[go: nahoru, domu]

1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27#include <linux/prefetch.h>
28#include "i40e.h"
29#include "i40e_prototype.h"
30
31static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
32				u32 td_tag)
33{
34	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
35			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
36			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
37			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
38			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
39}
40
41#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
42#define I40E_FD_CLEAN_DELAY 10
43/**
44 * i40e_program_fdir_filter - Program a Flow Director filter
45 * @fdir_data: Packet data that will be filter parameters
46 * @raw_packet: the pre-allocated packet buffer for FDir
47 * @pf: The pf pointer
48 * @add: True for add/update, False for remove
49 **/
50int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
51			     struct i40e_pf *pf, bool add)
52{
53	struct i40e_filter_program_desc *fdir_desc;
54	struct i40e_tx_buffer *tx_buf, *first;
55	struct i40e_tx_desc *tx_desc;
56	struct i40e_ring *tx_ring;
57	unsigned int fpt, dcc;
58	struct i40e_vsi *vsi;
59	struct device *dev;
60	dma_addr_t dma;
61	u32 td_cmd = 0;
62	u16 delay = 0;
63	u16 i;
64
65	/* find existing FDIR VSI */
66	vsi = NULL;
67	for (i = 0; i < pf->num_alloc_vsi; i++)
68		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
69			vsi = pf->vsi[i];
70	if (!vsi)
71		return -ENOENT;
72
73	tx_ring = vsi->tx_rings[0];
74	dev = tx_ring->dev;
75
76	/* we need two descriptors to add/del a filter and we can wait */
77	do {
78		if (I40E_DESC_UNUSED(tx_ring) > 1)
79			break;
80		msleep_interruptible(1);
81		delay++;
82	} while (delay < I40E_FD_CLEAN_DELAY);
83
84	if (!(I40E_DESC_UNUSED(tx_ring) > 1))
85		return -EAGAIN;
86
87	dma = dma_map_single(dev, raw_packet,
88			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
89	if (dma_mapping_error(dev, dma))
90		goto dma_fail;
91
92	/* grab the next descriptor */
93	i = tx_ring->next_to_use;
94	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
95	first = &tx_ring->tx_bi[i];
96	memset(first, 0, sizeof(struct i40e_tx_buffer));
97
98	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
99
100	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
101	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
102
103	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
104	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
105
106	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
107	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
108
109	/* Use LAN VSI Id if not programmed by user */
110	if (fdir_data->dest_vsi == 0)
111		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
112		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
113	else
114		fpt |= ((u32)fdir_data->dest_vsi <<
115			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
116		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
117
118	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
119
120	if (add)
121		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
122		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
123	else
124		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
125		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
126
127	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
128	       I40E_TXD_FLTR_QW1_DEST_MASK;
129
130	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
131	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
132
133	if (fdir_data->cnt_index != 0) {
134		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
135		dcc |= ((u32)fdir_data->cnt_index <<
136			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
137			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
138	}
139
140	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
141	fdir_desc->rsvd = cpu_to_le32(0);
142	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
143	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
144
145	/* Now program a dummy descriptor */
146	i = tx_ring->next_to_use;
147	tx_desc = I40E_TX_DESC(tx_ring, i);
148	tx_buf = &tx_ring->tx_bi[i];
149
150	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
151
152	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
153
154	/* record length, and DMA address */
155	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
156	dma_unmap_addr_set(tx_buf, dma, dma);
157
158	tx_desc->buffer_addr = cpu_to_le64(dma);
159	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
160
161	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
162	tx_buf->raw_buf = (void *)raw_packet;
163
164	tx_desc->cmd_type_offset_bsz =
165		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
166
167	/* set the timestamp */
168	tx_buf->time_stamp = jiffies;
169
170	/* Force memory writes to complete before letting h/w
171	 * know there are new descriptors to fetch.
172	 */
173	wmb();
174
175	/* Mark the data descriptor to be watched */
176	first->next_to_watch = tx_desc;
177
178	writel(tx_ring->next_to_use, tx_ring->tail);
179	return 0;
180
181dma_fail:
182	return -1;
183}
184
185#define IP_HEADER_OFFSET 14
186#define I40E_UDPIP_DUMMY_PACKET_LEN 42
187/**
188 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
189 * @vsi: pointer to the targeted VSI
190 * @fd_data: the flow director data required for the FDir descriptor
191 * @add: true adds a filter, false removes it
192 *
193 * Returns 0 if the filters were successfully added or removed
194 **/
195static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
196				   struct i40e_fdir_filter *fd_data,
197				   bool add)
198{
199	struct i40e_pf *pf = vsi->back;
200	struct udphdr *udp;
201	struct iphdr *ip;
202	bool err = false;
203	u8 *raw_packet;
204	int ret;
205	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
206		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
207		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
208
209	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
210	if (!raw_packet)
211		return -ENOMEM;
212	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
213
214	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
215	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
216	      + sizeof(struct iphdr));
217
218	ip->daddr = fd_data->dst_ip[0];
219	udp->dest = fd_data->dst_port;
220	ip->saddr = fd_data->src_ip[0];
221	udp->source = fd_data->src_port;
222
223	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
224	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
225	if (ret) {
226		dev_info(&pf->pdev->dev,
227			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
228			 fd_data->pctype, fd_data->fd_id, ret);
229		err = true;
230	} else {
231		if (add)
232			dev_info(&pf->pdev->dev,
233				 "Filter OK for PCTYPE %d loc = %d\n",
234				 fd_data->pctype, fd_data->fd_id);
235		else
236			dev_info(&pf->pdev->dev,
237				 "Filter deleted for PCTYPE %d loc = %d\n",
238				 fd_data->pctype, fd_data->fd_id);
239	}
240	return err ? -EOPNOTSUPP : 0;
241}
242
243#define I40E_TCPIP_DUMMY_PACKET_LEN 54
244/**
245 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
246 * @vsi: pointer to the targeted VSI
247 * @fd_data: the flow director data required for the FDir descriptor
248 * @add: true adds a filter, false removes it
249 *
250 * Returns 0 if the filters were successfully added or removed
251 **/
252static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
253				   struct i40e_fdir_filter *fd_data,
254				   bool add)
255{
256	struct i40e_pf *pf = vsi->back;
257	struct tcphdr *tcp;
258	struct iphdr *ip;
259	bool err = false;
260	u8 *raw_packet;
261	int ret;
262	/* Dummy packet */
263	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
264		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
265		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
266		0x0, 0x72, 0, 0, 0, 0};
267
268	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
269	if (!raw_packet)
270		return -ENOMEM;
271	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
272
273	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
274	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
275	      + sizeof(struct iphdr));
276
277	ip->daddr = fd_data->dst_ip[0];
278	tcp->dest = fd_data->dst_port;
279	ip->saddr = fd_data->src_ip[0];
280	tcp->source = fd_data->src_port;
281
282	if (add) {
283		pf->fd_tcp_rule++;
284		if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
285			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
286			pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
287		}
288	} else {
289		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
290				  (pf->fd_tcp_rule - 1) : 0;
291		if (pf->fd_tcp_rule == 0) {
292			pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
293			dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294		}
295	}
296
297	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300	if (ret) {
301		dev_info(&pf->pdev->dev,
302			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303			 fd_data->pctype, fd_data->fd_id, ret);
304		err = true;
305	} else {
306		if (add)
307			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308				 fd_data->pctype, fd_data->fd_id);
309		else
310			dev_info(&pf->pdev->dev,
311				 "Filter deleted for PCTYPE %d loc = %d\n",
312				 fd_data->pctype, fd_data->fd_id);
313	}
314
315	return err ? -EOPNOTSUPP : 0;
316}
317
318/**
319 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320 * a specific flow spec
321 * @vsi: pointer to the targeted VSI
322 * @fd_data: the flow director data required for the FDir descriptor
323 * @add: true adds a filter, false removes it
324 *
325 * Always returns -EOPNOTSUPP
326 **/
327static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328				    struct i40e_fdir_filter *fd_data,
329				    bool add)
330{
331	return -EOPNOTSUPP;
332}
333
334#define I40E_IP_DUMMY_PACKET_LEN 34
335/**
336 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337 * a specific flow spec
338 * @vsi: pointer to the targeted VSI
339 * @fd_data: the flow director data required for the FDir descriptor
340 * @add: true adds a filter, false removes it
341 *
342 * Returns 0 if the filters were successfully added or removed
343 **/
344static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345				  struct i40e_fdir_filter *fd_data,
346				  bool add)
347{
348	struct i40e_pf *pf = vsi->back;
349	struct iphdr *ip;
350	bool err = false;
351	u8 *raw_packet;
352	int ret;
353	int i;
354	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356		0, 0, 0, 0};
357
358	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
360		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361		if (!raw_packet)
362			return -ENOMEM;
363		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366		ip->saddr = fd_data->src_ip[0];
367		ip->daddr = fd_data->dst_ip[0];
368		ip->protocol = 0;
369
370		fd_data->pctype = i;
371		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373		if (ret) {
374			dev_info(&pf->pdev->dev,
375				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376				 fd_data->pctype, fd_data->fd_id, ret);
377			err = true;
378		} else {
379			if (add)
380				dev_info(&pf->pdev->dev,
381					 "Filter OK for PCTYPE %d loc = %d\n",
382					 fd_data->pctype, fd_data->fd_id);
383			else
384				dev_info(&pf->pdev->dev,
385					 "Filter deleted for PCTYPE %d loc = %d\n",
386					 fd_data->pctype, fd_data->fd_id);
387		}
388	}
389
390	return err ? -EOPNOTSUPP : 0;
391}
392
393/**
394 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395 * @vsi: pointer to the targeted VSI
396 * @cmd: command to get or set RX flow classification rules
397 * @add: true adds a filter, false removes it
398 *
399 **/
400int i40e_add_del_fdir(struct i40e_vsi *vsi,
401		      struct i40e_fdir_filter *input, bool add)
402{
403	struct i40e_pf *pf = vsi->back;
404	int ret;
405
406	switch (input->flow_type & ~FLOW_EXT) {
407	case TCP_V4_FLOW:
408		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409		break;
410	case UDP_V4_FLOW:
411		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412		break;
413	case SCTP_V4_FLOW:
414		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415		break;
416	case IPV4_FLOW:
417		ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418		break;
419	case IP_USER_FLOW:
420		switch (input->ip4_proto) {
421		case IPPROTO_TCP:
422			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423			break;
424		case IPPROTO_UDP:
425			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426			break;
427		case IPPROTO_SCTP:
428			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429			break;
430		default:
431			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432			break;
433		}
434		break;
435	default:
436		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437			 input->flow_type);
438		ret = -EINVAL;
439	}
440
441	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442	return ret;
443}
444
445/**
446 * i40e_fd_handle_status - check the Programming Status for FD
447 * @rx_ring: the Rx ring for this descriptor
448 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449 * @prog_id: the id originally used for programming
450 *
451 * This is used to verify if the FD programming or invalidation
452 * requested by SW to the HW is successful or not and take actions accordingly.
