[go: nahoru, domu]

1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* ethtool support for e1000 */
23
24#include <linux/netdevice.h>
25#include <linux/interrupt.h>
26#include <linux/ethtool.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/vmalloc.h>
31#include <linux/pm_runtime.h>
32
33#include "e1000.h"
34
35enum { NETDEV_STATS, E1000_STATS };
36
37struct e1000_stats {
38	char stat_string[ETH_GSTRING_LEN];
39	int type;
40	int sizeof_stat;
41	int stat_offset;
42};
43
44#define E1000_STAT(str, m) { \
45		.stat_string = str, \
46		.type = E1000_STATS, \
47		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48		.stat_offset = offsetof(struct e1000_adapter, m) }
49#define E1000_NETDEV_STAT(str, m) { \
50		.stat_string = str, \
51		.type = NETDEV_STATS, \
52		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55static const struct e1000_stats e1000_gstrings_stats[] = {
56	E1000_STAT("rx_packets", stats.gprc),
57	E1000_STAT("tx_packets", stats.gptc),
58	E1000_STAT("rx_bytes", stats.gorc),
59	E1000_STAT("tx_bytes", stats.gotc),
60	E1000_STAT("rx_broadcast", stats.bprc),
61	E1000_STAT("tx_broadcast", stats.bptc),
62	E1000_STAT("rx_multicast", stats.mprc),
63	E1000_STAT("tx_multicast", stats.mptc),
64	E1000_NETDEV_STAT("rx_errors", rx_errors),
65	E1000_NETDEV_STAT("tx_errors", tx_errors),
66	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67	E1000_STAT("multicast", stats.mprc),
68	E1000_STAT("collisions", stats.colc),
69	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71	E1000_STAT("rx_crc_errors", stats.crcerrs),
72	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73	E1000_STAT("rx_no_buffer_count", stats.rnbc),
74	E1000_STAT("rx_missed_errors", stats.mpc),
75	E1000_STAT("tx_aborted_errors", stats.ecol),
76	E1000_STAT("tx_carrier_errors", stats.tncrs),
77	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79	E1000_STAT("tx_window_errors", stats.latecol),
80	E1000_STAT("tx_abort_late_coll", stats.latecol),
81	E1000_STAT("tx_deferred_ok", stats.dc),
82	E1000_STAT("tx_single_coll_ok", stats.scc),
83	E1000_STAT("tx_multi_coll_ok", stats.mcc),
84	E1000_STAT("tx_timeout_count", tx_timeout_count),
85	E1000_STAT("tx_restart_queue", restart_queue),
86	E1000_STAT("rx_long_length_errors", stats.roc),
87	E1000_STAT("rx_short_length_errors", stats.ruc),
88	E1000_STAT("rx_align_errors", stats.algnerrc),
89	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93	E1000_STAT("tx_flow_control_xon", stats.xontxc),
94	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95	E1000_STAT("rx_csum_offload_good", hw_csum_good),
96	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97	E1000_STAT("rx_header_split", rx_hdr_split),
98	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99	E1000_STAT("tx_smbus", stats.mgptc),
100	E1000_STAT("rx_smbus", stats.mgprc),
101	E1000_STAT("dropped_smbus", stats.mgpdc),
102	E1000_STAT("rx_dma_failed", rx_dma_failed),
103	E1000_STAT("tx_dma_failed", tx_dma_failed),
104	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106	E1000_STAT("corr_ecc_errors", corr_errors),
107	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108};
109
110#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
111#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113	"Register test  (offline)", "Eeprom test    (offline)",
114	"Interrupt test (offline)", "Loopback test  (offline)",
115	"Link test   (on/offline)"
116};
117
118#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120static int e1000_get_settings(struct net_device *netdev,
121			      struct ethtool_cmd *ecmd)
122{
123	struct e1000_adapter *adapter = netdev_priv(netdev);
124	struct e1000_hw *hw = &adapter->hw;
125	u32 speed;
126
127	if (hw->phy.media_type == e1000_media_type_copper) {
128		ecmd->supported = (SUPPORTED_10baseT_Half |
129				   SUPPORTED_10baseT_Full |
130				   SUPPORTED_100baseT_Half |
131				   SUPPORTED_100baseT_Full |
132				   SUPPORTED_1000baseT_Full |
133				   SUPPORTED_Autoneg |
134				   SUPPORTED_TP);
135		if (hw->phy.type == e1000_phy_ife)
136			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137		ecmd->advertising = ADVERTISED_TP;
138
139		if (hw->mac.autoneg == 1) {
140			ecmd->advertising |= ADVERTISED_Autoneg;
141			/* the e1000 autoneg seems to match ethtool nicely */
142			ecmd->advertising |= hw->phy.autoneg_advertised;
143		}
144
145		ecmd->port = PORT_TP;
146		ecmd->phy_address = hw->phy.addr;
147		ecmd->transceiver = XCVR_INTERNAL;
148
149	} else {
150		ecmd->supported   = (SUPPORTED_1000baseT_Full |
151				     SUPPORTED_FIBRE |
152				     SUPPORTED_Autoneg);
153
154		ecmd->advertising = (ADVERTISED_1000baseT_Full |
155				     ADVERTISED_FIBRE |
156				     ADVERTISED_Autoneg);
157
158		ecmd->port = PORT_FIBRE;
159		ecmd->transceiver = XCVR_EXTERNAL;
160	}
161
162	speed = SPEED_UNKNOWN;
163	ecmd->duplex = DUPLEX_UNKNOWN;
164
165	if (netif_running(netdev)) {
166		if (netif_carrier_ok(netdev)) {
167			speed = adapter->link_speed;
168			ecmd->duplex = adapter->link_duplex - 1;
169		}
170	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
171		u32 status = er32(STATUS);
172
173		if (status & E1000_STATUS_LU) {
174			if (status & E1000_STATUS_SPEED_1000)
175				speed = SPEED_1000;
176			else if (status & E1000_STATUS_SPEED_100)
177				speed = SPEED_100;
178			else
179				speed = SPEED_10;
180
181			if (status & E1000_STATUS_FD)
182				ecmd->duplex = DUPLEX_FULL;
183			else
184				ecmd->duplex = DUPLEX_HALF;
185		}
186	}
187
188	ethtool_cmd_speed_set(ecmd, speed);
189	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192	/* MDI-X => 2; MDI =>1; Invalid =>0 */
193	if ((hw->phy.media_type == e1000_media_type_copper) &&
194	    netif_carrier_ok(netdev))
195		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196	else
197		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199	if (hw->phy.mdix == AUTO_ALL_MODES)
200		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201	else
202		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203
204	return 0;
205}
206
207static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
208{
209	struct e1000_mac_info *mac = &adapter->hw.mac;
210
211	mac->autoneg = 0;
212
213	/* Make sure dplx is at most 1 bit and lsb of speed is not set
214	 * for the switch() below to work
215	 */
216	if ((spd & 1) || (dplx & ~1))
217		goto err_inval;
218
219	/* Fiber NICs only allow 1000 gbps Full duplex */
220	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
221	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
222		goto err_inval;
223	}
224
225	switch (spd + dplx) {
226	case SPEED_10 + DUPLEX_HALF:
227		mac->forced_speed_duplex = ADVERTISE_10_HALF;
228		break;
229	case SPEED_10 + DUPLEX_FULL:
230		mac->forced_speed_duplex = ADVERTISE_10_FULL;
231		break;
232	case SPEED_100 + DUPLEX_HALF:
233		mac->forced_speed_duplex = ADVERTISE_100_HALF;
234		break;
235	case SPEED_100 + DUPLEX_FULL:
236		mac->forced_speed_duplex = ADVERTISE_100_FULL;
237		break;
238	case SPEED_1000 + DUPLEX_FULL:
239		mac->autoneg = 1;
240		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
241		break;
242	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
243	default:
244		goto err_inval;
245	}
246
247	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
248	adapter->hw.phy.mdix = AUTO_ALL_MODES;
249
250	return 0;
251
252err_inval:
253	e_err("Unsupported Speed/Duplex configuration\n");
254	return -EINVAL;
255}
256
257static int e1000_set_settings(struct net_device *netdev,
258			      struct ethtool_cmd *ecmd)
259{
260	struct e1000_adapter *adapter = netdev_priv(netdev);
261	struct e1000_hw *hw = &adapter->hw;
262	int ret_val = 0;
263
264	pm_runtime_get_sync(netdev->dev.parent);
265
266	/* When SoL/IDER sessions are active, autoneg/speed/duplex
267	 * cannot be changed
268	 */
269	if (hw->phy.ops.check_reset_block &&
270	    hw->phy.ops.check_reset_block(hw)) {
271		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
272		ret_val = -EINVAL;
273		goto out;
274	}
275
276	/* MDI setting is only allowed when autoneg enabled because
277	 * some hardware doesn't allow MDI setting when speed or
278	 * duplex is forced.
