[go: nahoru, domu]

1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24/* e1000_82575
25 * e1000_82576
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/types.h>
31#include <linux/if_ether.h>
32#include <linux/i2c.h>
33
34#include "e1000_mac.h"
35#include "e1000_82575.h"
36#include "e1000_i210.h"
37
38static s32  igb_get_invariants_82575(struct e1000_hw *);
39static s32  igb_acquire_phy_82575(struct e1000_hw *);
40static void igb_release_phy_82575(struct e1000_hw *);
41static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42static void igb_release_nvm_82575(struct e1000_hw *);
43static s32  igb_check_for_link_82575(struct e1000_hw *);
44static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45static s32  igb_init_hw_82575(struct e1000_hw *);
46static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50static s32  igb_reset_hw_82575(struct e1000_hw *);
51static s32  igb_reset_hw_82580(struct e1000_hw *);
52static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61						 u16 *);
62static s32  igb_get_phy_id_82575(struct e1000_hw *);
63static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64static bool igb_sgmii_active_82575(struct e1000_hw *);
65static s32  igb_reset_init_script_82575(struct e1000_hw *);
66static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73static const u16 e1000_82580_rxpbs_table[] = {
74	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75
76/**
77 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78 *  @hw: pointer to the HW structure
79 *
80 *  Called to determine if the I2C pins are being used for I2C or as an
81 *  external MDIO interface since the two options are mutually exclusive.
82 **/
83static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84{
85	u32 reg = 0;
86	bool ext_mdio = false;
87
88	switch (hw->mac.type) {
89	case e1000_82575:
90	case e1000_82576:
91		reg = rd32(E1000_MDIC);
92		ext_mdio = !!(reg & E1000_MDIC_DEST);
93		break;
94	case e1000_82580:
95	case e1000_i350:
96	case e1000_i354:
97	case e1000_i210:
98	case e1000_i211:
99		reg = rd32(E1000_MDICNFG);
100		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101		break;
102	default:
103		break;
104	}
105	return ext_mdio;
106}
107
108/**
109 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110 *  @hw: pointer to the HW structure
111 *
112 *  Poll the M88E1112 interfaces to see which interface achieved link.
113 */
114static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115{
116	struct e1000_phy_info *phy = &hw->phy;
117	s32 ret_val;
118	u16 data;
119	u8 port = 0;
120
121	/* Check the copper medium. */
122	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123	if (ret_val)
124		return ret_val;
125
126	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127	if (ret_val)
128		return ret_val;
129
130	if (data & E1000_M88E1112_STATUS_LINK)
131		port = E1000_MEDIA_PORT_COPPER;
132
133	/* Check the other medium. */
134	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135	if (ret_val)
136		return ret_val;
137
138	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139	if (ret_val)
140		return ret_val;
141
142	/* reset page to 0 */
143	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
144	if (ret_val)
145		return ret_val;
146
147	if (data & E1000_M88E1112_STATUS_LINK)
148		port = E1000_MEDIA_PORT_OTHER;
149
150	/* Determine if a swap needs to happen. */
151	if (port && (hw->dev_spec._82575.media_port != port)) {
152		hw->dev_spec._82575.media_port = port;
153		hw->dev_spec._82575.media_changed = true;
154	} else {
155		ret_val = igb_check_for_link_82575(hw);
156	}
157
158	return 0;
159}
160
161/**
162 *  igb_init_phy_params_82575 - Init PHY func ptrs.
163 *  @hw: pointer to the HW structure
164 **/
165static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
166{
167	struct e1000_phy_info *phy = &hw->phy;
168	s32 ret_val = 0;
169	u32 ctrl_ext;
170
171	if (hw->phy.media_type != e1000_media_type_copper) {
172		phy->type = e1000_phy_none;
173		goto out;
174	}
175
176	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
177	phy->reset_delay_us	= 100;
178
179	ctrl_ext = rd32(E1000_CTRL_EXT);
180
181	if (igb_sgmii_active_82575(hw)) {
182		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
183		ctrl_ext |= E1000_CTRL_I2C_ENA;
184	} else {
185		phy->ops.reset = igb_phy_hw_reset;
186		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
187	}
188
189	wr32(E1000_CTRL_EXT, ctrl_ext);
190	igb_reset_mdicnfg_82580(hw);
191
192	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
193		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
194		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
195	} else {
196		switch (hw->mac.type) {
197		case e1000_82580:
198		case e1000_i350:
199		case e1000_i354:
200			phy->ops.read_reg = igb_read_phy_reg_82580;
201			phy->ops.write_reg = igb_write_phy_reg_82580;
202			break;
203		case e1000_i210:
204		case e1000_i211:
205			phy->ops.read_reg = igb_read_phy_reg_gs40g;
206			phy->ops.write_reg = igb_write_phy_reg_gs40g;
207			break;
208		default:
209			phy->ops.read_reg = igb_read_phy_reg_igp;