453 **/
454static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455				  union i40e_rx_desc *rx_desc, u8 prog_id)
456{
457	struct i40e_pf *pf = rx_ring->vsi->back;
458	struct pci_dev *pdev = pf->pdev;
459	u32 fcnt_prog, fcnt_avail;
460	u32 error;
461	u64 qw;
462
463	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467	if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469		    (I40E_DEBUG_FD & pf->hw.debug_mask))
470			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471				 rx_desc->wb.qword0.hi_dword.fd_id);
472
473		pf->fd_add_err++;
474		/* store the current atr filter count */
475		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
476
477		/* filter programming failed most likely due to table full */
478		fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf);
479		fcnt_avail = pf->fdir_pf_filter_count;
480		/* If ATR is running fcnt_prog can quickly change,
481		 * if we are very close to full, it makes sense to disable
482		 * FD ATR/SB and then re-enable it when there is room.
483		 */
484		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
485			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
486			    !(pf->auto_disable_flags &
487				     I40E_FLAG_FD_SB_ENABLED)) {
488				dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
489				pf->auto_disable_flags |=
490							I40E_FLAG_FD_SB_ENABLED;
491			}
492		} else {
493			dev_info(&pdev->dev,
494				"FD filter programming failed due to incorrect filter parameters\n");
495		}
496	} else if (error ==
497			  (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
498		if (I40E_DEBUG_FD & pf->hw.debug_mask)
499			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
500				 rx_desc->wb.qword0.hi_dword.fd_id);
501	}
502}
503
504/**
505 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
506 * @ring:      the ring that owns the buffer
507 * @tx_buffer: the buffer to free
508 **/
509static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
510					    struct i40e_tx_buffer *tx_buffer)
511{
512	if (tx_buffer->skb) {
513		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
514			kfree(tx_buffer->raw_buf);
515		else
516			dev_kfree_skb_any(tx_buffer->skb);
517
518		if (dma_unmap_len(tx_buffer, len))
519			dma_unmap_single(ring->dev,
520					 dma_unmap_addr(tx_buffer, dma),
521					 dma_unmap_len(tx_buffer, len),
522					 DMA_TO_DEVICE);
523	} else if (dma_unmap_len(tx_buffer, len)) {
524		dma_unmap_page(ring->dev,
525			       dma_unmap_addr(tx_buffer, dma),
526			       dma_unmap_len(tx_buffer, len),
527			       DMA_TO_DEVICE);
528	}
529	tx_buffer->next_to_watch = NULL;
530	tx_buffer->skb = NULL;
531	dma_unmap_len_set(tx_buffer, len, 0);
532	/* tx_buffer must be completely set up in the transmit path */
533}
534
535/**
536 * i40e_clean_tx_ring - Free any empty Tx buffers
537 * @tx_ring: ring to be cleaned
538 **/
539void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
540{
541	unsigned long bi_size;
542	u16 i;
543
544	/* ring already cleared, nothing to do */
545	if (!tx_ring->tx_bi)
546		return;
547
548	/* Free all the Tx ring sk_buffs */
549	for (i = 0; i < tx_ring->count; i++)
550		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
551
552	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
553	memset(tx_ring->tx_bi, 0, bi_size);
554
555	/* Zero out the descriptor ring */
556	memset(tx_ring->desc, 0, tx_ring->size);
557
558	tx_ring->next_to_use = 0;
559	tx_ring->next_to_clean = 0;
560
561	if (!tx_ring->netdev)
562		return;
563
564	/* cleanup Tx queue statistics */
565	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
566						  tx_ring->queue_index));
567}
568
569/**
570 * i40e_free_tx_resources - Free Tx resources per queue
571 * @tx_ring: Tx descriptor ring for a specific queue
572 *
573 * Free all transmit software resources
574 **/
575void i40e_free_tx_resources(struct i40e_ring *tx_ring)
576{
577	i40e_clean_tx_ring(tx_ring);
578	kfree(tx_ring->tx_bi);
579	tx_ring->tx_bi = NULL;
580
581	if (tx_ring->desc) {
582		dma_free_coherent(tx_ring->dev, tx_ring->size,
583				  tx_ring->desc, tx_ring->dma);
584		tx_ring->desc = NULL;
585	}
586}
587
588/**
589 * i40e_get_tx_pending - how many tx descriptors not processed
590 * @tx_ring: the ring of descriptors
591 *
592 * Since there is no access to the ring head register
593 * in XL710, we need to use our local copies
594 **/
595static u32 i40e_get_tx_pending(struct i40e_ring *ring)
596{
597	u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
598			? ring->next_to_use
599			: ring->next_to_use + ring->count);
600	return ntu - ring->next_to_clean;
601}
602
603/**
604 * i40e_check_tx_hang - Is there a hang in the Tx queue
605 * @tx_ring: the ring of descriptors
606 **/
607static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
608{
609	u32 tx_pending = i40e_get_tx_pending(tx_ring);
610	struct i40e_pf *pf = tx_ring->vsi->back;
611	bool ret = false;
612
613	clear_check_for_tx_hang(tx_ring);
614
615	/* Check for a hung queue, but be thorough. This verifies
616	 * that a transmit has been completed since the previous
617	 * check AND there is at least one packet pending. The
618	 * ARMED bit is set to indicate a potential hang. The
619	 * bit is cleared if a pause frame is received to remove
620	 * false hang detection due to PFC or 802.3x frames. By
621	 * requiring this to fail twice we avoid races with
622	 * PFC clearing the ARMED bit and conditions where we
623	 * run the check_tx_hang logic with a transmit completion
624	 * pending but without time to complete it yet.