279	 */
280	if (ecmd->eth_tp_mdix_ctrl) {
281		if (hw->phy.media_type != e1000_media_type_copper) {
282			ret_val = -EOPNOTSUPP;
283			goto out;
284		}
285
286		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287		    (ecmd->autoneg != AUTONEG_ENABLE)) {
288			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
289			ret_val = -EINVAL;
290			goto out;
291		}
292	}
293
294	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
295		usleep_range(1000, 2000);
296
297	if (ecmd->autoneg == AUTONEG_ENABLE) {
298		hw->mac.autoneg = 1;
299		if (hw->phy.media_type == e1000_media_type_fiber)
300			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
301			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
302		else
303			hw->phy.autoneg_advertised = ecmd->advertising |
304			    ADVERTISED_TP | ADVERTISED_Autoneg;
305		ecmd->advertising = hw->phy.autoneg_advertised;
306		if (adapter->fc_autoneg)
307			hw->fc.requested_mode = e1000_fc_default;
308	} else {
309		u32 speed = ethtool_cmd_speed(ecmd);
310		/* calling this overrides forced MDI setting */
311		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
312			ret_val = -EINVAL;
313			goto out;
314		}
315	}
316
317	/* MDI-X => 2; MDI => 1; Auto => 3 */
318	if (ecmd->eth_tp_mdix_ctrl) {
319		/* fix up the value for auto (3 => 0) as zero is mapped
320		 * internally to auto
321		 */
322		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
323			hw->phy.mdix = AUTO_ALL_MODES;
324		else
325			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
326	}
327
328	/* reset the link */
329	if (netif_running(adapter->netdev)) {
330		e1000e_down(adapter, true);
331		e1000e_up(adapter);
332	} else {
333		e1000e_reset(adapter);
334	}
335
336out:
337	pm_runtime_put_sync(netdev->dev.parent);
338	clear_bit(__E1000_RESETTING, &adapter->state);
339	return ret_val;
340}
341
342static void e1000_get_pauseparam(struct net_device *netdev,
343				 struct ethtool_pauseparam *pause)
344{
345	struct e1000_adapter *adapter = netdev_priv(netdev);
346	struct e1000_hw *hw = &adapter->hw;
347
348	pause->autoneg =
349	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
350
351	if (hw->fc.current_mode == e1000_fc_rx_pause) {
352		pause->rx_pause = 1;
353	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
354		pause->tx_pause = 1;
355	} else if (hw->fc.current_mode == e1000_fc_full) {
356		pause->rx_pause = 1;
357		pause->tx_pause = 1;
358	}
359}
360
361static int e1000_set_pauseparam(struct net_device *netdev,
362				struct ethtool_pauseparam *pause)
363{
364	struct e1000_adapter *adapter = netdev_priv(netdev);
365	struct e1000_hw *hw = &adapter->hw;
366	int retval = 0;
367
368	adapter->fc_autoneg = pause->autoneg;
369
370	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
371		usleep_range(1000, 2000);
372
373	pm_runtime_get_sync(netdev->dev.parent);
374
375	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
376		hw->fc.requested_mode = e1000_fc_default;
377		if (netif_running(adapter->netdev)) {
378			e1000e_down(adapter, true);
379			e1000e_up(adapter);
380		} else {
381			e1000e_reset(adapter);
382		}
383	} else {
384		if (pause->rx_pause && pause->tx_pause)
385			hw->fc.requested_mode = e1000_fc_full;
386		else if (pause->rx_pause && !pause->tx_pause)
387			hw->fc.requested_mode = e1000_fc_rx_pause;
388		else if (!pause->rx_pause && pause->tx_pause)
389			hw->fc.requested_mode = e1000_fc_tx_pause;
390		else if (!pause->rx_pause && !pause->tx_pause)
391			hw->fc.requested_mode = e1000_fc_none;
392
393		hw->fc.current_mode = hw->fc.requested_mode;
394
395		if (hw->phy.media_type == e1000_media_type_fiber) {
396			retval = hw->mac.ops.setup_link(hw);
397			/* implicit goto out */
398		} else {
399			retval = e1000e_force_mac_fc(hw);
400			if (retval)
401				goto out;
402			e1000e_set_fc_watermarks(hw);
403		}
404	}
405
406out:
407	pm_runtime_put_sync(netdev->dev.parent);
408	clear_bit(__E1000_RESETTING, &adapter->state);
409	return retval;
410}
411
412static u32 e1000_get_msglevel(struct net_device *netdev)
413{
414	struct e1000_adapter *adapter = netdev_priv(netdev);
415	return adapter->msg_enable;
416}
417
418static void e1000_set_msglevel(struct net_device *netdev, u32 data)
419{
420	struct e1000_adapter *adapter = netdev_priv(netdev);
421	adapter->msg_enable = data;
422}
423
424static int e1000_get_regs_len(struct net_device __always_unused *netdev)
425{
426#define E1000_REGS_LEN 32	/* overestimate */
427	return E1000_REGS_LEN * sizeof(u32);
428}
429
430static void e1000_get_regs(struct net_device *netdev,
431			   struct ethtool_regs *regs, void *p)
432{
433	struct e1000_adapter *adapter = netdev_priv(netdev);
434	struct e1000_hw *hw = &adapter->hw;
435	u32 *regs_buff = p;
436	u16 phy_data;
437
438	pm_runtime_get_sync(netdev->dev.parent);
439
440	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
441
442	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
443	    adapter->pdev->device;
444
445	regs_buff[0] = er32(CTRL);
446	regs_buff[1] = er32(STATUS);
447
448	regs_buff[2] = er32(RCTL);
449	regs_buff[3] = er32(RDLEN(0));
450	regs_buff[4] = er32(RDH(0));
451	regs_buff[5] = er32(RDT(0));
452	regs_buff[6] = er32(RDTR);
453
454	regs_buff[7] = er32(TCTL);
455	regs_buff[8] = er32(TDLEN(0));
456	regs_buff[9] = er32(TDH(0));
457	regs_buff[10] = er32(TDT(0));
458	regs_buff[11] = er32(TIDV);
459
460	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
461
462	/* ethtool doesn't use anything past this point, so all this
463	 * code is likely legacy junk for apps that may or may not exist
464	 */
465	if (hw->phy.type == e1000_phy_m88) {
466		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
467		regs_buff[13] = (u32)phy_data; /* cable length */
468		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
471		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
472		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
473		regs_buff[18] = regs_buff[13]; /* cable polarity */
474		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475		regs_buff[20] = regs_buff[17]; /* polarity correction */
476		/* phy receive errors */
477		regs_buff[22] = adapter->phy_stats.receive_errors;
478		regs_buff[23] = regs_buff[13]; /* mdix mode */
479	}
480	regs_buff[21] = 0;	/* was idle_errors */
481	e1e_rphy(hw, MII_STAT1000, &phy_data);
482	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
483	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
484
485	pm_runtime_put_sync(netdev->dev.parent);
486}
487
488static int e1000_get_eeprom_len(struct net_device *netdev)
489{
490	struct e1000_adapter *adapter = netdev_priv(netdev);
491	return adapter->hw.nvm.word_size * 2;
492}
493
494static int e1000_get_eeprom(struct net_device *netdev,
495			    struct ethtool_eeprom *eeprom, u8 *bytes)
496{
497	struct e1000_adapter *adapter = netdev_priv(netdev);
498	struct e1000_hw *hw = &adapter->hw;
499	u16 *eeprom_buff;
500	int first_word;
501	int last_word;
502	int ret_val = 0;
503	u16 i;
504
505	if (eeprom->len == 0)
506		return -EINVAL;
507
508	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509
510	first_word = eeprom->offset >> 1;
511	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512
513	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
514			      GFP_KERNEL);
515	if (!eeprom_buff)
516		return -ENOMEM;
517
518	pm_runtime_get_sync(netdev->dev.parent);
519
520	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
521		ret_val = e1000_read_nvm(hw, first_word,
522					 last_word - first_word + 1,
523					 eeprom_buff);
524	} else {
525		for (i = 0; i < last_word - first_word + 1; i++) {
526			ret_val = e1000_read_nvm(hw, first_word + i, 1,
527						 &eeprom_buff[i]);
528			if (ret_val)
529				break;
530		}
531	}
532
533	pm_runtime_put_sync(netdev->dev.parent);
534
535	if (ret_val) {
536		/* a read error occurred, throw away the result */
537		memset(eeprom_buff, 0xff, sizeof(u16) *
538		       (last_word - first_word + 1));
539	} else {
540		/* Device's eeprom is always little-endian, word addressable */
541		for (i = 0; i < last_word - first_word + 1; i++)
542			le16_to_cpus(&eeprom_buff[i]);
543	}
544
545	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
546	kfree(eeprom_buff);
547
548	return ret_val;
549}
550
551static int e1000_set_eeprom(struct net_device *netdev,
552			    struct ethtool_eeprom *eeprom, u8 *bytes)
553{
554	struct e1000_adapter *adapter = netdev_priv(netdev);
555	struct e1000_hw *hw = &adapter->hw;
556	u16 *eeprom_buff;
557	void *ptr;
558	int max_len;
559	int first_word;
560	int last_word;
561	int ret_val = 0;
562	u16 i;
563
