904	/* Options:
905	 *   MDI/MDI-X = 0 (default)
906	 *   0 - Auto for all speeds
907	 *   1 - MDI mode
908	 *   2 - MDI-X mode
909	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
910	 */
911	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
912	if (ret_val)
913		return ret_val;
914
915	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
916
917	switch (phy->mdix) {
918	case 1:
919		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
920		break;
921	case 2:
922		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
923		break;
924	case 0:
925	default:
926		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
927		break;
928	}
929
930	/* Options:
931	 *   disable_polarity_correction = 0 (default)
932	 *       Automatic Correction for Reversed Cable Polarity
933	 *   0 - Disabled
934	 *   1 - Enabled
935	 */
936	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
937	if (phy->disable_polarity_correction)
938		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
939
940	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
941	if (ret_val)
942		return ret_val;
943
944	/* SW Reset the PHY so all changes take effect */
945	ret_val = hw->phy.ops.commit(hw);
946	if (ret_val) {
947		e_dbg("Error Resetting the PHY\n");
948		return ret_val;
949	}
950
951	/* Bypass Rx and Tx FIFO's */
952	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
953	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
954		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
955	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
956	if (ret_val)
957		return ret_val;
958
959	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
960	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
961	if (ret_val)
962		return ret_val;
963	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
964	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
965	if (ret_val)
966		return ret_val;
967
968	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
969	if (ret_val)
970		return ret_val;
971
972	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
973	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
974	if (ret_val)
975		return ret_val;
976
977	reg = er32(CTRL_EXT);
978	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
979	ew32(CTRL_EXT, reg);
980
981	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
982	if (ret_val)
983		return ret_val;
984
985	/* Do not init these registers when the HW is in IAMT mode, since the
986	 * firmware will have already initialized them.  We only initialize
987	 * them if the HW is not in IAMT mode.
988	 */
989	if (!hw->mac.ops.check_mng_mode(hw)) {
990		/* Enable Electrical Idle on the PHY */
991		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
992		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
993		if (ret_val)
994			return ret_val;
995
996		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
997		if (ret_val)
998			return ret_val;
999
1000		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1001		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1002		if (ret_val)
1003			return ret_val;
1004	}
1005
1006	/* Workaround: Disable padding in Kumeran interface in the MAC
1007	 * and in the PHY to avoid CRC errors.
1008	 */
1009	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1010	if (ret_val)
1011		return ret_val;
1012
1013	data |= GG82563_ICR_DIS_PADDING;
1014	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1015	if (ret_val)
1016		return ret_val;
1017
1018	return 0;
1019}
1020
1021/**
1022 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1023 *  @hw: pointer to the HW structure
1024 *
1025 *  Essentially a wrapper for setting up all things "copper" related.
1026 *  This is a function pointer entry point called by the mac module.
1027 **/
1028static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1029{
1030	u32 ctrl;
1031	s32 ret_val;
1032	u16 reg_data;
1033
1034	ctrl = er32(CTRL);
1035	ctrl |= E1000_CTRL_SLU;
1036	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1037	ew32(CTRL, ctrl);
1038
1039	/* Set the mac to wait the maximum time between each
1040	 * iteration and increase the max iterations when
1041	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1042	 */
1043	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1044						   0xFFFF);
1045	if (ret_val)
1046		return ret_val;
1047	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048						  &reg_data);
1049	if (ret_val)
1050		return ret_val;
1051	reg_data |= 0x3F;
1052	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1053						   reg_data);
1054	if (ret_val)
1055		return ret_val;
1056	ret_val =
1057	    e1000_read_kmrn_reg_80003es2lan(hw,
1058					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1059					    &reg_data);
1060	if (ret_val)
1061		return ret_val;
1062	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1063	ret_val =
1064	    e1000_write_kmrn_reg_80003es2lan(hw,
1065					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1066					     reg_data);
1067	if (ret_val)
1068		return ret_val;
1069
1070	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1071	if (ret_val)
1072		return ret_val;
1073
1074	return e1000e_setup_copper_link(hw);
1075}
1076
1077/**
1078 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1079 *  @hw: pointer to the HW structure
1080 *  @duplex: current duplex setting
1081 *
1082 *  Configure the KMRN interface by applying last minute quirks for
1083 *  10/100 operation.
1084 **/
1085static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1086{
1087	s32 ret_val = 0;
1088	u16 speed;
1089	u16 duplex;
1090
1091	if (hw->phy.media_type == e1000_media_type_copper) {
1092		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1093							     &duplex);
1094		if (ret_val)
1095			return ret_val;
1096
1097		if (speed == SPEED_1000)
1098			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1099		else
1100			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1101	}
1102
1103	return ret_val;
1104}
1105
1106/**
1107 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1108 *  @hw: pointer to the HW structure
1109 *  @duplex: current duplex setting
1110 *
1111 *  Configure the KMRN interface by applying last minute quirks for
1112 *  10/100 operation.