625	 */
626	if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
627	    (tx_pending >= I40E_MIN_DESC_PENDING)) {
628		/* make sure it is true for two checks in a row */
629		ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
630				       &tx_ring->state);
631	} else if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
632		   (tx_pending < I40E_MIN_DESC_PENDING) &&
633		   (tx_pending > 0)) {
634		if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
635			dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
636				 tx_pending, tx_ring->queue_index);
637		pf->tx_sluggish_count++;
638	} else {
639		/* update completed stats and disarm the hang check */
640		tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
641		clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
642	}
643
644	return ret;
645}
646
647/**
648 * i40e_get_head - Retrieve head from head writeback
649 * @tx_ring:  tx ring to fetch head of
650 *
651 * Returns value of Tx ring head based on value stored
652 * in head write-back location
653 **/
654static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
655{
656	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
657
658	return le32_to_cpu(*(volatile __le32 *)head);
659}
660
661/**
662 * i40e_clean_tx_irq - Reclaim resources after transmit completes
663 * @tx_ring:  tx ring to clean
664 * @budget:   how many cleans we're allowed
665 *
666 * Returns true if there's any budget left (e.g. the clean is finished)
667 **/
668static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
669{
670	u16 i = tx_ring->next_to_clean;
671	struct i40e_tx_buffer *tx_buf;
672	struct i40e_tx_desc *tx_head;
673	struct i40e_tx_desc *tx_desc;
674	unsigned int total_packets = 0;
675	unsigned int total_bytes = 0;
676
677	tx_buf = &tx_ring->tx_bi[i];
678	tx_desc = I40E_TX_DESC(tx_ring, i);
679	i -= tx_ring->count;
680
681	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
682
683	do {
684		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
685
686		/* if next_to_watch is not set then there is no work pending */
687		if (!eop_desc)
688			break;
689
690		/* prevent any other reads prior to eop_desc */
691		read_barrier_depends();
692
693		/* we have caught up to head, no work left to do */
694		if (tx_head == tx_desc)
695			break;
696
697		/* clear next_to_watch to prevent false hangs */
698		tx_buf->next_to_watch = NULL;
699
700		/* update the statistics for this packet */
701		total_bytes += tx_buf->bytecount;
702		total_packets += tx_buf->gso_segs;
703
704		/* free the skb */
705		dev_consume_skb_any(tx_buf->skb);
706
707		/* unmap skb header data */
708		dma_unmap_single(tx_ring->dev,
709				 dma_unmap_addr(tx_buf, dma),
710				 dma_unmap_len(tx_buf, len),
711				 DMA_TO_DEVICE);
712
713		/* clear tx_buffer data */
714		tx_buf->skb = NULL;
715		dma_unmap_len_set(tx_buf, len, 0);
716
717		/* unmap remaining buffers */
718		while (tx_desc != eop_desc) {
719
720			tx_buf++;
721			tx_desc++;
722			i++;
723			if (unlikely(!i)) {
724				i -= tx_ring->count;
725				tx_buf = tx_ring->tx_bi;
726				tx_desc = I40E_TX_DESC(tx_ring, 0);
727			}
728
729			/* unmap any remaining paged data */
730			if (dma_unmap_len(tx_buf, len)) {
731				dma_unmap_page(tx_ring->dev,
732					       dma_unmap_addr(tx_buf, dma),
733					       dma_unmap_len(tx_buf, len),
734					       DMA_TO_DEVICE);
735				dma_unmap_len_set(tx_buf, len, 0);
736			}
737		}
738
739		/* move us one more past the eop_desc for start of next pkt */
740		tx_buf++;
741		tx_desc++;
742		i++;
743		if (unlikely(!i)) {
744			i -= tx_ring->count;
745			tx_buf = tx_ring->tx_bi;
746			tx_desc = I40E_TX_DESC(tx_ring, 0);
747		}
748
749		/* update budget accounting */
750		budget--;
751	} while (likely(budget));
752
753	i += tx_ring->count;
754	tx_ring->next_to_clean = i;
755	u64_stats_update_begin(&tx_ring->syncp);
756	tx_ring->stats.bytes += total_bytes;
757	tx_ring->stats.packets += total_packets;
758	u64_stats_update_end(&tx_ring->syncp);
759	tx_ring->q_vector->tx.total_bytes += total_bytes;
760	tx_ring->q_vector->tx.total_packets += total_packets;
761
762	if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
763		/* schedule immediate reset if we believe we hung */
764		dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
765			 "  VSI                  <%d>\n"
766			 "  Tx Queue             <%d>\n"
767			 "  next_to_use          <%x>\n"
768			 "  next_to_clean        <%x>\n",
769			 tx_ring->vsi->seid,
770			 tx_ring->queue_index,
771			 tx_ring->next_to_use, i);
772		dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
773			 "  time_stamp           <%lx>\n"
774			 "  jiffies              <%lx>\n",
775			 tx_ring->tx_bi[i].time_stamp, jiffies);
776
777		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
778
779		dev_info(tx_ring->dev,
780			 "tx hang detected on queue %d, resetting adapter\n",
781			 tx_ring->queue_index);
782
783		tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
784
785		/* the adapter is about to reset, no point in enabling stuff */
786		return true;
787	}
788
789	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
790						      tx_ring->queue_index),
791				  total_packets, total_bytes);
792
793#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
794	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
795		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
796		/* Make sure that anybody stopping the queue after this
797		 * sees the new next_to_clean.
798		 */
799		smp_mb();
800		if (__netif_subqueue_stopped(tx_ring->netdev,
801					     tx_ring->queue_index) &&
802		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
803			netif_wake_subqueue(tx_ring->netdev,
804					    tx_ring->queue_index);
805			++tx_ring->tx_stats.restart_queue;
806		}
807	}
808
809	return budget > 0;
810}
811
812/**
813 * i40e_set_new_dynamic_itr - Find new ITR level
814 * @rc: structure containing ring performance data
815 *
816 * Stores a new ITR value based on packets and byte counts during
817 * the last interrupt.  The advantage of per interrupt computation
818 * is faster updates and more accurate ITR for the current traffic
819 * pattern.  Constants in this function were computed based on
820 * theoretical maximum wire speed and thresholds were set based on
821 * testing data as well as attempting to minimize response time
822 * while increasing bulk throughput.
823 **/
824static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
825{
826	enum i40e_latency_range new_latency_range = rc->latency_range;
827	u32 new_itr = rc->itr;
828	int bytes_per_int;
829
830	if (rc->total_packets == 0 || !rc->itr)
831		return;
832
833	/* simple throttlerate management
834	 *   0-10MB/s   lowest (100000 ints/s)
835	 *  10-20MB/s   low    (20000 ints/s)
836	 *  20-1249MB/s bulk   (8000 ints/s)
837	 */
838	bytes_per_int = rc->total_bytes / rc->itr;
839	switch (rc->itr) {
840	case I40E_LOWEST_LATENCY:
841		if (bytes_per_int > 10)
842			new_latency_range = I40E_LOW_LATENCY;
843		break;
844	case I40E_LOW_LATENCY:
845		if (bytes_per_int > 20)
846			new_latency_range = I40E_BULK_LATENCY;
847		else if (bytes_per_int <= 10)
848			new_latency_range = I40E_LOWEST_LATENCY;
849		break;
850	case I40E_BULK_LATENCY:
851		if (bytes_per_int <= 20)
852			rc->latency_range = I40E_LOW_LATENCY;
853		break;
854	}
855
856	switch (new_latency_range) {
857	case I40E_LOWEST_LATENCY:
858		new_itr = I40E_ITR_100K;
859		break;
860	case I40E_LOW_LATENCY:
861		new_itr = I40E_ITR_20K;
862		break;
863	case I40E_BULK_LATENCY:
864		new_itr = I40E_ITR_8K;
865		break;
866	default:
867		break;
868	}
869
870	if (new_itr != rc->itr) {
871		/* do an exponential smoothing */
872		new_itr = (10 * new_itr * rc->itr) /
873			  ((9 * new_itr) + rc->itr);
874		rc->itr = new_itr & I40E_MAX_ITR;
875	}
876
877	rc->total_bytes = 0;
878	rc->total_packets = 0;
879}
880
881/**
882 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
883 * @q_vector: the vector to adjust
884 **/
885static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
886{
887	u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
888	struct i40e_hw *hw = &q_vector->vsi->back->hw;
889	u32 reg_addr;
890	u16 old_itr;
891
892	reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
893	old_itr = q_vector->rx.itr;
894	i40e_set_new_dynamic_itr(&q_vector->rx);
895	if (old_itr != q_vector->rx.itr)
896		wr32(hw, reg_addr, q_vector->rx.itr);
897
898	reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
899	old_itr = q_vector->tx.itr;
900	i40e_set_new_dynamic_itr(&q_vector->tx);
901	if (old_itr != q_vector->tx.itr)
902		wr32(hw, reg_addr, q_vector->tx.itr);
903}
904
905/**
906 * i40e_clean_programming_status - clean the programming status descriptor
907 * @rx_ring: the rx ring that has this descriptor
908 * @rx_desc: the rx descriptor written back by HW
909 *
910 * Flow director should handle FD_FILTER_STATUS to check its filter programming
911 * status being successful or not and take actions accordingly. FCoE should
912 * handle its context/filter programming/invalidation status and take actions.