564	if (eeprom->len == 0)
565		return -EOPNOTSUPP;
566
567	if (eeprom->magic !=
568	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569		return -EFAULT;
570
571	if (adapter->flags & FLAG_READ_ONLY_NVM)
572		return -EINVAL;
573
574	max_len = hw->nvm.word_size * 2;
575
576	first_word = eeprom->offset >> 1;
577	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579	if (!eeprom_buff)
580		return -ENOMEM;
581
582	ptr = (void *)eeprom_buff;
583
584	pm_runtime_get_sync(netdev->dev.parent);
585
586	if (eeprom->offset & 1) {
587		/* need read/modify/write of first changed EEPROM word */
588		/* only the second byte of the word is being modified */
589		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590		ptr++;
591	}
592	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
593		/* need read/modify/write of last changed EEPROM word */
594		/* only the first byte of the word is being modified */
595		ret_val = e1000_read_nvm(hw, last_word, 1,
596					 &eeprom_buff[last_word - first_word]);
597
598	if (ret_val)
599		goto out;
600
601	/* Device's eeprom is always little-endian, word addressable */
602	for (i = 0; i < last_word - first_word + 1; i++)
603		le16_to_cpus(&eeprom_buff[i]);
604
605	memcpy(ptr, bytes, eeprom->len);
606
607	for (i = 0; i < last_word - first_word + 1; i++)
608		cpu_to_le16s(&eeprom_buff[i]);
609
610	ret_val = e1000_write_nvm(hw, first_word,
611				  last_word - first_word + 1, eeprom_buff);
612
613	if (ret_val)
614		goto out;
615
616	/* Update the checksum over the first part of the EEPROM if needed
617	 * and flush shadow RAM for applicable controllers
618	 */
619	if ((first_word <= NVM_CHECKSUM_REG) ||
620	    (hw->mac.type == e1000_82583) ||
621	    (hw->mac.type == e1000_82574) ||
622	    (hw->mac.type == e1000_82573))
623		ret_val = e1000e_update_nvm_checksum(hw);
624
625out:
626	pm_runtime_put_sync(netdev->dev.parent);
627	kfree(eeprom_buff);
628	return ret_val;
629}
630
631static void e1000_get_drvinfo(struct net_device *netdev,
632			      struct ethtool_drvinfo *drvinfo)
633{
634	struct e1000_adapter *adapter = netdev_priv(netdev);
635
636	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
637	strlcpy(drvinfo->version, e1000e_driver_version,
638		sizeof(drvinfo->version));
639
640	/* EEPROM image version # is reported as firmware version # for
641	 * PCI-E controllers
642	 */
643	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
644		 "%d.%d-%d",
645		 (adapter->eeprom_vers & 0xF000) >> 12,
646		 (adapter->eeprom_vers & 0x0FF0) >> 4,
647		 (adapter->eeprom_vers & 0x000F));
648
649	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
650		sizeof(drvinfo->bus_info));
651	drvinfo->regdump_len = e1000_get_regs_len(netdev);
652	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
653}
654
655static void e1000_get_ringparam(struct net_device *netdev,
656				struct ethtool_ringparam *ring)
657{
658	struct e1000_adapter *adapter = netdev_priv(netdev);
659
660	ring->rx_max_pending = E1000_MAX_RXD;
661	ring->tx_max_pending = E1000_MAX_TXD;
662	ring->rx_pending = adapter->rx_ring_count;
663	ring->tx_pending = adapter->tx_ring_count;
664}
665
666static int e1000_set_ringparam(struct net_device *netdev,
667			       struct ethtool_ringparam *ring)
668{
669	struct e1000_adapter *adapter = netdev_priv(netdev);
670	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
671	int err = 0, size = sizeof(struct e1000_ring);
672	bool set_tx = false, set_rx = false;
673	u16 new_rx_count, new_tx_count;
674
675	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
676		return -EINVAL;
677
678	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
679			       E1000_MAX_RXD);
680	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
681
682	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
683			       E1000_MAX_TXD);
684	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
685
686	if ((new_tx_count == adapter->tx_ring_count) &&
687	    (new_rx_count == adapter->rx_ring_count))
688		/* nothing to do */
689		return 0;
690
691	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
692		usleep_range(1000, 2000);
693
694	if (!netif_running(adapter->netdev)) {
695		/* Set counts now and allocate resources during open() */
696		adapter->tx_ring->count = new_tx_count;
697		adapter->rx_ring->count = new_rx_count;
698		adapter->tx_ring_count = new_tx_count;
699		adapter->rx_ring_count = new_rx_count;
700		goto clear_reset;
701	}
702
703	set_tx = (new_tx_count != adapter->tx_ring_count);
704	set_rx = (new_rx_count != adapter->rx_ring_count);
705
706	/* Allocate temporary storage for ring updates */
707	if (set_tx) {
708		temp_tx = vmalloc(size);
709		if (!temp_tx) {
710			err = -ENOMEM;
711			goto free_temp;
712		}
713	}
714	if (set_rx) {
715		temp_rx = vmalloc(size);
716		if (!temp_rx) {
717			err = -ENOMEM;
718			goto free_temp;
719		}
720	}
721
722	pm_runtime_get_sync(netdev->dev.parent);
723
724	e1000e_down(adapter, true);
725
726	/* We can't just free everything and then setup again, because the
727	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
728	 * structs.  First, attempt to allocate new resources...
729	 */
730	if (set_tx) {
731		memcpy(temp_tx, adapter->tx_ring, size);
732		temp_tx->count = new_tx_count;
733		err = e1000e_setup_tx_resources(temp_tx);
734		if (err)
735			goto err_setup;
736	}
737	if (set_rx) {
738		memcpy(temp_rx, adapter->rx_ring, size);
739		temp_rx->count = new_rx_count;
740		err = e1000e_setup_rx_resources(temp_rx);
741		if (err)
742			goto err_setup_rx;
743	}
744
745	/* ...then free the old resources and copy back any new ring data */
746	if (set_tx) {
747		e1000e_free_tx_resources(adapter->tx_ring);
748		memcpy(adapter->tx_ring, temp_tx, size);
749		adapter->tx_ring_count = new_tx_count;
750	}
751	if (set_rx) {
752		e1000e_free_rx_resources(adapter->rx_ring);
753		memcpy(adapter->rx_ring, temp_rx, size);
754		adapter->rx_ring_count = new_rx_count;
755	}
756
757err_setup_rx:
758	if (err && set_tx)
759		e1000e_free_tx_resources(temp_tx);
760err_setup:
761	e1000e_up(adapter);
762	pm_runtime_put_sync(netdev->dev.parent);
763free_temp:
764	vfree(temp_tx);
765	vfree(temp_rx);
766clear_reset:
767	clear_bit(__E1000_RESETTING, &adapter->state);
768	return err;
769}
770
771static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
772			     int reg, int offset, u32 mask, u32 write)
773{
774	u32 pat, val;
775	static const u32 test[] = {
776		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
777	};
778	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
779		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
780				      (test[pat] & write));
781		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
782		if (val != (test[pat] & write & mask)) {
783			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
784			      reg + (offset << 2), val,
785			      (test[pat] & write & mask));
786			*data = reg;
787			return true;
788		}
789	}
790	return false;
791}
792
793static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
794			      int reg, u32 mask, u32 write)
795{
796	u32 val;
797
798	__ew32(&adapter->hw, reg, write & mask);
799	val = __er32(&adapter->hw, reg);
800	if ((write & mask) != (val & mask)) {
801		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
802		      reg, (val & mask), (write & mask));
803		*data = reg;
804		return true;
805	}
806	return false;
807}
808
809#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
810	do {                                                                   \
811		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
812			return 1;                                              \
813	} while (0)
814#define REG_PATTERN_TEST(reg, mask, write)                                     \
815	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
816
817#define REG_SET_AND_CHECK(reg, mask, write)                                    \
818	do {                                                                   \
819		if (reg_set_and_check(adapter, data, reg, mask, write))        \
820			return 1;                                              \
821	} while (0)
822
823static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
824{
825	struct e1000_hw *hw = &adapter->hw;
826	struct e1000_mac_info *mac = &adapter->hw.mac;
827	u32 value;
828	u32 before;
829	u32 after;
830	u32 i;
831	u32 toggle;
832	u32 mask;
833	u32 wlock_mac = 0;
834
835	/* The status register is Read Only, so a write should fail.
836	 * Some bits that get toggled are ignored.  There are several bits
837	 * on newer hardware that are r/w.
