[go: nahoru, domu]

1/*******************************************************************************
2
3  Intel 10 Gigabit PCI Express Linux driver
4  Copyright(c) 1999 - 2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/pci.h>
30#include <linux/delay.h>
31#include <linux/sched.h>
32#include <linux/netdevice.h>
33
34#include "ixgbe.h"
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37
38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44					u16 count);
45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49
50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53					     u16 words, u16 *data);
54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55					     u16 words, u16 *data);
56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57						 u16 offset);
58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59
60/**
61 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62 *  control
63 *  @hw: pointer to hardware structure
64 *
65 *  There are several phys that do not support autoneg flow control. This
66 *  function check the device id to see if the associated phy supports
67 *  autoneg flow control.
68 **/
69bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70{
71	bool supported = false;
72	ixgbe_link_speed speed;
73	bool link_up;
74
75	switch (hw->phy.media_type) {
76	case ixgbe_media_type_fiber:
77		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78		/* if link is down, assume supported */
79		if (link_up)
80			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81				true : false;
82		else
83			supported = true;
84		break;
85	case ixgbe_media_type_backplane:
86		supported = true;
87		break;
88	case ixgbe_media_type_copper:
89		/* only some copper devices support flow control autoneg */
90		switch (hw->device_id) {
91		case IXGBE_DEV_ID_82599_T3_LOM:
92		case IXGBE_DEV_ID_X540T:
93		case IXGBE_DEV_ID_X540T1:
94			supported = true;
95			break;
96		default:
97			break;
98		}
99	default:
100		break;
101	}
102
103	return supported;
104}
105
106/**
107 *  ixgbe_setup_fc - Set up flow control
108 *  @hw: pointer to hardware structure
109 *
110 *  Called at init time to set up flow control.
111 **/
112static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113{
114	s32 ret_val = 0;
115	u32 reg = 0, reg_bp = 0;
116	u16 reg_cu = 0;
117	bool locked = false;
118
119	/*
120	 * Validate the requested mode.  Strict IEEE mode does not allow
121	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122	 */
123	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125		return IXGBE_ERR_INVALID_LINK_SETTINGS;
126	}
127
128	/*
129	 * 10gig parts do not have a word in the EEPROM to determine the
130	 * default flow control setting, so we explicitly set it to full.
131	 */
132	if (hw->fc.requested_mode == ixgbe_fc_default)
133		hw->fc.requested_mode = ixgbe_fc_full;
134
135	/*
136	 * Set up the 1G and 10G flow control advertisement registers so the
137	 * HW will be able to do fc autoneg once the cable is plugged in.  If
138	 * we link at 10G, the 1G advertisement is harmless and vice versa.
139	 */
140	switch (hw->phy.media_type) {
141	case ixgbe_media_type_backplane:
142		/* some MAC's need RMW protection on AUTOC */
143		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
144		if (ret_val)
145			return ret_val;
146
147		/* only backplane uses autoc so fall though */
148	case ixgbe_media_type_fiber:
149		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
150
151		break;
152	case ixgbe_media_type_copper:
153		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
154					MDIO_MMD_AN, &reg_cu);
155		break;
156	default:
157		break;
158	}
159
160	/*
161	 * The possible values of fc.requested_mode are:
162	 * 0: Flow control is completely disabled
163	 * 1: Rx flow control is enabled (we can receive pause frames,
164	 *    but not send pause frames).
165	 * 2: Tx flow control is enabled (we can send pause frames but
166	 *    we do not support receiving pause frames).
167	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
168	 * other: Invalid.
169	 */
170	switch (hw->fc.requested_mode) {
171	case ixgbe_fc_none:
172		/* Flow control completely disabled by software override. */
173		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
174		if (hw->phy.media_type == ixgbe_media_type_backplane)
175			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
176				    IXGBE_AUTOC_ASM_PAUSE);
177		else if (hw->phy.media_type == ixgbe_media_type_copper)
178			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
179		break;
180	case ixgbe_fc_tx_pause:
181		/*
182		 * Tx Flow control is enabled, and Rx Flow control is
183		 * disabled by software override.
184		 */
185		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
186		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
187		if (hw->phy.media_type == ixgbe_media_type_backplane) {
188			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
189			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
190		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
191			reg_cu |= IXGBE_TAF_ASM_PAUSE;
192			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
193		}
194		break;
195	case ixgbe_fc_rx_pause:
196		/*
197		 * Rx Flow control is enabled and Tx Flow control is
198		 * disabled by software override. Since there really
199		 * isn't a way to advertise that we are capable of RX
200		 * Pause ONLY, we will advertise that we support both
201		 * symmetric and asymmetric Rx PAUSE, as such we fall
202		 * through to the fc_full statement.  Later, we will
203		 * disable the adapter's ability to send PAUSE frames.
204		 */
205	case ixgbe_fc_full:
206		/* Flow control (both Rx and Tx) is enabled by SW override. */
207		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
208		if (hw->phy.media_type == ixgbe_media_type_backplane)
209			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
210				  IXGBE_AUTOC_ASM_PAUSE;
211		else if (hw->phy.media_type == ixgbe_media_type_copper)
212			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
213		break;
214	default:
215		hw_dbg(hw, "Flow control param set incorrectly\n");
216		return IXGBE_ERR_CONFIG;
217	}
218
219	if (hw->mac.type != ixgbe_mac_X540) {
220		/*
221		 * Enable auto-negotiation between the MAC & PHY;
222		 * the MAC will advertise clause 37 flow control.
223		 */
224		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
225		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
226
227		/* Disable AN timeout */
228		if (hw->fc.strict_ieee)
229			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
230
231		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
232		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
233	}
234
235	/*
236	 * AUTOC restart handles negotiation of 1G and 10G on backplane
237	 * and copper. There is no need to set the PCS1GCTL register.
238	 *
239	 */
240	if (hw->phy.media_type == ixgbe_media_type_backplane) {
241		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
242		 * LESM is on, likewise reset_pipeline requries the lock as
243		 * it also writes AUTOC.
244		 */
245		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
246		if (ret_val)
247			return ret_val;
248
249	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
250		   ixgbe_device_supports_autoneg_fc(hw)) {
251		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
252				      MDIO_MMD_AN, reg_cu);
253	}
254
255	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
256	return ret_val;
257}
258
259/**
260 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
261 *  @hw: pointer to hardware structure
262 *
263 *  Starts the hardware by filling the bus info structure and media type, clears
264 *  all on chip counters, initializes receive address registers, multicast
265 *  table, VLAN filter table, calls routine to set up link and flow control
266 *  settings, and leaves transmit and receive units disabled and uninitialized
267 **/
268s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
269{
270	s32 ret_val;
271	u32 ctrl_ext;
272
273	/* Set the media type */
274	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
275
276	/* Identify the PHY */
277	hw->phy.ops.identify(hw);
278
279	/* Clear the VLAN filter table */
280	hw->mac.ops.clear_vfta(hw);
281
282	/* Clear statistics registers */
283	hw->mac.ops.clear_hw_cntrs(hw);
284
285	/* Set No Snoop Disable */
286	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
287	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
288	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
289	IXGBE_WRITE_FLUSH(hw);
290
291	/* Setup flow control */
292	ret_val = ixgbe_setup_fc(hw);
293	if (!ret_val)
294		return 0;
295
296	/* Clear adapter stopped flag */
297	hw->adapter_stopped = false;
298
299	return ret_val;
300}
301
302/**
303 *  ixgbe_start_hw_gen2 - Init sequence for common device family
304 *  @hw: pointer to hw structure
305 *
306 * Performs the init sequence common to the second generation
307 * of 10 GbE devices.
308 * Devices in the second generation:
309 *     82599
310 *     X540
311 **/
312s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
313{
314	u32 i;
315	u32 regval;
316
317	/* Clear the rate limiters */
318	for (i = 0; i < hw->mac.max_tx_queues; i++) {
319		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
320		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
321	}
322	IXGBE_WRITE_FLUSH(hw);
323
324	/* Disable relaxed ordering */
325	for (i = 0; i < hw->mac.max_tx_queues; i++) {
326		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
327		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
328		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
329	}
330
331	for (i = 0; i < hw->mac.max_rx_queues; i++) {
332		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
333		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
334			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
335		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
336	}
337
338	return 0;
339}
340
341/**
342 *  ixgbe_init_hw_generic - Generic hardware initialization
343 *  @hw: pointer to hardware structure
344 *
345 *  Initialize the hardware by resetting the hardware, filling the bus info
346 *  structure and media type, clears all on chip counters, initializes receive
347 *  address registers, multicast table, VLAN filter table, calls routine to set
348 *  up link and flow control settings, and leaves transmit and receive units
349 *  disabled and uninitialized
350 **/
351s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
352{
353	s32 status;
354
355	/* Reset the hardware */
356	status = hw->mac.ops.reset_hw(hw);
357
358	if (status == 0) {
359		/* Start the HW */
360		status = hw->mac.ops.start_hw(hw);
361	}
362
363	return status;
364}
365
366/**
367 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
368 *  @hw: pointer to hardware structure
369 *
370 *  Clears all hardware statistics counters by reading them from the hardware
371 *  Statistics counters are clear on read.
372 **/
373s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
374{
375	u16 i = 0;
376
377	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
378	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
379	IXGBE_READ_REG(hw, IXGBE_ERRBC);
380	IXGBE_READ_REG(hw, IXGBE_MSPDC);
381	for (i = 0; i < 8; i++)
382		IXGBE_READ_REG(hw, IXGBE_MPC(i));
383
384	IXGBE_READ_REG(hw, IXGBE_MLFC);
385	IXGBE_READ_REG(hw, IXGBE_MRFC);
386	IXGBE_READ_REG(hw, IXGBE_RLEC);
387	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
388	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
389	if (hw->mac.type >= ixgbe_mac_82599EB) {
390		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
391		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
392	} else {
393		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
394		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
395	}
396
397	for (i = 0; i < 8; i++) {
398		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
399		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
400		if (hw->mac.type >= ixgbe_mac_82599EB) {
401			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
402			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
403		} else {
404			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
405			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
406		}
407	}
408	if (hw->mac.type >= ixgbe_mac_82599EB)
409		for (i = 0; i < 8; i++)
410			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
411	IXGBE_READ_REG(hw, IXGBE_PRC64);
412	IXGBE_READ_REG(hw, IXGBE_PRC127);
413	IXGBE_READ_REG(hw, IXGBE_PRC255);
414	IXGBE_READ_REG(hw, IXGBE_PRC511);
415	IXGBE_READ_REG(hw, IXGBE_PRC1023);
416	IXGBE_READ_REG(hw, IXGBE_PRC1522);
417	IXGBE_READ_REG(hw, IXGBE_GPRC);
418	IXGBE_READ_REG(hw, IXGBE_BPRC);
419	IXGBE_READ_REG(hw, IXGBE_MPRC);
420	IXGBE_READ_REG(hw, IXGBE_GPTC);
421	IXGBE_READ_REG(hw, IXGBE_GORCL);
422	IXGBE_READ_REG(hw, IXGBE_GORCH);
423	IXGBE_READ_REG(hw, IXGBE_GOTCL);
424	IXGBE_READ_REG(hw, IXGBE_GOTCH);
425	if (hw->mac.type == ixgbe_mac_82598EB)
426		for (i = 0; i < 8; i++)
427			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
428	IXGBE_READ_REG(hw, IXGBE_RUC);
429	IXGBE_READ_REG(hw, IXGBE_RFC);
430	IXGBE_READ_REG(hw, IXGBE_ROC);
431	IXGBE_READ_REG(hw, IXGBE_RJC);
432	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
433	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
434	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
435	IXGBE_READ_REG(hw, IXGBE_TORL);
436	IXGBE_READ_REG(hw, IXGBE_TORH);
437	IXGBE_READ_REG(hw, IXGBE_TPR);
438	IXGBE_READ_REG(hw, IXGBE_TPT);
439	IXGBE_READ_REG(hw, IXGBE_PTC64);
440	IXGBE_READ_REG(hw, IXGBE_PTC127);
441	IXGBE_READ_REG(hw, IXGBE_PTC255);
442	IXGBE_READ_REG(hw, IXGBE_PTC511);
443	IXGBE_READ_REG(hw, IXGBE_PTC1023);
444	IXGBE_READ_REG(hw, IXGBE_PTC1522);
445	IXGBE_READ_REG(hw, IXGBE_MPTC);
446	IXGBE_READ_REG(hw, IXGBE_BPTC);
447	for (i = 0; i < 16; i++) {
448		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
449		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
450		if (hw->mac.type >= ixgbe_mac_82599EB) {
451			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
452			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
453			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
454			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
455			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
456		} else {
457			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
458			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
459		}
460	}
461
462	if (hw->mac.type == ixgbe_mac_X540) {
463		if (hw->phy.id == 0)
464			hw->phy.ops.identify(hw);
465		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
466		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
467		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
468		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
469	}
470
471	return 0;
472}
473
474/**
475 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
476 *  @hw: pointer to hardware structure
477 *  @pba_num: stores the part number string from the EEPROM
478 *  @pba_num_size: part number string buffer length
479 *
480 *  Reads the part number string from the EEPROM.