913 *
914 **/
915static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
916					  union i40e_rx_desc *rx_desc)
917{
918	u64 qw;
919	u8 id;
920
921	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
922	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
923		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
924
925	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
926		i40e_fd_handle_status(rx_ring, rx_desc, id);
927#ifdef I40E_FCOE
928	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
929		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
930		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
931#endif
932}
933
934/**
935 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
936 * @tx_ring: the tx ring to set up
937 *
938 * Return 0 on success, negative on error
939 **/
940int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
941{
942	struct device *dev = tx_ring->dev;
943	int bi_size;
944
945	if (!dev)
946		return -ENOMEM;
947
948	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
949	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
950	if (!tx_ring->tx_bi)
951		goto err;
952
953	/* round up to nearest 4K */
954	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
955	/* add u32 for head writeback, align after this takes care of
956	 * guaranteeing this is at least one cache line in size
957	 */
958	tx_ring->size += sizeof(u32);
959	tx_ring->size = ALIGN(tx_ring->size, 4096);
960	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
961					   &tx_ring->dma, GFP_KERNEL);
962	if (!tx_ring->desc) {
963		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
964			 tx_ring->size);
965		goto err;
966	}
967
968	tx_ring->next_to_use = 0;
969	tx_ring->next_to_clean = 0;
970	return 0;
971
972err:
973	kfree(tx_ring->tx_bi);
974	tx_ring->tx_bi = NULL;
975	return -ENOMEM;
976}
977
978/**
979 * i40e_clean_rx_ring - Free Rx buffers
980 * @rx_ring: ring to be cleaned
981 **/
982void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
983{
984	struct device *dev = rx_ring->dev;
985	struct i40e_rx_buffer *rx_bi;
986	unsigned long bi_size;
987	u16 i;
988
989	/* ring already cleared, nothing to do */
990	if (!rx_ring->rx_bi)
991		return;
992
993	/* Free all the Rx ring sk_buffs */
994	for (i = 0; i < rx_ring->count; i++) {
995		rx_bi = &rx_ring->rx_bi[i];
996		if (rx_bi->dma) {
997			dma_unmap_single(dev,
998					 rx_bi->dma,
999					 rx_ring->rx_buf_len,
1000					 DMA_FROM_DEVICE);
1001			rx_bi->dma = 0;
1002		}
1003		if (rx_bi->skb) {
1004			dev_kfree_skb(rx_bi->skb);
1005			rx_bi->skb = NULL;
1006		}
1007		if (rx_bi->page) {
1008			if (rx_bi->page_dma) {
1009				dma_unmap_page(dev,
1010					       rx_bi->page_dma,
1011					       PAGE_SIZE / 2,
1012					       DMA_FROM_DEVICE);
1013				rx_bi->page_dma = 0;
1014			}
1015			__free_page(rx_bi->page);
1016			rx_bi->page = NULL;
1017			rx_bi->page_offset = 0;
1018		}
1019	}
1020
1021	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1022	memset(rx_ring->rx_bi, 0, bi_size);
1023
1024	/* Zero out the descriptor ring */
1025	memset(rx_ring->desc, 0, rx_ring->size);
1026
1027	rx_ring->next_to_clean = 0;
1028	rx_ring->next_to_use = 0;
1029}
1030
1031/**
1032 * i40e_free_rx_resources - Free Rx resources
1033 * @rx_ring: ring to clean the resources from
1034 *
1035 * Free all receive software resources
1036 **/
1037void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1038{
1039	i40e_clean_rx_ring(rx_ring);
1040	kfree(rx_ring->rx_bi);
1041	rx_ring->rx_bi = NULL;
1042
1043	if (rx_ring->desc) {
1044		dma_free_coherent(rx_ring->dev, rx_ring->size,
1045				  rx_ring->desc, rx_ring->dma);
1046		rx_ring->desc = NULL;
1047	}
1048}
1049
1050/**
1051 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1052 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1053 *
1054 * Returns 0 on success, negative on failure
1055 **/
1056int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1057{
1058	struct device *dev = rx_ring->dev;
1059	int bi_size;
1060
1061	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1062	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1063	if (!rx_ring->rx_bi)
1064		goto err;
1065
1066	/* Round up to nearest 4K */
1067	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1068		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1069		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1070	rx_ring->size = ALIGN(rx_ring->size, 4096);
1071	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1072					   &rx_ring->dma, GFP_KERNEL);
1073
1074	if (!rx_ring->desc) {
1075		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1076			 rx_ring->size);
1077		goto err;
1078	}
1079
1080	rx_ring->next_to_clean = 0;
1081	rx_ring->next_to_use = 0;
1082
1083	return 0;
1084err:
1085	kfree(rx_ring->rx_bi);
1086	rx_ring->rx_bi = NULL;
1087	return -ENOMEM;
1088}
1089
1090/**
1091 * i40e_release_rx_desc - Store the new tail and head values
1092 * @rx_ring: ring to bump
1093 * @val: new head index
1094 **/
1095static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1096{
1097	rx_ring->next_to_use = val;
1098	/* Force memory writes to complete before letting h/w
1099	 * know there are new descriptors to fetch.  (Only
1100	 * applicable for weak-ordered memory model archs,
1101	 * such as IA-64).
1102	 */
1103	wmb();
1104	writel(val, rx_ring->tail);
1105}
1106
1107/**
1108 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1109 * @rx_ring: ring to place buffers on
1110 * @cleaned_count: number of buffers to replace
1111 **/
1112void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1113{
1114	u16 i = rx_ring->next_to_use;
1115	union i40e_rx_desc *rx_desc;
1116	struct i40e_rx_buffer *bi;
1117	struct sk_buff *skb;
1118
1119	/* do nothing if no valid netdev defined */
1120	if (!rx_ring->netdev || !cleaned_count)
1121		return;
1122
1123	while (cleaned_count--) {
1124		rx_desc = I40E_RX_DESC(rx_ring, i);
1125		bi = &rx_ring->rx_bi[i];
1126		skb = bi->skb;
1127
1128		if (!skb) {
1129			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1130							rx_ring->rx_buf_len);
1131			if (!skb) {
1132				rx_ring->rx_stats.alloc_buff_failed++;
1133				goto no_buffers;
1134			}
1135			/* initialize queue mapping */
1136			skb_record_rx_queue(skb, rx_ring->queue_index);
1137			bi->skb = skb;
1138		}
1139
1140		if (!bi->dma) {
1141			bi->dma = dma_map_single(rx_ring->dev,
1142						 skb->data,
1143						 rx_ring->rx_buf_len,
1144						 DMA_FROM_DEVICE);
1145			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1146				rx_ring->rx_stats.alloc_buff_failed++;
1147				bi->dma = 0;
1148				goto no_buffers;
1149			}
1150		}
1151
1152		if (ring_is_ps_enabled(rx_ring)) {
1153			if (!bi->page) {
1154				bi->page = alloc_page(GFP_ATOMIC);
1155				if (!bi->page) {
1156					rx_ring->rx_stats.alloc_page_failed++;
1157					goto no_buffers;
1158				}
1159			}
1160
1161			if (!bi->page_dma) {
1162				/* use a half page if we're re-using */
1163				bi->page_offset ^= PAGE_SIZE / 2;
1164				bi->page_dma = dma_map_page(rx_ring->dev,
1165							    bi->page,
1166							    bi->page_offset,
1167							    PAGE_SIZE / 2,
1168							    DMA_FROM_DEVICE);
1169				if (dma_mapping_error(rx_ring->dev,
1170						      bi->page_dma)) {
1171					rx_ring->rx_stats.alloc_page_failed++;
1172					bi->page_dma = 0;
1173					goto no_buffers;
1174				}
1175			}
1176
1177			/* Refresh the desc even if buffer_addrs didn't change
1178			 * because each write-back erases this info.
1179			 */
1180			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1181			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1182		} else {
1183			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1184			rx_desc->read.hdr_addr = 0;
1185		}
1186		i++;
1187		if (i == rx_ring->count)
1188			i = 0;
1189	}
1190
1191no_buffers:
1192	if (rx_ring->next_to_use != i)
1193		i40e_release_rx_desc(rx_ring, i);
1194}
1195
1196/**
1197 * i40e_receive_skb - Send a completed packet up the stack
1198 * @rx_ring:  rx ring in play
1199 * @skb: packet to send up
1200 * @vlan_tag: vlan tag for packet
1201 **/
1202static void i40e_receive_skb(struct i40e_ring *rx_ring,
1203			     struct sk_buff *skb, u16 vlan_tag)
1204{
1205	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1206	struct i40e_vsi *vsi = rx_ring->vsi;
1207	u64 flags = vsi->back->flags;
1208
1209	if (vlan_tag & VLAN_VID_MASK)
1210		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1211
1212	if (flags & I40E_FLAG_IN_NETPOLL)
1213		netif_rx(skb);
1214	else
1215		napi_gro_receive(&q_vector->napi, skb);
1216}
1217
1218/**
1219 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1220 * @vsi: the VSI we care about
1221 * @skb: skb currently being received and modified
1222 * @rx_status: status value of last descriptor in packet
1223 * @rx_error: error value of last descriptor in packet
1224 * @rx_ptype: ptype value of last descriptor in packet
1225 **/
1226static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1227				    struct sk_buff *skb,
1228				    u32 rx_status,
1229				    u32 rx_error,
1230				    u16 rx_ptype)
1231{
1232	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1233	bool ipv4 = false, ipv6 = false;
1234	bool ipv4_tunnel, ipv6_tunnel;
1235	__wsum rx_udp_csum;
1236	struct iphdr *iph;
1237	__sum16 csum;
1238
1239	ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1240		      (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1241	ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1242		      (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1243
1244	skb->ip_summed = CHECKSUM_NONE;
1245
1246	/* Rx csum enabled and ip headers found? */
1247	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1248		return;
1249
1250	/* did the hardware decode the packet and checksum? */
1251	if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1252		return;
1253
1254	/* both known and outer_ip must be set for the below code to work */
1255	if (!(decoded.known && decoded.outer_ip))
1256		return;
1257
1258	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1259	    decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1260		ipv4 = true;
1261	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1262		 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1263		ipv6 = true;
1264
1265	if (ipv4 &&
1266	    (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1267			 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1268		goto checksum_fail;
1269
1270	/* likely incorrect csum if alternate IP extension headers found */
1271	if (ipv6 &&
1272	    rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1273		/* don't increment checksum err here, non-fatal err */
1274		return;
1275
1276	/* there was some L4 error, count error and punt packet to the stack */
1277	if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1278		goto checksum_fail;
1279
1280	/* handle packets that were not able to be checksummed due
1281	 * to arrival speed, in this case the stack can compute
1282	 * the csum.