838	 */
839	switch (mac->type) {
840	case e1000_82571:
841	case e1000_82572:
842	case e1000_80003es2lan:
843		toggle = 0x7FFFF3FF;
844		break;
845	default:
846		toggle = 0x7FFFF033;
847		break;
848	}
849
850	before = er32(STATUS);
851	value = (er32(STATUS) & toggle);
852	ew32(STATUS, toggle);
853	after = er32(STATUS) & toggle;
854	if (value != after) {
855		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
856		      after, value);
857		*data = 1;
858		return 1;
859	}
860	/* restore previous status */
861	ew32(STATUS, before);
862
863	if (!(adapter->flags & FLAG_IS_ICH)) {
864		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
865		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
866		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
867		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
868	}
869
870	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
871	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
872	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
873	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
874	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
875	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
876	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
877	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
878	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
880
881	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
882
883	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
884	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
885	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
886
887	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
888	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
889	if (!(adapter->flags & FLAG_IS_ICH))
890		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
891	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
892	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
893	mask = 0x8003FFFF;
894	switch (mac->type) {
895	case e1000_ich10lan:
896	case e1000_pchlan:
897	case e1000_pch2lan:
898	case e1000_pch_lpt:
899		mask |= (1 << 18);
900		break;
901	default:
902		break;
903	}
904
905	if (mac->type == e1000_pch_lpt)
906		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
907		    E1000_FWSM_WLOCK_MAC_SHIFT;
908
909	for (i = 0; i < mac->rar_entry_count; i++) {
910		if (mac->type == e1000_pch_lpt) {
911			/* Cannot test write-protected SHRAL[n] registers */
912			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
913				continue;
914
915			/* SHRAH[9] different than the others */
916			if (i == 10)
917				mask |= (1 << 30);
918			else
919				mask &= ~(1 << 30);
920		}
921		if (mac->type == e1000_pch2lan) {
922			/* SHRAH[0,1,2] different than previous */
923			if (i == 1)
924				mask &= 0xFFF4FFFF;
925			/* SHRAH[3] different than SHRAH[0,1,2] */
926			if (i == 4)
927				mask |= (1 << 30);
928			/* RAR[1-6] owned by management engine - skipping */
929			if (i > 0)
930				i += 6;
931		}
932
933		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
934				       0xFFFFFFFF);
935		/* reset index to actual value */
936		if ((mac->type == e1000_pch2lan) && (i > 6))
937			i -= 6;
938	}
939
940	for (i = 0; i < mac->mta_reg_count; i++)
941		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
942
943	*data = 0;
944
945	return 0;
946}
947
948static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
949{
950	u16 temp;
951	u16 checksum = 0;
952	u16 i;
953
954	*data = 0;
955	/* Read and add up the contents of the EEPROM */
956	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
957		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
958			*data = 1;
959			return *data;
960		}
961		checksum += temp;
962	}
963
964	/* If Checksum is not Correct return error else test passed */
965	if ((checksum != (u16)NVM_SUM) && !(*data))
966		*data = 2;
967
968	return *data;
969}
970
971static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
972{
973	struct net_device *netdev = (struct net_device *)data;
974	struct e1000_adapter *adapter = netdev_priv(netdev);
975	struct e1000_hw *hw = &adapter->hw;
976
977	adapter->test_icr |= er32(ICR);
978
979	return IRQ_HANDLED;
980}
981
982static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
983{
984	struct net_device *netdev = adapter->netdev;
985	struct e1000_hw *hw = &adapter->hw;
986	u32 mask;
987	u32 shared_int = 1;
988	u32 irq = adapter->pdev->irq;
989	int i;
990	int ret_val = 0;
991	int int_mode = E1000E_INT_MODE_LEGACY;
992
993	*data = 0;
994
995	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
996	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
997		int_mode = adapter->int_mode;
998		e1000e_reset_interrupt_capability(adapter);
999		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1000		e1000e_set_interrupt_capability(adapter);
1001	}
1002	/* Hook up test interrupt handler just for this test */
1003	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1004			 netdev)) {
1005		shared_int = 0;
1006	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1007			       netdev)) {
1008		*data = 1;
1009		ret_val = -1;
1010		goto out;
1011	}
1012	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1013
1014	/* Disable all the interrupts */
1015	ew32(IMC, 0xFFFFFFFF);
1016	e1e_flush();
1017	usleep_range(10000, 20000);
1018
1019	/* Test each interrupt */
1020	for (i = 0; i < 10; i++) {
1021		/* Interrupt to test */
1022		mask = 1 << i;
1023
1024		if (adapter->flags & FLAG_IS_ICH) {
1025			switch (mask) {
1026			case E1000_ICR_RXSEQ:
1027				continue;
1028			case 0x00000100:
1029				if (adapter->hw.mac.type == e1000_ich8lan ||
1030				    adapter->hw.mac.type == e1000_ich9lan)
1031					continue;
1032				break;
1033			default:
1034				break;
1035			}
1036		}
1037
1038		if (!shared_int) {
1039			/* Disable the interrupt to be reported in
1040			 * the cause register and then force the same
1041			 * interrupt and see if one gets posted.  If
1042			 * an interrupt was posted to the bus, the
1043			 * test failed.
1044			 */
1045			adapter->test_icr = 0;
1046			ew32(IMC, mask);
1047			ew32(ICS, mask);
1048			e1e_flush();
1049			usleep_range(10000, 20000);
1050
1051			if (adapter->test_icr & mask) {
1052				*data = 3;
1053				break;
1054			}
1055		}
1056
1057		/* Enable the interrupt to be reported in
1058		 * the cause register and then force the same
1059		 * interrupt and see if one gets posted.  If
1060		 * an interrupt was not posted to the bus, the
1061		 * test failed.
1062		 */
1063		adapter->test_icr = 0;
1064		ew32(IMS, mask);
1065		ew32(ICS, mask);
1066		e1e_flush();
1067		usleep_range(10000, 20000);
1068
1069		if (!(adapter->test_icr & mask)) {
1070			*data = 4;
1071			break;
1072		}
1073
1074		if (!shared_int) {
1075			/* Disable the other interrupts to be reported in
1076			 * the cause register and then force the other
1077			 * interrupts and see if any get posted.  If
1078			 * an interrupt was posted to the bus, the
1079			 * test failed.
1080			 */
1081			adapter->test_icr = 0;
1082			ew32(IMC, ~mask & 0x00007FFF);
1083			ew32(ICS, ~mask & 0x00007FFF);
1084			e1e_flush();
1085			usleep_range(10000, 20000);
1086
1087			if (adapter->test_icr) {
1088				*data = 5;
1089				break;
1090			}
1091		}
1092	}
1093
1094	/* Disable all the interrupts */
1095	ew32(IMC, 0xFFFFFFFF);
1096	e1e_flush();
1097	usleep_range(10000, 20000);
1098
1099	/* Unhook test interrupt handler */
1100	free_irq(irq, netdev);
1101
1102out:
1103	if (int_mode == E1000E_INT_MODE_MSIX) {
1104		e1000e_reset_interrupt_capability(adapter);
1105		adapter->int_mode = int_mode;
1106		e1000e_set_interrupt_capability(adapter);
1107	}
1108
1109	return ret_val;
1110}
1111
1112static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1113{
1114	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1115	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1116	struct pci_dev *pdev = adapter->pdev;
1117	struct e1000_buffer *buffer_info;
1118	int i;
1119
1120	if (tx_ring->desc && tx_ring->buffer_info) {
1121		for (i = 0; i < tx_ring->count; i++) {
1122			buffer_info = &tx_ring->buffer_info[i];
1123
1124			if (buffer_info->dma)
1125				dma_unmap_single(&pdev->dev,
1126						 buffer_info->dma,
1127						 buffer_info->length,
1128						 DMA_TO_DEVICE);
1129			if (buffer_info->skb)
1130				dev_kfree_skb(buffer_info->skb);
1131		}
1132	}
1133
1134	if (rx_ring->desc && rx_ring->buffer_info) {
1135		for (i = 0; i < rx_ring->count; i++) {
1136			buffer_info = &rx_ring->buffer_info[i];
1137
1138			if (buffer_info->dma)
1139				dma_unmap_single(&pdev->dev,
1140						 buffer_info->dma,
1141						 2048, DMA_FROM_DEVICE);
1142			if (buffer_info->skb)
1143				dev_kfree_skb(buffer_info->skb);
1144		}
1145	}
1146
1147	if (tx_ring->desc) {
1148		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1149				  tx_ring->dma);
1150		tx_ring->desc = NULL;
1151	}
1152	if (rx_ring->desc) {
1153		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1154				  rx_ring->dma);
1155		rx_ring->desc = NULL;
