[go: nahoru, domu]

1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
27#include <linux/prefetch.h>
28
29#include "fm10k.h"
30
31#define DRV_VERSION	"0.12.2-k"
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35	"Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37	"Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
44/**
45 * fm10k_init_module - Driver Registration Routine
46 *
47 * fm10k_init_module is the first routine called when the driver is
48 * loaded.  All it does is register with the PCI subsystem.
49 **/
50static int __init fm10k_init_module(void)
51{
52	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
53	pr_info("%s\n", fm10k_copyright);
54
55	fm10k_dbg_init();
56
57	return fm10k_register_pci_driver();
58}
59module_init(fm10k_init_module);
60
61/**
62 * fm10k_exit_module - Driver Exit Cleanup Routine
63 *
64 * fm10k_exit_module is called just before the driver is removed
65 * from memory.
66 **/
67static void __exit fm10k_exit_module(void)
68{
69	fm10k_unregister_pci_driver();
70
71	fm10k_dbg_exit();
72}
73module_exit(fm10k_exit_module);
74
75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76				    struct fm10k_rx_buffer *bi)
77{
78	struct page *page = bi->page;
79	dma_addr_t dma;
80
81	/* Only page will be NULL if buffer was consumed */
82	if (likely(page))
83		return true;
84
85	/* alloc new page for storage */
86	page = alloc_page(GFP_ATOMIC | __GFP_COLD);
87	if (unlikely(!page)) {
88		rx_ring->rx_stats.alloc_failed++;
89		return false;
90	}
91
92	/* map page for use */
93	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94
95	/* if mapping failed free memory back to system since
96	 * there isn't much point in holding memory we can't use
97	 */
98	if (dma_mapping_error(rx_ring->dev, dma)) {
99		__free_page(page);
100		bi->page = NULL;
101
102		rx_ring->rx_stats.alloc_failed++;
103		return false;
104	}
105
106	bi->dma = dma;
107	bi->page = page;
108	bi->page_offset = 0;
109
110	return true;
111}
112
113/**
114 * fm10k_alloc_rx_buffers - Replace used receive buffers
115 * @rx_ring: ring to place buffers on
116 * @cleaned_count: number of buffers to replace
117 **/
118void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
119{
120	union fm10k_rx_desc *rx_desc;
121	struct fm10k_rx_buffer *bi;
122	u16 i = rx_ring->next_to_use;
123
124	/* nothing to do */
125	if (!cleaned_count)
126		return;
127
128	rx_desc = FM10K_RX_DESC(rx_ring, i);
129	bi = &rx_ring->rx_buffer[i];
130	i -= rx_ring->count;
131
132	do {
133		if (!fm10k_alloc_mapped_page(rx_ring, bi))
134			break;
135
136		/* Refresh the desc even if buffer_addrs didn't change
137		 * because each write-back erases this info.
138		 */
139		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
140
141		rx_desc++;
142		bi++;
143		i++;
144		if (unlikely(!i)) {
145			rx_desc = FM10K_RX_DESC(rx_ring, 0);
146			bi = rx_ring->rx_buffer;
147			i -= rx_ring->count;
148		}
149
150		/* clear the hdr_addr for the next_to_use descriptor */
151		rx_desc->q.hdr_addr = 0;
152
153		cleaned_count--;
154	} while (cleaned_count);
155
156	i += rx_ring->count;
157
158	if (rx_ring->next_to_use != i) {
159		/* record the next descriptor to use */
160		rx_ring->next_to_use = i;
161
162		/* update next to alloc since we have filled the ring */
163		rx_ring->next_to_alloc = i;
164
165		/* Force memory writes to complete before letting h/w
166		 * know there are new descriptors to fetch.  (Only
167		 * applicable for weak-ordered memory model archs,
168		 * such as IA-64).
169		 */
170		wmb();
171
172		/* notify hardware of new descriptors */
173		writel(i, rx_ring->tail);
174	}
175}
176
177/**
178 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
179 * @rx_ring: rx descriptor ring to store buffers on
180 * @old_buff: donor buffer to have page reused
181 *
182 * Synchronizes page for reuse by the interface
183 **/
184static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
185				struct fm10k_rx_buffer *old_buff)
186{
187	struct fm10k_rx_buffer *new_buff;
188	u16 nta = rx_ring->next_to_alloc;
189
190	new_buff = &rx_ring->rx_buffer[nta];
191
192	/* update, and store next to alloc */
193	nta++;
194	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
195
196	/* transfer page from old buffer to new buffer */
197	memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer));
198
199	/* sync the buffer for use by the device */
200	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
201					 old_buff->page_offset,
202					 FM10K_RX_BUFSZ,
203					 DMA_FROM_DEVICE);
204}
205
206static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
207				    struct page *page,
208				    unsigned int truesize)
209{
210	/* avoid re-using remote pages */
211	if (unlikely(page_to_nid(page) != numa_mem_id()))
212		return false;
213
214#if (PAGE_SIZE < 8192)
215	/* if we are only owner of page we can reuse it */
216	if (unlikely(page_count(page) != 1))
217		return false;
218
219	/* flip page offset to other buffer */
220	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
221
222	/* Even if we own the page, we are not allowed to use atomic_set()
223	 * This would break get_page_unless_zero() users.
224	 */
225	atomic_inc(&page->_count);
226#else
227	/* move offset up to the next cache line */
228	rx_buffer->page_offset += truesize;
229
230	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
231		return false;
232
233	/* bump ref count on page before it is given to the stack */
234	get_page(page);
235#endif
236
237	return true;
238}
239
240/**
241 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
242 * @rx_ring: rx descriptor ring to transact packets on
243 * @rx_buffer: buffer containing page to add
244 * @rx_desc: descriptor containing length of buffer written by hardware
245 * @skb: sk_buff to place the data into
246 *
247 * This function will add the data contained in rx_buffer->page to the skb.
248 * This is done either through a direct copy if the data in the buffer is
249 * less than the skb header size, otherwise it will just attach the page as
250 * a frag to the skb.
251 *
252 * The function will then update the page offset if necessary and return
253 * true if the buffer can be reused by the interface.