1283	 */
1284	if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1285		return;
1286
1287	/* If VXLAN traffic has an outer UDPv4 checksum we need to check
1288	 * it in the driver, hardware does not do it for us.
1289	 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1290	 * so the total length of IPv4 header is IHL*4 bytes
1291	 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1292	 */
1293	if (ipv4_tunnel &&
1294	    (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
1295	    !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
1296		skb->transport_header = skb->mac_header +
1297					sizeof(struct ethhdr) +
1298					(ip_hdr(skb)->ihl * 4);
1299
1300		/* Add 4 bytes for VLAN tagged packets */
1301		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1302					  skb->protocol == htons(ETH_P_8021AD))
1303					  ? VLAN_HLEN : 0;
1304
1305		rx_udp_csum = udp_csum(skb);
1306		iph = ip_hdr(skb);
1307		csum = csum_tcpudp_magic(
1308				iph->saddr, iph->daddr,
1309				(skb->len - skb_transport_offset(skb)),
1310				IPPROTO_UDP, rx_udp_csum);
1311
1312		if (udp_hdr(skb)->check != csum)
1313			goto checksum_fail;
1314	}
1315
1316	skb->ip_summed = CHECKSUM_UNNECESSARY;
1317	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1318
1319	return;
1320
1321checksum_fail:
1322	vsi->back->hw_csum_rx_error++;
1323}
1324
1325/**
1326 * i40e_rx_hash - returns the hash value from the Rx descriptor
1327 * @ring: descriptor ring
1328 * @rx_desc: specific descriptor
1329 **/
1330static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1331			       union i40e_rx_desc *rx_desc)
1332{
1333	const __le64 rss_mask =
1334		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1335			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1336
1337	if ((ring->netdev->features & NETIF_F_RXHASH) &&
1338	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1339		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1340	else
1341		return 0;
1342}
1343
1344/**
1345 * i40e_ptype_to_hash - get a hash type
1346 * @ptype: the ptype value from the descriptor
1347 *
1348 * Returns a hash type to be used by skb_set_hash
1349 **/
1350static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1351{
1352	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1353
1354	if (!decoded.known)
1355		return PKT_HASH_TYPE_NONE;
1356
1357	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1359		return PKT_HASH_TYPE_L4;
1360	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1361		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1362		return PKT_HASH_TYPE_L3;
1363	else
1364		return PKT_HASH_TYPE_L2;
1365}
1366
1367/**
1368 * i40e_clean_rx_irq - Reclaim resources after receive completes
1369 * @rx_ring:  rx ring to clean
1370 * @budget:   how many cleans we're allowed
1371 *
1372 * Returns true if there's any budget left (e.g. the clean is finished)
1373 **/
1374static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1375{
1376	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1377	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1378	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1379	const int current_node = numa_node_id();
1380	struct i40e_vsi *vsi = rx_ring->vsi;
1381	u16 i = rx_ring->next_to_clean;
1382	union i40e_rx_desc *rx_desc;
1383	u32 rx_error, rx_status;
1384	u8 rx_ptype;
1385	u64 qword;
1386
1387	if (budget <= 0)
1388		return 0;
1389
1390	rx_desc = I40E_RX_DESC(rx_ring, i);
1391	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1392	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1393		    I40E_RXD_QW1_STATUS_SHIFT;
1394
1395	while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1396		union i40e_rx_desc *next_rxd;
1397		struct i40e_rx_buffer *rx_bi;
1398		struct sk_buff *skb;
1399		u16 vlan_tag;
1400		if (i40e_rx_is_programming_status(qword)) {
1401			i40e_clean_programming_status(rx_ring, rx_desc);
1402			I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1403			goto next_desc;
1404		}
1405		rx_bi = &rx_ring->rx_bi[i];
1406		skb = rx_bi->skb;
1407		prefetch(skb->data);
1408
1409		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1410				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1411		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1412				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1413		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1414			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1415
1416		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1417			   I40E_RXD_QW1_ERROR_SHIFT;
1418		rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1419		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1420
1421		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1422			   I40E_RXD_QW1_PTYPE_SHIFT;
1423		rx_bi->skb = NULL;
1424
1425		/* This memory barrier is needed to keep us from reading
1426		 * any other fields out of the rx_desc until we know the
1427		 * STATUS_DD bit is set
1428		 */
1429		rmb();
1430
1431		/* Get the header and possibly the whole packet
1432		 * If this is an skb from previous receive dma will be 0
1433		 */
1434		if (rx_bi->dma) {
1435			u16 len;
1436
1437			if (rx_hbo)
1438				len = I40E_RX_HDR_SIZE;
1439			else if (rx_sph)
1440				len = rx_header_len;
1441			else if (rx_packet_len)
1442				len = rx_packet_len;   /* 1buf/no split found */
1443			else
1444				len = rx_header_len;   /* split always mode */
1445
1446			skb_put(skb, len);
1447			dma_unmap_single(rx_ring->dev,
1448					 rx_bi->dma,
1449					 rx_ring->rx_buf_len,
1450					 DMA_FROM_DEVICE);
1451			rx_bi->dma = 0;
1452		}
1453
1454		/* Get the rest of the data if this was a header split */
1455		if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1456
1457			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1458					   rx_bi->page,
1459					   rx_bi->page_offset,
1460					   rx_packet_len);
1461
1462			skb->len += rx_packet_len;
1463			skb->data_len += rx_packet_len;
1464			skb->truesize += rx_packet_len;
1465
1466			if ((page_count(rx_bi->page) == 1) &&
1467			    (page_to_nid(rx_bi->page) == current_node))
1468				get_page(rx_bi->page);
1469			else
1470				rx_bi->page = NULL;
1471
1472			dma_unmap_page(rx_ring->dev,
1473				       rx_bi->page_dma,
1474				       PAGE_SIZE / 2,
1475				       DMA_FROM_DEVICE);
1476			rx_bi->page_dma = 0;
1477		}
1478		I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1479
1480		if (unlikely(
1481		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1482			struct i40e_rx_buffer *next_buffer;
1483
1484			next_buffer = &rx_ring->rx_bi[i];
1485
1486			if (ring_is_ps_enabled(rx_ring)) {
1487				rx_bi->skb = next_buffer->skb;
1488				rx_bi->dma = next_buffer->dma;
1489				next_buffer->skb = skb;
1490				next_buffer->dma = 0;
1491			}
1492			rx_ring->rx_stats.non_eop_descs++;
1493			goto next_desc;
1494		}
1495
1496		/* ERR_MASK will only have valid bits if EOP set */
1497		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1498			dev_kfree_skb_any(skb);
1499			/* TODO: shouldn't we increment a counter indicating the
1500			 * drop?