1156	}
1157
1158	kfree(tx_ring->buffer_info);
1159	tx_ring->buffer_info = NULL;
1160	kfree(rx_ring->buffer_info);
1161	rx_ring->buffer_info = NULL;
1162}
1163
1164static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1165{
1166	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1167	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1168	struct pci_dev *pdev = adapter->pdev;
1169	struct e1000_hw *hw = &adapter->hw;
1170	u32 rctl;
1171	int i;
1172	int ret_val;
1173
1174	/* Setup Tx descriptor ring and Tx buffers */
1175
1176	if (!tx_ring->count)
1177		tx_ring->count = E1000_DEFAULT_TXD;
1178
1179	tx_ring->buffer_info = kcalloc(tx_ring->count,
1180				       sizeof(struct e1000_buffer), GFP_KERNEL);
1181	if (!tx_ring->buffer_info) {
1182		ret_val = 1;
1183		goto err_nomem;
1184	}
1185
1186	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1187	tx_ring->size = ALIGN(tx_ring->size, 4096);
1188	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1189					   &tx_ring->dma, GFP_KERNEL);
1190	if (!tx_ring->desc) {
1191		ret_val = 2;
1192		goto err_nomem;
1193	}
1194	tx_ring->next_to_use = 0;
1195	tx_ring->next_to_clean = 0;
1196
1197	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1198	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1199	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1200	ew32(TDH(0), 0);
1201	ew32(TDT(0), 0);
1202	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1203	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1204	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1205
1206	for (i = 0; i < tx_ring->count; i++) {
1207		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1208		struct sk_buff *skb;
1209		unsigned int skb_size = 1024;
1210
1211		skb = alloc_skb(skb_size, GFP_KERNEL);
1212		if (!skb) {
1213			ret_val = 3;
1214			goto err_nomem;
1215		}
1216		skb_put(skb, skb_size);
1217		tx_ring->buffer_info[i].skb = skb;
1218		tx_ring->buffer_info[i].length = skb->len;
1219		tx_ring->buffer_info[i].dma =
1220		    dma_map_single(&pdev->dev, skb->data, skb->len,
1221				   DMA_TO_DEVICE);
1222		if (dma_mapping_error(&pdev->dev,
1223				      tx_ring->buffer_info[i].dma)) {
1224			ret_val = 4;
1225			goto err_nomem;
1226		}
1227		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1228		tx_desc->lower.data = cpu_to_le32(skb->len);
1229		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1230						   E1000_TXD_CMD_IFCS |
1231						   E1000_TXD_CMD_RS);
1232		tx_desc->upper.data = 0;
1233	}
1234
1235	/* Setup Rx descriptor ring and Rx buffers */
1236
1237	if (!rx_ring->count)
1238		rx_ring->count = E1000_DEFAULT_RXD;
1239
1240	rx_ring->buffer_info = kcalloc(rx_ring->count,
1241				       sizeof(struct e1000_buffer), GFP_KERNEL);
1242	if (!rx_ring->buffer_info) {
1243		ret_val = 5;
1244		goto err_nomem;
1245	}
1246
1247	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1248	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1249					   &rx_ring->dma, GFP_KERNEL);
1250	if (!rx_ring->desc) {
1251		ret_val = 6;
1252		goto err_nomem;
1253	}
1254	rx_ring->next_to_use = 0;
1255	rx_ring->next_to_clean = 0;
1256
1257	rctl = er32(RCTL);
1258	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1259		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1260	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1261	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1262	ew32(RDLEN(0), rx_ring->size);
1263	ew32(RDH(0), 0);
1264	ew32(RDT(0), 0);
1265	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1266	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1267	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1268	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1269	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1270	ew32(RCTL, rctl);
1271
1272	for (i = 0; i < rx_ring->count; i++) {
1273		union e1000_rx_desc_extended *rx_desc;
1274		struct sk_buff *skb;
1275
1276		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1277		if (!skb) {
1278			ret_val = 7;
1279			goto err_nomem;
1280		}
1281		skb_reserve(skb, NET_IP_ALIGN);
1282		rx_ring->buffer_info[i].skb = skb;
1283		rx_ring->buffer_info[i].dma =
1284		    dma_map_single(&pdev->dev, skb->data, 2048,
1285				   DMA_FROM_DEVICE);
1286		if (dma_mapping_error(&pdev->dev,
1287				      rx_ring->buffer_info[i].dma)) {
1288			ret_val = 8;
1289			goto err_nomem;
1290		}
1291		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1292		rx_desc->read.buffer_addr =
1293		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1294		memset(skb->data, 0x00, skb->len);
1295	}
1296
1297	return 0;
1298
1299err_nomem:
1300	e1000_free_desc_rings(adapter);
1301	return ret_val;
1302}
1303
1304static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1305{
1306	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1307	e1e_wphy(&adapter->hw, 29, 0x001F);
1308	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1309	e1e_wphy(&adapter->hw, 29, 0x001A);
1310	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1311}
1312
1313static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1314{
1315	struct e1000_hw *hw = &adapter->hw;
1316	u32 ctrl_reg = 0;
1317	u16 phy_reg = 0;
1318	s32 ret_val = 0;
1319
1320	hw->mac.autoneg = 0;
1321
1322	if (hw->phy.type == e1000_phy_ife) {
1323		/* force 100, set loopback */
1324		e1e_wphy(hw, MII_BMCR, 0x6100);
1325
1326		/* Now set up the MAC to the same speed/duplex as the PHY. */
1327		ctrl_reg = er32(CTRL);
1328		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1329		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1330			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1331			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1332			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1333
1334		ew32(CTRL, ctrl_reg);
1335		e1e_flush();
1336		usleep_range(500, 1000);
1337
1338		return 0;
1339	}
1340
1341	/* Specific PHY configuration for loopback */
1342	switch (hw->phy.type) {
1343	case e1000_phy_m88:
1344		/* Auto-MDI/MDIX Off */
1345		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1346		/* reset to update Auto-MDI/MDIX */
1347		e1e_wphy(hw, MII_BMCR, 0x9140);
1348		/* autoneg off */
1349		e1e_wphy(hw, MII_BMCR, 0x8140);
1350		break;
1351	case e1000_phy_gg82563:
1352		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1353		break;
1354	case e1000_phy_bm:
1355		/* Set Default MAC Interface speed to 1GB */
1356		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1357		phy_reg &= ~0x0007;
1358		phy_reg |= 0x006;
1359		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1360		/* Assert SW reset for above settings to take effect */
1361		hw->phy.ops.commit(hw);
1362		usleep_range(1000, 2000);
1363		/* Force Full Duplex */
1364		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1365		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1366		/* Set Link Up (in force link) */
1367		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1368		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1369		/* Force Link */
1370		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1371		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1372		/* Set Early Link Enable */
1373		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1374		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1375		break;
1376	case e1000_phy_82577:
1377	case e1000_phy_82578:
1378		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1379		ret_val = hw->phy.ops.acquire(hw);
1380		if (ret_val) {
1381			e_err("Cannot setup 1Gbps loopback.\n");
1382			return ret_val;
1383		}
1384		e1000_configure_k1_ich8lan(hw, false);
1385		hw->phy.ops.release(hw);
1386		break;
1387	case e1000_phy_82579:
1388		/* Disable PHY energy detect power down */
1389		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1390		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1391		/* Disable full chip energy detect */
1392		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1393		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1394		/* Enable loopback on the PHY */
1395		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1396		break;
1397	default:
1398		break;
1399	}
1400
1401	/* force 1000, set loopback */
1402	e1e_wphy(hw, MII_BMCR, 0x4140);
1403	msleep(250);
1404
1405	/* Now set up the MAC to the same speed/duplex as the PHY. */
1406	ctrl_reg = er32(CTRL);
1407	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1408	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1409		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1410		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1411		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1412
1413	if (adapter->flags & FLAG_IS_ICH)
1414		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1415
1416	if (hw->phy.media_type == e1000_media_type_copper &&
1417	    hw->phy.type == e1000_phy_m88) {
1418		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1419	} else {
1420		/* Set the ILOS bit on the fiber Nic if half duplex link is
1421		 * detected.