481 **/
482s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
483				  u32 pba_num_size)
484{
485	s32 ret_val;
486	u16 data;
487	u16 pba_ptr;
488	u16 offset;
489	u16 length;
490
491	if (pba_num == NULL) {
492		hw_dbg(hw, "PBA string buffer was null\n");
493		return IXGBE_ERR_INVALID_ARGUMENT;
494	}
495
496	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
497	if (ret_val) {
498		hw_dbg(hw, "NVM Read Error\n");
499		return ret_val;
500	}
501
502	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
503	if (ret_val) {
504		hw_dbg(hw, "NVM Read Error\n");
505		return ret_val;
506	}
507
508	/*
509	 * if data is not ptr guard the PBA must be in legacy format which
510	 * means pba_ptr is actually our second data word for the PBA number
511	 * and we can decode it into an ascii string
512	 */
513	if (data != IXGBE_PBANUM_PTR_GUARD) {
514		hw_dbg(hw, "NVM PBA number is not stored as string\n");
515
516		/* we will need 11 characters to store the PBA */
517		if (pba_num_size < 11) {
518			hw_dbg(hw, "PBA string buffer too small\n");
519			return IXGBE_ERR_NO_SPACE;
520		}
521
522		/* extract hex string from data and pba_ptr */
523		pba_num[0] = (data >> 12) & 0xF;
524		pba_num[1] = (data >> 8) & 0xF;
525		pba_num[2] = (data >> 4) & 0xF;
526		pba_num[3] = data & 0xF;
527		pba_num[4] = (pba_ptr >> 12) & 0xF;
528		pba_num[5] = (pba_ptr >> 8) & 0xF;
529		pba_num[6] = '-';
530		pba_num[7] = 0;
531		pba_num[8] = (pba_ptr >> 4) & 0xF;
532		pba_num[9] = pba_ptr & 0xF;
533
534		/* put a null character on the end of our string */
535		pba_num[10] = '\0';
536
537		/* switch all the data but the '-' to hex char */
538		for (offset = 0; offset < 10; offset++) {
539			if (pba_num[offset] < 0xA)
540				pba_num[offset] += '0';
541			else if (pba_num[offset] < 0x10)
542				pba_num[offset] += 'A' - 0xA;
543		}
544
545		return 0;
546	}
547
548	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
549	if (ret_val) {
550		hw_dbg(hw, "NVM Read Error\n");
551		return ret_val;
552	}
553
554	if (length == 0xFFFF || length == 0) {
555		hw_dbg(hw, "NVM PBA number section invalid length\n");
556		return IXGBE_ERR_PBA_SECTION;
557	}
558
559	/* check if pba_num buffer is big enough */
560	if (pba_num_size  < (((u32)length * 2) - 1)) {
561		hw_dbg(hw, "PBA string buffer too small\n");
562		return IXGBE_ERR_NO_SPACE;
563	}
564
565	/* trim pba length from start of string */
566	pba_ptr++;
567	length--;
568
569	for (offset = 0; offset < length; offset++) {
570		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
571		if (ret_val) {
572			hw_dbg(hw, "NVM Read Error\n");
573			return ret_val;
574		}
575		pba_num[offset * 2] = (u8)(data >> 8);
576		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
577	}
578	pba_num[offset * 2] = '\0';
579
580	return 0;
581}
582
583/**
584 *  ixgbe_get_mac_addr_generic - Generic get MAC address
585 *  @hw: pointer to hardware structure
586 *  @mac_addr: Adapter MAC address
587 *
588 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
589 *  A reset of the adapter must be performed prior to calling this function
590 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
591 **/
592s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
593{
594	u32 rar_high;
595	u32 rar_low;
596	u16 i;
597
598	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
599	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
600
601	for (i = 0; i < 4; i++)
602		mac_addr[i] = (u8)(rar_low >> (i*8));
603
604	for (i = 0; i < 2; i++)
605		mac_addr[i+4] = (u8)(rar_high >> (i*8));
606
607	return 0;
608}
609
610enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
611{
612	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
613	case IXGBE_PCI_LINK_WIDTH_1:
614		return ixgbe_bus_width_pcie_x1;
615	case IXGBE_PCI_LINK_WIDTH_2:
616		return ixgbe_bus_width_pcie_x2;
617	case IXGBE_PCI_LINK_WIDTH_4:
618		return ixgbe_bus_width_pcie_x4;
619	case IXGBE_PCI_LINK_WIDTH_8:
620		return ixgbe_bus_width_pcie_x8;
621	default:
622		return ixgbe_bus_width_unknown;
623	}
624}
625
626enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
627{
628	switch (link_status & IXGBE_PCI_LINK_SPEED) {
629	case IXGBE_PCI_LINK_SPEED_2500:
630		return ixgbe_bus_speed_2500;
631	case IXGBE_PCI_LINK_SPEED_5000:
632		return ixgbe_bus_speed_5000;
633	case IXGBE_PCI_LINK_SPEED_8000:
634		return ixgbe_bus_speed_8000;
635	default:
636		return ixgbe_bus_speed_unknown;
637	}
638}
639
640/**
641 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
642 *  @hw: pointer to hardware structure
643 *
644 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
645 **/
646s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
647{
648	u16 link_status;
649
650	hw->bus.type = ixgbe_bus_type_pci_express;
651
652	/* Get the negotiated link width and speed from PCI config space */
653	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
654
655	hw->bus.width = ixgbe_convert_bus_width(link_status);
656	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
657
658	hw->mac.ops.set_lan_id(hw);
659
660	return 0;
661}
662
663/**
664 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
665 *  @hw: pointer to the HW structure
666 *
667 *  Determines the LAN function id by reading memory-mapped registers
668 *  and swaps the port value if requested.
669 **/
670void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
671{
672	struct ixgbe_bus_info *bus = &hw->bus;
673	u32 reg;
674
675	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
676	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
677	bus->lan_id = bus->func;
678
679	/* check for a port swap */
680	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
681	if (reg & IXGBE_FACTPS_LFS)
682		bus->func ^= 0x1;
683}
684
685/**
686 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
687 *  @hw: pointer to hardware structure
688 *
689 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
690 *  disables transmit and receive units. The adapter_stopped flag is used by
691 *  the shared code and drivers to determine if the adapter is in a stopped
692 *  state and should not touch the hardware.
693 **/
694s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
695{
696	u32 reg_val;
697	u16 i;
698
699	/*
700	 * Set the adapter_stopped flag so other driver functions stop touching
701	 * the hardware
702	 */
703	hw->adapter_stopped = true;
704
705	/* Disable the receive unit */
706	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
707
708	/* Clear interrupt mask to stop interrupts from being generated */
709	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
710
711	/* Clear any pending interrupts, flush previous writes */
712	IXGBE_READ_REG(hw, IXGBE_EICR);
713
714	/* Disable the transmit unit.  Each queue must be disabled. */
715	for (i = 0; i < hw->mac.max_tx_queues; i++)
716		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
717
718	/* Disable the receive unit by stopping each queue */
719	for (i = 0; i < hw->mac.max_rx_queues; i++) {
720		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
721		reg_val &= ~IXGBE_RXDCTL_ENABLE;
722		reg_val |= IXGBE_RXDCTL_SWFLSH;
723		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
724	}
725
726	/* flush all queues disables */
727	IXGBE_WRITE_FLUSH(hw);
728	usleep_range(1000, 2000);
729
730	/*
731	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
732	 * access and verify no pending requests
733	 */
734	return ixgbe_disable_pcie_master(hw);
735}
736
737/**
738 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
739 *  @hw: pointer to hardware structure
740 *  @index: led number to turn on
741 **/
742s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
743{
744	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
745
746	/* To turn on the LED, set mode to ON. */
747	led_reg &= ~IXGBE_LED_MODE_MASK(index);
748	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
749	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
750	IXGBE_WRITE_FLUSH(hw);
751
752	return 0;
753}
754
755/**
756 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
757 *  @hw: pointer to hardware structure
758 *  @index: led number to turn off
759 **/
760s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
761{
762	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
763
764	/* To turn off the LED, set mode to OFF. */
765	led_reg &= ~IXGBE_LED_MODE_MASK(index);
766	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
767	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
768	IXGBE_WRITE_FLUSH(hw);
769
770	return 0;
771}
772
773/**
774 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
775 *  @hw: pointer to hardware structure
776 *
777 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
778 *  ixgbe_hw struct in order to set up EEPROM access.
779 **/
780s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
781{
782	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
783	u32 eec;
784	u16 eeprom_size;
785
786	if (eeprom->type == ixgbe_eeprom_uninitialized) {
787		eeprom->type = ixgbe_eeprom_none;
788		/* Set default semaphore delay to 10ms which is a well
789		 * tested value */
790		eeprom->semaphore_delay = 10;
791		/* Clear EEPROM page size, it will be initialized as needed */
792		eeprom->word_page_size = 0;
793
794		/*
795		 * Check for EEPROM present first.
796		 * If not present leave as none
797		 */
798		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
799		if (eec & IXGBE_EEC_PRES) {
800			eeprom->type = ixgbe_eeprom_spi;
801
802			/*
803			 * SPI EEPROM is assumed here.  This code would need to
804			 * change if a future EEPROM is not SPI.
805			 */
806			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
807					    IXGBE_EEC_SIZE_SHIFT);
808			eeprom->word_size = 1 << (eeprom_size +
809						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
810		}
811
812		if (eec & IXGBE_EEC_ADDR_SIZE)
813			eeprom->address_bits = 16;
814		else
815			eeprom->address_bits = 8;
816		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
817		       eeprom->type, eeprom->word_size, eeprom->address_bits);
818	}
819
820	return 0;
821}
822
823/**
824 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
825 *  @hw: pointer to hardware structure
826 *  @offset: offset within the EEPROM to write
827 *  @words: number of words
828 *  @data: 16 bit word(s) to write to EEPROM
829 *
830 *  Reads 16 bit word(s) from EEPROM through bit-bang method
831 **/
832s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
833					       u16 words, u16 *data)
834{
835	s32 status;
836	u16 i, count;
837
838	hw->eeprom.ops.init_params(hw);
839
840	if (words == 0)
841		return IXGBE_ERR_INVALID_ARGUMENT;
842
843	if (offset + words > hw->eeprom.word_size)
844		return IXGBE_ERR_EEPROM;
845
846	/*
847	 * The EEPROM page size cannot be queried from the chip. We do lazy
848	 * initialization. It is worth to do that when we write large buffer.
849	 */
850	if ((hw->eeprom.word_page_size == 0) &&
851	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
852		ixgbe_detect_eeprom_page_size_generic(hw, offset);
853
854	/*
855	 * We cannot hold synchronization semaphores for too long
856	 * to avoid other entity starvation. However it is more efficient
857	 * to read in bursts than synchronizing access for each word.
858	 */
859	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
860		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
861			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
862		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
863							    count, &data[i]);
864
865		if (status != 0)
866			break;
867	}
868
869	return status;
870}
871
872/**
873 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
874 *  @hw: pointer to hardware structure
875 *  @offset: offset within the EEPROM to be written to
876 *  @words: number of word(s)
877 *  @data: 16 bit word(s) to be written to the EEPROM
878 *
879 *  If ixgbe_eeprom_update_checksum is not called after this function, the
880 *  EEPROM will most likely contain an invalid checksum.