254 **/
255static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
256			      struct fm10k_rx_buffer *rx_buffer,
257			      union fm10k_rx_desc *rx_desc,
258			      struct sk_buff *skb)
259{
260	struct page *page = rx_buffer->page;
261	unsigned int size = le16_to_cpu(rx_desc->w.length);
262#if (PAGE_SIZE < 8192)
263	unsigned int truesize = FM10K_RX_BUFSZ;
264#else
265	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
266#endif
267
268	if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
269		unsigned char *va = page_address(page) + rx_buffer->page_offset;
270
271		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
272
273		/* we can reuse buffer as-is, just make sure it is local */
274		if (likely(page_to_nid(page) == numa_mem_id()))
275			return true;
276
277		/* this page cannot be reused so discard it */
278		put_page(page);
279		return false;
280	}
281
282	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
283			rx_buffer->page_offset, size, truesize);
284
285	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
286}
287
288static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
289					     union fm10k_rx_desc *rx_desc,
290					     struct sk_buff *skb)
291{
292	struct fm10k_rx_buffer *rx_buffer;
293	struct page *page;
294
295	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
296
297	page = rx_buffer->page;
298	prefetchw(page);
299
300	if (likely(!skb)) {
301		void *page_addr = page_address(page) +
302				  rx_buffer->page_offset;
303
304		/* prefetch first cache line of first page */
305		prefetch(page_addr);
306#if L1_CACHE_BYTES < 128
307		prefetch(page_addr + L1_CACHE_BYTES);
308#endif
309
310		/* allocate a skb to store the frags */
311		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
312						FM10K_RX_HDR_LEN);
313		if (unlikely(!skb)) {
314			rx_ring->rx_stats.alloc_failed++;
315			return NULL;
316		}
317
318		/* we will be copying header into skb->data in
319		 * pskb_may_pull so it is in our interest to prefetch
320		 * it now to avoid a possible cache miss
321		 */
322		prefetchw(skb->data);
323	}
324
325	/* we are reusing so sync this buffer for CPU use */
326	dma_sync_single_range_for_cpu(rx_ring->dev,
327				      rx_buffer->dma,
328				      rx_buffer->page_offset,
329				      FM10K_RX_BUFSZ,
330				      DMA_FROM_DEVICE);
331
332	/* pull page into skb */
333	if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
334		/* hand second half of page back to the ring */
335		fm10k_reuse_rx_page(rx_ring, rx_buffer);
336	} else {
337		/* we are not reusing the buffer so unmap it */
338		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339			       PAGE_SIZE, DMA_FROM_DEVICE);
340	}
341
342	/* clear contents of rx_buffer */
343	rx_buffer->page = NULL;
344
345	return skb;
346}
347
348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349				     union fm10k_rx_desc *rx_desc,
350				     struct sk_buff *skb)
351{
352	skb_checksum_none_assert(skb);
353
354	/* Rx checksum disabled via ethtool */
355	if (!(ring->netdev->features & NETIF_F_RXCSUM))
356		return;
357
358	/* TCP/UDP checksum error bit is set */
359	if (fm10k_test_staterr(rx_desc,
360			       FM10K_RXD_STATUS_L4E |
361			       FM10K_RXD_STATUS_L4E2 |
362			       FM10K_RXD_STATUS_IPE |
363			       FM10K_RXD_STATUS_IPE2)) {
364		ring->rx_stats.csum_err++;
365		return;
366	}
367
368	/* It must be a TCP or UDP packet with a valid checksum */
369	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370		skb->encapsulation = true;
371	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
372		return;
373
374	skb->ip_summed = CHECKSUM_UNNECESSARY;
375}
376
377#define FM10K_RSS_L4_TYPES_MASK \
378	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
379	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
380	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
381	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
382
383static inline void fm10k_rx_hash(struct fm10k_ring *ring,
384				 union fm10k_rx_desc *rx_desc,
385				 struct sk_buff *skb)
386{
387	u16 rss_type;
388
389	if (!(ring->netdev->features & NETIF_F_RXHASH))
390		return;
391
392	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
393	if (!rss_type)
394		return;
395
396	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
397		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
398		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
399}
400
401static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
402			      union fm10k_rx_desc *rx_desc,
403			      struct sk_buff *skb)
404{
405	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
406
407	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
408
409	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
410		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
411					  le64_to_cpu(rx_desc->q.timestamp));
412}
413
414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415			     union fm10k_rx_desc *rx_desc,
416			     struct sk_buff *skb)
417{
418	struct net_device *dev = rx_ring->netdev;
419	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420
421	/* check to see if DGLORT belongs to a MACVLAN */
422	if (l2_accel) {
423		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424
425		idx -= l2_accel->dglort;
426		if (idx < l2_accel->size && l2_accel->macvlan[idx])
427			dev = l2_accel->macvlan[idx];
428		else
429			l2_accel = NULL;
430	}
431
432	skb->protocol = eth_type_trans(skb, dev);
433
434	if (!l2_accel)
435		return;
436
437	/* update MACVLAN statistics */
438	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
439			 !!(rx_desc->w.hdr_info &
440			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
441}
442
443/**
444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
445 * @rx_ring: rx descriptor ring packet is being transacted on
446 * @rx_desc: pointer to the EOP Rx descriptor
447 * @skb: pointer to current skb being populated
448 *
449 * This function checks the ring, descriptor, and packet information in
450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
451 * other fields within the skb.
452 **/
453static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
454					     union fm10k_rx_desc *rx_desc,
455					     struct sk_buff *skb)
456{
457	unsigned int len = skb->len;
458
459	fm10k_rx_hash(rx_ring, rx_desc, skb);
460
461	fm10k_rx_checksum(rx_ring, rx_desc, skb);
462
463	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
464
465	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
466
467	skb_record_rx_queue(skb, rx_ring->queue_index);
468
469	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
470
471	if (rx_desc->w.vlan) {
472		u16 vid = le16_to_cpu(rx_desc->w.vlan);
473
474		if (vid != rx_ring->vid)
475			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
476	}
477
478	fm10k_type_trans(rx_ring, rx_desc, skb);
479
480	return len;
481}
482
483/**
484 * fm10k_is_non_eop - process handling of non-EOP buffers
485 * @rx_ring: Rx ring being processed
486 * @rx_desc: Rx descriptor for current buffer
487 *
488 * This function updates next to clean.  If the buffer is an EOP buffer
489 * this function exits returning false, otherwise it will place the
490 * sk_buff in the next buffer to be chained and return true indicating
491 * that this is in fact a non-EOP buffer.
492 **/
493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494			     union fm10k_rx_desc *rx_desc)
495{
496	u32 ntc = rx_ring->next_to_clean + 1;
497
498	/* fetch, update, and store next to clean */
499	ntc = (ntc < rx_ring->count) ? ntc : 0;
500	rx_ring->next_to_clean = ntc;
501
502	prefetch(FM10K_RX_DESC(rx_ring, ntc));
503
504	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505		return false;
506
507	return true;
508}
509
510/**
511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
512 * @rx_ring: rx descriptor ring packet is being transacted on
513 * @rx_desc: pointer to the EOP Rx descriptor
514 * @skb: pointer to current skb being adjusted
515 *
516 * This function is an fm10k specific version of __pskb_pull_tail.  The
517 * main difference between this version and the original function is that
518 * this function can make several assumptions about the state of things
519 * that allow for significant optimizations versus the standard function.
520 * As a result we can do things like drop a frag and maintain an accurate
521 * truesize for the skb.
522 */
523static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
524			    union fm10k_rx_desc *rx_desc,
525			    struct sk_buff *skb)
526{
527	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
528	unsigned char *va;
529	unsigned int pull_len;
530
531	/* it is valid to use page_address instead of kmap since we are
532	 * working with pages allocated out of the lomem pool per
533	 * alloc_page(GFP_ATOMIC)
534	 */
535	va = skb_frag_address(frag);
536
537	/* we need the header to contain the greater of either ETH_HLEN or
538	 * 60 bytes if the skb->len is less than 60 for skb_pad.
539	 */
540	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
541
542	/* align pull length to size of long to optimize memcpy performance */
543	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
544
545	/* update all of the pointers */
546	skb_frag_size_sub(frag, pull_len);
547	frag->page_offset += pull_len;
548	skb->data_len -= pull_len;
549	skb->tail += pull_len;
550}
551
552/**
553 * fm10k_cleanup_headers - Correct corrupted or empty headers
554 * @rx_ring: rx descriptor ring packet is being transacted on
555 * @rx_desc: pointer to the EOP Rx descriptor
556 * @skb: pointer to current skb being fixed
557 *
558 * Address the case where we are pulling data in on pages only
559 * and as such no data is present in the skb header.