1422		 */
1423		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1424			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1425	}
1426
1427	ew32(CTRL, ctrl_reg);
1428
1429	/* Disable the receiver on the PHY so when a cable is plugged in, the
1430	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1431	 */
1432	if (hw->phy.type == e1000_phy_m88)
1433		e1000_phy_disable_receiver(adapter);
1434
1435	usleep_range(500, 1000);
1436
1437	return 0;
1438}
1439
1440static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1441{
1442	struct e1000_hw *hw = &adapter->hw;
1443	u32 ctrl = er32(CTRL);
1444	int link;
1445
1446	/* special requirements for 82571/82572 fiber adapters */
1447
1448	/* jump through hoops to make sure link is up because serdes
1449	 * link is hardwired up
1450	 */
1451	ctrl |= E1000_CTRL_SLU;
1452	ew32(CTRL, ctrl);
1453
1454	/* disable autoneg */
1455	ctrl = er32(TXCW);
1456	ctrl &= ~(1 << 31);
1457	ew32(TXCW, ctrl);
1458
1459	link = (er32(STATUS) & E1000_STATUS_LU);
1460
1461	if (!link) {
1462		/* set invert loss of signal */
1463		ctrl = er32(CTRL);
1464		ctrl |= E1000_CTRL_ILOS;
1465		ew32(CTRL, ctrl);
1466	}
1467
1468	/* special write to serdes control register to enable SerDes analog
1469	 * loopback
1470	 */
1471	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1472	e1e_flush();
1473	usleep_range(10000, 20000);
1474
1475	return 0;
1476}
1477
1478/* only call this for fiber/serdes connections to es2lan */
1479static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1480{
1481	struct e1000_hw *hw = &adapter->hw;
1482	u32 ctrlext = er32(CTRL_EXT);
1483	u32 ctrl = er32(CTRL);
1484
1485	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1486	 * on mac_type 80003es2lan)
1487	 */
1488	adapter->tx_fifo_head = ctrlext;
1489
1490	/* clear the serdes mode bits, putting the device into mac loopback */
1491	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1492	ew32(CTRL_EXT, ctrlext);
1493
1494	/* force speed to 1000/FD, link up */
1495	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1496	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1497		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1498	ew32(CTRL, ctrl);
1499
1500	/* set mac loopback */
1501	ctrl = er32(RCTL);
1502	ctrl |= E1000_RCTL_LBM_MAC;
1503	ew32(RCTL, ctrl);
1504
1505	/* set testing mode parameters (no need to reset later) */
1506#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1507#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1508	ew32(KMRNCTRLSTA,
1509	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1510
1511	return 0;
1512}
1513
1514static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1515{
1516	struct e1000_hw *hw = &adapter->hw;
1517	u32 rctl;
1518
1519	if (hw->phy.media_type == e1000_media_type_fiber ||
1520	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1521		switch (hw->mac.type) {
1522		case e1000_80003es2lan:
1523			return e1000_set_es2lan_mac_loopback(adapter);
1524		case e1000_82571:
1525		case e1000_82572:
1526			return e1000_set_82571_fiber_loopback(adapter);
1527		default:
1528			rctl = er32(RCTL);
1529			rctl |= E1000_RCTL_LBM_TCVR;
1530			ew32(RCTL, rctl);
1531			return 0;
1532		}
1533	} else if (hw->phy.media_type == e1000_media_type_copper) {
1534		return e1000_integrated_phy_loopback(adapter);
1535	}
1536
1537	return 7;
1538}
1539
1540static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1541{
1542	struct e1000_hw *hw = &adapter->hw;
1543	u32 rctl;
1544	u16 phy_reg;
1545
1546	rctl = er32(RCTL);
1547	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1548	ew32(RCTL, rctl);
1549
1550	switch (hw->mac.type) {
1551	case e1000_80003es2lan:
1552		if (hw->phy.media_type == e1000_media_type_fiber ||
1553		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1554			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1555			ew32(CTRL_EXT, adapter->tx_fifo_head);
1556			adapter->tx_fifo_head = 0;
1557		}
1558		/* fall through */
1559	case e1000_82571:
1560	case e1000_82572:
1561		if (hw->phy.media_type == e1000_media_type_fiber ||
1562		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1563			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1564			e1e_flush();
1565			usleep_range(10000, 20000);
1566			break;
1567		}
1568		/* Fall Through */
1569	default:
1570		hw->mac.autoneg = 1;
1571		if (hw->phy.type == e1000_phy_gg82563)
1572			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1573		e1e_rphy(hw, MII_BMCR, &phy_reg);
1574		if (phy_reg & BMCR_LOOPBACK) {
1575			phy_reg &= ~BMCR_LOOPBACK;
1576			e1e_wphy(hw, MII_BMCR, phy_reg);
1577			if (hw->phy.ops.commit)
1578				hw->phy.ops.commit(hw);
1579		}
1580		break;
1581	}
1582}
1583
1584static void e1000_create_lbtest_frame(struct sk_buff *skb,
1585				      unsigned int frame_size)
1586{
1587	memset(skb->data, 0xFF, frame_size);
1588	frame_size &= ~1;
1589	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1590	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1591	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1592}
1593
1594static int e1000_check_lbtest_frame(struct sk_buff *skb,
1595				    unsigned int frame_size)
1596{
1597	frame_size &= ~1;
1598	if (*(skb->data + 3) == 0xFF)
1599		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1600		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1601			return 0;
1602	return 13;
1603}
1604
1605static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1606{
1607	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1608	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1609	struct pci_dev *pdev = adapter->pdev;
1610	struct e1000_hw *hw = &adapter->hw;
1611	struct e1000_buffer *buffer_info;
1612	int i, j, k, l;
1613	int lc;
1614	int good_cnt;
1615	int ret_val = 0;
1616	unsigned long time;
1617
1618	ew32(RDT(0), rx_ring->count - 1);
1619
1620	/* Calculate the loop count based on the largest descriptor ring
1621	 * The idea is to wrap the largest ring a number of times using 64
1622	 * send/receive pairs during each loop
1623	 */
1624
1625	if (rx_ring->count <= tx_ring->count)
1626		lc = ((tx_ring->count / 64) * 2) + 1;
1627	else
1628		lc = ((rx_ring->count / 64) * 2) + 1;
1629
1630	k = 0;
1631	l = 0;
1632	/* loop count loop */
1633	for (j = 0; j <= lc; j++) {
1634		/* send the packets */
1635		for (i = 0; i < 64; i++) {
1636			buffer_info = &tx_ring->buffer_info[k];
1637
1638			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1639			dma_sync_single_for_device(&pdev->dev,
1640						   buffer_info->dma,
1641						   buffer_info->length,
1642						   DMA_TO_DEVICE);
1643			k++;
1644			if (k == tx_ring->count)
1645				k = 0;
1646		}
1647		ew32(TDT(0), k);
1648		e1e_flush();
1649		msleep(200);
1650		time = jiffies;	/* set the start time for the receive */
1651		good_cnt = 0;
1652		/* receive the sent packets */
1653		do {
1654			buffer_info = &rx_ring->buffer_info[l];
1655
1656			dma_sync_single_for_cpu(&pdev->dev,
1657						buffer_info->dma, 2048,
1658						DMA_FROM_DEVICE);
1659
1660			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1661							   1024);
1662			if (!ret_val)
1663				good_cnt++;
1664			l++;
1665			if (l == rx_ring->count)
1666				l = 0;
1667			/* time + 20 msecs (200 msecs on 2.4) is more than
1668			 * enough time to complete the receives, if it's
1669			 * exceeded, break and error off
1670			 */
1671		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1672		if (good_cnt != 64) {
1673			ret_val = 13;	/* ret_val is the same as mis-compare */
1674			break;
1675		}
1676		if (time_after(jiffies, time + 20)) {
1677			ret_val = 14;	/* error code for time out error */
1678			break;
1679		}
1680	}
1681	return ret_val;
1682}
1683
1684static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1685{
1686	struct e1000_hw *hw = &adapter->hw;
1687
1688	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1689	if (hw->phy.ops.check_reset_block &&
1690	    hw->phy.ops.check_reset_block(hw)) {
1691		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1692		*data = 0;
1693		goto out;
1694	}
1695
1696	*data = e1000_setup_desc_rings(adapter);
1697	if (*data)
1698		goto out;
1699
1700	*data = e1000_setup_loopback_test(adapter);
1701	if (*data)
1702		goto err_loopback;
1703
1704	*data = e1000_run_loopback_test(adapter);
1705	e1000_loopback_cleanup(adapter);
1706
1707err_loopback:
1708	e1000_free_desc_rings(adapter);
1709out:
1710	return *data;
1711}
1712
1713static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1714{
1715	struct e1000_hw *hw = &adapter->hw;
1716
1717	*data = 0;
1718	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1719		int i = 0;
1720
1721		hw->mac.serdes_has_link = false;
1722
1723		/* On some blade server designs, link establishment
1724		 * could take as long as 2-3 minutes
1725		 */
1726		do {
1727			hw->mac.ops.check_for_link(hw);
1728			if (hw->mac.serdes_has_link)
1729				return *data;
1730			msleep(20);
1731		} while (i++ < 3750);
1732
1733		*data = 1;
1734	} else {
1735		hw->mac.ops.check_for_link(hw);
1736		if (hw->mac.autoneg)
1737			/* On some Phy/switch combinations, link establishment
1738			 * can take a few seconds more than expected.