881 **/
882static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
883					      u16 words, u16 *data)
884{
885	s32 status;
886	u16 word;
887	u16 page_size;
888	u16 i;
889	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
890
891	/* Prepare the EEPROM for writing  */
892	status = ixgbe_acquire_eeprom(hw);
893	if (status)
894		return status;
895
896	if (ixgbe_ready_eeprom(hw) != 0) {
897		ixgbe_release_eeprom(hw);
898		return IXGBE_ERR_EEPROM;
899	}
900
901	for (i = 0; i < words; i++) {
902		ixgbe_standby_eeprom(hw);
903
904		/* Send the WRITE ENABLE command (8 bit opcode) */
905		ixgbe_shift_out_eeprom_bits(hw,
906					    IXGBE_EEPROM_WREN_OPCODE_SPI,
907					    IXGBE_EEPROM_OPCODE_BITS);
908
909		ixgbe_standby_eeprom(hw);
910
911		/* Some SPI eeproms use the 8th address bit embedded
912		 * in the opcode
913		 */
914		if ((hw->eeprom.address_bits == 8) &&
915		    ((offset + i) >= 128))
916			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
917
918		/* Send the Write command (8-bit opcode + addr) */
919		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
920					    IXGBE_EEPROM_OPCODE_BITS);
921		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
922					    hw->eeprom.address_bits);
923
924		page_size = hw->eeprom.word_page_size;
925
926		/* Send the data in burst via SPI */
927		do {
928			word = data[i];
929			word = (word >> 8) | (word << 8);
930			ixgbe_shift_out_eeprom_bits(hw, word, 16);
931
932			if (page_size == 0)
933				break;
934
935			/* do not wrap around page */
936			if (((offset + i) & (page_size - 1)) ==
937			    (page_size - 1))
938				break;
939		} while (++i < words);
940
941		ixgbe_standby_eeprom(hw);
942		usleep_range(10000, 20000);
943	}
944	/* Done with writing - release the EEPROM */
945	ixgbe_release_eeprom(hw);
946
947	return 0;
948}
949
950/**
951 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
952 *  @hw: pointer to hardware structure
953 *  @offset: offset within the EEPROM to be written to
954 *  @data: 16 bit word to be written to the EEPROM
955 *
956 *  If ixgbe_eeprom_update_checksum is not called after this function, the
957 *  EEPROM will most likely contain an invalid checksum.
958 **/
959s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
960{
961	hw->eeprom.ops.init_params(hw);
962
963	if (offset >= hw->eeprom.word_size)
964		return IXGBE_ERR_EEPROM;
965
966	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
967}
968
969/**
970 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
971 *  @hw: pointer to hardware structure
972 *  @offset: offset within the EEPROM to be read
973 *  @words: number of word(s)
974 *  @data: read 16 bit words(s) from EEPROM
975 *
976 *  Reads 16 bit word(s) from EEPROM through bit-bang method
977 **/
978s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
979					      u16 words, u16 *data)
980{
981	s32 status;
982	u16 i, count;
983
984	hw->eeprom.ops.init_params(hw);
985
986	if (words == 0)
987		return IXGBE_ERR_INVALID_ARGUMENT;
988
989	if (offset + words > hw->eeprom.word_size)
990		return IXGBE_ERR_EEPROM;
991
992	/*
993	 * We cannot hold synchronization semaphores for too long
994	 * to avoid other entity starvation. However it is more efficient
995	 * to read in bursts than synchronizing access for each word.
996	 */
997	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
998		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
999			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1000
1001		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1002							   count, &data[i]);
1003
1004		if (status)
1005			return status;
1006	}
1007
1008	return 0;
1009}
1010
1011/**
1012 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1013 *  @hw: pointer to hardware structure
1014 *  @offset: offset within the EEPROM to be read
1015 *  @words: number of word(s)
1016 *  @data: read 16 bit word(s) from EEPROM
1017 *
1018 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1019 **/
1020static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1021					     u16 words, u16 *data)
1022{
1023	s32 status;
1024	u16 word_in;
1025	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1026	u16 i;
1027
1028	/* Prepare the EEPROM for reading  */
1029	status = ixgbe_acquire_eeprom(hw);
1030	if (status)
1031		return status;
1032
1033	if (ixgbe_ready_eeprom(hw) != 0) {
1034		ixgbe_release_eeprom(hw);
1035		return IXGBE_ERR_EEPROM;
1036	}
1037
1038	for (i = 0; i < words; i++) {
1039		ixgbe_standby_eeprom(hw);
1040		/* Some SPI eeproms use the 8th address bit embedded
1041		 * in the opcode
1042		 */
1043		if ((hw->eeprom.address_bits == 8) &&
1044		    ((offset + i) >= 128))
1045			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1046
1047		/* Send the READ command (opcode + addr) */
1048		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1049					    IXGBE_EEPROM_OPCODE_BITS);
1050		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1051					    hw->eeprom.address_bits);
1052
1053		/* Read the data. */
1054		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1055		data[i] = (word_in >> 8) | (word_in << 8);
1056	}
1057
1058	/* End this read operation */
1059	ixgbe_release_eeprom(hw);
1060
1061	return 0;
1062}
1063
1064/**
1065 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1066 *  @hw: pointer to hardware structure
1067 *  @offset: offset within the EEPROM to be read
1068 *  @data: read 16 bit value from EEPROM
1069 *
1070 *  Reads 16 bit value from EEPROM through bit-bang method
1071 **/
1072s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1073				       u16 *data)
1074{
1075	hw->eeprom.ops.init_params(hw);
1076
1077	if (offset >= hw->eeprom.word_size)
1078		return IXGBE_ERR_EEPROM;
1079
1080	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1081}
1082
1083/**
1084 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1085 *  @hw: pointer to hardware structure
1086 *  @offset: offset of word in the EEPROM to read
1087 *  @words: number of word(s)
1088 *  @data: 16 bit word(s) from the EEPROM
1089 *
1090 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1091 **/
1092s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1093				   u16 words, u16 *data)
1094{
1095	u32 eerd;
1096	s32 status;
1097	u32 i;
1098
1099	hw->eeprom.ops.init_params(hw);
1100
1101	if (words == 0)
1102		return IXGBE_ERR_INVALID_ARGUMENT;
1103
1104	if (offset >= hw->eeprom.word_size)
1105		return IXGBE_ERR_EEPROM;
1106
1107	for (i = 0; i < words; i++) {
1108		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1109		       IXGBE_EEPROM_RW_REG_START;
1110
1111		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1112		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1113
1114		if (status == 0) {
1115			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1116				   IXGBE_EEPROM_RW_REG_DATA);
1117		} else {
1118			hw_dbg(hw, "Eeprom read timed out\n");
1119			return status;
1120		}
1121	}
1122
1123	return 0;
1124}
1125
1126/**
1127 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1128 *  @hw: pointer to hardware structure
1129 *  @offset: offset within the EEPROM to be used as a scratch pad
1130 *
1131 *  Discover EEPROM page size by writing marching data at given offset.
1132 *  This function is called only when we are writing a new large buffer
1133 *  at given offset so the data would be overwritten anyway.
1134 **/
1135static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1136						 u16 offset)
1137{
1138	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1139	s32 status;
1140	u16 i;
1141
1142	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1143		data[i] = i;
1144
1145	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1146	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1147					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1148	hw->eeprom.word_page_size = 0;
1149	if (status)
1150		return status;
1151
1152	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1153	if (status)
1154		return status;
1155
1156	/*
1157	 * When writing in burst more than the actual page size
1158	 * EEPROM address wraps around current page.
1159	 */
1160	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1161
1162	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1163	       hw->eeprom.word_page_size);
1164	return 0;
1165}
1166
1167/**
1168 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1169 *  @hw: pointer to hardware structure
1170 *  @offset: offset of  word in the EEPROM to read
1171 *  @data: word read from the EEPROM
1172 *
1173 *  Reads a 16 bit word from the EEPROM using the EERD register.
1174 **/
1175s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1176{
1177	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1178}
1179
1180/**
1181 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1182 *  @hw: pointer to hardware structure
1183 *  @offset: offset of  word in the EEPROM to write
1184 *  @words: number of words
1185 *  @data: word(s) write to the EEPROM
1186 *
1187 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1188 **/
1189s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1190				    u16 words, u16 *data)
1191{
1192	u32 eewr;
1193	s32 status;
1194	u16 i;
1195
1196	hw->eeprom.ops.init_params(hw);
1197
1198	if (words == 0)
1199		return IXGBE_ERR_INVALID_ARGUMENT;
1200
1201	if (offset >= hw->eeprom.word_size)
1202		return IXGBE_ERR_EEPROM;
1203
1204	for (i = 0; i < words; i++) {
1205		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1206		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1207		       IXGBE_EEPROM_RW_REG_START;
1208
1209		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1210		if (status) {
1211			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1212			return status;
1213		}
1214
1215		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1216
1217		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1218		if (status) {
1219			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1220			return status;
1221		}
1222	}
1223
1224	return 0;
1225}
1226
1227/**
1228 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1229 *  @hw: pointer to hardware structure
1230 *  @offset: offset of  word in the EEPROM to write
1231 *  @data: word write to the EEPROM
1232 *
1233 *  Write a 16 bit word to the EEPROM using the EEWR register.
1234 **/
1235s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1236{
1237	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1238}
1239
1240/**
1241 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1242 *  @hw: pointer to hardware structure
1243 *  @ee_reg: EEPROM flag for polling
1244 *
1245 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1246 *  read or write is done respectively.
1247 **/
1248static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1249{
1250	u32 i;
1251	u32 reg;
1252
1253	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1254		if (ee_reg == IXGBE_NVM_POLL_READ)
1255			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1256		else
1257			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1258
1259		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1260			return 0;
1261		}
1262		udelay(5);
1263	}
1264	return IXGBE_ERR_EEPROM;
1265}
1266
1267/**
1268 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1269 *  @hw: pointer to hardware structure
1270 *
1271 *  Prepares EEPROM for access using bit-bang method. This function should
1272 *  be called before issuing a command to the EEPROM.
1273 **/
1274static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1275{
1276	u32 eec;
1277	u32 i;
1278
1279	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1280		return IXGBE_ERR_SWFW_SYNC;
1281
1282	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1283
1284	/* Request EEPROM Access */
1285	eec |= IXGBE_EEC_REQ;
1286	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1287
1288	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1289		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1290		if (eec & IXGBE_EEC_GNT)
1291			break;
1292		udelay(5);
1293	}
1294
1295	/* Release if grant not acquired */
1296	if (!(eec & IXGBE_EEC_GNT)) {
1297		eec &= ~IXGBE_EEC_REQ;
1298		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1299		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1300
1301		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1302		return IXGBE_ERR_EEPROM;
1303	}
1304
1305	/* Setup EEPROM for Read/Write */
1306	/* Clear CS and SK */
1307	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1308	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1309	IXGBE_WRITE_FLUSH(hw);
1310	udelay(1);
1311	return 0;
1312}
1313
1314/**
1315 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1316 *  @hw: pointer to hardware structure
1317 *
1318 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1319 **/
1320static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1321{
1322	u32 timeout = 2000;
1323	u32 i;
1324	u32 swsm;
1325
1326	/* Get SMBI software semaphore between device drivers first */
1327	for (i = 0; i < timeout; i++) {
1328		/*
1329		 * If the SMBI bit is 0 when we read it, then the bit will be
1330		 * set and we have the semaphore
1331		 */
1332		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1333		if (!(swsm & IXGBE_SWSM_SMBI))
1334			break;
1335		usleep_range(50, 100);
1336	}
1337
1338	if (i == timeout) {
1339		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1340		/* this release is particularly important because our attempts
1341		 * above to get the semaphore may have succeeded, and if there
1342		 * was a timeout, we should unconditionally clear the semaphore
1343		 * bits to free the driver to make progress
1344		 */
1345		ixgbe_release_eeprom_semaphore(hw);
1346
1347		usleep_range(50, 100);
1348		/* one last try
1349		 * If the SMBI bit is 0 when we read it, then the bit will be
1350		 * set and we have the semaphore
1351		 */
1352		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1353		if (swsm & IXGBE_SWSM_SMBI) {
1354			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1355			return IXGBE_ERR_EEPROM;
1356		}
1357	}
1358
1359	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1360	for (i = 0; i < timeout; i++) {
1361		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1362
1363		/* Set the SW EEPROM semaphore bit to request access */
1364		swsm |= IXGBE_SWSM_SWESMBI;
1365		IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1366
1367		/* If we set the bit successfully then we got the
1368		 * semaphore.
1369		 */
1370		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1371		if (swsm & IXGBE_SWSM_SWESMBI)
1372			break;
1373
1374		usleep_range(50, 100);
1375	}
1376
1377	/* Release semaphores and return error if SW EEPROM semaphore
1378	 * was not granted because we don't have access to the EEPROM
1379	 */
1380	if (i >= timeout) {
1381		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1382		ixgbe_release_eeprom_semaphore(hw);
1383		return IXGBE_ERR_EEPROM;
1384	}
1385
1386	return 0;
1387}
1388
1389/**
1390 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1391 *  @hw: pointer to hardware structure
1392 *
1393 *  This function clears hardware semaphore bits.
1394 **/
1395static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1396{
1397	u32 swsm;
1398
1399	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1400
1401	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1402	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1403	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1404	IXGBE_WRITE_FLUSH(hw);
1405}
1406
1407/**
1408 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1409 *  @hw: pointer to hardware structure
1410 **/
1411static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1412{
1413	u16 i;
1414	u8 spi_stat_reg;
1415
1416	/*
1417	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1418	 * EEPROM will signal that the command has been completed by clearing
1419	 * bit 0 of the internal status register.  If it's not cleared within
1420	 * 5 milliseconds, then error out.