210			phy->ops.write_reg = igb_write_phy_reg_igp;
211		}
212	}
213
214	/* set lan id */
215	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
216			E1000_STATUS_FUNC_SHIFT;
217
218	/* Set phy->phy_addr and phy->id. */
219	ret_val = igb_get_phy_id_82575(hw);
220	if (ret_val)
221		return ret_val;
222
223	/* Verify phy id and set remaining function pointers */
224	switch (phy->id) {
225	case M88E1543_E_PHY_ID:
226	case I347AT4_E_PHY_ID:
227	case M88E1112_E_PHY_ID:
228	case M88E1111_I_PHY_ID:
229		phy->type		= e1000_phy_m88;
230		phy->ops.check_polarity	= igb_check_polarity_m88;
231		phy->ops.get_phy_info	= igb_get_phy_info_m88;
232		if (phy->id != M88E1111_I_PHY_ID)
233			phy->ops.get_cable_length =
234					 igb_get_cable_length_m88_gen2;
235		else
236			phy->ops.get_cable_length = igb_get_cable_length_m88;
237		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
238		/* Check if this PHY is confgured for media swap. */
239		if (phy->id == M88E1112_E_PHY_ID) {
240			u16 data;
241
242			ret_val = phy->ops.write_reg(hw,
243						     E1000_M88E1112_PAGE_ADDR,
244						     2);
245			if (ret_val)
246				goto out;
247
248			ret_val = phy->ops.read_reg(hw,
249						    E1000_M88E1112_MAC_CTRL_1,
250						    &data);
251			if (ret_val)
252				goto out;
253
254			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
255			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
256			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
257			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
258				hw->mac.ops.check_for_link =
259						igb_check_for_link_media_swap;
260		}
261		break;
262	case IGP03E1000_E_PHY_ID:
263		phy->type = e1000_phy_igp_3;
264		phy->ops.get_phy_info = igb_get_phy_info_igp;
265		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
266		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
267		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
268		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
269		break;
270	case I82580_I_PHY_ID:
271	case I350_I_PHY_ID:
272		phy->type = e1000_phy_82580;
273		phy->ops.force_speed_duplex =
274					 igb_phy_force_speed_duplex_82580;
275		phy->ops.get_cable_length = igb_get_cable_length_82580;
276		phy->ops.get_phy_info = igb_get_phy_info_82580;
277		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
278		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
279		break;
280	case I210_I_PHY_ID:
281		phy->type		= e1000_phy_i210;
282		phy->ops.check_polarity	= igb_check_polarity_m88;
283		phy->ops.get_phy_info	= igb_get_phy_info_m88;
284		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
285		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
286		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
287		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
288		break;
289	default:
290		ret_val = -E1000_ERR_PHY;
291		goto out;
292	}
293
294out:
295	return ret_val;
296}
297
298/**
299 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
300 *  @hw: pointer to the HW structure
301 **/
302static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
303{
304	struct e1000_nvm_info *nvm = &hw->nvm;
305	u32 eecd = rd32(E1000_EECD);
306	u16 size;
307
308	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
309		     E1000_EECD_SIZE_EX_SHIFT);
310
311	/* Added to a constant, "size" becomes the left-shift value
312	 * for setting word_size.
313	 */
314	size += NVM_WORD_SIZE_BASE_SHIFT;
315
316	/* Just in case size is out of range, cap it to the largest
317	 * EEPROM size supported
318	 */
319	if (size > 15)
320		size = 15;
321
322	nvm->word_size = 1 << size;
323	nvm->opcode_bits = 8;
324	nvm->delay_usec = 1;
325
326	switch (nvm->override) {
327	case e1000_nvm_override_spi_large:
328		nvm->page_size = 32;
329		nvm->address_bits = 16;
330		break;
331	case e1000_nvm_override_spi_small:
332		nvm->page_size = 8;
333		nvm->address_bits = 8;
334		break;
335	default:
336		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
337		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
338				    16 : 8;
339		break;
340	}
341	if (nvm->word_size == (1 << 15))
342		nvm->page_size = 128;
343
344	nvm->type = e1000_nvm_eeprom_spi;
345
346	/* NVM Function Pointers */
347	nvm->ops.acquire = igb_acquire_nvm_82575;
348	nvm->ops.release = igb_release_nvm_82575;
349	nvm->ops.write = igb_write_nvm_spi;
350	nvm->ops.validate = igb_validate_nvm_checksum;
351	nvm->ops.update = igb_update_nvm_checksum;
352	if (nvm->word_size < (1 << 15))
353		nvm->ops.read = igb_read_nvm_eerd;
354	else
355		nvm->ops.read = igb_read_nvm_spi;
356
357	/* override generic family function pointers for specific descendants */
358	switch (hw->mac.type) {
359	case e1000_82580:
360		nvm->ops.validate = igb_validate_nvm_checksum_82580;
361		nvm->ops.update = igb_update_nvm_checksum_82580;
362		break;
363	case e1000_i354:
364	case e1000_i350:
365		nvm->ops.validate = igb_validate_nvm_checksum_i350;
366		nvm->ops.update = igb_update_nvm_checksum_i350;
367		break;
368	default:
369		break;
370	}
371
372	return 0;
373}
374
375/**
376 *  igb_init_mac_params_82575 - Init MAC func ptrs.