560 *
561 * In addition if skb is not at least 60 bytes we need to pad it so that
562 * it is large enough to qualify as a valid Ethernet frame.
563 *
564 * Returns true if an error was encountered and skb was freed.
565 **/
566static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
567				  union fm10k_rx_desc *rx_desc,
568				  struct sk_buff *skb)
569{
570	if (unlikely((fm10k_test_staterr(rx_desc,
571					 FM10K_RXD_STATUS_RXE)))) {
572		dev_kfree_skb_any(skb);
573		rx_ring->rx_stats.errors++;
574		return true;
575	}
576
577	/* place header in linear portion of buffer */
578	if (skb_is_nonlinear(skb))
579		fm10k_pull_tail(rx_ring, rx_desc, skb);
580
581	/* if skb_pad returns an error the skb was freed */
582	if (unlikely(skb->len < 60)) {
583		int pad_len = 60 - skb->len;
584
585		if (skb_pad(skb, pad_len))
586			return true;
587		__skb_put(skb, pad_len);
588	}
589
590	return false;
591}
592
593/**
594 * fm10k_receive_skb - helper function to handle rx indications
595 * @q_vector: structure containing interrupt and ring information
596 * @skb: packet to send up
597 **/
598static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
599			      struct sk_buff *skb)
600{
601	napi_gro_receive(&q_vector->napi, skb);
602}
603
604static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
605			       struct fm10k_ring *rx_ring,
606			       int budget)
607{
608	struct sk_buff *skb = rx_ring->skb;
609	unsigned int total_bytes = 0, total_packets = 0;
610	u16 cleaned_count = fm10k_desc_unused(rx_ring);
611
612	do {
613		union fm10k_rx_desc *rx_desc;
614
615		/* return some buffers to hardware, one at a time is too slow */
616		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
617			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
618			cleaned_count = 0;
619		}
620
621		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
622
623		if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_DD))
624			break;
625
626		/* This memory barrier is needed to keep us from reading
627		 * any other fields out of the rx_desc until we know the
628		 * RXD_STATUS_DD bit is set
629		 */
630		rmb();
631
632		/* retrieve a buffer from the ring */
633		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
634
635		/* exit if we failed to retrieve a buffer */
636		if (!skb)
637			break;
638
639		cleaned_count++;
640
641		/* fetch next buffer in frame if non-eop */
642		if (fm10k_is_non_eop(rx_ring, rx_desc))
643			continue;
644
645		/* verify the packet layout is correct */
646		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
647			skb = NULL;
648			continue;
649		}
650
651		/* populate checksum, timestamp, VLAN, and protocol */
652		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
653
654		fm10k_receive_skb(q_vector, skb);
655
656		/* reset skb pointer */
657		skb = NULL;
658
659		/* update budget accounting */
660		total_packets++;
661	} while (likely(total_packets < budget));
662
663	/* place incomplete frames back on ring for completion */
664	rx_ring->skb = skb;
665
666	u64_stats_update_begin(&rx_ring->syncp);
667	rx_ring->stats.packets += total_packets;
668	rx_ring->stats.bytes += total_bytes;
669	u64_stats_update_end(&rx_ring->syncp);
670	q_vector->rx.total_packets += total_packets;
671	q_vector->rx.total_bytes += total_bytes;
672
673	return total_packets < budget;
674}
675
676#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
677static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
678{
679	struct fm10k_intfc *interface = netdev_priv(skb->dev);
680	struct fm10k_vxlan_port *vxlan_port;
681
682	/* we can only offload a vxlan if we recognize it as such */
683	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
684					      struct fm10k_vxlan_port, list);
685
686	if (!vxlan_port)
687		return NULL;
688	if (vxlan_port->port != udp_hdr(skb)->dest)
689		return NULL;
690
691	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
692	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
693}
694
695#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
696#define NVGRE_TNI htons(0x2000)
697struct fm10k_nvgre_hdr {
698	__be16 flags;
699	__be16 proto;
700	__be32 tni;
701};
702
703static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
704{
705	struct fm10k_nvgre_hdr *nvgre_hdr;
706	int hlen = ip_hdrlen(skb);
707
708	/* currently only IPv4 is supported due to hlen above */
709	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
710		return NULL;
711
712	/* our transport header should be NVGRE */
713	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
714
715	/* verify all reserved flags are 0 */
716	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
717		return NULL;
718
719	/* verify protocol is transparent Ethernet bridging */
720	if (nvgre_hdr->proto != htons(ETH_P_TEB))
721		return NULL;
722
723	/* report start of ethernet header */
724	if (nvgre_hdr->flags & NVGRE_TNI)
725		return (struct ethhdr *)(nvgre_hdr + 1);
726
727	return (struct ethhdr *)(&nvgre_hdr->tni);
728}
729
730static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
731{
732	struct ethhdr *eth_hdr;
733	u8 l4_hdr = 0;
734
735	switch (vlan_get_protocol(skb)) {
736	case htons(ETH_P_IP):
737		l4_hdr = ip_hdr(skb)->protocol;
738		break;
739	case htons(ETH_P_IPV6):
740		l4_hdr = ipv6_hdr(skb)->nexthdr;
741		break;
742	default:
743		return 0;
744	}
745
746	switch (l4_hdr) {
747	case IPPROTO_UDP:
748		eth_hdr = fm10k_port_is_vxlan(skb);
749		break;
750	case IPPROTO_GRE:
751		eth_hdr = fm10k_gre_is_nvgre(skb);
752		break;
753	default:
754		return 0;
755	}
756
757	if (!eth_hdr)
758		return 0;
759
760	switch (eth_hdr->h_proto) {
761	case htons(ETH_P_IP):
762	case htons(ETH_P_IPV6):
763		break;
764	default:
765		return 0;
766	}
767
768	return eth_hdr->h_proto;
769}
770
771static int fm10k_tso(struct fm10k_ring *tx_ring,
772		     struct fm10k_tx_buffer *first)
773{
774	struct sk_buff *skb = first->skb;
775	struct fm10k_tx_desc *tx_desc;
776	unsigned char *th;
777	u8 hdrlen;
778
779	if (skb->ip_summed != CHECKSUM_PARTIAL)
780		return 0;
781
782	if (!skb_is_gso(skb))
783		return 0;
784
785	/* compute header lengths */
786	if (skb->encapsulation) {
787		if (!fm10k_tx_encap_offload(skb))
788			goto err_vxlan;
789		th = skb_inner_transport_header(skb);
790	} else {
791		th = skb_transport_header(skb);
792	}
793
794	/* compute offset from SOF to transport header and add header len */
795	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
796
797	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
798
799	/* update gso size and bytecount with header size */
800	first->gso_segs = skb_shinfo(skb)->gso_segs;
801	first->bytecount += (first->gso_segs - 1) * hdrlen;
802
803	/* populate Tx descriptor header size and mss */
804	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