1421	 */
1422	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1423		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1424					    IXGBE_EEPROM_OPCODE_BITS);
1425		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1426		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1427			break;
1428
1429		udelay(5);
1430		ixgbe_standby_eeprom(hw);
1431	}
1432
1433	/*
1434	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1435	 * devices (and only 0-5mSec on 5V devices)
1436	 */
1437	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1438		hw_dbg(hw, "SPI EEPROM Status error\n");
1439		return IXGBE_ERR_EEPROM;
1440	}
1441
1442	return 0;
1443}
1444
1445/**
1446 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1447 *  @hw: pointer to hardware structure
1448 **/
1449static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1450{
1451	u32 eec;
1452
1453	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1454
1455	/* Toggle CS to flush commands */
1456	eec |= IXGBE_EEC_CS;
1457	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1458	IXGBE_WRITE_FLUSH(hw);
1459	udelay(1);
1460	eec &= ~IXGBE_EEC_CS;
1461	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1462	IXGBE_WRITE_FLUSH(hw);
1463	udelay(1);
1464}
1465
1466/**
1467 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1468 *  @hw: pointer to hardware structure
1469 *  @data: data to send to the EEPROM
1470 *  @count: number of bits to shift out
1471 **/
1472static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1473					u16 count)
1474{
1475	u32 eec;
1476	u32 mask;
1477	u32 i;
1478
1479	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1480
1481	/*
1482	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1483	 * one bit at a time.  Determine the starting bit based on count
1484	 */
1485	mask = 0x01 << (count - 1);
1486
1487	for (i = 0; i < count; i++) {
1488		/*
1489		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1490		 * "1", and then raising and then lowering the clock (the SK
1491		 * bit controls the clock input to the EEPROM).  A "0" is
1492		 * shifted out to the EEPROM by setting "DI" to "0" and then
1493		 * raising and then lowering the clock.
1494		 */
1495		if (data & mask)
1496			eec |= IXGBE_EEC_DI;
1497		else
1498			eec &= ~IXGBE_EEC_DI;
1499
1500		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1501		IXGBE_WRITE_FLUSH(hw);
1502
1503		udelay(1);
1504
1505		ixgbe_raise_eeprom_clk(hw, &eec);
1506		ixgbe_lower_eeprom_clk(hw, &eec);
1507
1508		/*
1509		 * Shift mask to signify next bit of data to shift in to the
1510		 * EEPROM
1511		 */
1512		mask = mask >> 1;
1513	}
1514
1515	/* We leave the "DI" bit set to "0" when we leave this routine. */
1516	eec &= ~IXGBE_EEC_DI;
1517	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1518	IXGBE_WRITE_FLUSH(hw);
1519}
1520
1521/**
1522 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1523 *  @hw: pointer to hardware structure
1524 **/
1525static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1526{
1527	u32 eec;
1528	u32 i;
1529	u16 data = 0;
1530
1531	/*
1532	 * In order to read a register from the EEPROM, we need to shift
1533	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1534	 * the clock input to the EEPROM (setting the SK bit), and then reading
1535	 * the value of the "DO" bit.  During this "shifting in" process the
1536	 * "DI" bit should always be clear.
1537	 */
1538	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1539
1540	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1541
1542	for (i = 0; i < count; i++) {
1543		data = data << 1;
1544		ixgbe_raise_eeprom_clk(hw, &eec);
1545
1546		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1547
1548		eec &= ~(IXGBE_EEC_DI);
1549		if (eec & IXGBE_EEC_DO)
1550			data |= 1;
1551
1552		ixgbe_lower_eeprom_clk(hw, &eec);
1553	}
1554
1555	return data;
1556}
1557
1558/**
1559 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1560 *  @hw: pointer to hardware structure
1561 *  @eec: EEC register's current value
1562 **/
1563static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1564{
1565	/*
1566	 * Raise the clock input to the EEPROM
1567	 * (setting the SK bit), then delay
1568	 */
1569	*eec = *eec | IXGBE_EEC_SK;
1570	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1571	IXGBE_WRITE_FLUSH(hw);
1572	udelay(1);
1573}
1574
1575/**
1576 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1577 *  @hw: pointer to hardware structure
1578 *  @eecd: EECD's current value
1579 **/
1580static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1581{
1582	/*
1583	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1584	 * delay
1585	 */
1586	*eec = *eec & ~IXGBE_EEC_SK;
1587	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1588	IXGBE_WRITE_FLUSH(hw);
1589	udelay(1);
1590}
1591
1592/**
1593 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1594 *  @hw: pointer to hardware structure
1595 **/
1596static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1597{
1598	u32 eec;
1599
1600	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601
1602	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1603	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1604
1605	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1606	IXGBE_WRITE_FLUSH(hw);
1607
1608	udelay(1);
1609
1610	/* Stop requesting EEPROM access */
1611	eec &= ~IXGBE_EEC_REQ;
1612	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1613
1614	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1615
1616	/*
1617	 * Delay before attempt to obtain semaphore again to allow FW
1618	 * access. semaphore_delay is in ms we need us for usleep_range
1619	 */
1620	usleep_range(hw->eeprom.semaphore_delay * 1000,
1621		     hw->eeprom.semaphore_delay * 2000);
1622}
1623
1624/**
1625 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1626 *  @hw: pointer to hardware structure
1627 **/
1628u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1629{
1630	u16 i;
1631	u16 j;
1632	u16 checksum = 0;
1633	u16 length = 0;
1634	u16 pointer = 0;
1635	u16 word = 0;
1636
1637	/* Include 0x0-0x3F in the checksum */
1638	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1639		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1640			hw_dbg(hw, "EEPROM read failed\n");
1641			break;
1642		}
1643		checksum += word;
1644	}
1645
1646	/* Include all data from pointers except for the fw pointer */
1647	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1648		hw->eeprom.ops.read(hw, i, &pointer);
1649
1650		/* Make sure the pointer seems valid */
1651		if (pointer != 0xFFFF && pointer != 0) {
1652			hw->eeprom.ops.read(hw, pointer, &length);
1653
1654			if (length != 0xFFFF && length != 0) {
1655				for (j = pointer+1; j <= pointer+length; j++) {
1656					hw->eeprom.ops.read(hw, j, &word);
1657					checksum += word;
1658				}
1659			}
1660		}
1661	}
1662
1663	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1664
1665	return checksum;
1666}
1667
1668/**
1669 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1670 *  @hw: pointer to hardware structure
1671 *  @checksum_val: calculated checksum
1672 *
1673 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1674 *  caller does not need checksum_val, the value can be NULL.
1675 **/
1676s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1677					   u16 *checksum_val)
1678{
1679	s32 status;
1680	u16 checksum;
1681	u16 read_checksum = 0;
1682
1683	/*
1684	 * Read the first word from the EEPROM. If this times out or fails, do
1685	 * not continue or we could be in for a very long wait while every
1686	 * EEPROM read fails
1687	 */
1688	status = hw->eeprom.ops.read(hw, 0, &checksum);
1689
1690	if (status == 0) {
1691		checksum = hw->eeprom.ops.calc_checksum(hw);
1692
1693		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1694
1695		/*
1696		 * Verify read checksum from EEPROM is the same as
1697		 * calculated checksum
1698		 */
1699		if (read_checksum != checksum)
1700			status = IXGBE_ERR_EEPROM_CHECKSUM;
1701
1702		/* If the user cares, return the calculated checksum */
1703		if (checksum_val)
1704			*checksum_val = checksum;
1705	} else {
1706		hw_dbg(hw, "EEPROM read failed\n");
1707	}
1708
1709	return status;
1710}
1711
1712/**
1713 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1714 *  @hw: pointer to hardware structure
1715 **/
1716s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1717{
1718	s32 status;
1719	u16 checksum;
1720
1721	/*
1722	 * Read the first word from the EEPROM. If this times out or fails, do
1723	 * not continue or we could be in for a very long wait while every
1724	 * EEPROM read fails
1725	 */
1726	status = hw->eeprom.ops.read(hw, 0, &checksum);
1727
1728	if (status == 0) {
1729		checksum = hw->eeprom.ops.calc_checksum(hw);
1730		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1731					      checksum);
1732	} else {
1733		hw_dbg(hw, "EEPROM read failed\n");
1734	}
1735
1736	return status;
1737}
1738
1739/**
1740 *  ixgbe_set_rar_generic - Set Rx address register
1741 *  @hw: pointer to hardware structure
1742 *  @index: Receive address register to write
1743 *  @addr: Address to put into receive address register
1744 *  @vmdq: VMDq "set" or "pool" index
1745 *  @enable_addr: set flag that address is active
1746 *
1747 *  Puts an ethernet address into a receive address register.
1748 **/
1749s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1750			  u32 enable_addr)
1751{
1752	u32 rar_low, rar_high;
1753	u32 rar_entries = hw->mac.num_rar_entries;
1754
1755	/* Make sure we are using a valid rar index range */
1756	if (index >= rar_entries) {
1757		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1758		return IXGBE_ERR_INVALID_ARGUMENT;
1759	}
1760
1761	/* setup VMDq pool selection before this RAR gets enabled */
1762	hw->mac.ops.set_vmdq(hw, index, vmdq);
1763
1764	/*
1765	 * HW expects these in little endian so we reverse the byte
1766	 * order from network order (big endian) to little endian
1767	 */
1768	rar_low = ((u32)addr[0] |
1769		   ((u32)addr[1] << 8) |
1770		   ((u32)addr[2] << 16) |
1771		   ((u32)addr[3] << 24));
1772	/*
1773	 * Some parts put the VMDq setting in the extra RAH bits,
1774	 * so save everything except the lower 16 bits that hold part
1775	 * of the address and the address valid bit.
1776	 */
1777	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1778	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1779	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1780
1781	if (enable_addr != 0)
1782		rar_high |= IXGBE_RAH_AV;
1783
1784	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1785	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1786
1787	return 0;
1788}
1789
1790/**
1791 *  ixgbe_clear_rar_generic - Remove Rx address register
1792 *  @hw: pointer to hardware structure
1793 *  @index: Receive address register to write
1794 *
1795 *  Clears an ethernet address from a receive address register.
1796 **/
1797s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1798{
1799	u32 rar_high;
1800	u32 rar_entries = hw->mac.num_rar_entries;
1801
1802	/* Make sure we are using a valid rar index range */
1803	if (index >= rar_entries) {
1804		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1805		return IXGBE_ERR_INVALID_ARGUMENT;
1806	}
1807
1808	/*
1809	 * Some parts put the VMDq setting in the extra RAH bits,
1810	 * so save everything except the lower 16 bits that hold part
1811	 * of the address and the address valid bit.
1812	 */
1813	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1814	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1815
1816	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1817	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1818
1819	/* clear VMDq pool/queue selection for this RAR */
1820	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1821
1822	return 0;
1823}
1824
1825/**
1826 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1827 *  @hw: pointer to hardware structure
1828 *
1829 *  Places the MAC address in receive address register 0 and clears the rest
1830 *  of the receive address registers. Clears the multicast table. Assumes
1831 *  the receiver is in reset when the routine is called.
1832 **/
1833s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1834{
1835	u32 i;
1836	u32 rar_entries = hw->mac.num_rar_entries;
1837
1838	/*
1839	 * If the current mac address is valid, assume it is a software override
1840	 * to the permanent address.
1841	 * Otherwise, use the permanent address from the eeprom.
1842	 */
1843	if (!is_valid_ether_addr(hw->mac.addr)) {
1844		/* Get the MAC address from the RAR0 for later reference */
1845		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1846
1847		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1848	} else {
1849		/* Setup the receive address. */
1850		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1851		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1852
1853		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1854
1855		/*  clear VMDq pool/queue selection for RAR 0 */
1856		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1857	}
1858	hw->addr_ctrl.overflow_promisc = 0;
1859
1860	hw->addr_ctrl.rar_used_count = 1;
1861
1862	/* Zero out the other receive addresses. */
1863	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1864	for (i = 1; i < rar_entries; i++) {
1865		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1866		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1867	}
1868
1869	/* Clear the MTA */
1870	hw->addr_ctrl.mta_in_use = 0;
1871	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1872
1873	hw_dbg(hw, " Clearing MTA\n");
1874	for (i = 0; i < hw->mac.mcft_size; i++)
1875		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1876
1877	if (hw->mac.ops.init_uta_tables)
1878		hw->mac.ops.init_uta_tables(hw);
1879
1880	return 0;
1881}
1882
1883/**
1884 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1885 *  @hw: pointer to hardware structure
1886 *  @mc_addr: the multicast address
1887 *
1888 *  Extracts the 12 bits, from a multicast address, to determine which
1889 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1890 *  incoming rx multicast addresses, to determine the bit-vector to check in
1891 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1892 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1893 *  to mc_filter_type.