377 *  @hw: pointer to the HW structure
378 **/
379static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
380{
381	struct e1000_mac_info *mac = &hw->mac;
382	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383
384	/* Set mta register count */
385	mac->mta_reg_count = 128;
386	/* Set rar entry count */
387	switch (mac->type) {
388	case e1000_82576:
389		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
390		break;
391	case e1000_82580:
392		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
393		break;
394	case e1000_i350:
395	case e1000_i354:
396		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
397		break;
398	default:
399		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
400		break;
401	}
402	/* reset */
403	if (mac->type >= e1000_82580)
404		mac->ops.reset_hw = igb_reset_hw_82580;
405	else
406		mac->ops.reset_hw = igb_reset_hw_82575;
407
408	if (mac->type >= e1000_i210) {
409		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
410		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
411
412	} else {
413		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
414		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
415	}
416
417	/* Set if part includes ASF firmware */
418	mac->asf_firmware_present = true;
419	/* Set if manageability features are enabled. */
420	mac->arc_subsystem_valid =
421		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
422			? true : false;
423	/* enable EEE on i350 parts and later parts */
424	if (mac->type >= e1000_i350)
425		dev_spec->eee_disable = false;
426	else
427		dev_spec->eee_disable = true;
428	/* Allow a single clear of the SW semaphore on I210 and newer */
429	if (mac->type >= e1000_i210)
430		dev_spec->clear_semaphore_once = true;
431	/* physical interface link setup */
432	mac->ops.setup_physical_interface =
433		(hw->phy.media_type == e1000_media_type_copper)
434			? igb_setup_copper_link_82575
435			: igb_setup_serdes_link_82575;
436
437	if (mac->type == e1000_82580) {
438		switch (hw->device_id) {
439		/* feature not supported on these id's */
440		case E1000_DEV_ID_DH89XXCC_SGMII:
441		case E1000_DEV_ID_DH89XXCC_SERDES:
442		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
443		case E1000_DEV_ID_DH89XXCC_SFP:
444			break;
445		default:
446			hw->dev_spec._82575.mas_capable = true;
447			break;
448		}
449	}
450	return 0;
451}
452
453/**
454 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
455 *  @hw: pointer to the HW structure
456 *
457 *  The media type is chosen based on SFP module.
458 *  compatibility flags retrieved from SFP ID EEPROM.
459 **/
460static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
461{
462	s32 ret_val = E1000_ERR_CONFIG;
463	u32 ctrl_ext = 0;
464	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
465	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
466	u8 tranceiver_type = 0;
467	s32 timeout = 3;
468
469	/* Turn I2C interface ON and power on sfp cage */
470	ctrl_ext = rd32(E1000_CTRL_EXT);
471	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
472	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
473
474	wrfl();
475
476	/* Read SFP module data */
477	while (timeout) {
478		ret_val = igb_read_sfp_data_byte(hw,
479			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
480			&tranceiver_type);
481		if (ret_val == 0)
482			break;
483		msleep(100);
484		timeout--;
485	}
486	if (ret_val != 0)
487		goto out;
488
489	ret_val = igb_read_sfp_data_byte(hw,
490			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
491			(u8 *)eth_flags);
492	if (ret_val != 0)
493		goto out;
494
495	/* Check if there is some SFP module plugged and powered */
496	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
497	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
498		dev_spec->module_plugged = true;
499		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
500			hw->phy.media_type = e1000_media_type_internal_serdes;
501		} else if (eth_flags->e100_base_fx) {
502			dev_spec->sgmii_active = true;
503			hw->phy.media_type = e1000_media_type_internal_serdes;
504		} else if (eth_flags->e1000_base_t) {
505			dev_spec->sgmii_active = true;
506			hw->phy.media_type = e1000_media_type_copper;
507		} else {
508			hw->phy.media_type = e1000_media_type_unknown;
509			hw_dbg("PHY module has not been recognized\n");
510			goto out;
511		}
512	} else {
513		hw->phy.media_type = e1000_media_type_unknown;
514	}
515	ret_val = 0;
516out:
517	/* Restore I2C interface setting */
518	wr32(E1000_CTRL_EXT, ctrl_ext);
519	return ret_val;
520}
521
522static s32 igb_get_invariants_82575(struct e1000_hw *hw)
523{
524	struct e1000_mac_info *mac = &hw->mac;
525	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
526	s32 ret_val;
527	u32 ctrl_ext = 0;
528	u32 link_mode = 0;
529
530	switch (hw->device_id) {
531	case E1000_DEV_ID_82575EB_COPPER:
532	case E1000_DEV_ID_82575EB_FIBER_SERDES:
533	case E1000_DEV_ID_82575GB_QUAD_COPPER:
534		mac->type = e1000_82575;
535		break;
536	case E1000_DEV_ID_82576:
537	case E1000_DEV_ID_82576_NS:
538	case E1000_DEV_ID_82576_NS_SERDES:
539	case E1000_DEV_ID_82576_FIBER:
540	case E1000_DEV_ID_82576_SERDES:
541	case E1000_DEV_ID_82576_QUAD_COPPER:
542	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
543	case E1000_DEV_ID_82576_SERDES_QUAD:
544		mac->type = e1000_82576;
545		break;
546	case E1000_DEV_ID_82580_COPPER:
547	case E1000_DEV_ID_82580_FIBER:
548	case E1000_DEV_ID_82580_QUAD_FIBER:
549	case E1000_DEV_ID_82580_SERDES:
550	case E1000_DEV_ID_82580_SGMII:
551	case E1000_DEV_ID_82580_COPPER_DUAL:
552	case E1000_DEV_ID_DH89XXCC_SGMII:
553	case E1000_DEV_ID_DH89XXCC_SERDES:
554	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
555	case E1000_DEV_ID_DH89XXCC_SFP:
556		mac->type = e1000_82580;
557		break;
558	case E1000_DEV_ID_I350_COPPER:
559	case E1000_DEV_ID_I350_FIBER:
560	case E1000_DEV_ID_I350_SERDES:
561	case E1000_DEV_ID_I350_SGMII:
562		mac->type = e1000_i350;
563		break;
564	case E1000_DEV_ID_I210_COPPER:
565	case E1000_DEV_ID_I210_FIBER:
566	case E1000_DEV_ID_I210_SERDES:
567	case E1000_DEV_ID_I210_SGMII:
568	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
569	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
570		mac->type = e1000_i210;
571		break;
572	case E1000_DEV_ID_I211_COPPER:
573		mac->type = e1000_i211;
574		break;
575	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
576	case E1000_DEV_ID_I354_SGMII:
577	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
578		mac->type = e1000_i354;
579		break;
580	default:
581		return -E1000_ERR_MAC_INIT;
582	}
583
584	/* Set media type */
585	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
586	 * based on the EEPROM. We cannot rely upon device ID. There
587	 * is no distinguishable difference between fiber and internal
588	 * SerDes mode on the 82575. There can be an external PHY attached
589	 * on the SGMII interface. For this, we'll set sgmii_active to true.