805	tx_desc->hdrlen = hdrlen;
806	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
807
808	return 1;
809err_vxlan:
810	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
811	if (!net_ratelimit())
812		netdev_err(tx_ring->netdev,
813			   "TSO requested for unsupported tunnel, disabling offload\n");
814	return -1;
815}
816
817static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
818			  struct fm10k_tx_buffer *first)
819{
820	struct sk_buff *skb = first->skb;
821	struct fm10k_tx_desc *tx_desc;
822	union {
823		struct iphdr *ipv4;
824		struct ipv6hdr *ipv6;
825		u8 *raw;
826	} network_hdr;
827	__be16 protocol;
828	u8 l4_hdr = 0;
829
830	if (skb->ip_summed != CHECKSUM_PARTIAL)
831		goto no_csum;
832
833	if (skb->encapsulation) {
834		protocol = fm10k_tx_encap_offload(skb);
835		if (!protocol) {
836			if (skb_checksum_help(skb)) {
837				dev_warn(tx_ring->dev,
838					 "failed to offload encap csum!\n");
839				tx_ring->tx_stats.csum_err++;
840			}
841			goto no_csum;
842		}
843		network_hdr.raw = skb_inner_network_header(skb);
844	} else {
845		protocol = vlan_get_protocol(skb);
846		network_hdr.raw = skb_network_header(skb);
847	}
848
849	switch (protocol) {
850	case htons(ETH_P_IP):
851		l4_hdr = network_hdr.ipv4->protocol;
852		break;
853	case htons(ETH_P_IPV6):
854		l4_hdr = network_hdr.ipv6->nexthdr;
855		break;
856	default:
857		if (unlikely(net_ratelimit())) {
858			dev_warn(tx_ring->dev,
859				 "partial checksum but ip version=%x!\n",
860				 protocol);
861		}
862		tx_ring->tx_stats.csum_err++;
863		goto no_csum;
864	}
865
866	switch (l4_hdr) {
867	case IPPROTO_TCP:
868	case IPPROTO_UDP:
869		break;
870	case IPPROTO_GRE:
871		if (skb->encapsulation)
872			break;
873	default:
874		if (unlikely(net_ratelimit())) {
875			dev_warn(tx_ring->dev,
876				 "partial checksum but l4 proto=%x!\n",
877				 l4_hdr);
878		}
879		tx_ring->tx_stats.csum_err++;
880		goto no_csum;
881	}
882
883	/* update TX checksum flag */
884	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
885
886no_csum:
887	/* populate Tx descriptor header size and mss */
888	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
889	tx_desc->hdrlen = 0;
890	tx_desc->mss = 0;
891}
892
893#define FM10K_SET_FLAG(_input, _flag, _result) \
894	((_flag <= _result) ? \
895	 ((u32)(_input & _flag) * (_result / _flag)) : \
896	 ((u32)(_input & _flag) / (_flag / _result)))
897
898static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
899{
900	/* set type for advanced descriptor with frame checksum insertion */
901	u32 desc_flags = 0;
902
903	/* set timestamping bits */
904	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
905	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
906			desc_flags |= FM10K_TXD_FLAG_TIME;
907
908	/* set checksum offload bits */
909	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
910				     FM10K_TXD_FLAG_CSUM);
911
912	return desc_flags;
913}
914
915static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
916			       struct fm10k_tx_desc *tx_desc, u16 i,
917			       dma_addr_t dma, unsigned int size, u8 desc_flags)
918{
919	/* set RS and INT for last frame in a cache line */
920	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
921		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
922
923	/* record values to descriptor */
924	tx_desc->buffer_addr = cpu_to_le64(dma);
925	tx_desc->flags = desc_flags;
926	tx_desc->buflen = cpu_to_le16(size);
927
928	/* return true if we just wrapped the ring */
929	return i == tx_ring->count;
930}
931
932static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
933{
934	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
935
936	smp_mb();
937
938	/* We need to check again in a case another CPU has just
939	 * made room available. */
940	if (likely(fm10k_desc_unused(tx_ring) < size))
941		return -EBUSY;
942
943	/* A reprieve! - use start_queue because it doesn't call schedule */
944	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
945	++tx_ring->tx_stats.restart_queue;
946	return 0;
947}
948
949static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
950{
951	if (likely(fm10k_desc_unused(tx_ring) >= size))
952		return 0;
953	return __fm10k_maybe_stop_tx(tx_ring, size);
954}
955
956static void fm10k_tx_map(struct fm10k_ring *tx_ring,
957			 struct fm10k_tx_buffer *first)
958{
959	struct sk_buff *skb = first->skb;
960	struct fm10k_tx_buffer *tx_buffer;
961	struct fm10k_tx_desc *tx_desc;
962	struct skb_frag_struct *frag;
963	unsigned char *data;
964	dma_addr_t dma;
965	unsigned int data_len, size;
966	u32 tx_flags = first->tx_flags;
967	u16 i = tx_ring->next_to_use;
968	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
969
970	tx_desc = FM10K_TX_DESC(tx_ring, i);
971
972	/* add HW VLAN tag */
973	if (vlan_tx_tag_present(skb))
974		tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb));
975	else
976		tx_desc->vlan = 0;
977
978	size = skb_headlen(skb);
979	data = skb->data;
980
981	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
982
983	data_len = skb->data_len;
984	tx_buffer = first;
985
986	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
987		if (dma_mapping_error(tx_ring->dev, dma))
988			goto dma_error;
989
990		/* record length, and DMA address */
991		dma_unmap_len_set(tx_buffer, len, size);
992		dma_unmap_addr_set(tx_buffer, dma, dma);
993
994		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
995			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
996					       FM10K_MAX_DATA_PER_TXD, flags)) {
997				tx_desc = FM10K_TX_DESC(tx_ring, 0);
998				i = 0;
999			}
1000
1001			dma += FM10K_MAX_DATA_PER_TXD;
1002			size -= FM10K_MAX_DATA_PER_TXD;
1003		}
1004
1005		if (likely(!data_len))
1006			break;
1007
1008		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1009				       dma, size, flags)) {
1010			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1011			i = 0;
1012		}
1013
1014		size = skb_frag_size(frag);
1015		data_len -= size;
1016
1017		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1018				       DMA_TO_DEVICE);
1019
1020		tx_buffer = &tx_ring->tx_buffer[i];
1021	}
1022
1023	/* write last descriptor with LAST bit set */
1024	flags |= FM10K_TXD_FLAG_LAST;
1025
1026	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1027		i = 0;
1028
1029	/* record bytecount for BQL */
1030	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031
1032	/* record SW timestamp if HW timestamp is not available */
1033	skb_tx_timestamp(first->skb);
1034
1035	/* Force memory writes to complete before letting h/w know there
1036	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1037	 * memory model archs, such as IA-64).
1038	 *
1039	 * We also need this memory barrier to make certain all of the
1040	 * status bits have been updated before next_to_watch is written.