1894 **/
1895static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1896{
1897	u32 vector = 0;
1898
1899	switch (hw->mac.mc_filter_type) {
1900	case 0:   /* use bits [47:36] of the address */
1901		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1902		break;
1903	case 1:   /* use bits [46:35] of the address */
1904		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1905		break;
1906	case 2:   /* use bits [45:34] of the address */
1907		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1908		break;
1909	case 3:   /* use bits [43:32] of the address */
1910		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1911		break;
1912	default:  /* Invalid mc_filter_type */
1913		hw_dbg(hw, "MC filter type param set incorrectly\n");
1914		break;
1915	}
1916
1917	/* vector can only be 12-bits or boundary will be exceeded */
1918	vector &= 0xFFF;
1919	return vector;
1920}
1921
1922/**
1923 *  ixgbe_set_mta - Set bit-vector in multicast table
1924 *  @hw: pointer to hardware structure
1925 *  @hash_value: Multicast address hash value
1926 *
1927 *  Sets the bit-vector in the multicast table.
1928 **/
1929static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1930{
1931	u32 vector;
1932	u32 vector_bit;
1933	u32 vector_reg;
1934
1935	hw->addr_ctrl.mta_in_use++;
1936
1937	vector = ixgbe_mta_vector(hw, mc_addr);
1938	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1939
1940	/*
1941	 * The MTA is a register array of 128 32-bit registers. It is treated
1942	 * like an array of 4096 bits.  We want to set bit
1943	 * BitArray[vector_value]. So we figure out what register the bit is
1944	 * in, read it, OR in the new bit, then write back the new value.  The
1945	 * register is determined by the upper 7 bits of the vector value and
1946	 * the bit within that register are determined by the lower 5 bits of
1947	 * the value.
1948	 */
1949	vector_reg = (vector >> 5) & 0x7F;
1950	vector_bit = vector & 0x1F;
1951	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1952}
1953
1954/**
1955 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1956 *  @hw: pointer to hardware structure
1957 *  @netdev: pointer to net device structure
1958 *
1959 *  The given list replaces any existing list. Clears the MC addrs from receive
1960 *  address registers and the multicast table. Uses unused receive address
1961 *  registers for the first multicast addresses, and hashes the rest into the
1962 *  multicast table.
1963 **/
1964s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1965				      struct net_device *netdev)
1966{
1967	struct netdev_hw_addr *ha;
1968	u32 i;
1969
1970	/*
1971	 * Set the new number of MC addresses that we are being requested to
1972	 * use.
1973	 */
1974	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1975	hw->addr_ctrl.mta_in_use = 0;
1976
1977	/* Clear mta_shadow */
1978	hw_dbg(hw, " Clearing MTA\n");
1979	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1980
1981	/* Update mta shadow */
1982	netdev_for_each_mc_addr(ha, netdev) {
1983		hw_dbg(hw, " Adding the multicast addresses:\n");
1984		ixgbe_set_mta(hw, ha->addr);
1985	}
1986
1987	/* Enable mta */
1988	for (i = 0; i < hw->mac.mcft_size; i++)
1989		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1990				      hw->mac.mta_shadow[i]);
1991
1992	if (hw->addr_ctrl.mta_in_use > 0)
1993		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1994				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1995
1996	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1997	return 0;
1998}
1999
2000/**
2001 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2002 *  @hw: pointer to hardware structure
2003 *
2004 *  Enables multicast address in RAR and the use of the multicast hash table.
2005 **/
2006s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2007{
2008	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2009
2010	if (a->mta_in_use > 0)
2011		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2012				hw->mac.mc_filter_type);
2013
2014	return 0;
2015}
2016
2017/**
2018 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2019 *  @hw: pointer to hardware structure
2020 *
2021 *  Disables multicast address in RAR and the use of the multicast hash table.
2022 **/
2023s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2024{
2025	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2026
2027	if (a->mta_in_use > 0)
2028		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2029
2030	return 0;
2031}
2032
2033/**
2034 *  ixgbe_fc_enable_generic - Enable flow control
2035 *  @hw: pointer to hardware structure
2036 *
2037 *  Enable flow control according to the current settings.
2038 **/
2039s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2040{
2041	u32 mflcn_reg, fccfg_reg;
2042	u32 reg;
2043	u32 fcrtl, fcrth;
2044	int i;
2045
2046	/* Validate the water mark configuration. */
2047	if (!hw->fc.pause_time)
2048		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2049
2050	/* Low water mark of zero causes XOFF floods */
2051	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2052		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2053		    hw->fc.high_water[i]) {
2054			if (!hw->fc.low_water[i] ||
2055			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2056				hw_dbg(hw, "Invalid water mark configuration\n");
2057				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2058			}
2059		}
2060	}
2061
2062	/* Negotiate the fc mode to use */
2063	ixgbe_fc_autoneg(hw);
2064
2065	/* Disable any previous flow control settings */
2066	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2067	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2068
2069	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2070	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2071
2072	/*
2073	 * The possible values of fc.current_mode are:
2074	 * 0: Flow control is completely disabled
2075	 * 1: Rx flow control is enabled (we can receive pause frames,
2076	 *    but not send pause frames).
2077	 * 2: Tx flow control is enabled (we can send pause frames but
2078	 *    we do not support receiving pause frames).
2079	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2080	 * other: Invalid.
2081	 */
2082	switch (hw->fc.current_mode) {
2083	case ixgbe_fc_none:
2084		/*
2085		 * Flow control is disabled by software override or autoneg.
2086		 * The code below will actually disable it in the HW.
2087		 */
2088		break;
2089	case ixgbe_fc_rx_pause:
2090		/*
2091		 * Rx Flow control is enabled and Tx Flow control is
2092		 * disabled by software override. Since there really
2093		 * isn't a way to advertise that we are capable of RX
2094		 * Pause ONLY, we will advertise that we support both
2095		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2096		 * disable the adapter's ability to send PAUSE frames.
2097		 */
2098		mflcn_reg |= IXGBE_MFLCN_RFCE;
2099		break;
2100	case ixgbe_fc_tx_pause:
2101		/*
2102		 * Tx Flow control is enabled, and Rx Flow control is
2103		 * disabled by software override.
2104		 */
2105		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2106		break;
2107	case ixgbe_fc_full:
2108		/* Flow control (both Rx and Tx) is enabled by SW override. */
2109		mflcn_reg |= IXGBE_MFLCN_RFCE;
2110		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2111		break;
2112	default:
2113		hw_dbg(hw, "Flow control param set incorrectly\n");
2114		return IXGBE_ERR_CONFIG;
2115	}
2116
2117	/* Set 802.3x based flow control settings. */
2118	mflcn_reg |= IXGBE_MFLCN_DPF;
2119	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2120	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2121
2122	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2123	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2124		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2125		    hw->fc.high_water[i]) {
2126			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2127			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2128			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2129		} else {
2130			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2131			/*
2132			 * In order to prevent Tx hangs when the internal Tx
2133			 * switch is enabled we must set the high water mark
2134			 * to the maximum FCRTH value.  This allows the Tx
2135			 * switch to function even under heavy Rx workloads.
2136			 */
2137			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2138		}
2139
2140		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2141	}
2142
2143	/* Configure pause time (2 TCs per register) */
2144	reg = hw->fc.pause_time * 0x00010001;
2145	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2146		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2147
2148	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2149
2150	return 0;
2151}
2152
2153/**
2154 *  ixgbe_negotiate_fc - Negotiate flow control
2155 *  @hw: pointer to hardware structure
2156 *  @adv_reg: flow control advertised settings
2157 *  @lp_reg: link partner's flow control settings
2158 *  @adv_sym: symmetric pause bit in advertisement
2159 *  @adv_asm: asymmetric pause bit in advertisement
2160 *  @lp_sym: symmetric pause bit in link partner advertisement
2161 *  @lp_asm: asymmetric pause bit in link partner advertisement
2162 *
2163 *  Find the intersection between advertised settings and link partner's
2164 *  advertised settings
2165 **/
2166static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2167			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2168{
2169	if ((!(adv_reg)) ||  (!(lp_reg)))
2170		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2171
2172	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2173		/*
2174		 * Now we need to check if the user selected Rx ONLY
2175		 * of pause frames.  In this case, we had to advertise
2176		 * FULL flow control because we could not advertise RX
2177		 * ONLY. Hence, we must now check to see if we need to
2178		 * turn OFF the TRANSMISSION of PAUSE frames.
2179		 */
2180		if (hw->fc.requested_mode == ixgbe_fc_full) {
2181			hw->fc.current_mode = ixgbe_fc_full;
2182			hw_dbg(hw, "Flow Control = FULL.\n");
2183		} else {
2184			hw->fc.current_mode = ixgbe_fc_rx_pause;
2185			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2186		}
2187	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2188		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2189		hw->fc.current_mode = ixgbe_fc_tx_pause;
2190		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2191	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2192		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2193		hw->fc.current_mode = ixgbe_fc_rx_pause;
2194		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2195	} else {
2196		hw->fc.current_mode = ixgbe_fc_none;
2197		hw_dbg(hw, "Flow Control = NONE.\n");
2198	}
2199	return 0;
2200}
2201
2202/**
2203 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2204 *  @hw: pointer to hardware structure
2205 *
2206 *  Enable flow control according on 1 gig fiber.
2207 **/
2208static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2209{
2210	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2211	s32 ret_val;
2212
2213	/*
2214	 * On multispeed fiber at 1g, bail out if
2215	 * - link is up but AN did not complete, or if
2216	 * - link is up and AN completed but timed out
2217	 */
2218
2219	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2220	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2221	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2222		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2223
2224	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2225	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2226
2227	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2228			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2229			       IXGBE_PCS1GANA_ASM_PAUSE,
2230			       IXGBE_PCS1GANA_SYM_PAUSE,
2231			       IXGBE_PCS1GANA_ASM_PAUSE);
2232
2233	return ret_val;
2234}
2235
2236/**
2237 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2238 *  @hw: pointer to hardware structure
2239 *
2240 *  Enable flow control according to IEEE clause 37.
2241 **/
2242static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2243{
2244	u32 links2, anlp1_reg, autoc_reg, links;
2245	s32 ret_val;
2246
2247	/*
2248	 * On backplane, bail out if
2249	 * - backplane autoneg was not completed, or if
2250	 * - we are 82599 and link partner is not AN enabled
2251	 */
2252	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2253	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2254		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2255
2256	if (hw->mac.type == ixgbe_mac_82599EB) {
2257		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2258		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2259			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2260	}
2261	/*
2262	 * Read the 10g AN autoc and LP ability registers and resolve
2263	 * local flow control settings accordingly
2264	 */
2265	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2266	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2267
2268	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2269		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2270		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2271
2272	return ret_val;
2273}
2274
2275/**
2276 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2277 *  @hw: pointer to hardware structure
2278 *
2279 *  Enable flow control according to IEEE clause 37.
2280 **/
2281static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2282{
2283	u16 technology_ability_reg = 0;
2284	u16 lp_technology_ability_reg = 0;
2285
2286	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2287			     MDIO_MMD_AN,
2288			     &technology_ability_reg);
2289	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2290			     MDIO_MMD_AN,
2291			     &lp_technology_ability_reg);
2292
2293	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2294				  (u32)lp_technology_ability_reg,
2295				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2296				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2297}
2298
2299/**
2300 *  ixgbe_fc_autoneg - Configure flow control
2301 *  @hw: pointer to hardware structure
2302 *
2303 *  Compares our advertised flow control capabilities to those advertised by
2304 *  our link partner, and determines the proper flow control mode to use.
2305 **/
2306void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2307{
2308	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2309	ixgbe_link_speed speed;
2310	bool link_up;
2311
2312	/*
2313	 * AN should have completed when the cable was plugged in.
2314	 * Look for reasons to bail out.  Bail out if:
2315	 * - FC autoneg is disabled, or if
2316	 * - link is not up.
2317	 *
2318	 * Since we're being called from an LSC, link is already known to be up.
2319	 * So use link_up_wait_to_complete=false.
2320	 */
2321	if (hw->fc.disable_fc_autoneg)
2322		goto out;
2323
2324	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2325	if (!link_up)
2326		goto out;
2327
2328	switch (hw->phy.media_type) {
2329	/* Autoneg flow control on fiber adapters */
2330	case ixgbe_media_type_fiber:
2331		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2332			ret_val = ixgbe_fc_autoneg_fiber(hw);
2333		break;
2334
2335	/* Autoneg flow control on backplane adapters */
2336	case ixgbe_media_type_backplane:
2337		ret_val = ixgbe_fc_autoneg_backplane(hw);
2338		break;
2339
2340	/* Autoneg flow control on copper adapters */
2341	case ixgbe_media_type_copper:
2342		if (ixgbe_device_supports_autoneg_fc(hw))
2343			ret_val = ixgbe_fc_autoneg_copper(hw);
2344		break;
2345
2346	default:
2347		break;
2348	}
2349
2350out:
2351	if (ret_val == 0) {
2352		hw->fc.fc_was_autonegged = true;
2353	} else {
2354		hw->fc.fc_was_autonegged = false;
2355		hw->fc.current_mode = hw->fc.requested_mode;
2356	}
2357}
2358
2359/**
2360 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2361 * @hw: pointer to hardware structure
2362 *
2363 * System-wide timeout range is encoded in PCIe Device Control2 register.