590	 */
591	hw->phy.media_type = e1000_media_type_copper;
592	dev_spec->sgmii_active = false;
593	dev_spec->module_plugged = false;
594
595	ctrl_ext = rd32(E1000_CTRL_EXT);
596
597	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
598	switch (link_mode) {
599	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
600		hw->phy.media_type = e1000_media_type_internal_serdes;
601		break;
602	case E1000_CTRL_EXT_LINK_MODE_SGMII:
603		/* Get phy control interface type set (MDIO vs. I2C)*/
604		if (igb_sgmii_uses_mdio_82575(hw)) {
605			hw->phy.media_type = e1000_media_type_copper;
606			dev_spec->sgmii_active = true;
607			break;
608		}
609		/* fall through for I2C based SGMII */
610	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
611		/* read media type from SFP EEPROM */
612		ret_val = igb_set_sfp_media_type_82575(hw);
613		if ((ret_val != 0) ||
614		    (hw->phy.media_type == e1000_media_type_unknown)) {
615			/* If media type was not identified then return media
616			 * type defined by the CTRL_EXT settings.
617			 */
618			hw->phy.media_type = e1000_media_type_internal_serdes;
619
620			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
621				hw->phy.media_type = e1000_media_type_copper;
622				dev_spec->sgmii_active = true;
623			}
624
625			break;
626		}
627
628		/* do not change link mode for 100BaseFX */
629		if (dev_spec->eth_flags.e100_base_fx)
630			break;
631
632		/* change current link mode setting */
633		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
634
635		if (hw->phy.media_type == e1000_media_type_copper)
636			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
637		else
638			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
639
640		wr32(E1000_CTRL_EXT, ctrl_ext);
641
642		break;
643	default:
644		break;
645	}
646
647	/* mac initialization and operations */
648	ret_val = igb_init_mac_params_82575(hw);
649	if (ret_val)
650		goto out;
651
652	/* NVM initialization */
653	ret_val = igb_init_nvm_params_82575(hw);
654	switch (hw->mac.type) {
655	case e1000_i210:
656	case e1000_i211:
657		ret_val = igb_init_nvm_params_i210(hw);
658		break;
659	default:
660		break;
661	}
662
663	if (ret_val)
664		goto out;
665
666	/* if part supports SR-IOV then initialize mailbox parameters */
667	switch (mac->type) {
668	case e1000_82576:
669	case e1000_i350:
670		igb_init_mbx_params_pf(hw);
671		break;
672	default:
673		break;
674	}
675
676	/* setup PHY parameters */
677	ret_val = igb_init_phy_params_82575(hw);
678
679out:
680	return ret_val;
681}
682
683/**
684 *  igb_acquire_phy_82575 - Acquire rights to access PHY
685 *  @hw: pointer to the HW structure
686 *
687 *  Acquire access rights to the correct PHY.  This is a
688 *  function pointer entry point called by the api module.
689 **/
690static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
691{
692	u16 mask = E1000_SWFW_PHY0_SM;
693
694	if (hw->bus.func == E1000_FUNC_1)
695		mask = E1000_SWFW_PHY1_SM;
696	else if (hw->bus.func == E1000_FUNC_2)
697		mask = E1000_SWFW_PHY2_SM;
698	else if (hw->bus.func == E1000_FUNC_3)
699		mask = E1000_SWFW_PHY3_SM;
700
701	return hw->mac.ops.acquire_swfw_sync(hw, mask);
702}
703
704/**
705 *  igb_release_phy_82575 - Release rights to access PHY
706 *  @hw: pointer to the HW structure
707 *
708 *  A wrapper to release access rights to the correct PHY.  This is a
709 *  function pointer entry point called by the api module.
710 **/
711static void igb_release_phy_82575(struct e1000_hw *hw)
712{
713	u16 mask = E1000_SWFW_PHY0_SM;
714
715	if (hw->bus.func == E1000_FUNC_1)
716		mask = E1000_SWFW_PHY1_SM;
717	else if (hw->bus.func == E1000_FUNC_2)
718		mask = E1000_SWFW_PHY2_SM;
719	else if (hw->bus.func == E1000_FUNC_3)
720		mask = E1000_SWFW_PHY3_SM;
721
722	hw->mac.ops.release_swfw_sync(hw, mask);
723}
724
725/**
726 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
727 *  @hw: pointer to the HW structure
728 *  @offset: register offset to be read
729 *  @data: pointer to the read data
730 *
731 *  Reads the PHY register at offset using the serial gigabit media independent
732 *  interface and stores the retrieved information in data.