1041	 */
1042	wmb();
1043
1044	/* set next_to_watch value indicating a packet is present */
1045	first->next_to_watch = tx_desc;
1046
1047	tx_ring->next_to_use = i;
1048
1049	/* Make sure there is space in the ring for the next send. */
1050	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1051
1052	/* notify HW of packet */
1053	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1054		writel(i, tx_ring->tail);
1055
1056		/* we need this if more than one processor can write to our tail
1057		 * at a time, it synchronizes IO on IA64/Altix systems
1058		 */
1059		mmiowb();
1060	}
1061
1062	return;
1063dma_error:
1064	dev_err(tx_ring->dev, "TX DMA map failed\n");
1065
1066	/* clear dma mappings for failed tx_buffer map */
1067	for (;;) {
1068		tx_buffer = &tx_ring->tx_buffer[i];
1069		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1070		if (tx_buffer == first)
1071			break;
1072		if (i == 0)
1073			i = tx_ring->count;
1074		i--;
1075	}
1076
1077	tx_ring->next_to_use = i;
1078}
1079
1080netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1081				  struct fm10k_ring *tx_ring)
1082{
1083	struct fm10k_tx_buffer *first;
1084	int tso;
1085	u32 tx_flags = 0;
1086#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1087	unsigned short f;
1088#endif
1089	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1090
1091	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1092	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1093	 *       + 2 desc gap to keep tail from touching head
1094	 * otherwise try next time
1095	 */
1096#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1097	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1098		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1099#else
1100	count += skb_shinfo(skb)->nr_frags;
1101#endif
1102	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1103		tx_ring->tx_stats.tx_busy++;
1104		return NETDEV_TX_BUSY;
1105	}
1106
1107	/* record the location of the first descriptor for this packet */
1108	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1109	first->skb = skb;
1110	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1111	first->gso_segs = 1;
1112
1113	/* record initial flags and protocol */
1114	first->tx_flags = tx_flags;
1115
1116	tso = fm10k_tso(tx_ring, first);
1117	if (tso < 0)
1118		goto out_drop;
1119	else if (!tso)
1120		fm10k_tx_csum(tx_ring, first);
1121
1122	fm10k_tx_map(tx_ring, first);
1123
1124	return NETDEV_TX_OK;
1125
1126out_drop:
1127	dev_kfree_skb_any(first->skb);
1128	first->skb = NULL;
1129
1130	return NETDEV_TX_OK;
1131}
1132
1133static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1134{
1135	return ring->stats.packets;
1136}
1137
1138static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1139{
1140	/* use SW head and tail until we have real hardware */
1141	u32 head = ring->next_to_clean;
1142	u32 tail = ring->next_to_use;
1143
1144	return ((head <= tail) ? tail : tail + ring->count) - head;
1145}
1146
1147bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1148{
1149	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1150	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1151	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1152
1153	clear_check_for_tx_hang(tx_ring);
1154
1155	/* Check for a hung queue, but be thorough. This verifies
1156	 * that a transmit has been completed since the previous
1157	 * check AND there is at least one packet pending. By
1158	 * requiring this to fail twice we avoid races with
1159	 * clearing the ARMED bit and conditions where we
1160	 * run the check_tx_hang logic with a transmit completion
1161	 * pending but without time to complete it yet.
1162	 */
1163	if (!tx_pending || (tx_done_old != tx_done)) {
1164		/* update completed stats and continue */
1165		tx_ring->tx_stats.tx_done_old = tx_done;
1166		/* reset the countdown */
1167		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1168
1169		return false;
1170	}
1171
1172	/* make sure it is true for two checks in a row */
1173	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1174}
1175
1176/**
1177 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1178 * @interface: driver private struct
1179 **/
1180void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1181{
1182	/* Do the reset outside of interrupt context */
1183	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1184		netdev_err(interface->netdev, "Reset interface\n");
1185		interface->tx_timeout_count++;
1186		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1187		fm10k_service_event_schedule(interface);
1188	}
1189}
1190
1191/**
1192 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1193 * @q_vector: structure containing interrupt and ring information
1194 * @tx_ring: tx ring to clean
1195 **/
1196static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1197			       struct fm10k_ring *tx_ring)
1198{
1199	struct fm10k_intfc *interface = q_vector->interface;
1200	struct fm10k_tx_buffer *tx_buffer;
1201	struct fm10k_tx_desc *tx_desc;
1202	unsigned int total_bytes = 0, total_packets = 0;
1203	unsigned int budget = q_vector->tx.work_limit;
1204	unsigned int i = tx_ring->next_to_clean;
1205
1206	if (test_bit(__FM10K_DOWN, &interface->state))
1207		return true;
1208
1209	tx_buffer = &tx_ring->tx_buffer[i];
1210	tx_desc = FM10K_TX_DESC(tx_ring, i);
1211	i -= tx_ring->count;
1212
1213	do {
1214		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1215
1216		/* if next_to_watch is not set then there is no work pending */
1217		if (!eop_desc)
1218			break;
1219
1220		/* prevent any other reads prior to eop_desc */
1221		read_barrier_depends();
1222
1223		/* if DD is not set pending work has not been completed */
1224		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1225			break;
1226
1227		/* clear next_to_watch to prevent false hangs */
1228		tx_buffer->next_to_watch = NULL;
1229
1230		/* update the statistics for this packet */
1231		total_bytes += tx_buffer->bytecount;
1232		total_packets += tx_buffer->gso_segs;
1233
1234		/* free the skb */
1235		dev_consume_skb_any(tx_buffer->skb);
1236
1237		/* unmap skb header data */
1238		dma_unmap_single(tx_ring->dev,
1239				 dma_unmap_addr(tx_buffer, dma),
1240				 dma_unmap_len(tx_buffer, len),
1241				 DMA_TO_DEVICE);
1242
1243		/* clear tx_buffer data */
1244		tx_buffer->skb = NULL;
1245		dma_unmap_len_set(tx_buffer, len, 0);
1246
1247		/* unmap remaining buffers */
1248		while (tx_desc != eop_desc) {
1249			tx_buffer++;
1250			tx_desc++;
1251			i++;
1252			if (unlikely(!i)) {
1253				i -= tx_ring->count;
1254				tx_buffer = tx_ring->tx_buffer;
1255				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1256			}
1257
1258			/* unmap any remaining paged data */
1259			if (dma_unmap_len(tx_buffer, len)) {
1260				dma_unmap_page(tx_ring->dev,
1261					       dma_unmap_addr(tx_buffer, dma),
1262					       dma_unmap_len(tx_buffer, len),
1263					       DMA_TO_DEVICE);
1264				dma_unmap_len_set(tx_buffer, len, 0);
1265			}
1266		}
1267
1268		/* move us one more past the eop_desc for start of next pkt */
1269		tx_buffer++;
1270		tx_desc++;
1271		i++;
1272		if (unlikely(!i)) {
1273			i -= tx_ring->count;
1274			tx_buffer = tx_ring->tx_buffer;
1275			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1276		}
1277
1278		/* issue prefetch for next Tx descriptor */
1279		prefetch(tx_desc);
1280
1281		/* update budget accounting */
1282		budget--;
1283	} while (likely(budget));
1284
1285	i += tx_ring->count;
1286	tx_ring->next_to_clean = i;
1287	u64_stats_update_begin(&tx_ring->syncp);
1288	tx_ring->stats.bytes += total_bytes;
1289	tx_ring->stats.packets += total_packets;
1290	u64_stats_update_end(&tx_ring->syncp);
1291	q_vector->tx.total_bytes += total_bytes;
1292	q_vector->tx.total_packets += total_packets;
1293
1294	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1295		/* schedule immediate reset if we believe we hung */
1296		struct fm10k_hw *hw = &interface->hw;
1297
1298		netif_err(interface, drv, tx_ring->netdev,
1299			  "Detected Tx Unit Hang\n"
1300			  "  Tx Queue             <%d>\n"
1301			  "  TDH, TDT             <%x>, <%x>\n"
1302			  "  next_to_use          <%x>\n"
1303			  "  next_to_clean        <%x>\n",
1304			  tx_ring->queue_index,
1305			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1306			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1307			  tx_ring->next_to_use, i);
1308
1309		netif_stop_subqueue(tx_ring->netdev,
1310				    tx_ring->queue_index);
1311
1312		netif_info(interface, probe, tx_ring->netdev,
1313			   "tx hang %d detected on queue %d, resetting interface\n",
1314			   interface->tx_timeout_count + 1,
1315			   tx_ring->queue_index);
1316
1317		fm10k_tx_timeout_reset(interface);
1318
1319		/* the netdev is about to reset, no point in enabling stuff */
1320		return true;
1321	}
1322
1323	/* notify netdev of completed buffers */
1324	netdev_tx_completed_queue(txring_txq(tx_ring),
1325				  total_packets, total_bytes);
1326
1327#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1328	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1329		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1330		/* Make sure that anybody stopping the queue after this
1331		 * sees the new next_to_clean.