1739			 */
1740			msleep_interruptible(5000);
1741
1742		if (!(er32(STATUS) & E1000_STATUS_LU))
1743			*data = 1;
1744	}
1745	return *data;
1746}
1747
1748static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1749				 int sset)
1750{
1751	switch (sset) {
1752	case ETH_SS_TEST:
1753		return E1000_TEST_LEN;
1754	case ETH_SS_STATS:
1755		return E1000_STATS_LEN;
1756	default:
1757		return -EOPNOTSUPP;
1758	}
1759}
1760
1761static void e1000_diag_test(struct net_device *netdev,
1762			    struct ethtool_test *eth_test, u64 *data)
1763{
1764	struct e1000_adapter *adapter = netdev_priv(netdev);
1765	u16 autoneg_advertised;
1766	u8 forced_speed_duplex;
1767	u8 autoneg;
1768	bool if_running = netif_running(netdev);
1769
1770	pm_runtime_get_sync(netdev->dev.parent);
1771
1772	set_bit(__E1000_TESTING, &adapter->state);
1773
1774	if (!if_running) {
1775		/* Get control of and reset hardware */
1776		if (adapter->flags & FLAG_HAS_AMT)
1777			e1000e_get_hw_control(adapter);
1778
1779		e1000e_power_up_phy(adapter);
1780
1781		adapter->hw.phy.autoneg_wait_to_complete = 1;
1782		e1000e_reset(adapter);
1783		adapter->hw.phy.autoneg_wait_to_complete = 0;
1784	}
1785
1786	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1787		/* Offline tests */
1788
1789		/* save speed, duplex, autoneg settings */
1790		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1791		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1792		autoneg = adapter->hw.mac.autoneg;
1793
1794		e_info("offline testing starting\n");
1795
1796		if (if_running)
1797			/* indicate we're in test mode */
1798			dev_close(netdev);
1799
1800		if (e1000_reg_test(adapter, &data[0]))
1801			eth_test->flags |= ETH_TEST_FL_FAILED;
1802
1803		e1000e_reset(adapter);
1804		if (e1000_eeprom_test(adapter, &data[1]))
1805			eth_test->flags |= ETH_TEST_FL_FAILED;
1806
1807		e1000e_reset(adapter);
1808		if (e1000_intr_test(adapter, &data[2]))
1809			eth_test->flags |= ETH_TEST_FL_FAILED;
1810
1811		e1000e_reset(adapter);
1812		if (e1000_loopback_test(adapter, &data[3]))
1813			eth_test->flags |= ETH_TEST_FL_FAILED;
1814
1815		/* force this routine to wait until autoneg complete/timeout */
1816		adapter->hw.phy.autoneg_wait_to_complete = 1;
1817		e1000e_reset(adapter);
1818		adapter->hw.phy.autoneg_wait_to_complete = 0;
1819
1820		if (e1000_link_test(adapter, &data[4]))
1821			eth_test->flags |= ETH_TEST_FL_FAILED;
1822
1823		/* restore speed, duplex, autoneg settings */
1824		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1825		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1826		adapter->hw.mac.autoneg = autoneg;
1827		e1000e_reset(adapter);
1828
1829		clear_bit(__E1000_TESTING, &adapter->state);
1830		if (if_running)
1831			dev_open(netdev);
1832	} else {
1833		/* Online tests */
1834
1835		e_info("online testing starting\n");
1836
1837		/* register, eeprom, intr and loopback tests not run online */
1838		data[0] = 0;
1839		data[1] = 0;
1840		data[2] = 0;
1841		data[3] = 0;
1842
1843		if (e1000_link_test(adapter, &data[4]))
1844			eth_test->flags |= ETH_TEST_FL_FAILED;
1845
1846		clear_bit(__E1000_TESTING, &adapter->state);
1847	}
1848
1849	if (!if_running) {
1850		e1000e_reset(adapter);
1851
1852		if (adapter->flags & FLAG_HAS_AMT)
1853			e1000e_release_hw_control(adapter);
1854	}
1855
1856	msleep_interruptible(4 * 1000);
1857
1858	pm_runtime_put_sync(netdev->dev.parent);
1859}
1860
1861static void e1000_get_wol(struct net_device *netdev,
1862			  struct ethtool_wolinfo *wol)
1863{
1864	struct e1000_adapter *adapter = netdev_priv(netdev);
1865
1866	wol->supported = 0;
1867	wol->wolopts = 0;
1868
1869	if (!(adapter->flags & FLAG_HAS_WOL) ||
1870	    !device_can_wakeup(&adapter->pdev->dev))
1871		return;
1872
1873	wol->supported = WAKE_UCAST | WAKE_MCAST |
1874	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1875
1876	/* apply any specific unsupported masks here */
1877	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1878		wol->supported &= ~WAKE_UCAST;
1879
1880		if (adapter->wol & E1000_WUFC_EX)
1881			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1882	}
1883
1884	if (adapter->wol & E1000_WUFC_EX)
1885		wol->wolopts |= WAKE_UCAST;
1886	if (adapter->wol & E1000_WUFC_MC)
1887		wol->wolopts |= WAKE_MCAST;
1888	if (adapter->wol & E1000_WUFC_BC)
1889		wol->wolopts |= WAKE_BCAST;
1890	if (adapter->wol & E1000_WUFC_MAG)
1891		wol->wolopts |= WAKE_MAGIC;
1892	if (adapter->wol & E1000_WUFC_LNKC)
1893		wol->wolopts |= WAKE_PHY;
1894}
1895
1896static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1897{
1898	struct e1000_adapter *adapter = netdev_priv(netdev);
1899
1900	if (!(adapter->flags & FLAG_HAS_WOL) ||
1901	    !device_can_wakeup(&adapter->pdev->dev) ||
1902	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1903			      WAKE_MAGIC | WAKE_PHY)))
1904		return -EOPNOTSUPP;
1905
1906	/* these settings will always override what we currently have */
1907	adapter->wol = 0;
1908
1909	if (wol->wolopts & WAKE_UCAST)
1910		adapter->wol |= E1000_WUFC_EX;
1911	if (wol->wolopts & WAKE_MCAST)
1912		adapter->wol |= E1000_WUFC_MC;
1913	if (wol->wolopts & WAKE_BCAST)
1914		adapter->wol |= E1000_WUFC_BC;
1915	if (wol->wolopts & WAKE_MAGIC)
1916		adapter->wol |= E1000_WUFC_MAG;
1917	if (wol->wolopts & WAKE_PHY)
1918		adapter->wol |= E1000_WUFC_LNKC;
1919
1920	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1921
1922	return 0;
1923}
1924
1925static int e1000_set_phys_id(struct net_device *netdev,
1926			     enum ethtool_phys_id_state state)
1927{
1928	struct e1000_adapter *adapter = netdev_priv(netdev);
1929	struct e1000_hw *hw = &adapter->hw;
1930
1931	switch (state) {
1932	case ETHTOOL_ID_ACTIVE:
1933		pm_runtime_get_sync(netdev->dev.parent);
1934
1935		if (!hw->mac.ops.blink_led)
1936			return 2;	/* cycle on/off twice per second */
1937
1938		hw->mac.ops.blink_led(hw);
1939		break;
1940
1941	case ETHTOOL_ID_INACTIVE:
1942		if (hw->phy.type == e1000_phy_ife)
1943			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1944		hw->mac.ops.led_off(hw);
1945		hw->mac.ops.cleanup_led(hw);
1946		pm_runtime_put_sync(netdev->dev.parent);
1947		break;
1948
1949	case ETHTOOL_ID_ON:
1950		hw->mac.ops.led_on(hw);
1951		break;
1952
1953	case ETHTOOL_ID_OFF:
1954		hw->mac.ops.led_off(hw);
1955		break;
1956	}
1957
1958	return 0;
1959}
1960
1961static int e1000_get_coalesce(struct net_device *netdev,
1962			      struct ethtool_coalesce *ec)
1963{
1964	struct e1000_adapter *adapter = netdev_priv(netdev);
1965
1966	if (adapter->itr_setting <= 4)
1967		ec->rx_coalesce_usecs = adapter->itr_setting;
1968	else
1969		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1970
1971	return 0;
1972}
1973
1974static int e1000_set_coalesce(struct net_device *netdev,
1975			      struct ethtool_coalesce *ec)
1976{
1977	struct e1000_adapter *adapter = netdev_priv(netdev);
1978
1979	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1980	    ((ec->rx_coalesce_usecs > 4) &&
1981	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1982	    (ec->rx_coalesce_usecs == 2))
1983		return -EINVAL;
1984
1985	if (ec->rx_coalesce_usecs == 4) {
1986		adapter->itr_setting = 4;
1987		adapter->itr = adapter->itr_setting;
1988	} else if (ec->rx_coalesce_usecs <= 3) {
1989		adapter->itr = 20000;
1990		adapter->itr_setting = ec->rx_coalesce_usecs;
1991	} else {
1992		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1993		adapter->itr_setting = adapter->itr & ~3;
1994	}
1995
1996	pm_runtime_get_sync(netdev->dev.parent);
1997
1998	if (adapter->itr_setting != 0)
1999		e1000e_write_itr(adapter, adapter->itr);
2000	else
2001		e1000e_write_itr(adapter, 0);
2002
2003	pm_runtime_put_sync(netdev->dev.parent);
2004
2005	return 0;
2006}
2007
2008static int e1000_nway_reset(struct net_device *netdev)
2009{
2010	struct e1000_adapter *adapter = netdev_priv(netdev);
2011
2012	if (!netif_running(netdev))
2013		return -EAGAIN;
2014
2015	if (!adapter->hw.mac.autoneg)
2016		return -EINVAL;
2017
2018	pm_runtime_get_sync(netdev->dev.parent);
2019	e1000e_reinit_locked(adapter);
2020	pm_runtime_put_sync(netdev->dev.parent);
2021
2022	return 0;
2023}
2024
2025static void e1000_get_ethtool_stats(struct net_device *netdev,
2026				    struct ethtool_stats __always_unused *stats,
2027				    u64 *data)
2028{
2029	struct e1000_adapter *adapter = netdev_priv(netdev);
2030	struct rtnl_link_stats64 net_stats;
2031	int i;
2032	char *p = NULL;
2033
2034	pm_runtime_get_sync(netdev->dev.parent);
2035
2036	e1000e_get_stats64(netdev, &net_stats);
2037
2038	pm_runtime_put_sync(netdev->dev.parent);
2039