733 **/
734static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
735					  u16 *data)
736{
737	s32 ret_val = -E1000_ERR_PARAM;
738
739	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
740		hw_dbg("PHY Address %u is out of range\n", offset);
741		goto out;
742	}
743
744	ret_val = hw->phy.ops.acquire(hw);
745	if (ret_val)
746		goto out;
747
748	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
749
750	hw->phy.ops.release(hw);
751
752out:
753	return ret_val;
754}
755
756/**
757 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
758 *  @hw: pointer to the HW structure
759 *  @offset: register offset to write to
760 *  @data: data to write at register offset
761 *
762 *  Writes the data to PHY register at the offset using the serial gigabit
763 *  media independent interface.
764 **/
765static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
766					   u16 data)
767{
768	s32 ret_val = -E1000_ERR_PARAM;
769
770
771	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
772		hw_dbg("PHY Address %d is out of range\n", offset);
773		goto out;
774	}
775
776	ret_val = hw->phy.ops.acquire(hw);
777	if (ret_val)
778		goto out;
779
780	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
781
782	hw->phy.ops.release(hw);
783
784out:
785	return ret_val;
786}
787
788/**
789 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
790 *  @hw: pointer to the HW structure
791 *
792 *  Retrieves the PHY address and ID for both PHY's which do and do not use
793 *  sgmi interface.
794 **/
795static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
796{
797	struct e1000_phy_info *phy = &hw->phy;
798	s32  ret_val = 0;
799	u16 phy_id;
800	u32 ctrl_ext;
801	u32 mdic;
802
803	/* Extra read required for some PHY's on i354 */
804	if (hw->mac.type == e1000_i354)
805		igb_get_phy_id(hw);
806
807	/* For SGMII PHYs, we try the list of possible addresses until
808	 * we find one that works.  For non-SGMII PHYs
809	 * (e.g. integrated copper PHYs), an address of 1 should
810	 * work.  The result of this function should mean phy->phy_addr
811	 * and phy->id are set correctly.
812	 */
813	if (!(igb_sgmii_active_82575(hw))) {
814		phy->addr = 1;
815		ret_val = igb_get_phy_id(hw);
816		goto out;
817	}
818
819	if (igb_sgmii_uses_mdio_82575(hw)) {
820		switch (hw->mac.type) {
821		case e1000_82575:
822		case e1000_82576:
823			mdic = rd32(E1000_MDIC);
824			mdic &= E1000_MDIC_PHY_MASK;
825			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
826			break;
827		case e1000_82580:
828		case e1000_i350:
829		case e1000_i354:
830		case e1000_i210:
831		case e1000_i211:
832			mdic = rd32(E1000_MDICNFG);
833			mdic &= E1000_MDICNFG_PHY_MASK;
834			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
835			break;
836		default:
837			ret_val = -E1000_ERR_PHY;
838			goto out;
839		}
840		ret_val = igb_get_phy_id(hw);
841		goto out;
842	}
843
844	/* Power on sgmii phy if it is disabled */
845	ctrl_ext = rd32(E1000_CTRL_EXT);
846	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
847	wrfl();
848	msleep(300);
849
850	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
851	 * Therefore, we need to test 1-7
852	 */
853	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
854		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
855		if (ret_val == 0) {
856			hw_dbg("Vendor ID 0x%08X read at address %u\n",
857			       phy_id, phy->addr);
858			/* At the time of this writing, The M88 part is
859			 * the only supported SGMII PHY product.
860			 */
861			if (phy_id == M88_VENDOR)
862				break;
863		} else {
864			hw_dbg("PHY address %u was unreadable\n", phy->addr);
865		}
866	}
867
868	/* A valid PHY type couldn't be found. */
869	if (phy->addr == 8) {
870		phy->addr = 0;
871		ret_val = -E1000_ERR_PHY;
872		goto out;
873	} else {
874		ret_val = igb_get_phy_id(hw);
875	}
876
877	/* restore previous sfp cage power state */
878	wr32(E1000_CTRL_EXT, ctrl_ext);
879
880out:
881	return ret_val;
882}
883
884/**
885 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
886 *  @hw: pointer to the HW structure
887 *
888 *  Resets the PHY using the serial gigabit media independent interface.
889 **/
890static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
891{
892	s32 ret_val;
893
894	/* This isn't a true "hard" reset, but is the only reset
895	 * available to us at this time.
896	 */
897
898	hw_dbg("Soft resetting SGMII attached PHY...\n");
899
900	/* SFP documentation requires the following to configure the SPF module
901	 * to work on SGMII.  No further documentation is given.
902	 */
903	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
904	if (ret_val)
905		goto out;
906
907	ret_val = igb_phy_sw_reset(hw);
908
909out:
910	return ret_val;
911}
912
913/**
914 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
915 *  @hw: pointer to the HW structure
916 *  @active: true to enable LPLU, false to disable
917 *
918 *  Sets the LPLU D0 state according to the active flag.  When
919 *  activating LPLU this function also disables smart speed
920 *  and vice versa.  LPLU will not be activated unless the
921 *  device autonegotiation advertisement meets standards of
922 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
923 *  This is a function pointer entry point only called by
924 *  PHY setup routines.