1332		 */
1333		smp_mb();
1334		if (__netif_subqueue_stopped(tx_ring->netdev,
1335					     tx_ring->queue_index) &&
1336		    !test_bit(__FM10K_DOWN, &interface->state)) {
1337			netif_wake_subqueue(tx_ring->netdev,
1338					    tx_ring->queue_index);
1339			++tx_ring->tx_stats.restart_queue;
1340		}
1341	}
1342
1343	return !!budget;
1344}
1345
1346/**
1347 * fm10k_update_itr - update the dynamic ITR value based on packet size
1348 *
1349 *      Stores a new ITR value based on strictly on packet size.  The
1350 *      divisors and thresholds used by this function were determined based
1351 *      on theoretical maximum wire speed and testing data, in order to
1352 *      minimize response time while increasing bulk throughput.
1353 *
1354 * @ring_container: Container for rings to have ITR updated
1355 **/
1356static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1357{
1358	unsigned int avg_wire_size, packets;
1359
1360	/* Only update ITR if we are using adaptive setting */
1361	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1362		goto clear_counts;
1363
1364	packets = ring_container->total_packets;
1365	if (!packets)
1366		goto clear_counts;
1367
1368	avg_wire_size = ring_container->total_bytes / packets;
1369
1370	/* Add 24 bytes to size to account for CRC, preamble, and gap */
1371	avg_wire_size += 24;
1372
1373	/* Don't starve jumbo frames */
1374	if (avg_wire_size > 3000)
1375		avg_wire_size = 3000;
1376
1377	/* Give a little boost to mid-size frames */
1378	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1379		avg_wire_size /= 3;
1380	else
1381		avg_wire_size /= 2;
1382
1383	/* write back value and retain adaptive flag */
1384	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1385
1386clear_counts:
1387	ring_container->total_bytes = 0;
1388	ring_container->total_packets = 0;
1389}
1390
1391static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1392{
1393	/* Enable auto-mask and clear the current mask */
1394	u32 itr = FM10K_ITR_ENABLE;
1395
1396	/* Update Tx ITR */
1397	fm10k_update_itr(&q_vector->tx);
1398
1399	/* Update Rx ITR */
1400	fm10k_update_itr(&q_vector->rx);
1401
1402	/* Store Tx itr in timer slot 0 */
1403	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1404
1405	/* Shift Rx itr to timer slot 1 */
1406	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1407
1408	/* Write the final value to the ITR register */
1409	writel(itr, q_vector->itr);
1410}
1411
1412static int fm10k_poll(struct napi_struct *napi, int budget)
1413{
1414	struct fm10k_q_vector *q_vector =
1415			       container_of(napi, struct fm10k_q_vector, napi);
1416	struct fm10k_ring *ring;
1417	int per_ring_budget;
1418	bool clean_complete = true;
1419
1420	fm10k_for_each_ring(ring, q_vector->tx)
1421		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1422
1423	/* attempt to distribute budget to each queue fairly, but don't
1424	 * allow the budget to go below 1 because we'll exit polling
1425	 */
1426	if (q_vector->rx.count > 1)
1427		per_ring_budget = max(budget/q_vector->rx.count, 1);
1428	else
1429		per_ring_budget = budget;
1430
1431	fm10k_for_each_ring(ring, q_vector->rx)
1432		clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1433						     per_ring_budget);
1434
1435	/* If all work not completed, return budget and keep polling */
1436	if (!clean_complete)
1437		return budget;
1438
1439	/* all work done, exit the polling mode */
1440	napi_complete(napi);
1441
1442	/* re-enable the q_vector */
1443	fm10k_qv_enable(q_vector);
1444
1445	return 0;
1446}
1447
1448/**
1449 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1450 * @interface: board private structure to initialize
1451 *
1452 * When QoS (Quality of Service) is enabled, allocate queues for
1453 * each traffic class.  If multiqueue isn't available,then abort QoS
1454 * initialization.
1455 *
1456 * This function handles all combinations of Qos and RSS.
1457 *
1458 **/
1459static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1460{
1461	struct net_device *dev = interface->netdev;
1462	struct fm10k_ring_feature *f;
1463	int rss_i, i;
1464	int pcs;
1465
1466	/* Map queue offset and counts onto allocated tx queues */
1467	pcs = netdev_get_num_tc(dev);
1468
1469	if (pcs <= 1)
1470		return false;
1471
1472	/* set QoS mask and indices */
1473	f = &interface->ring_feature[RING_F_QOS];
1474	f->indices = pcs;
1475	f->mask = (1 << fls(pcs - 1)) - 1;
1476
1477	/* determine the upper limit for our current DCB mode */
1478	rss_i = interface->hw.mac.max_queues / pcs;
1479	rss_i = 1 << (fls(rss_i) - 1);
1480
1481	/* set RSS mask and indices */
1482	f = &interface->ring_feature[RING_F_RSS];
1483	rss_i = min_t(u16, rss_i, f->limit);
1484	f->indices = rss_i;
1485	f->mask = (1 << fls(rss_i - 1)) - 1;
1486
1487	/* configure pause class to queue mapping */
1488	for (i = 0; i < pcs; i++)
1489		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1490
1491	interface->num_rx_queues = rss_i * pcs;
1492	interface->num_tx_queues = rss_i * pcs;
1493
1494	return true;
1495}
1496
1497/**
1498 * fm10k_set_rss_queues: Allocate queues for RSS
1499 * @interface: board private structure to initialize
1500 *
1501 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1502 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1503 *
1504 **/
1505static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1506{
1507	struct fm10k_ring_feature *f;
1508	u16 rss_i;
1509
1510	f = &interface->ring_feature[RING_F_RSS];
1511	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1512
1513	/* record indices and power of 2 mask for RSS */
1514	f->indices = rss_i;
1515	f->mask = (1 << fls(rss_i - 1)) - 1;
1516
1517	interface->num_rx_queues = rss_i;
1518	interface->num_tx_queues = rss_i;
1519
1520	return true;
1521}
1522
1523/**
1524 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1525 * @interface: board private structure to initialize
1526 *
1527 * This is the top level queue allocation routine.  The order here is very
1528 * important, starting with the "most" number of features turned on at once,
1529 * and ending with the smallest set of features.  This way large combinations
1530 * can be allocated if they're turned on, and smaller combinations are the
1531 * fallthrough conditions.