1501			 */
1502			goto next_desc;
1503		}
1504
1505		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1506			     i40e_ptype_to_hash(rx_ptype));
1507		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1508			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1509					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1510					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1511			rx_ring->last_rx_timestamp = jiffies;
1512		}
1513
1514		/* probably a little skewed due to removing CRC */
1515		total_rx_bytes += skb->len;
1516		total_rx_packets++;
1517
1518		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1519
1520		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1521
1522		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1523			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1524			 : 0;
1525#ifdef I40E_FCOE
1526		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1527			dev_kfree_skb_any(skb);
1528			goto next_desc;
1529		}
1530#endif
1531		i40e_receive_skb(rx_ring, skb, vlan_tag);
1532
1533		rx_ring->netdev->last_rx = jiffies;
1534		budget--;
1535next_desc:
1536		rx_desc->wb.qword1.status_error_len = 0;
1537		if (!budget)
1538			break;
1539
1540		cleaned_count++;
1541		/* return some buffers to hardware, one at a time is too slow */
1542		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1543			i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1544			cleaned_count = 0;
1545		}
1546
1547		/* use prefetched values */
1548		rx_desc = next_rxd;
1549		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1550		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1551			    I40E_RXD_QW1_STATUS_SHIFT;
1552	}
1553
1554	rx_ring->next_to_clean = i;
1555	u64_stats_update_begin(&rx_ring->syncp);
1556	rx_ring->stats.packets += total_rx_packets;
1557	rx_ring->stats.bytes += total_rx_bytes;
1558	u64_stats_update_end(&rx_ring->syncp);
1559	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1560	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1561
1562	if (cleaned_count)
1563		i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1564
1565	return budget > 0;
1566}
1567
1568/**
1569 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1570 * @napi: napi struct with our devices info in it
1571 * @budget: amount of work driver is allowed to do this pass, in packets
1572 *
1573 * This function will clean all queues associated with a q_vector.
1574 *
1575 * Returns the amount of work done
1576 **/
1577int i40e_napi_poll(struct napi_struct *napi, int budget)
1578{
1579	struct i40e_q_vector *q_vector =
1580			       container_of(napi, struct i40e_q_vector, napi);
1581	struct i40e_vsi *vsi = q_vector->vsi;
1582	struct i40e_ring *ring;
1583	bool clean_complete = true;
1584	int budget_per_ring;
1585
1586	if (test_bit(__I40E_DOWN, &vsi->state)) {
1587		napi_complete(napi);
1588		return 0;
1589	}
1590
1591	/* Since the actual Tx work is minimal, we can give the Tx a larger
1592	 * budget and be more aggressive about cleaning up the Tx descriptors.
1593	 */
1594	i40e_for_each_ring(ring, q_vector->tx)
1595		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1596
1597	/* We attempt to distribute budget to each Rx queue fairly, but don't
1598	 * allow the budget to go below 1 because that would exit polling early.
1599	 */
1600	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1601
1602	i40e_for_each_ring(ring, q_vector->rx)
1603		clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1604
1605	/* If work not completed, return budget and polling will return */
1606	if (!clean_complete)
1607		return budget;
1608
1609	/* Work is done so exit the polling mode and re-enable the interrupt */
1610	napi_complete(napi);
1611	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1612	    ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1613		i40e_update_dynamic_itr(q_vector);
1614
1615	if (!test_bit(__I40E_DOWN, &vsi->state)) {
1616		if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1617			i40e_irq_dynamic_enable(vsi,
1618					q_vector->v_idx + vsi->base_vector);
1619		} else {
1620			struct i40e_hw *hw = &vsi->back->hw;
1621			/* We re-enable the queue 0 cause, but
1622			 * don't worry about dynamic_enable
1623			 * because we left it on for the other
1624			 * possible interrupts during napi
1625			 */
1626			u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1627			qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1628			wr32(hw, I40E_QINT_RQCTL(0), qval);
1629
1630			qval = rd32(hw, I40E_QINT_TQCTL(0));
1631			qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1632			wr32(hw, I40E_QINT_TQCTL(0), qval);
1633
1634			i40e_irq_dynamic_enable_icr0(vsi->back);
1635		}
1636	}
1637
1638	return 0;
1639}
1640
1641/**
1642 * i40e_atr - Add a Flow Director ATR filter
1643 * @tx_ring:  ring to add programming descriptor to
1644 * @skb:      send buffer
1645 * @flags:    send flags
1646 * @protocol: wire protocol
1647 **/
1648static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1649		     u32 flags, __be16 protocol)
1650{
1651	struct i40e_filter_program_desc *fdir_desc;
1652	struct i40e_pf *pf = tx_ring->vsi->back;
1653	union {
1654		unsigned char *network;
1655		struct iphdr *ipv4;
1656		struct ipv6hdr *ipv6;
1657	} hdr;
1658	struct tcphdr *th;
1659	unsigned int hlen;
1660	u32 flex_ptype, dtype_cmd;
1661	u16 i;
1662
1663	/* make sure ATR is enabled */
1664	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1665		return;
1666
1667	/* if sampling is disabled do nothing */
1668	if (!tx_ring->atr_sample_rate)
1669		return;
1670
1671	/* snag network header to get L4 type and address */
1672	hdr.network = skb_network_header(skb);
1673
1674	/* Currently only IPv4/IPv6 with TCP is supported */
1675	if (protocol == htons(ETH_P_IP)) {
1676		if (hdr.ipv4->protocol != IPPROTO_TCP)
1677			return;
1678
1679		/* access ihl as a u8 to avoid unaligned access on ia64 */
1680		hlen = (hdr.network[0] & 0x0F) << 2;
1681	} else if (protocol == htons(ETH_P_IPV6)) {
1682		if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1683			return;
1684
1685		hlen = sizeof(struct ipv6hdr);
1686	} else {
1687		return;
1688	}
1689
1690	th = (struct tcphdr *)(hdr.network + hlen);
1691
1692	/* Due to lack of space, no more new filters can be programmed */
1693	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1694		return;
1695
1696	tx_ring->atr_count++;
1697
1698	/* sample on all syn/fin/rst packets or once every atr sample rate */
1699	if (!th->fin &&
1700	    !th->syn &&
1701	    !th->rst &&
1702	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
1703		return;
1704
1705	tx_ring->atr_count = 0;
1706
1707	/* grab the next descriptor */
1708	i = tx_ring->next_to_use;
1709	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1710
1711	i++;
1712	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1713
1714	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1715		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
1716	flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1717		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1718		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1719		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1720		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1721
1722	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1723
1724	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1725
1726	dtype_cmd |= (th->fin || th->rst) ?
1727		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1728		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1729		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1730		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1731
1732	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1733		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
1734
1735	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1736		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1737
1738	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
1739	dtype_cmd |=
1740		((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
1741		I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
1742
1743	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1744	fdir_desc->rsvd = cpu_to_le32(0);
1745	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1746	fdir_desc->fd_id = cpu_to_le32(0);
1747}
1748
1749/**
1750 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1751 * @skb:     send buffer
1752 * @tx_ring: ring to send buffer on
1753 * @flags:   the tx flags to be set
1754 *
1755 * Checks the skb and set up correspondingly several generic transmit flags
1756 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1757 *
1758 * Returns error code indicate the frame should be dropped upon error and the
1759 * otherwise  returns 0 to indicate the flags has been set properly.