925 **/
926static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
927{
928	struct e1000_phy_info *phy = &hw->phy;
929	s32 ret_val;
930	u16 data;
931
932	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
933	if (ret_val)
934		goto out;
935
936	if (active) {
937		data |= IGP02E1000_PM_D0_LPLU;
938		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
939						 data);
940		if (ret_val)
941			goto out;
942
943		/* When LPLU is enabled, we should disable SmartSpeed */
944		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
945						&data);
946		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
947		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
948						 data);
949		if (ret_val)
950			goto out;
951	} else {
952		data &= ~IGP02E1000_PM_D0_LPLU;
953		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
954						 data);
955		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
956		 * during Dx states where the power conservation is most
957		 * important.  During driver activity we should enable
958		 * SmartSpeed, so performance is maintained.
959		 */
960		if (phy->smart_speed == e1000_smart_speed_on) {
961			ret_val = phy->ops.read_reg(hw,
962					IGP01E1000_PHY_PORT_CONFIG, &data);
963			if (ret_val)
964				goto out;
965
966			data |= IGP01E1000_PSCFR_SMART_SPEED;
967			ret_val = phy->ops.write_reg(hw,
968					IGP01E1000_PHY_PORT_CONFIG, data);
969			if (ret_val)
970				goto out;
971		} else if (phy->smart_speed == e1000_smart_speed_off) {
972			ret_val = phy->ops.read_reg(hw,
973					IGP01E1000_PHY_PORT_CONFIG, &data);
974			if (ret_val)
975				goto out;
976
977			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
978			ret_val = phy->ops.write_reg(hw,
979					IGP01E1000_PHY_PORT_CONFIG, data);
980			if (ret_val)
981				goto out;
982		}
983	}
984
985out:
986	return ret_val;
987}
988
989/**
990 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
991 *  @hw: pointer to the HW structure
992 *  @active: true to enable LPLU, false to disable
993 *
994 *  Sets the LPLU D0 state according to the active flag.  When
995 *  activating LPLU this function also disables smart speed
996 *  and vice versa.  LPLU will not be activated unless the
997 *  device autonegotiation advertisement meets standards of
998 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
999 *  This is a function pointer entry point only called by
1000 *  PHY setup routines.
1001 **/
1002static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1003{
1004	struct e1000_phy_info *phy = &hw->phy;
1005	u16 data;
1006
1007	data = rd32(E1000_82580_PHY_POWER_MGMT);
1008
1009	if (active) {
1010		data |= E1000_82580_PM_D0_LPLU;
1011
1012		/* When LPLU is enabled, we should disable SmartSpeed */
1013		data &= ~E1000_82580_PM_SPD;
1014	} else {
1015		data &= ~E1000_82580_PM_D0_LPLU;
1016
1017		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1018		 * during Dx states where the power conservation is most
1019		 * important.  During driver activity we should enable
1020		 * SmartSpeed, so performance is maintained.
1021		 */
1022		if (phy->smart_speed == e1000_smart_speed_on)
1023			data |= E1000_82580_PM_SPD;
1024		else if (phy->smart_speed == e1000_smart_speed_off)
1025			data &= ~E1000_82580_PM_SPD; }
1026
1027	wr32(E1000_82580_PHY_POWER_MGMT, data);
1028	return 0;
1029}
1030
1031/**
1032 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1033 *  @hw: pointer to the HW structure
1034 *  @active: boolean used to enable/disable lplu
1035 *
1036 *  Success returns 0, Failure returns 1
1037 *
1038 *  The low power link up (lplu) state is set to the power management level D3
1039 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1040 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1041 *  is used during Dx states where the power conservation is most important.
1042 *  During driver activity, SmartSpeed should be enabled so performance is
1043 *  maintained.
1044 **/
1045static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1046{
1047	struct e1000_phy_info *phy = &hw->phy;
1048	u16 data;
1049
1050	data = rd32(E1000_82580_PHY_POWER_MGMT);
1051
1052	if (!active) {
1053		data &= ~E1000_82580_PM_D3_LPLU;
1054		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1055		 * during Dx states where the power conservation is most
1056		 * important.  During driver activity we should enable
1057		 * SmartSpeed, so performance is maintained.
1058		 */
1059		if (phy->smart_speed == e1000_smart_speed_on)
1060			data |= E1000_82580_PM_SPD;
1061		else if (phy->smart_speed == e1000_smart_speed_off)
1062			data &= ~E1000_82580_PM_SPD;
1063	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1064		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1065		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1066		data |= E1000_82580_PM_D3_LPLU;
1067		/* When LPLU is enabled, we should disable SmartSpeed */
1068		data &= ~E1000_82580_PM_SPD;
1069	}
1070
1071	wr32(E1000_82580_PHY_POWER_MGMT, data);
1072	return 0;
1073}
1074
1075/**
1076 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1077 *  @hw: pointer to the HW structure
1078 *
1079 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1080 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1081 *  Return successful if access grant bit set, else clear the request for
1082 *  EEPROM access and return -E1000_ERR_NVM (-1).
1083 **/
1084static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1085{
1086	s32 ret_val;
1087
1088	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1089	if (ret_val)
1090		goto out;
1091
1092	ret_val = igb_acquire_nvm(hw);
1093
1094	if (ret_val)
1095		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1096
1097out:
1098	return ret_val;
1099}
1100
1101/**
1102 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1103 *  @hw: pointer to the HW structure
1104 *
1105 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1106 *  then release the semaphores acquired.
1107 **/
1108static void igb_release_nvm_82575(struct e1000_hw *hw)
1109{
1110	igb_release_nvm(hw);
1111	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1112}
1113
1114/**
1115 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1116 *  @hw: pointer to the HW structure
1117 *  @mask: specifies which semaphore to acquire
1118 *
1119 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1120 *  will also specify which port we're acquiring the lock for.