2364 *
2365 *  Add 10% to specified maximum and return the number of times to poll for
2366 *  completion timeout, in units of 100 microsec.  Never return less than
2367 *  800 = 80 millisec.
2368 **/
2369static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2370{
2371	s16 devctl2;
2372	u32 pollcnt;
2373
2374	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2375	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2376
2377	switch (devctl2) {
2378	case IXGBE_PCIDEVCTRL2_65_130ms:
2379		 pollcnt = 1300;         /* 130 millisec */
2380		break;
2381	case IXGBE_PCIDEVCTRL2_260_520ms:
2382		pollcnt = 5200;         /* 520 millisec */
2383		break;
2384	case IXGBE_PCIDEVCTRL2_1_2s:
2385		pollcnt = 20000;        /* 2 sec */
2386		break;
2387	case IXGBE_PCIDEVCTRL2_4_8s:
2388		pollcnt = 80000;        /* 8 sec */
2389		break;
2390	case IXGBE_PCIDEVCTRL2_17_34s:
2391		pollcnt = 34000;        /* 34 sec */
2392		break;
2393	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2394	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2395	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2396	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2397	default:
2398		pollcnt = 800;          /* 80 millisec minimum */
2399		break;
2400	}
2401
2402	/* add 10% to spec maximum */
2403	return (pollcnt * 11) / 10;
2404}
2405
2406/**
2407 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2408 *  @hw: pointer to hardware structure
2409 *
2410 *  Disables PCI-Express master access and verifies there are no pending
2411 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2412 *  bit hasn't caused the master requests to be disabled, else 0
2413 *  is returned signifying master requests disabled.
2414 **/
2415static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2416{
2417	u32 i, poll;
2418	u16 value;
2419
2420	/* Always set this bit to ensure any future transactions are blocked */
2421	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2422
2423	/* Exit if master requests are blocked */
2424	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2425	    ixgbe_removed(hw->hw_addr))
2426		return 0;
2427
2428	/* Poll for master request bit to clear */
2429	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2430		udelay(100);
2431		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2432			return 0;
2433	}
2434
2435	/*
2436	 * Two consecutive resets are required via CTRL.RST per datasheet
2437	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2438	 * of this need.  The first reset prevents new master requests from
2439	 * being issued by our device.  We then must wait 1usec or more for any
2440	 * remaining completions from the PCIe bus to trickle in, and then reset
2441	 * again to clear out any effects they may have had on our device.
2442	 */
2443	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2444	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2445
2446	/*
2447	 * Before proceeding, make sure that the PCIe block does not have
2448	 * transactions pending.
2449	 */
2450	poll = ixgbe_pcie_timeout_poll(hw);
2451	for (i = 0; i < poll; i++) {
2452		udelay(100);
2453		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2454		if (ixgbe_removed(hw->hw_addr))
2455			return 0;
2456		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2457			return 0;
2458	}
2459
2460	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2461	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2462}
2463
2464/**
2465 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2466 *  @hw: pointer to hardware structure
2467 *  @mask: Mask to specify which semaphore to acquire
2468 *
2469 *  Acquires the SWFW semaphore through the GSSR register for the specified
2470 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2471 **/
2472s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2473{
2474	u32 gssr = 0;
2475	u32 swmask = mask;
2476	u32 fwmask = mask << 5;
2477	u32 timeout = 200;
2478	u32 i;
2479
2480	for (i = 0; i < timeout; i++) {
2481		/*
2482		 * SW NVM semaphore bit is used for access to all
2483		 * SW_FW_SYNC bits (not just NVM)
2484		 */
2485		if (ixgbe_get_eeprom_semaphore(hw))
2486			return IXGBE_ERR_SWFW_SYNC;
2487
2488		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2489		if (!(gssr & (fwmask | swmask))) {
2490			gssr |= swmask;
2491			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2492			ixgbe_release_eeprom_semaphore(hw);
2493			return 0;
2494		} else {
2495			/* Resource is currently in use by FW or SW */
2496			ixgbe_release_eeprom_semaphore(hw);
2497			usleep_range(5000, 10000);
2498		}
2499	}
2500
2501	/* If time expired clear the bits holding the lock and retry */
2502	if (gssr & (fwmask | swmask))
2503		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2504
2505	usleep_range(5000, 10000);
2506	return IXGBE_ERR_SWFW_SYNC;
2507}
2508
2509/**
2510 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2511 *  @hw: pointer to hardware structure
2512 *  @mask: Mask to specify which semaphore to release
2513 *
2514 *  Releases the SWFW semaphore through the GSSR register for the specified
2515 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2516 **/
2517void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2518{
2519	u32 gssr;
2520	u32 swmask = mask;
2521
2522	ixgbe_get_eeprom_semaphore(hw);
2523
2524	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2525	gssr &= ~swmask;
2526	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2527
2528	ixgbe_release_eeprom_semaphore(hw);
2529}
2530
2531/**
2532 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2533 * @hw: pointer to hardware structure
2534 * @reg_val: Value we read from AUTOC
2535 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2536 *	    true in this the generic case.
2537 *
2538 * The default case requires no protection so just to the register read.
2539 **/
2540s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2541{
2542	*locked = false;
2543	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2544	return 0;
2545}
2546
2547/**
2548 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2549 * @hw: pointer to hardware structure
2550 * @reg_val: value to write to AUTOC
2551 * @locked: bool to indicate whether the SW/FW lock was already taken by
2552 *	    previous read.
2553 **/
2554s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2555{
2556	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2557	return 0;
2558}
2559
2560/**
2561 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2562 *  @hw: pointer to hardware structure
2563 *
2564 *  Stops the receive data path and waits for the HW to internally
2565 *  empty the Rx security block.
2566 **/
2567s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2568{
2569#define IXGBE_MAX_SECRX_POLL 40
2570	int i;
2571	int secrxreg;
2572
2573	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2574	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2575	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2576	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2577		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2578		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2579			break;
2580		else
2581			/* Use interrupt-safe sleep just in case */
2582			udelay(1000);
2583	}
2584
2585	/* For informational purposes only */
2586	if (i >= IXGBE_MAX_SECRX_POLL)
2587		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2588
2589	return 0;
2590
2591}
2592
2593/**
2594 *  ixgbe_enable_rx_buff - Enables the receive data path
2595 *  @hw: pointer to hardware structure
2596 *
2597 *  Enables the receive data path
2598 **/
2599s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2600{
2601	int secrxreg;
2602
2603	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2604	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2605	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2606	IXGBE_WRITE_FLUSH(hw);
2607
2608	return 0;
2609}
2610
2611/**
2612 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2613 *  @hw: pointer to hardware structure
2614 *  @regval: register value to write to RXCTRL
2615 *
2616 *  Enables the Rx DMA unit
2617 **/
2618s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2619{
2620	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2621
2622	return 0;
2623}
2624
2625/**
2626 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2627 *  @hw: pointer to hardware structure
2628 *  @index: led number to blink
2629 **/
2630s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2631{
2632	ixgbe_link_speed speed = 0;
2633	bool link_up = false;
2634	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2635	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2636	bool locked = false;
2637	s32 ret_val;
2638
2639	/*
2640	 * Link must be up to auto-blink the LEDs;
2641	 * Force it if link is down.
2642	 */
2643	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2644
2645	if (!link_up) {
2646		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2647		if (ret_val)
2648			return ret_val;
2649
2650		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2651		autoc_reg |= IXGBE_AUTOC_FLU;
2652
2653		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2654		if (ret_val)
2655			return ret_val;
2656
2657		IXGBE_WRITE_FLUSH(hw);
2658
2659		usleep_range(10000, 20000);
2660	}
2661
2662	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2663	led_reg |= IXGBE_LED_BLINK(index);
2664	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2665	IXGBE_WRITE_FLUSH(hw);
2666
2667	return 0;
2668}
2669
2670/**
2671 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2672 *  @hw: pointer to hardware structure
2673 *  @index: led number to stop blinking
2674 **/
2675s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2676{
2677	u32 autoc_reg = 0;
2678	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2679	bool locked = false;
2680	s32 ret_val;
2681
2682	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2683	if (ret_val)
2684		return ret_val;
2685
2686	autoc_reg &= ~IXGBE_AUTOC_FLU;
2687	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2688
2689	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2690	if (ret_val)
2691		return ret_val;
2692
2693	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2694	led_reg &= ~IXGBE_LED_BLINK(index);
2695	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2696	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2697	IXGBE_WRITE_FLUSH(hw);
2698
2699	return 0;
2700}
2701
2702/**
2703 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2704 *  @hw: pointer to hardware structure
2705 *  @san_mac_offset: SAN MAC address offset
2706 *
2707 *  This function will read the EEPROM location for the SAN MAC address
2708 *  pointer, and returns the value at that location.  This is used in both
2709 *  get and set mac_addr routines.
2710 **/
2711static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2712					u16 *san_mac_offset)
2713{
2714	s32 ret_val;
2715
2716	/*
2717	 * First read the EEPROM pointer to see if the MAC addresses are
2718	 * available.
2719	 */
2720	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2721				      san_mac_offset);
2722	if (ret_val)
2723		hw_err(hw, "eeprom read at offset %d failed\n",
2724		       IXGBE_SAN_MAC_ADDR_PTR);
2725
2726	return ret_val;
2727}
2728
2729/**
2730 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2731 *  @hw: pointer to hardware structure
2732 *  @san_mac_addr: SAN MAC address
2733 *
2734 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2735 *  per-port, so set_lan_id() must be called before reading the addresses.
2736 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2737 *  upon for non-SFP connections, so we must call it here.
2738 **/
2739s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2740{
2741	u16 san_mac_data, san_mac_offset;
2742	u8 i;
2743	s32 ret_val;
2744
2745	/*
2746	 * First read the EEPROM pointer to see if the MAC addresses are
2747	 * available.  If they're not, no point in calling set_lan_id() here.
2748	 */
2749	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2750	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2751
2752		goto san_mac_addr_clr;
2753
2754	/* make sure we know which port we need to program */
2755	hw->mac.ops.set_lan_id(hw);
2756	/* apply the port offset to the address offset */
2757	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2758			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2759	for (i = 0; i < 3; i++) {
2760		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2761					      &san_mac_data);
2762		if (ret_val) {
2763			hw_err(hw, "eeprom read at offset %d failed\n",
2764			       san_mac_offset);
2765			goto san_mac_addr_clr;
2766		}
2767		san_mac_addr[i * 2] = (u8)(san_mac_data);
2768		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2769		san_mac_offset++;
2770	}
2771	return 0;
2772
2773san_mac_addr_clr:
2774	/* No addresses available in this EEPROM.  It's not necessarily an
2775	 * error though, so just wipe the local address and return.
2776	 */
2777	for (i = 0; i < 6; i++)
2778		san_mac_addr[i] = 0xFF;
2779	return ret_val;
2780}
2781
2782/**
2783 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2784 *  @hw: pointer to hardware structure
2785 *
2786 *  Read PCIe configuration space, and get the MSI-X vector count from
2787 *  the capabilities table.