1532 *
1533 **/
1534static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1535{
1536	/* Start with base case */
1537	interface->num_rx_queues = 1;
1538	interface->num_tx_queues = 1;
1539
1540	if (fm10k_set_qos_queues(interface))
1541		return;
1542
1543	fm10k_set_rss_queues(interface);
1544}
1545
1546/**
1547 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1548 * @interface: board private structure to initialize
1549 * @v_count: q_vectors allocated on interface, used for ring interleaving
1550 * @v_idx: index of vector in interface struct
1551 * @txr_count: total number of Tx rings to allocate
1552 * @txr_idx: index of first Tx ring to allocate
1553 * @rxr_count: total number of Rx rings to allocate
1554 * @rxr_idx: index of first Rx ring to allocate
1555 *
1556 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1557 **/
1558static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1559				unsigned int v_count, unsigned int v_idx,
1560				unsigned int txr_count, unsigned int txr_idx,
1561				unsigned int rxr_count, unsigned int rxr_idx)
1562{
1563	struct fm10k_q_vector *q_vector;
1564	struct fm10k_ring *ring;
1565	int ring_count, size;
1566
1567	ring_count = txr_count + rxr_count;
1568	size = sizeof(struct fm10k_q_vector) +
1569	       (sizeof(struct fm10k_ring) * ring_count);
1570
1571	/* allocate q_vector and rings */
1572	q_vector = kzalloc(size, GFP_KERNEL);
1573	if (!q_vector)
1574		return -ENOMEM;
1575
1576	/* initialize NAPI */
1577	netif_napi_add(interface->netdev, &q_vector->napi,
1578		       fm10k_poll, NAPI_POLL_WEIGHT);
1579
1580	/* tie q_vector and interface together */
1581	interface->q_vector[v_idx] = q_vector;
1582	q_vector->interface = interface;
1583	q_vector->v_idx = v_idx;
1584
1585	/* initialize pointer to rings */
1586	ring = q_vector->ring;
1587
1588	/* save Tx ring container info */
1589	q_vector->tx.ring = ring;
1590	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1591	q_vector->tx.itr = interface->tx_itr;
1592	q_vector->tx.count = txr_count;
1593
1594	while (txr_count) {
1595		/* assign generic ring traits */
1596		ring->dev = &interface->pdev->dev;
1597		ring->netdev = interface->netdev;
1598
1599		/* configure backlink on ring */
1600		ring->q_vector = q_vector;
1601
1602		/* apply Tx specific ring traits */
1603		ring->count = interface->tx_ring_count;
1604		ring->queue_index = txr_idx;
1605
1606		/* assign ring to interface */
1607		interface->tx_ring[txr_idx] = ring;
1608
1609		/* update count and index */
1610		txr_count--;
1611		txr_idx += v_count;
1612
1613		/* push pointer to next ring */
1614		ring++;
1615	}
1616
1617	/* save Rx ring container info */
1618	q_vector->rx.ring = ring;
1619	q_vector->rx.itr = interface->rx_itr;
1620	q_vector->rx.count = rxr_count;
1621
1622	while (rxr_count) {
1623		/* assign generic ring traits */
1624		ring->dev = &interface->pdev->dev;
1625		ring->netdev = interface->netdev;
1626		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1627
1628		/* configure backlink on ring */
1629		ring->q_vector = q_vector;
1630
1631		/* apply Rx specific ring traits */
1632		ring->count = interface->rx_ring_count;
1633		ring->queue_index = rxr_idx;
1634
1635		/* assign ring to interface */
1636		interface->rx_ring[rxr_idx] = ring;
1637
1638		/* update count and index */
1639		rxr_count--;
1640		rxr_idx += v_count;
1641
1642		/* push pointer to next ring */
1643		ring++;
1644	}
1645
1646	fm10k_dbg_q_vector_init(q_vector);
1647
1648	return 0;
1649}
1650
1651/**
1652 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1653 * @interface: board private structure to initialize
1654 * @v_idx: Index of vector to be freed
1655 *
1656 * This function frees the memory allocated to the q_vector.  In addition if
1657 * NAPI is enabled it will delete any references to the NAPI struct prior
1658 * to freeing the q_vector.
1659 **/
1660static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1661{
1662	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1663	struct fm10k_ring *ring;
1664
1665	fm10k_dbg_q_vector_exit(q_vector);
1666
1667	fm10k_for_each_ring(ring, q_vector->tx)
1668		interface->tx_ring[ring->queue_index] = NULL;
1669
1670	fm10k_for_each_ring(ring, q_vector->rx)
1671		interface->rx_ring[ring->queue_index] = NULL;
1672
1673	interface->q_vector[v_idx] = NULL;
1674	netif_napi_del(&q_vector->napi);
1675	kfree_rcu(q_vector, rcu);
1676}
1677
1678/**
1679 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1680 * @interface: board private structure to initialize
1681 *
1682 * We allocate one q_vector per queue interrupt.  If allocation fails we
1683 * return -ENOMEM.
1684 **/
1685static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1686{
1687	unsigned int q_vectors = interface->num_q_vectors;
1688	unsigned int rxr_remaining = interface->num_rx_queues;
1689	unsigned int txr_remaining = interface->num_tx_queues;
1690	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1691	int err;
1692
1693	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1694		for (; rxr_remaining; v_idx++) {
1695			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1696						   0, 0, 1, rxr_idx);
1697			if (err)
1698				goto err_out;
1699
1700			/* update counts and index */
1701			rxr_remaining--;
1702			rxr_idx++;
1703		}
1704	}
1705
1706	for (; v_idx < q_vectors; v_idx++) {
1707		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1708		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1709
1710		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1711					   tqpv, txr_idx,
1712					   rqpv, rxr_idx);
1713
1714		if (err)
1715			goto err_out;
1716
1717		/* update counts and index */
1718		rxr_remaining -= rqpv;
1719		txr_remaining -= tqpv;
1720		rxr_idx++;
1721		txr_idx++;
1722	}
1723
1724	return 0;
1725
1726err_out:
1727	interface->num_tx_queues = 0;
1728	interface->num_rx_queues = 0;
1729	interface->num_q_vectors = 0;
1730
1731	while (v_idx--)
1732		fm10k_free_q_vector(interface, v_idx);
1733
1734	return -ENOMEM;
1735}
1736
1737/**
1738 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1739 * @interface: board private structure to initialize
1740 *
1741 * This function frees the memory allocated to the q_vectors.  In addition if
1742 * NAPI is enabled it will delete any references to the NAPI struct prior
1743 * to freeing the q_vector.