1121 **/
1122static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1123{
1124	u32 swfw_sync;
1125	u32 swmask = mask;
1126	u32 fwmask = mask << 16;
1127	s32 ret_val = 0;
1128	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1129
1130	while (i < timeout) {
1131		if (igb_get_hw_semaphore(hw)) {
1132			ret_val = -E1000_ERR_SWFW_SYNC;
1133			goto out;
1134		}
1135
1136		swfw_sync = rd32(E1000_SW_FW_SYNC);
1137		if (!(swfw_sync & (fwmask | swmask)))
1138			break;
1139
1140		/* Firmware currently using resource (fwmask)
1141		 * or other software thread using resource (swmask)
1142		 */
1143		igb_put_hw_semaphore(hw);
1144		mdelay(5);
1145		i++;
1146	}
1147
1148	if (i == timeout) {
1149		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1150		ret_val = -E1000_ERR_SWFW_SYNC;
1151		goto out;
1152	}
1153
1154	swfw_sync |= swmask;
1155	wr32(E1000_SW_FW_SYNC, swfw_sync);
1156
1157	igb_put_hw_semaphore(hw);
1158
1159out:
1160	return ret_val;
1161}
1162
1163/**
1164 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1165 *  @hw: pointer to the HW structure
1166 *  @mask: specifies which semaphore to acquire
1167 *
1168 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1169 *  will also specify which port we're releasing the lock for.
1170 **/
1171static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1172{
1173	u32 swfw_sync;
1174
1175	while (igb_get_hw_semaphore(hw) != 0)
1176		; /* Empty */
1177
1178	swfw_sync = rd32(E1000_SW_FW_SYNC);
1179	swfw_sync &= ~mask;
1180	wr32(E1000_SW_FW_SYNC, swfw_sync);
1181
1182	igb_put_hw_semaphore(hw);
1183}
1184
1185/**
1186 *  igb_get_cfg_done_82575 - Read config done bit
1187 *  @hw: pointer to the HW structure
1188 *
1189 *  Read the management control register for the config done bit for
1190 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1191 *  to read the config done bit, so an error is *ONLY* logged and returns
1192 *  0.  If we were to return with error, EEPROM-less silicon
1193 *  would not be able to be reset or change link.
1194 **/
1195static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1196{
1197	s32 timeout = PHY_CFG_TIMEOUT;
1198	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1199
1200	if (hw->bus.func == 1)
1201		mask = E1000_NVM_CFG_DONE_PORT_1;
1202	else if (hw->bus.func == E1000_FUNC_2)
1203		mask = E1000_NVM_CFG_DONE_PORT_2;
1204	else if (hw->bus.func == E1000_FUNC_3)
1205		mask = E1000_NVM_CFG_DONE_PORT_3;
1206
1207	while (timeout) {
1208		if (rd32(E1000_EEMNGCTL) & mask)
1209			break;
1210		usleep_range(1000, 2000);
1211		timeout--;
1212	}
1213	if (!timeout)
1214		hw_dbg("MNG configuration cycle has not completed.\n");
1215
1216	/* If EEPROM is not marked present, init the PHY manually */
1217	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1218	    (hw->phy.type == e1000_phy_igp_3))
1219		igb_phy_init_script_igp3(hw);
1220
1221	return 0;
1222}
1223
1224/**
1225 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1226 *  @hw: pointer to the HW structure
1227 *  @speed: stores the current speed
1228 *  @duplex: stores the current duplex
1229 *
1230 *  This is a wrapper function, if using the serial gigabit media independent
1231 *  interface, use PCS to retrieve the link speed and duplex information.
1232 *  Otherwise, use the generic function to get the link speed and duplex info.
1233 **/
1234static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1235					u16 *duplex)
1236{
1237	s32 ret_val;
1238
1239	if (hw->phy.media_type != e1000_media_type_copper)
1240		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1241							       duplex);
1242	else
1243		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1244								    duplex);
1245
1246	return ret_val;
1247}
1248
1249/**
1250 *  igb_check_for_link_82575 - Check for link
1251 *  @hw: pointer to the HW structure
1252 *
1253 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1254 *  use the generic interface for determining link.
1255 **/
1256static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1257{
1258	s32 ret_val;
1259	u16 speed, duplex;
1260
1261	if (hw->phy.media_type != e1000_media_type_copper) {
1262		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1263							     &duplex);
1264		/* Use this flag to determine if link needs to be checked or
1265		 * not.  If  we have link clear the flag so that we do not
1266		 * continue to check for link.
1267		 */
1268		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1269
1270		/* Configure Flow Control now that Auto-Neg has completed.
1271		 * First, we need to restore the desired flow control
1272		 * settings because we may have had to re-autoneg with a
1273		 * different link partner.