1113 **/
1114static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1115{
1116	s32 ret_val;
1117	u32 tipg;
1118	u32 i = 0;
1119	u16 reg_data, reg_data2;
1120
1121	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1122	ret_val =
1123	    e1000_write_kmrn_reg_80003es2lan(hw,
1124					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1125					     reg_data);
1126	if (ret_val)
1127		return ret_val;
1128
1129	/* Configure Transmit Inter-Packet Gap */
1130	tipg = er32(TIPG);
1131	tipg &= ~E1000_TIPG_IPGT_MASK;
1132	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1133	ew32(TIPG, tipg);
1134
1135	do {
1136		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1137		if (ret_val)
1138			return ret_val;
1139
1140		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1141		if (ret_val)
1142			return ret_val;
1143		i++;
1144	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1145
1146	if (duplex == HALF_DUPLEX)
1147		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1148	else
1149		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1150
1151	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1152}
1153
1154/**
1155 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1156 *  @hw: pointer to the HW structure
1157 *
1158 *  Configure the KMRN interface by applying last minute quirks for
1159 *  gigabit operation.
1160 **/
1161static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1162{
1163	s32 ret_val;
1164	u16 reg_data, reg_data2;
1165	u32 tipg;
1166	u32 i = 0;
1167
1168	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1169	ret_val =
1170	    e1000_write_kmrn_reg_80003es2lan(hw,
1171					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1172					     reg_data);
1173	if (ret_val)
1174		return ret_val;
1175
1176	/* Configure Transmit Inter-Packet Gap */
1177	tipg = er32(TIPG);
1178	tipg &= ~E1000_TIPG_IPGT_MASK;
1179	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1180	ew32(TIPG, tipg);
1181
1182	do {
1183		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1184		if (ret_val)
1185			return ret_val;
1186
1187		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1188		if (ret_val)
1189			return ret_val;
1190		i++;
1191	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1192
1193	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1194
1195	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1196}
1197
1198/**
1199 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1200 *  @hw: pointer to the HW structure
1201 *  @offset: register offset to be read
1202 *  @data: pointer to the read data
1203 *
1204 *  Acquire semaphore, then read the PHY register at offset
1205 *  using the kumeran interface.  The information retrieved is stored in data.
1206 *  Release the semaphore before exiting.
1207 **/
1208static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1209					   u16 *data)
1210{
1211	u32 kmrnctrlsta;
1212	s32 ret_val;
1213
1214	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1215	if (ret_val)
1216		return ret_val;
1217
1218	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1219		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1220	ew32(KMRNCTRLSTA, kmrnctrlsta);
1221	e1e_flush();
1222
1223	udelay(2);
1224
1225	kmrnctrlsta = er32(KMRNCTRLSTA);
1226	*data = (u16)kmrnctrlsta;
1227
1228	e1000_release_mac_csr_80003es2lan(hw);
1229
1230	return ret_val;
1231}
1232
1233/**
1234 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1235 *  @hw: pointer to the HW structure
1236 *  @offset: register offset to write to
1237 *  @data: data to write at register offset
1238 *
1239 *  Acquire semaphore, then write the data to PHY register
1240 *  at the offset using the kumeran interface.  Release semaphore
1241 *  before exiting.
1242 **/
1243static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1244					    u16 data)
1245{
1246	u32 kmrnctrlsta;
1247	s32 ret_val;
1248
1249	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1250	if (ret_val)
1251		return ret_val;
1252
1253	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1254		       E1000_KMRNCTRLSTA_OFFSET) | data;
1255	ew32(KMRNCTRLSTA, kmrnctrlsta);
1256	e1e_flush();
1257
1258	udelay(2);
1259
1260	e1000_release_mac_csr_80003es2lan(hw);
1261
1262	return ret_val;
1263}
1264
1265/**
1266 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1267 *  @hw: pointer to the HW structure
1268 **/
1269static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1270{
1271	s32 ret_val;
1272
1273	/* If there's an alternate MAC address place it in RAR0
1274	 * so that it will override the Si installed default perm
1275	 * address.
1276	 */
1277	ret_val = e1000_check_alt_mac_addr_generic(hw);
1278	if (ret_val)
1279		return ret_val;
1280
1281	return e1000_read_mac_addr_generic(hw);
1282}
1283
1284/**
1285 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1286 * @hw: pointer to the HW structure
1287 *
1288 * In the case of a PHY power down to save power, or to turn off link during a
1289 * driver unload, or wake on lan is not enabled, remove the link.
1290 **/
1291static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1292{
1293	/* If the management interface is not enabled, then power down */
1294	if (!(hw->mac.ops.check_mng_mode(hw) ||
1295	      hw->phy.ops.check_reset_block(hw)))
1296		e1000_power_down_phy_copper(hw);
1297}
1298
1299/**
1300 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1301 *  @hw: pointer to the HW structure
1302 *
1303 *  Clears the hardware counters by reading the counter registers.