2040	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2041		switch (e1000_gstrings_stats[i].type) {
2042		case NETDEV_STATS:
2043			p = (char *)&net_stats +
2044			    e1000_gstrings_stats[i].stat_offset;
2045			break;
2046		case E1000_STATS:
2047			p = (char *)adapter +
2048			    e1000_gstrings_stats[i].stat_offset;
2049			break;
2050		default:
2051			data[i] = 0;
2052			continue;
2053		}
2054
2055		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2056			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2057	}
2058}
2059
2060static void e1000_get_strings(struct net_device __always_unused *netdev,
2061			      u32 stringset, u8 *data)
2062{
2063	u8 *p = data;
2064	int i;
2065
2066	switch (stringset) {
2067	case ETH_SS_TEST:
2068		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2069		break;
2070	case ETH_SS_STATS:
2071		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2072			memcpy(p, e1000_gstrings_stats[i].stat_string,
2073			       ETH_GSTRING_LEN);
2074			p += ETH_GSTRING_LEN;
2075		}
2076		break;
2077	}
2078}
2079
2080static int e1000_get_rxnfc(struct net_device *netdev,
2081			   struct ethtool_rxnfc *info,
2082			   u32 __always_unused *rule_locs)
2083{
2084	info->data = 0;
2085
2086	switch (info->cmd) {
2087	case ETHTOOL_GRXFH: {
2088		struct e1000_adapter *adapter = netdev_priv(netdev);
2089		struct e1000_hw *hw = &adapter->hw;
2090		u32 mrqc;
2091
2092		pm_runtime_get_sync(netdev->dev.parent);
2093		mrqc = er32(MRQC);
2094		pm_runtime_put_sync(netdev->dev.parent);
2095
2096		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2097			return 0;
2098
2099		switch (info->flow_type) {
2100		case TCP_V4_FLOW:
2101			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2102				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2103			/* fall through */
2104		case UDP_V4_FLOW:
2105		case SCTP_V4_FLOW:
2106		case AH_ESP_V4_FLOW:
2107		case IPV4_FLOW:
2108			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2109				info->data |= RXH_IP_SRC | RXH_IP_DST;
2110			break;
2111		case TCP_V6_FLOW:
2112			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2113				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2114			/* fall through */
2115		case UDP_V6_FLOW:
2116		case SCTP_V6_FLOW:
2117		case AH_ESP_V6_FLOW:
2118		case IPV6_FLOW:
2119			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2120				info->data |= RXH_IP_SRC | RXH_IP_DST;
2121			break;
2122		default:
2123			break;
2124		}
2125		return 0;
2126	}
2127	default:
2128		return -EOPNOTSUPP;
2129	}
2130}
2131
2132static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2133{
2134	struct e1000_adapter *adapter = netdev_priv(netdev);
2135	struct e1000_hw *hw = &adapter->hw;
2136	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2137	u32 ret_val;
2138
2139	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2140		return -EOPNOTSUPP;
2141
2142	switch (hw->phy.type) {
2143	case e1000_phy_82579:
2144		cap_addr = I82579_EEE_CAPABILITY;
2145		lpa_addr = I82579_EEE_LP_ABILITY;
2146		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2147		break;
2148	case e1000_phy_i217:
2149		cap_addr = I217_EEE_CAPABILITY;
2150		lpa_addr = I217_EEE_LP_ABILITY;
2151		pcs_stat_addr = I217_EEE_PCS_STATUS;
2152		break;
2153	default:
2154		return -EOPNOTSUPP;
2155	}
2156
2157	pm_runtime_get_sync(netdev->dev.parent);
2158
2159	ret_val = hw->phy.ops.acquire(hw);
2160	if (ret_val) {
2161		pm_runtime_put_sync(netdev->dev.parent);
2162		return -EBUSY;
2163	}
2164
2165	/* EEE Capability */
2166	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2167	if (ret_val)
2168		goto release;
2169	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2170
2171	/* EEE Advertised */
2172	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2173
2174	/* EEE Link Partner Advertised */
2175	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2176	if (ret_val)
2177		goto release;
2178	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2179
2180	/* EEE PCS Status */
2181	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2182	if (ret_val)
2183		goto release;
2184	if (hw->phy.type == e1000_phy_82579)
2185		phy_data <<= 8;
2186
2187	/* Result of the EEE auto negotiation - there is no register that
2188	 * has the status of the EEE negotiation so do a best-guess based
2189	 * on whether Tx or Rx LPI indications have been received.
2190	 */
2191	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2192		edata->eee_active = true;
2193
2194	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2195	edata->tx_lpi_enabled = true;
2196	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2197
2198release:
2199	hw->phy.ops.release(hw);
2200	if (ret_val)
2201		ret_val = -ENODATA;
2202
2203	pm_runtime_put_sync(netdev->dev.parent);
2204
2205	return ret_val;
2206}
2207
2208static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2209{
2210	struct e1000_adapter *adapter = netdev_priv(netdev);
2211	struct e1000_hw *hw = &adapter->hw;
2212	struct ethtool_eee eee_curr;
2213	s32 ret_val;
2214
2215	ret_val = e1000e_get_eee(netdev, &eee_curr);
2216	if (ret_val)
2217		return ret_val;
2218
2219	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2220		e_err("Setting EEE tx-lpi is not supported\n");
2221		return -EINVAL;
2222	}
2223
2224	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2225		e_err("Setting EEE Tx LPI timer is not supported\n");
2226		return -EINVAL;
2227	}
2228
2229	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2230		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2231		return -EINVAL;
2232	}
2233
2234	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2235
2236	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2237
2238	pm_runtime_get_sync(netdev->dev.parent);
2239
2240	/* reset the link */
2241	if (netif_running(netdev))
2242		e1000e_reinit_locked(adapter);
2243	else
2244		e1000e_reset(adapter);
2245
2246	pm_runtime_put_sync(netdev->dev.parent);
2247
2248	return 0;
2249}
2250
2251static int e1000e_get_ts_info(struct net_device *netdev,
2252			      struct ethtool_ts_info *info)
2253{
2254	struct e1000_adapter *adapter = netdev_priv(netdev);
2255
2256	ethtool_op_get_ts_info(netdev, info);
2257
2258	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2259		return 0;
2260
2261	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2262				  SOF_TIMESTAMPING_RX_HARDWARE |
2263				  SOF_TIMESTAMPING_RAW_HARDWARE);
2264
2265	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2266
2267	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2268			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2269			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2270			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2271			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2272			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2273			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2274			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2275			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2276			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2277			    (1 << HWTSTAMP_FILTER_ALL));
2278
2279	if (adapter->ptp_clock)
2280		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2281
2282	return 0;
2283}
2284
2285static const struct ethtool_ops e1000_ethtool_ops = {
2286	.get_settings		= e1000_get_settings,
2287	.set_settings		= e1000_set_settings,
2288	.get_drvinfo		= e1000_get_drvinfo,
2289	.get_regs_len		= e1000_get_regs_len,
2290	.get_regs		= e1000_get_regs,
2291	.get_wol		= e1000_get_wol,
2292	.set_wol		= e1000_set_wol,
2293	.get_msglevel		= e1000_get_msglevel,
2294	.set_msglevel		= e1000_set_msglevel,
2295	.nway_reset		= e1000_nway_reset,
2296	.get_link		= ethtool_op_get_link,
2297	.get_eeprom_len		= e1000_get_eeprom_len,
2298	.get_eeprom		= e1000_get_eeprom,
2299	.set_eeprom		= e1000_set_eeprom,
2300	.get_ringparam		= e1000_get_ringparam,
2301	.set_ringparam		= e1000_set_ringparam,
2302	.get_pauseparam		= e1000_get_pauseparam,
2303	.set_pauseparam		= e1000_set_pauseparam,
2304	.self_test		= e1000_diag_test,
2305	.get_strings		= e1000_get_strings,
2306	.set_phys_id		= e1000_set_phys_id,
2307	.get_ethtool_stats	= e1000_get_ethtool_stats,
2308	.get_sset_count		= e1000e_get_sset_count,
2309	.get_coalesce		= e1000_get_coalesce,
2310	.set_coalesce		= e1000_set_coalesce,
2311	.get_rxnfc		= e1000_get_rxnfc,
2312	.get_ts_info		= e1000e_get_ts_info,
2313	.get_eee		= e1000e_get_eee,
2314	.set_eee		= e1000e_set_eee,
2315};
2316
2317void e1000e_set_ethtool_ops(struct net_device *netdev)
2318{
2319	netdev->ethtool_ops = &e1000_ethtool_ops;
2320}
2321