2788 **/
2789u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2790{
2791	u16 msix_count;
2792	u16 max_msix_count;
2793	u16 pcie_offset;
2794
2795	switch (hw->mac.type) {
2796	case ixgbe_mac_82598EB:
2797		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2798		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2799		break;
2800	case ixgbe_mac_82599EB:
2801	case ixgbe_mac_X540:
2802		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2803		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2804		break;
2805	default:
2806		return 1;
2807	}
2808
2809	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2810	if (ixgbe_removed(hw->hw_addr))
2811		msix_count = 0;
2812	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2813
2814	/* MSI-X count is zero-based in HW */
2815	msix_count++;
2816
2817	if (msix_count > max_msix_count)
2818		msix_count = max_msix_count;
2819
2820	return msix_count;
2821}
2822
2823/**
2824 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2825 *  @hw: pointer to hardware struct
2826 *  @rar: receive address register index to disassociate
2827 *  @vmdq: VMDq pool index to remove from the rar
2828 **/
2829s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2830{
2831	u32 mpsar_lo, mpsar_hi;
2832	u32 rar_entries = hw->mac.num_rar_entries;
2833
2834	/* Make sure we are using a valid rar index range */
2835	if (rar >= rar_entries) {
2836		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2837		return IXGBE_ERR_INVALID_ARGUMENT;
2838	}
2839
2840	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2841	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2842
2843	if (ixgbe_removed(hw->hw_addr))
2844		return 0;
2845
2846	if (!mpsar_lo && !mpsar_hi)
2847		return 0;
2848
2849	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2850		if (mpsar_lo) {
2851			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2852			mpsar_lo = 0;
2853		}
2854		if (mpsar_hi) {
2855			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2856			mpsar_hi = 0;
2857		}
2858	} else if (vmdq < 32) {
2859		mpsar_lo &= ~(1 << vmdq);
2860		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2861	} else {
2862		mpsar_hi &= ~(1 << (vmdq - 32));
2863		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2864	}
2865
2866	/* was that the last pool using this rar? */
2867	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2868		hw->mac.ops.clear_rar(hw, rar);
2869	return 0;
2870}
2871
2872/**
2873 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2874 *  @hw: pointer to hardware struct
2875 *  @rar: receive address register index to associate with a VMDq index
2876 *  @vmdq: VMDq pool index
2877 **/
2878s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2879{
2880	u32 mpsar;
2881	u32 rar_entries = hw->mac.num_rar_entries;
2882
2883	/* Make sure we are using a valid rar index range */
2884	if (rar >= rar_entries) {
2885		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2886		return IXGBE_ERR_INVALID_ARGUMENT;
2887	}
2888
2889	if (vmdq < 32) {
2890		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2891		mpsar |= 1 << vmdq;
2892		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2893	} else {
2894		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2895		mpsar |= 1 << (vmdq - 32);
2896		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2897	}
2898	return 0;
2899}
2900
2901/**
2902 *  This function should only be involved in the IOV mode.
2903 *  In IOV mode, Default pool is next pool after the number of
2904 *  VFs advertized and not 0.
2905 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2906 *
2907 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2908 *  @hw: pointer to hardware struct
2909 *  @vmdq: VMDq pool index
2910 **/
2911s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2912{
2913	u32 rar = hw->mac.san_mac_rar_index;
2914
2915	if (vmdq < 32) {
2916		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2917		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2918	} else {
2919		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2920		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2921	}
2922
2923	return 0;
2924}
2925
2926/**
2927 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2928 *  @hw: pointer to hardware structure
2929 **/
2930s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2931{
2932	int i;
2933
2934	for (i = 0; i < 128; i++)
2935		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2936
2937	return 0;
2938}
2939
2940/**
2941 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2942 *  @hw: pointer to hardware structure
2943 *  @vlan: VLAN id to write to VLAN filter
2944 *
2945 *  return the VLVF index where this VLAN id should be placed
2946 *
2947 **/
2948static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2949{
2950	u32 bits = 0;
2951	u32 first_empty_slot = 0;
2952	s32 regindex;
2953
2954	/* short cut the special case */
2955	if (vlan == 0)
2956		return 0;
2957
2958	/*
2959	  * Search for the vlan id in the VLVF entries. Save off the first empty
2960	  * slot found along the way
2961	  */
2962	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2963		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2964		if (!bits && !(first_empty_slot))
2965			first_empty_slot = regindex;
2966		else if ((bits & 0x0FFF) == vlan)
2967			break;
2968	}
2969
2970	/*
2971	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2972	  * in the VLVF. Else use the first empty VLVF register for this
2973	  * vlan id.
2974	  */
2975	if (regindex >= IXGBE_VLVF_ENTRIES) {
2976		if (first_empty_slot)
2977			regindex = first_empty_slot;
2978		else {
2979			hw_dbg(hw, "No space in VLVF.\n");
2980			regindex = IXGBE_ERR_NO_SPACE;
2981		}
2982	}
2983
2984	return regindex;
2985}
2986
2987/**
2988 *  ixgbe_set_vfta_generic - Set VLAN filter table
2989 *  @hw: pointer to hardware structure
2990 *  @vlan: VLAN id to write to VLAN filter
2991 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2992 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2993 *
2994 *  Turn on/off specified VLAN in the VLAN filter table.
2995 **/
2996s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2997			   bool vlan_on)
2998{
2999	s32 regindex;
3000	u32 bitindex;
3001	u32 vfta;
3002	u32 bits;
3003	u32 vt;
3004	u32 targetbit;
3005	bool vfta_changed = false;
3006
3007	if (vlan > 4095)
3008		return IXGBE_ERR_PARAM;
3009
3010	/*
3011	 * this is a 2 part operation - first the VFTA, then the
3012	 * VLVF and VLVFB if VT Mode is set
3013	 * We don't write the VFTA until we know the VLVF part succeeded.
3014	 */
3015
3016	/* Part 1
3017	 * The VFTA is a bitstring made up of 128 32-bit registers
3018	 * that enable the particular VLAN id, much like the MTA:
3019	 *    bits[11-5]: which register
3020	 *    bits[4-0]:  which bit in the register
3021	 */
3022	regindex = (vlan >> 5) & 0x7F;
3023	bitindex = vlan & 0x1F;
3024	targetbit = (1 << bitindex);
3025	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3026
3027	if (vlan_on) {
3028		if (!(vfta & targetbit)) {
3029			vfta |= targetbit;
3030			vfta_changed = true;
3031		}
3032	} else {
3033		if ((vfta & targetbit)) {
3034			vfta &= ~targetbit;
3035			vfta_changed = true;
3036		}
3037	}
3038
3039	/* Part 2
3040	 * If VT Mode is set
3041	 *   Either vlan_on
3042	 *     make sure the vlan is in VLVF
3043	 *     set the vind bit in the matching VLVFB
3044	 *   Or !vlan_on
3045	 *     clear the pool bit and possibly the vind
3046	 */
3047	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3048	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3049		s32 vlvf_index;
3050
3051		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3052		if (vlvf_index < 0)
3053			return vlvf_index;
3054
3055		if (vlan_on) {
3056			/* set the pool bit */
3057			if (vind < 32) {
3058				bits = IXGBE_READ_REG(hw,
3059						IXGBE_VLVFB(vlvf_index*2));
3060				bits |= (1 << vind);
3061				IXGBE_WRITE_REG(hw,
3062						IXGBE_VLVFB(vlvf_index*2),
3063						bits);
3064			} else {
3065				bits = IXGBE_READ_REG(hw,
3066						IXGBE_VLVFB((vlvf_index*2)+1));
3067				bits |= (1 << (vind-32));
3068				IXGBE_WRITE_REG(hw,
3069						IXGBE_VLVFB((vlvf_index*2)+1),
3070						bits);
3071			}
3072		} else {
3073			/* clear the pool bit */
3074			if (vind < 32) {
3075				bits = IXGBE_READ_REG(hw,
3076						IXGBE_VLVFB(vlvf_index*2));
3077				bits &= ~(1 << vind);
3078				IXGBE_WRITE_REG(hw,
3079						IXGBE_VLVFB(vlvf_index*2),
3080						bits);
3081				bits |= IXGBE_READ_REG(hw,
3082						IXGBE_VLVFB((vlvf_index*2)+1));
3083			} else {
3084				bits = IXGBE_READ_REG(hw,
3085						IXGBE_VLVFB((vlvf_index*2)+1));
3086				bits &= ~(1 << (vind-32));
3087				IXGBE_WRITE_REG(hw,
3088						IXGBE_VLVFB((vlvf_index*2)+1),
3089						bits);
3090				bits |= IXGBE_READ_REG(hw,
3091						IXGBE_VLVFB(vlvf_index*2));
3092			}
3093		}
3094
3095		/*
3096		 * If there are still bits set in the VLVFB registers
3097		 * for the VLAN ID indicated we need to see if the
3098		 * caller is requesting that we clear the VFTA entry bit.
3099		 * If the caller has requested that we clear the VFTA
3100		 * entry bit but there are still pools/VFs using this VLAN
3101		 * ID entry then ignore the request.  We're not worried
3102		 * about the case where we're turning the VFTA VLAN ID
3103		 * entry bit on, only when requested to turn it off as
3104		 * there may be multiple pools and/or VFs using the
3105		 * VLAN ID entry.  In that case we cannot clear the
3106		 * VFTA bit until all pools/VFs using that VLAN ID have also
3107		 * been cleared.  This will be indicated by "bits" being
3108		 * zero.
3109		 */
3110		if (bits) {
3111			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3112					(IXGBE_VLVF_VIEN | vlan));
3113			if (!vlan_on) {
3114				/* someone wants to clear the vfta entry
3115				 * but some pools/VFs are still using it.
3116				 * Ignore it. */
3117				vfta_changed = false;
3118			}
3119		} else {
3120			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3121		}
3122	}
3123
3124	if (vfta_changed)
3125		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3126
3127	return 0;
3128}
3129
3130/**
3131 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3132 *  @hw: pointer to hardware structure
3133 *
3134 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3135 **/
3136s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3137{
3138	u32 offset;
3139
3140	for (offset = 0; offset < hw->mac.vft_size; offset++)
3141		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3142
3143	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3144		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3145		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3146		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3147	}
3148
3149	return 0;
3150}
3151
3152/**
3153 *  ixgbe_check_mac_link_generic - Determine link and speed status
3154 *  @hw: pointer to hardware structure
3155 *  @speed: pointer to link speed
3156 *  @link_up: true when link is up
3157 *  @link_up_wait_to_complete: bool used to wait for link up or not
3158 *
3159 *  Reads the links register to determine if link is up and the current speed
3160 **/
3161s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3162				 bool *link_up, bool link_up_wait_to_complete)
3163{
3164	u32 links_reg, links_orig;
3165	u32 i;
3166
3167	/* clear the old state */
3168	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3169
3170	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3171
3172	if (links_orig != links_reg) {
3173		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3174		       links_orig, links_reg);
3175	}
3176
3177	if (link_up_wait_to_complete) {
3178		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3179			if (links_reg & IXGBE_LINKS_UP) {
3180				*link_up = true;
3181				break;
3182			} else {
3183				*link_up = false;
3184			}
3185			msleep(100);
3186			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3187		}
3188	} else {
3189		if (links_reg & IXGBE_LINKS_UP)
3190			*link_up = true;
3191		else
3192			*link_up = false;
3193	}
3194
3195	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3196	    IXGBE_LINKS_SPEED_10G_82599)
3197		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3198	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3199		 IXGBE_LINKS_SPEED_1G_82599)
3200		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3201	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3202		 IXGBE_LINKS_SPEED_100_82599)
3203		*speed = IXGBE_LINK_SPEED_100_FULL;
3204	else
3205		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3206
3207	return 0;
3208}
3209
3210/**
3211 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3212 *  the EEPROM
3213 *  @hw: pointer to hardware structure
3214 *  @wwnn_prefix: the alternative WWNN prefix
3215 *  @wwpn_prefix: the alternative WWPN prefix
3216 *
3217 *  This function will read the EEPROM from the alternative SAN MAC address
3218 *  block to check the support for the alternative WWNN/WWPN prefix support.
3219 **/
3220s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3221					u16 *wwpn_prefix)
3222{
3223	u16 offset, caps;
3224	u16 alt_san_mac_blk_offset;
3225
3226	/* clear output first */
3227	*wwnn_prefix = 0xFFFF;
3228	*wwpn_prefix = 0xFFFF;
3229
3230	/* check if alternative SAN MAC is supported */
3231	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3232	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3233		goto wwn_prefix_err;
3234
3235	if ((alt_san_mac_blk_offset == 0) ||
3236	    (alt_san_mac_blk_offset == 0xFFFF))
3237		return 0;
3238
3239	/* check capability in alternative san mac address block */
3240	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3241	if (hw->eeprom.ops.read(hw, offset, &caps))
3242		goto wwn_prefix_err;
3243	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3244		return 0;
3245
3246	/* get the corresponding prefix for WWNN/WWPN */
3247	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3248	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3249		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3250
3251	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3252	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3253		goto wwn_prefix_err;
3254
3255	return 0;
3256
3257wwn_prefix_err:
3258	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3259	return 0;
3260}
3261
3262/**
3263 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3264 *  @hw: pointer to hardware structure
3265 *  @enable: enable or disable switch for anti-spoofing
3266 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3267 *
3268 **/
3269void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3270{
3271	int j;
3272	int pf_target_reg = pf >> 3;
3273	int pf_target_shift = pf % 8;
3274	u32 pfvfspoof = 0;
3275
3276	if (hw->mac.type == ixgbe_mac_82598EB)
3277		return;
3278
3279	if (enable)
3280		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3281
3282	/*
3283	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3284	 * MAC anti-spoof enables in each register array element.
3285	 */
3286	for (j = 0; j < pf_target_reg; j++)
3287		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3288
3289	/*
3290	 * The PF should be allowed to spoof so that it can support
3291	 * emulation mode NICs.  Do not set the bits assigned to the PF
3292	 */
3293	pfvfspoof &= (1 << pf_target_shift) - 1;
3294	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3295
3296	/*
3297	 * Remaining pools belong to the PF so they do not need to have
3298	 * anti-spoofing enabled.