1744 **/
1745static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1746{
1747	int v_idx = interface->num_q_vectors;
1748
1749	interface->num_tx_queues = 0;
1750	interface->num_rx_queues = 0;
1751	interface->num_q_vectors = 0;
1752
1753	while (v_idx--)
1754		fm10k_free_q_vector(interface, v_idx);
1755}
1756
1757/**
1758 * f10k_reset_msix_capability - reset MSI-X capability
1759 * @interface: board private structure to initialize
1760 *
1761 * Reset the MSI-X capability back to its starting state
1762 **/
1763static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1764{
1765	pci_disable_msix(interface->pdev);
1766	kfree(interface->msix_entries);
1767	interface->msix_entries = NULL;
1768}
1769
1770/**
1771 * f10k_init_msix_capability - configure MSI-X capability
1772 * @interface: board private structure to initialize
1773 *
1774 * Attempt to configure the interrupts using the best available
1775 * capabilities of the hardware and the kernel.
1776 **/
1777static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1778{
1779	struct fm10k_hw *hw = &interface->hw;
1780	int v_budget, vector;
1781
1782	/* It's easy to be greedy for MSI-X vectors, but it really
1783	 * doesn't do us much good if we have a lot more vectors
1784	 * than CPU's.  So let's be conservative and only ask for
1785	 * (roughly) the same number of vectors as there are CPU's.
1786	 * the default is to use pairs of vectors
1787	 */
1788	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1789	v_budget = min_t(u16, v_budget, num_online_cpus());
1790
1791	/* account for vectors not related to queues */
1792	v_budget += NON_Q_VECTORS(hw);
1793
1794	/* At the same time, hardware can only support a maximum of
1795	 * hw.mac->max_msix_vectors vectors.  With features
1796	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1797	 * descriptor queues supported by our device.  Thus, we cap it off in
1798	 * those rare cases where the cpu count also exceeds our vector limit.
1799	 */
1800	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1801
1802	/* A failure in MSI-X entry allocation is fatal. */
1803	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1804					  GFP_KERNEL);
1805	if (!interface->msix_entries)
1806		return -ENOMEM;
1807
1808	/* populate entry values */
1809	for (vector = 0; vector < v_budget; vector++)
1810		interface->msix_entries[vector].entry = vector;
1811
1812	/* Attempt to enable MSI-X with requested value */
1813	v_budget = pci_enable_msix_range(interface->pdev,
1814					 interface->msix_entries,
1815					 MIN_MSIX_COUNT(hw),
1816					 v_budget);
1817	if (v_budget < 0) {
1818		kfree(interface->msix_entries);
1819		interface->msix_entries = NULL;
1820		return -ENOMEM;
1821	}
1822
1823	/* record the number of queues available for q_vectors */
1824	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1825
1826	return 0;
1827}
1828
1829/**
1830 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1831 * @interface: Interface structure continaining rings and devices
1832 *
1833 * Cache the descriptor ring offsets for Qos
1834 **/
1835static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1836{
1837	struct net_device *dev = interface->netdev;
1838	int pc, offset, rss_i, i, q_idx;
1839	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1840	u8 num_pcs = netdev_get_num_tc(dev);
1841
1842	if (num_pcs <= 1)
1843		return false;
1844
1845	rss_i = interface->ring_feature[RING_F_RSS].indices;
1846
1847	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1848		q_idx = pc;
1849		for (i = 0; i < rss_i; i++) {
1850			interface->tx_ring[offset + i]->reg_idx = q_idx;
1851			interface->tx_ring[offset + i]->qos_pc = pc;
1852			interface->rx_ring[offset + i]->reg_idx = q_idx;
1853			interface->rx_ring[offset + i]->qos_pc = pc;
1854			q_idx += pc_stride;
1855		}
1856	}
1857
1858	return true;
1859}
1860
1861/**
1862 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1863 * @interface: Interface structure continaining rings and devices
1864 *
1865 * Cache the descriptor ring offsets for RSS
1866 **/
1867static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1868{
1869	int i;
1870
1871	for (i = 0; i < interface->num_rx_queues; i++)
1872		interface->rx_ring[i]->reg_idx = i;
1873
1874	for (i = 0; i < interface->num_tx_queues; i++)
1875		interface->tx_ring[i]->reg_idx = i;
1876}
1877
1878/**
1879 * fm10k_assign_rings - Map rings to network devices
1880 * @interface: Interface structure containing rings and devices
1881 *
1882 * This function is meant to go though and configure both the network
1883 * devices so that they contain rings, and configure the rings so that
1884 * they function with their network devices.
1885 **/
1886static void fm10k_assign_rings(struct fm10k_intfc *interface)
1887{
1888	if (fm10k_cache_ring_qos(interface))
1889		return;
1890
1891	fm10k_cache_ring_rss(interface);
1892}
1893
1894static void fm10k_init_reta(struct fm10k_intfc *interface)
1895{
1896	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1897	u32 reta, base;
1898
1899	/* If the netdev is initialized we have to maintain table if possible */
1900	if (interface->netdev->reg_state) {
1901		for (i = FM10K_RETA_SIZE; i--;) {
1902			reta = interface->reta[i];
1903			if ((((reta << 24) >> 24) < rss_i) &&
1904			    (((reta << 16) >> 24) < rss_i) &&
1905			    (((reta <<  8) >> 24) < rss_i) &&
1906			    (((reta)       >> 24) < rss_i))
1907				continue;
1908			goto repopulate_reta;
1909		}
1910
1911		/* do nothing if all of the elements are in bounds */
1912		return;
1913	}
1914
1915repopulate_reta:
1916	/* Populate the redirection table 4 entries at a time.  To do this
1917	 * we are generating the results for n and n+2 and then interleaving
1918	 * those with the results with n+1 and n+3.
1919	 */
1920	for (i = FM10K_RETA_SIZE; i--;) {
1921		/* first pass generates n and n+2 */
1922		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1923		reta = (base & 0x3F803F80) >> 7;
1924
1925		/* second pass generates n+1 and n+3 */
1926		base += 0x00010001 * rss_i;
1927		reta |= (base & 0x3F803F80) << 1;
1928
1929		interface->reta[i] = reta;
1930	}
1931}
1932
1933/**
1934 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1935 * @interface: board private structure to initialize
1936 *
1937 * We determine which queueing scheme to use based on...
1938 * - Hardware queue count (num_*_queues)
1939 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1940 **/
1941int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1942{
1943	int err;
1944
1945	/* Number of supported queues */
1946	fm10k_set_num_queues(interface);
1947
1948	/* Configure MSI-X capability */
1949	err = fm10k_init_msix_capability(interface);
1950	if (err) {
1951		dev_err(&interface->pdev->dev,
1952			"Unable to initialize MSI-X capability\n");
1953		return err;
1954	}
1955
1956	/* Allocate memory for queues */
1957	err = fm10k_alloc_q_vectors(interface);
1958	if (err)
1959		return err;
1960
1961	/* Map rings to devices, and map devices to physical queues */
1962	fm10k_assign_rings(interface);
1963
1964	/* Initialize RSS redirection table */
1965	fm10k_init_reta(interface);
1966
1967	return 0;
1968}
1969
1970/**
1971 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1972 * @interface: board private structure to clear queueing scheme on
1973 *
1974 * We go through and clear queueing specific resources and reset the structure
1975 * to pre-load conditions
1976 **/
1977void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1978{
1979	fm10k_free_q_vectors(interface);
1980	fm10k_reset_msix_capability(interface);
1981}
1982