1304 **/
1305static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1306{
1307	e1000e_clear_hw_cntrs_base(hw);
1308
1309	er32(PRC64);
1310	er32(PRC127);
1311	er32(PRC255);
1312	er32(PRC511);
1313	er32(PRC1023);
1314	er32(PRC1522);
1315	er32(PTC64);
1316	er32(PTC127);
1317	er32(PTC255);
1318	er32(PTC511);
1319	er32(PTC1023);
1320	er32(PTC1522);
1321
1322	er32(ALGNERRC);
1323	er32(RXERRC);
1324	er32(TNCRS);
1325	er32(CEXTERR);
1326	er32(TSCTC);
1327	er32(TSCTFC);
1328
1329	er32(MGTPRC);
1330	er32(MGTPDC);
1331	er32(MGTPTC);
1332
1333	er32(IAC);
1334	er32(ICRXOC);
1335
1336	er32(ICRXPTC);
1337	er32(ICRXATC);
1338	er32(ICTXPTC);
1339	er32(ICTXATC);
1340	er32(ICTXQEC);
1341	er32(ICTXQMTC);
1342	er32(ICRXDMTC);
1343}
1344
1345static const struct e1000_mac_operations es2_mac_ops = {
1346	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1347	.id_led_init		= e1000e_id_led_init_generic,
1348	.blink_led		= e1000e_blink_led_generic,
1349	.check_mng_mode		= e1000e_check_mng_mode_generic,
1350	/* check_for_link dependent on media type */
1351	.cleanup_led		= e1000e_cleanup_led_generic,
1352	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1353	.get_bus_info		= e1000e_get_bus_info_pcie,
1354	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1355	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1356	.led_on			= e1000e_led_on_generic,
1357	.led_off		= e1000e_led_off_generic,
1358	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1359	.write_vfta		= e1000_write_vfta_generic,
1360	.clear_vfta		= e1000_clear_vfta_generic,
1361	.reset_hw		= e1000_reset_hw_80003es2lan,
1362	.init_hw		= e1000_init_hw_80003es2lan,
1363	.setup_link		= e1000e_setup_link_generic,
1364	/* setup_physical_interface dependent on media type */
1365	.setup_led		= e1000e_setup_led_generic,
1366	.config_collision_dist	= e1000e_config_collision_dist_generic,
1367	.rar_set		= e1000e_rar_set_generic,
1368	.rar_get_count		= e1000e_rar_get_count_generic,
1369};
1370
1371static const struct e1000_phy_operations es2_phy_ops = {
1372	.acquire		= e1000_acquire_phy_80003es2lan,
1373	.check_polarity		= e1000_check_polarity_m88,
1374	.check_reset_block	= e1000e_check_reset_block_generic,
1375	.commit			= e1000e_phy_sw_reset,
1376	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1377	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1378	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1379	.get_info		= e1000e_get_phy_info_m88,
1380	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1381	.release		= e1000_release_phy_80003es2lan,
1382	.reset			= e1000e_phy_hw_reset_generic,
1383	.set_d0_lplu_state	= NULL,
1384	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1385	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1386	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1387};
1388
1389static const struct e1000_nvm_operations es2_nvm_ops = {
1390	.acquire		= e1000_acquire_nvm_80003es2lan,
1391	.read			= e1000e_read_nvm_eerd,
1392	.release		= e1000_release_nvm_80003es2lan,
1393	.reload			= e1000e_reload_nvm_generic,
1394	.update			= e1000e_update_nvm_checksum_generic,
1395	.valid_led_default	= e1000e_valid_led_default,
1396	.validate		= e1000e_validate_nvm_checksum_generic,
1397	.write			= e1000_write_nvm_80003es2lan,
1398};
1399
1400const struct e1000_info e1000_es2_info = {
1401	.mac			= e1000_80003es2lan,
1402	.flags			= FLAG_HAS_HW_VLAN_FILTER
1403				  | FLAG_HAS_JUMBO_FRAMES
1404				  | FLAG_HAS_WOL
1405				  | FLAG_APME_IN_CTRL3
1406				  | FLAG_HAS_CTRLEXT_ON_LOAD
1407				  | FLAG_RX_NEEDS_RESTART /* errata */
1408				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1409				  | FLAG_APME_CHECK_PORT_B
1410				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1411	.flags2			= FLAG2_DMA_BURST,
1412	.pba			= 38,
1413	.max_hw_frame_size	= DEFAULT_JUMBO,
1414	.get_variants		= e1000_get_variants_80003es2lan,
1415	.mac_ops		= &es2_mac_ops,
1416	.phy_ops		= &es2_phy_ops,
1417	.nvm_ops		= &es2_nvm_ops,
1418};
1419