3299	 */
3300	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3301		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3302}
3303
3304/**
3305 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3306 *  @hw: pointer to hardware structure
3307 *  @enable: enable or disable switch for VLAN anti-spoofing
3308 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3309 *
3310 **/
3311void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3312{
3313	int vf_target_reg = vf >> 3;
3314	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3315	u32 pfvfspoof;
3316
3317	if (hw->mac.type == ixgbe_mac_82598EB)
3318		return;
3319
3320	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3321	if (enable)
3322		pfvfspoof |= (1 << vf_target_shift);
3323	else
3324		pfvfspoof &= ~(1 << vf_target_shift);
3325	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3326}
3327
3328/**
3329 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3330 *  @hw: pointer to hardware structure
3331 *  @device_caps: the EEPROM word with the extra device capabilities
3332 *
3333 *  This function will read the EEPROM location for the device capabilities,
3334 *  and return the word through device_caps.
3335 **/
3336s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3337{
3338	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3339
3340	return 0;
3341}
3342
3343/**
3344 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3345 * @hw: pointer to hardware structure
3346 * @num_pb: number of packet buffers to allocate
3347 * @headroom: reserve n KB of headroom
3348 * @strategy: packet buffer allocation strategy
3349 **/
3350void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3351			     int num_pb,
3352			     u32 headroom,
3353			     int strategy)
3354{
3355	u32 pbsize = hw->mac.rx_pb_size;
3356	int i = 0;
3357	u32 rxpktsize, txpktsize, txpbthresh;
3358
3359	/* Reserve headroom */
3360	pbsize -= headroom;
3361
3362	if (!num_pb)
3363		num_pb = 1;
3364
3365	/* Divide remaining packet buffer space amongst the number
3366	 * of packet buffers requested using supplied strategy.
3367	 */
3368	switch (strategy) {
3369	case (PBA_STRATEGY_WEIGHTED):
3370		/* pba_80_48 strategy weight first half of packet buffer with
3371		 * 5/8 of the packet buffer space.
3372		 */
3373		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3374		pbsize -= rxpktsize * (num_pb / 2);
3375		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3376		for (; i < (num_pb / 2); i++)
3377			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3378		/* Fall through to configure remaining packet buffers */
3379	case (PBA_STRATEGY_EQUAL):
3380		/* Divide the remaining Rx packet buffer evenly among the TCs */
3381		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3382		for (; i < num_pb; i++)
3383			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3384		break;
3385	default:
3386		break;
3387	}
3388
3389	/*
3390	 * Setup Tx packet buffer and threshold equally for all TCs
3391	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3392	 * 10 since the largest packet we support is just over 9K.
3393	 */
3394	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3395	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3396	for (i = 0; i < num_pb; i++) {
3397		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3398		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3399	}
3400
3401	/* Clear unused TCs, if any, to zero buffer size*/
3402	for (; i < IXGBE_MAX_PB; i++) {
3403		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3404		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3405		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3406	}
3407}
3408
3409/**
3410 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3411 *  @buffer: pointer to EEPROM
3412 *  @length: size of EEPROM to calculate a checksum for
3413 *
3414 *  Calculates the checksum for some buffer on a specified length.  The
3415 *  checksum calculated is returned.
3416 **/
3417static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3418{
3419	u32 i;
3420	u8 sum = 0;
3421
3422	if (!buffer)
3423		return 0;
3424
3425	for (i = 0; i < length; i++)
3426		sum += buffer[i];
3427
3428	return (u8) (0 - sum);
3429}
3430
3431/**
3432 *  ixgbe_host_interface_command - Issue command to manageability block
3433 *  @hw: pointer to the HW structure
3434 *  @buffer: contains the command to write and where the return status will
3435 *           be placed
3436 *  @length: length of buffer, must be multiple of 4 bytes
3437 *
3438 *  Communicates with the manageability block.  On success return 0
3439 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3440 **/
3441static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3442					u32 length)
3443{
3444	u32 hicr, i, bi;
3445	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3446	u8 buf_len, dword_len;
3447
3448	if (length == 0 || length & 0x3 ||
3449	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3450		hw_dbg(hw, "Buffer length failure.\n");
3451		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3452	}
3453
3454	/* Check that the host interface is enabled. */
3455	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3456	if ((hicr & IXGBE_HICR_EN) == 0) {
3457		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3458		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3459	}
3460
3461	/* Calculate length in DWORDs */
3462	dword_len = length >> 2;
3463
3464	/*
3465	 * The device driver writes the relevant command block
3466	 * into the ram area.
3467	 */
3468	for (i = 0; i < dword_len; i++)
3469		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3470				      i, cpu_to_le32(buffer[i]));
3471
3472	/* Setting this bit tells the ARC that a new command is pending. */
3473	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3474
3475	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3476		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3477		if (!(hicr & IXGBE_HICR_C))
3478			break;
3479		usleep_range(1000, 2000);
3480	}
3481
3482	/* Check command successful completion. */
3483	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3484	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3485		hw_dbg(hw, "Command has failed with no status valid.\n");
3486		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3487	}
3488
3489	/* Calculate length in DWORDs */
3490	dword_len = hdr_size >> 2;
3491
3492	/* first pull in the header so we know the buffer length */
3493	for (bi = 0; bi < dword_len; bi++) {
3494		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3495		le32_to_cpus(&buffer[bi]);
3496	}
3497
3498	/* If there is any thing in data position pull it in */
3499	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3500	if (buf_len == 0)
3501		return 0;
3502
3503	if (length < (buf_len + hdr_size)) {
3504		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3505		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3506	}
3507
3508	/* Calculate length in DWORDs, add 3 for odd lengths */
3509	dword_len = (buf_len + 3) >> 2;
3510
3511	/* Pull in the rest of the buffer (bi is where we left off)*/
3512	for (; bi <= dword_len; bi++) {
3513		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3514		le32_to_cpus(&buffer[bi]);
3515	}
3516
3517	return 0;
3518}
3519
3520/**
3521 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3522 *  @hw: pointer to the HW structure
3523 *  @maj: driver version major number
3524 *  @min: driver version minor number
3525 *  @build: driver version build number
3526 *  @sub: driver version sub build number
3527 *
3528 *  Sends driver version number to firmware through the manageability
3529 *  block.  On success return 0
3530 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3531 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3532 **/
3533s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3534				 u8 build, u8 sub)
3535{
3536	struct ixgbe_hic_drv_info fw_cmd;
3537	int i;
3538	s32 ret_val;
3539
3540	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3541		return IXGBE_ERR_SWFW_SYNC;
3542
3543	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3544	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3545	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3546	fw_cmd.port_num = (u8)hw->bus.func;
3547	fw_cmd.ver_maj = maj;
3548	fw_cmd.ver_min = min;
3549	fw_cmd.ver_build = build;
3550	fw_cmd.ver_sub = sub;
3551	fw_cmd.hdr.checksum = 0;
3552	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3553				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3554	fw_cmd.pad = 0;
3555	fw_cmd.pad2 = 0;
3556
3557	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3558		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3559						       sizeof(fw_cmd));
3560		if (ret_val != 0)
3561			continue;
3562
3563		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3564		    FW_CEM_RESP_STATUS_SUCCESS)
3565			ret_val = 0;
3566		else
3567			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3568
3569		break;
3570	}
3571
3572	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3573	return ret_val;
3574}
3575
3576/**
3577 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3578 * @hw: pointer to the hardware structure
3579 *
3580 * The 82599 and x540 MACs can experience issues if TX work is still pending
3581 * when a reset occurs.  This function prevents this by flushing the PCIe
3582 * buffers on the system.
3583 **/
3584void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3585{
3586	u32 gcr_ext, hlreg0;
3587
3588	/*
3589	 * If double reset is not requested then all transactions should
3590	 * already be clear and as such there is no work to do
3591	 */
3592	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3593		return;
3594
3595	/*
3596	 * Set loopback enable to prevent any transmits from being sent
3597	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3598	 * has already been cleared.
3599	 */
3600	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3601	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3602
3603	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3604	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3605	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3606			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3607
3608	/* Flush all writes and allow 20usec for all transactions to clear */
3609	IXGBE_WRITE_FLUSH(hw);
3610	udelay(20);
3611
3612	/* restore previous register values */
3613	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3614	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3615}
3616
3617static const u8 ixgbe_emc_temp_data[4] = {
3618	IXGBE_EMC_INTERNAL_DATA,
3619	IXGBE_EMC_DIODE1_DATA,
3620	IXGBE_EMC_DIODE2_DATA,
3621	IXGBE_EMC_DIODE3_DATA
3622};
3623static const u8 ixgbe_emc_therm_limit[4] = {
3624	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3625	IXGBE_EMC_DIODE1_THERM_LIMIT,
3626	IXGBE_EMC_DIODE2_THERM_LIMIT,
3627	IXGBE_EMC_DIODE3_THERM_LIMIT
3628};
3629
3630/**
3631 *  ixgbe_get_ets_data - Extracts the ETS bit data
3632 *  @hw: pointer to hardware structure
3633 *  @ets_cfg: extected ETS data
3634 *  @ets_offset: offset of ETS data
3635 *
3636 *  Returns error code.
3637 **/
3638static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3639			      u16 *ets_offset)
3640{
3641	s32 status;
3642
3643	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3644	if (status)
3645		return status;
3646
3647	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3648		return IXGBE_NOT_IMPLEMENTED;
3649
3650	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3651	if (status)
3652		return status;
3653
3654	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3655		return IXGBE_NOT_IMPLEMENTED;
3656
3657	return 0;
3658}
3659
3660/**
3661 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3662 *  @hw: pointer to hardware structure
3663 *
3664 *  Returns the thermal sensor data structure
3665 **/
3666s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3667{
3668	s32 status;
3669	u16 ets_offset;
3670	u16 ets_cfg;
3671	u16 ets_sensor;
3672	u8  num_sensors;
3673	u8  i;
3674	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3675
3676	/* Only support thermal sensors attached to physical port 0 */
3677	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3678		return IXGBE_NOT_IMPLEMENTED;
3679
3680	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3681	if (status)
3682		return status;
3683
3684	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3685	if (num_sensors > IXGBE_MAX_SENSORS)
3686		num_sensors = IXGBE_MAX_SENSORS;
3687
3688	for (i = 0; i < num_sensors; i++) {
3689		u8  sensor_index;
3690		u8  sensor_location;
3691
3692		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3693					     &ets_sensor);
3694		if (status)
3695			return status;
3696
3697		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3698				IXGBE_ETS_DATA_INDEX_SHIFT);
3699		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3700				   IXGBE_ETS_DATA_LOC_SHIFT);
3701
3702		if (sensor_location != 0) {
3703			status = hw->phy.ops.read_i2c_byte(hw,
3704					ixgbe_emc_temp_data[sensor_index],
3705					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3706					&data->sensor[i].temp);
3707			if (status)
3708				return status;
3709		}
3710	}
3711
3712	return 0;
3713}
3714
3715/**
3716 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3717 * @hw: pointer to hardware structure
3718 *
3719 * Inits the thermal sensor thresholds according to the NVM map
3720 * and save off the threshold and location values into mac.thermal_sensor_data
3721 **/
3722s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3723{
3724	s32 status;
3725	u16 ets_offset;
3726	u16 ets_cfg;
3727	u16 ets_sensor;
3728	u8  low_thresh_delta;
3729	u8  num_sensors;
3730	u8  therm_limit;
3731	u8  i;
3732	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3733
3734	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3735
3736	/* Only support thermal sensors attached to physical port 0 */
3737	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3738		return IXGBE_NOT_IMPLEMENTED;
3739
3740	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3741	if (status)
3742		return status;
3743
3744	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3745			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3746	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3747	if (num_sensors > IXGBE_MAX_SENSORS)
3748		num_sensors = IXGBE_MAX_SENSORS;
3749
3750	for (i = 0; i < num_sensors; i++) {
3751		u8  sensor_index;
3752		u8  sensor_location;
3753
3754		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3755			hw_err(hw, "eeprom read at offset %d failed\n",
3756			       ets_offset + 1 + i);
3757			continue;
3758		}
3759		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3760				IXGBE_ETS_DATA_INDEX_SHIFT);
3761		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3762				   IXGBE_ETS_DATA_LOC_SHIFT);
3763		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3764
3765		hw->phy.ops.write_i2c_byte(hw,
3766			ixgbe_emc_therm_limit[sensor_index],
3767			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3768
3769		if (sensor_location == 0)
3770			continue;
3771
3772		data->sensor[i].location = sensor_location;
3773		data->sensor[i].caution_thresh = therm_limit;
3774		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3775	}
3776
3777	return 0;
3778}
3779
3780