1760 **/
1761#ifdef I40E_FCOE
1762int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1763			       struct i40e_ring *tx_ring,
1764			       u32 *flags)
1765#else
1766static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1767				      struct i40e_ring *tx_ring,
1768				      u32 *flags)
1769#endif
1770{
1771	__be16 protocol = skb->protocol;
1772	u32  tx_flags = 0;
1773
1774	/* if we have a HW VLAN tag being added, default to the HW one */
1775	if (vlan_tx_tag_present(skb)) {
1776		tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1777		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1778	/* else if it is a SW VLAN, check the next protocol and store the tag */
1779	} else if (protocol == htons(ETH_P_8021Q)) {
1780		struct vlan_hdr *vhdr, _vhdr;
1781		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1782		if (!vhdr)
1783			return -EINVAL;
1784
1785		protocol = vhdr->h_vlan_encapsulated_proto;
1786		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1787		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1788	}
1789
1790	/* Insert 802.1p priority into VLAN header */
1791	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1792	    (skb->priority != TC_PRIO_CONTROL)) {
1793		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1794		tx_flags |= (skb->priority & 0x7) <<
1795				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1796		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1797			struct vlan_ethhdr *vhdr;
1798			int rc;
1799
1800			rc = skb_cow_head(skb, 0);
1801			if (rc < 0)
1802				return rc;
1803			vhdr = (struct vlan_ethhdr *)skb->data;
1804			vhdr->h_vlan_TCI = htons(tx_flags >>
1805						 I40E_TX_FLAGS_VLAN_SHIFT);
1806		} else {
1807			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1808		}
1809	}
1810	*flags = tx_flags;
1811	return 0;
1812}
1813
1814/**
1815 * i40e_tso - set up the tso context descriptor
1816 * @tx_ring:  ptr to the ring to send
1817 * @skb:      ptr to the skb we're sending
1818 * @tx_flags: the collected send information
1819 * @protocol: the send protocol
1820 * @hdr_len:  ptr to the size of the packet header
1821 * @cd_tunneling: ptr to context descriptor bits
1822 *
1823 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1824 **/
1825static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1826		    u32 tx_flags, __be16 protocol, u8 *hdr_len,
1827		    u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1828{
1829	u32 cd_cmd, cd_tso_len, cd_mss;
1830	struct ipv6hdr *ipv6h;
1831	struct tcphdr *tcph;
1832	struct iphdr *iph;
1833	u32 l4len;
1834	int err;
1835
1836	if (!skb_is_gso(skb))
1837		return 0;
1838
1839	err = skb_cow_head(skb, 0);
1840	if (err < 0)
1841		return err;
1842
1843	if (protocol == htons(ETH_P_IP)) {
1844		iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1845		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1846		iph->tot_len = 0;
1847		iph->check = 0;
1848		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1849						 0, IPPROTO_TCP, 0);
1850	} else if (skb_is_gso_v6(skb)) {
1851
1852		ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1853					   : ipv6_hdr(skb);
1854		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1855		ipv6h->payload_len = 0;
1856		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1857					       0, IPPROTO_TCP, 0);
1858	}
1859
1860	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1861	*hdr_len = (skb->encapsulation
1862		    ? (skb_inner_transport_header(skb) - skb->data)
1863		    : skb_transport_offset(skb)) + l4len;
1864
1865	/* find the field values */
1866	cd_cmd = I40E_TX_CTX_DESC_TSO;
1867	cd_tso_len = skb->len - *hdr_len;
1868	cd_mss = skb_shinfo(skb)->gso_size;
1869	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1870				((u64)cd_tso_len <<
1871				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1872				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1873	return 1;
1874}
1875
1876/**
1877 * i40e_tsyn - set up the tsyn context descriptor
1878 * @tx_ring:  ptr to the ring to send
1879 * @skb:      ptr to the skb we're sending
1880 * @tx_flags: the collected send information
1881 *
1882 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1883 **/
1884static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1885		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1886{
1887	struct i40e_pf *pf;
1888
1889	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1890		return 0;
1891
1892	/* Tx timestamps cannot be sampled when doing TSO */
1893	if (tx_flags & I40E_TX_FLAGS_TSO)
1894		return 0;
1895
1896	/* only timestamp the outbound packet if the user has requested it and
1897	 * we are not already transmitting a packet to be timestamped
1898	 */
1899	pf = i40e_netdev_to_pf(tx_ring->netdev);
1900	if (pf->ptp_tx &&
1901	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
1902		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1903		pf->ptp_tx_skb = skb_get(skb);
1904	} else {
1905		return 0;
1906	}
1907
1908	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1909				I40E_TXD_CTX_QW1_CMD_SHIFT;
1910
1911	return 1;
1912}
1913
1914/**
1915 * i40e_tx_enable_csum - Enable Tx checksum offloads
1916 * @skb: send buffer
1917 * @tx_flags: Tx flags currently set
1918 * @td_cmd: Tx descriptor command bits to set
1919 * @td_offset: Tx descriptor header offsets to set
1920 * @cd_tunneling: ptr to context desc bits
1921 **/
1922static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1923				u32 *td_cmd, u32 *td_offset,
1924				struct i40e_ring *tx_ring,
1925				u32 *cd_tunneling)
1926{
1927	struct ipv6hdr *this_ipv6_hdr;
1928	unsigned int this_tcp_hdrlen;
1929	struct iphdr *this_ip_hdr;
1930	u32 network_hdr_len;
1931	u8 l4_hdr = 0;
1932
1933	if (skb->encapsulation) {
1934		network_hdr_len = skb_inner_network_header_len(skb);
1935		this_ip_hdr = inner_ip_hdr(skb);
1936		this_ipv6_hdr = inner_ipv6_hdr(skb);
1937		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1938
1939		if (tx_flags & I40E_TX_FLAGS_IPV4) {
1940
1941			if (tx_flags & I40E_TX_FLAGS_TSO) {
1942				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1943				ip_hdr(skb)->check = 0;
1944			} else {
1945				*cd_tunneling |=
1946					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1947			}
1948		} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1949			if (tx_flags & I40E_TX_FLAGS_TSO) {
1950				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1951				ip_hdr(skb)->check = 0;
1952			} else {
1953				*cd_tunneling |=
1954					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1955			}
1956		}
1957
1958		/* Now set the ctx descriptor fields */
1959		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1960					I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1961				   I40E_TXD_CTX_UDP_TUNNELING            |
1962				   ((skb_inner_network_offset(skb) -
1963					skb_transport_offset(skb)) >> 1) <<
1964				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1965
1966	} else {
1967		network_hdr_len = skb_network_header_len(skb);
1968		this_ip_hdr = ip_hdr(skb);
1969		this_ipv6_hdr = ipv6_hdr(skb);
1970		this_tcp_hdrlen = tcp_hdrlen(skb);
1971	}
1972
1973	/* Enable IP checksum offloads */
1974	if (tx_flags & I40E_TX_FLAGS_IPV4) {
1975		l4_hdr = this_ip_hdr->protocol;
1976		/* the stack computes the IP header already, the only time we
1977		 * need the hardware to recompute it is in the case of TSO.
1978		 */
1979		if (tx_flags & I40E_TX_FLAGS_TSO) {
1980			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1981			this_ip_hdr->check = 0;
1982		} else {
1983			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1984		}
1985		/* Now set the td_offset for IP header length */
1986		*td_offset = (network_hdr_len >> 2) <<
1987			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1988	} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1989		l4_hdr = this_ipv6_hdr->nexthdr;
1990		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1991		/* Now set the td_offset for IP header length */
1992		*td_offset = (network_hdr_len >> 2) <<
1993			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1994	}
1995	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1996	*td_offset |= (skb_network_offset(skb) >> 1) <<
1997		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1998
1999	/* Enable L4 checksum offloads */
2000	switch (l4_hdr) {
2001	case IPPROTO_TCP:
2002		/* enable checksum offloads */
2003		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2004		*td_offset |= (this_tcp_hdrlen >> 2) <<
2005			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2006		break;
2007	case IPPROTO_SCTP:
2008		/* enable SCTP checksum offload */
2009		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2010		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
2011			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2012		break;
2013	case IPPROTO_UDP:
2014		/* enable UDP checksum offload */
2015		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2016		*td_offset |= (sizeof(struct udphdr) >> 2) <<
2017			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2018		break;
2019	default:
2020		break;
2021	}
2022}
2023
2024/**
2025 * i40e_create_tx_ctx Build the Tx context descriptor
2026 * @tx_ring:  ring to create the descriptor on
2027 * @cd_type_cmd_tso_mss: Quad Word 1
2028 * @cd_tunneling: Quad Word 0 - bits 0-31
2029 * @cd_l2tag2: Quad Word 0 - bits 32-63
2030 **/
2031static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2032			       const u64 cd_type_cmd_tso_mss,
2033			       const u32 cd_tunneling, const u32 cd_l2tag2)
2034{
2035	struct i40e_tx_context_desc *context_desc;
2036	int i = tx_ring->next_to_use;
2037
2038	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2039	    !cd_tunneling && !cd_l2tag2)
2040		return;
2041
2042	/* grab the next descriptor */
2043	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2044
2045	i++;
2046	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2047
2048	/* cpu_to_le32 and assign to struct fields */
2049	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2050	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2051	context_desc->rsvd = cpu_to_le16(0);
2052	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2053}
2054
2055/**
2056 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2057 * @tx_ring: the ring to be checked
2058 * @size:    the size buffer we want to assure is available
2059 *
2060 * Returns -EBUSY if a stop is needed, else 0
2061 **/
2062static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2063{
2064	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2065	/* Memory barrier before checking head and tail */
2066	smp_mb();
2067
2068	/* Check again in a case another CPU has just made room available. */
2069	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2070		return -EBUSY;
2071
2072	/* A reprieve! - use start_queue because it doesn't call schedule */
2073	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2074	++tx_ring->tx_stats.restart_queue;
2075	return 0;
2076}
2077
2078/**
2079 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2080 * @tx_ring: the ring to be checked
2081 * @size:    the size buffer we want to assure is available
2082 *
2083 * Returns 0 if stop is not needed
2084 **/
2085#ifdef I40E_FCOE
2086int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2087#else
2088static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2089#endif
2090{
2091	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2092		return 0;
2093	return __i40e_maybe_stop_tx(tx_ring, size);
2094}
2095
2096/**
2097 * i40e_tx_map - Build the Tx descriptor
2098 * @tx_ring:  ring to send buffer on
2099 * @skb:      send buffer
2100 * @first:    first buffer info buffer to use
2101 * @tx_flags: collected send information
2102 * @hdr_len:  size of the packet header
2103 * @td_cmd:   the command field in the descriptor
2104 * @td_offset: offset for checksum or crc
2105 **/
2106#ifdef I40E_FCOE
2107void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2108		 struct i40e_tx_buffer *first, u32 tx_flags,
2109		 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2110#else
2111static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2112			struct i40e_tx_buffer *first, u32 tx_flags,
2113			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2114#endif
2115{
2116	unsigned int data_len = skb->data_len;
2117	unsigned int size = skb_headlen(skb);
2118	struct skb_frag_struct *frag;
2119	struct i40e_tx_buffer *tx_bi;
2120	struct i40e_tx_desc *tx_desc;
2121	u16 i = tx_ring->next_to_use;
2122	u32 td_tag = 0;
2123	dma_addr_t dma;
2124	u16 gso_segs;
2125
2126	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2127		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2128		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2129			 I40E_TX_FLAGS_VLAN_SHIFT;
2130	}
2131
2132	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2133		gso_segs = skb_shinfo(skb)->gso_segs;
2134	else
2135		gso_segs = 1;
2136
2137	/* multiply data chunks by size of headers */
2138	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2139	first->gso_segs = gso_segs;
2140	first->skb = skb;
2141	first->tx_flags = tx_flags;
2142
2143	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2144
2145	tx_desc = I40E_TX_DESC(tx_ring, i);
2146	tx_bi = first;
2147
2148	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2149		if (dma_mapping_error(tx_ring->dev, dma))
2150			goto dma_error;
2151
2152		/* record length, and DMA address */
2153		dma_unmap_len_set(tx_bi, len, size);
2154		dma_unmap_addr_set(tx_bi, dma, dma);
2155
2156		tx_desc->buffer_addr = cpu_to_le64(dma);
2157
2158		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2159			tx_desc->cmd_type_offset_bsz =
2160				build_ctob(td_cmd, td_offset,
2161					   I40E_MAX_DATA_PER_TXD, td_tag);
2162
2163			tx_desc++;
2164			i++;
2165			if (i == tx_ring->count) {
2166				tx_desc = I40E_TX_DESC(tx_ring, 0);
2167				i = 0;
2168			}
2169
2170			dma += I40E_MAX_DATA_PER_TXD;
2171			size -= I40E_MAX_DATA_PER_TXD;
2172
2173			tx_desc->buffer_addr = cpu_to_le64(dma);
2174		}
2175
2176		if (likely(!data_len))
2177			break;
2178
2179		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2180							  size, td_tag);
2181
2182		tx_desc++;
2183		i++;
2184		if (i == tx_ring->count) {
2185			tx_desc = I40E_TX_DESC(tx_ring, 0);
2186			i = 0;
2187		}
2188
2189		size = skb_frag_size(frag);
2190		data_len -= size;
2191
2192		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2193				       DMA_TO_DEVICE);
2194
2195		tx_bi = &tx_ring->tx_bi[i];
2196	}
2197
2198	/* Place RS bit on last descriptor of any packet that spans across the
2199	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2200	 */
2201#define WB_STRIDE 0x3
2202	if (((i & WB_STRIDE) != WB_STRIDE) &&
2203	    (first <= &tx_ring->tx_bi[i]) &&
2204	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2205		tx_desc->cmd_type_offset_bsz =
2206			build_ctob(td_cmd, td_offset, size, td_tag) |
2207			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2208					 I40E_TXD_QW1_CMD_SHIFT);
2209	} else {
2210		tx_desc->cmd_type_offset_bsz =
2211			build_ctob(td_cmd, td_offset, size, td_tag) |
2212			cpu_to_le64((u64)I40E_TXD_CMD <<
2213					 I40E_TXD_QW1_CMD_SHIFT);
2214	}
2215
2216	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2217						 tx_ring->queue_index),
2218			     first->bytecount);
2219
2220	/* set the timestamp */
2221	first->time_stamp = jiffies;
2222
2223	/* Force memory writes to complete before letting h/w
2224	 * know there are new descriptors to fetch.  (Only
2225	 * applicable for weak-ordered memory model archs,
2226	 * such as IA-64).
2227	 */
2228	wmb();
2229
2230	/* set next_to_watch value indicating a packet is present */
2231	first->next_to_watch = tx_desc;
2232
2233	i++;
2234	if (i == tx_ring->count)
2235		i = 0;
2236
2237	tx_ring->next_to_use = i;
2238
2239	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2240	/* notify HW of packet */
2241	if (!skb->xmit_more ||
2242	    netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2243						   tx_ring->queue_index)))
2244		writel(i, tx_ring->tail);
2245
2246	return;
2247
2248dma_error:
2249	dev_info(tx_ring->dev, "TX DMA map failed\n");
2250
2251	/* clear dma mappings for failed tx_bi map */
2252	for (;;) {
2253		tx_bi = &tx_ring->tx_bi[i];
2254		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2255		if (tx_bi == first)
2256			break;
2257		if (i == 0)
2258			i = tx_ring->count;
2259		i--;
2260	}
2261
2262	tx_ring->next_to_use = i;
2263}
2264
2265/**
2266 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2267 * @skb:     send buffer
2268 * @tx_ring: ring to send buffer on
2269 *
2270 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2271 * there is not enough descriptors available in this ring since we need at least
2272 * one descriptor.
2273 **/
2274#ifdef I40E_FCOE
2275int i40e_xmit_descriptor_count(struct sk_buff *skb,
2276			       struct i40e_ring *tx_ring)
2277#else
2278static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2279				      struct i40e_ring *tx_ring)
2280#endif
2281{
2282	unsigned int f;
2283	int count = 0;
2284
2285	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2286	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2287	 *       + 4 desc gap to avoid the cache line where head is,
2288	 *       + 1 desc for context descriptor,
2289	 * otherwise try next time
2290	 */
2291	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2292		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2293
2294	count += TXD_USE_COUNT(skb_headlen(skb));
2295	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2296		tx_ring->tx_stats.tx_busy++;
2297		return 0;
2298	}
2299	return count;
2300}
2301
2302/**
2303 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2304 * @skb:     send buffer
2305 * @tx_ring: ring to send buffer on
2306 *
2307 * Returns NETDEV_TX_OK if sent, else an error code
2308 **/
2309static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2310					struct i40e_ring *tx_ring)
2311{
2312	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2313	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2314	struct i40e_tx_buffer *first;
2315	u32 td_offset = 0;
2316	u32 tx_flags = 0;
2317	__be16 protocol;
2318	u32 td_cmd = 0;
2319	u8 hdr_len = 0;
2320	int tsyn;
2321	int tso;
2322	if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2323		return NETDEV_TX_BUSY;
2324
2325	/* prepare the xmit flags */
2326	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2327		goto out_drop;
2328
2329	/* obtain protocol of skb */
2330	protocol = vlan_get_protocol(skb);
2331
2332	/* record the location of the first descriptor for this packet */
2333	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2334
2335	/* setup IPv4/IPv6 offloads */
2336	if (protocol == htons(ETH_P_IP))
2337		tx_flags |= I40E_TX_FLAGS_IPV4;
2338	else if (protocol == htons(ETH_P_IPV6))
2339		tx_flags |= I40E_TX_FLAGS_IPV6;
2340
2341	tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2342		       &cd_type_cmd_tso_mss, &cd_tunneling);
2343
2344	if (tso < 0)
2345		goto out_drop;
2346	else if (tso)
2347		tx_flags |= I40E_TX_FLAGS_TSO;
2348
2349	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2350
2351	if (tsyn)
2352		tx_flags |= I40E_TX_FLAGS_TSYN;
2353
2354	skb_tx_timestamp(skb);
2355
2356	/* always enable CRC insertion offload */
2357	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2358
2359	/* Always offload the checksum, since it's in the data descriptor */
2360	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2361		tx_flags |= I40E_TX_FLAGS_CSUM;
2362
2363		i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2364				    tx_ring, &cd_tunneling);
2365	}
2366
2367	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2368			   cd_tunneling, cd_l2tag2);
2369
2370	/* Add Flow Director ATR if it's enabled.
2371	 *
2372	 * NOTE: this must always be directly before the data descriptor.
2373	 */
2374	i40e_atr(tx_ring, skb, tx_flags, protocol);
2375
2376	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2377		    td_cmd, td_offset);
2378
2379	return NETDEV_TX_OK;
2380
2381out_drop:
2382	dev_kfree_skb_any(skb);
2383	return NETDEV_TX_OK;
2384}
2385
2386/**
2387 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2388 * @skb:    send buffer
2389 * @netdev: network interface device structure
2390 *
2391 * Returns NETDEV_TX_OK if sent, else an error code
2392 **/
2393netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2394{
2395	struct i40e_netdev_priv *np = netdev_priv(netdev);
2396	struct i40e_vsi *vsi = np->vsi;
2397	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2398
2399	/* hardware can't handle really short frames, hardware padding works
2400	 * beyond this point
2401	 */
2402	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2403		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2404			return NETDEV_TX_OK;
2405		skb->len = I40E_MIN_TX_LEN;
2406		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2407	}
2408
2409	return i40e_xmit_frame_ring(skb, tx_ring);
2410}
2411