1274		 */
1275		ret_val = igb_config_fc_after_link_up(hw);
1276		if (ret_val)
1277			hw_dbg("Error configuring flow control\n");
1278	} else {
1279		ret_val = igb_check_for_copper_link(hw);
1280	}
1281
1282	return ret_val;
1283}
1284
1285/**
1286 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1287 *  @hw: pointer to the HW structure
1288 **/
1289void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1290{
1291	u32 reg;
1292
1293
1294	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1295	    !igb_sgmii_active_82575(hw))
1296		return;
1297
1298	/* Enable PCS to turn on link */
1299	reg = rd32(E1000_PCS_CFG0);
1300	reg |= E1000_PCS_CFG_PCS_EN;
1301	wr32(E1000_PCS_CFG0, reg);
1302
1303	/* Power up the laser */
1304	reg = rd32(E1000_CTRL_EXT);
1305	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1306	wr32(E1000_CTRL_EXT, reg);
1307
1308	/* flush the write to verify completion */
1309	wrfl();
1310	usleep_range(1000, 2000);
1311}
1312
1313/**
1314 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1315 *  @hw: pointer to the HW structure
1316 *  @speed: stores the current speed
1317 *  @duplex: stores the current duplex
1318 *
1319 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1320 *  duplex, then store the values in the pointers provided.
1321 **/
1322static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1323						u16 *duplex)
1324{
1325	struct e1000_mac_info *mac = &hw->mac;
1326	u32 pcs, status;
1327
1328	/* Set up defaults for the return values of this function */
1329	mac->serdes_has_link = false;
1330	*speed = 0;
1331	*duplex = 0;
1332
1333	/* Read the PCS Status register for link state. For non-copper mode,
1334	 * the status register is not accurate. The PCS status register is
1335	 * used instead.
1336	 */
1337	pcs = rd32(E1000_PCS_LSTAT);
1338
1339	/* The link up bit determines when link is up on autoneg. The sync ok
1340	 * gets set once both sides sync up and agree upon link. Stable link
1341	 * can be determined by checking for both link up and link sync ok
1342	 */
1343	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1344		mac->serdes_has_link = true;
1345
1346		/* Detect and store PCS speed */
1347		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1348			*speed = SPEED_1000;
1349		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1350			*speed = SPEED_100;
1351		else
1352			*speed = SPEED_10;
1353
1354		/* Detect and store PCS duplex */
1355		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1356			*duplex = FULL_DUPLEX;
1357		else
1358			*duplex = HALF_DUPLEX;
1359
1360	/* Check if it is an I354 2.5Gb backplane connection. */
1361		if (mac->type == e1000_i354) {
1362			status = rd32(E1000_STATUS);
1363			if ((status & E1000_STATUS_2P5_SKU) &&
1364			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1365				*speed = SPEED_2500;
1366				*duplex = FULL_DUPLEX;
1367				hw_dbg("2500 Mbs, ");
1368				hw_dbg("Full Duplex\n");
1369			}
1370		}
1371
1372	}
1373
1374	return 0;
1375}
1376
1377/**
1378 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1379 *  @hw: pointer to the HW structure
1380 *
1381 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1382 *  when management pass thru is not enabled.
1383 **/
1384void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1385{
1386	u32 reg;
1387
1388	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1389	    igb_sgmii_active_82575(hw))
1390		return;
1391
1392	if (!igb_enable_mng_pass_thru(hw)) {
1393		/* Disable PCS to turn off link */
1394		reg = rd32(E1000_PCS_CFG0);
1395		reg &= ~E1000_PCS_CFG_PCS_EN;
1396		wr32(E1000_PCS_CFG0, reg);
1397
1398		/* shutdown the laser */
1399		reg = rd32(E1000_CTRL_EXT);
1400		reg |= E1000_CTRL_EXT_SDP3_DATA;
1401		wr32(E1000_CTRL_EXT, reg);
1402
1403		/* flush the write to verify completion */
1404		wrfl();
1405		usleep_range(1000, 2000);
1406	}
1407}
1408
1409/**
1410 *  igb_reset_hw_82575 - Reset hardware
1411 *  @hw: pointer to the HW structure
1412 *
1413 *  This resets the hardware into a known state.  This is a
1414 *  function pointer entry point called by the api module.
1415 **/
1416static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1417{
1418	u32 ctrl;
1419	s32 ret_val;
1420
1421	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1422	 * on the last TLP read/write transaction when MAC is reset.
1423	 */
1424	ret_val = igb_disable_pcie_master(hw);
1425	if (ret_val)
1426		hw_dbg("PCI-E Master disable polling has failed.\n");
1427
1428	/* set the completion timeout for interface */
1429	ret_val = igb_set_pcie_completion_timeout(hw);
1430	if (ret_val)
1431		hw_dbg("PCI-E Set completion timeout has failed.\n");
1432
1433	hw_dbg("Masking off all interrupts\n");
1434	wr32(E1000_IMC, 0xffffffff);
1435
1436	wr32(E1000_RCTL, 0);
1437	wr32(E1000_TCTL, E1000_TCTL_PSP);
1438	wrfl();
1439
1440	usleep_range(10000, 20000);
1441
1442	ctrl = rd32(E1000_CTRL);
1443
1444	hw_dbg("Issuing a global reset to MAC\n");
1445	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1446
1447	ret_val = igb_get_auto_rd_done(hw);
1448	if (ret_val) {
1449		/* When auto config read does not complete, do not
1450		 * return with an error. This can happen in situations
1451		 * where there is no eeprom and prevents getting link.
1452		 */
1453		hw_dbg("Auto Read Done did not complete\n");
1454	}
1455
1456	/* If EEPROM is not present, run manual init scripts */
1457	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1458		igb_reset_init_script_82575(hw);
1459
1460	/* Clear any pending interrupt events. */
1461	wr32(E1000_IMC, 0xffffffff);
1462	rd32(E1000_ICR);
1463
1464	/* Install any alternate MAC address into RAR0 */
1465	ret_val = igb_check_alt_mac_addr(hw);
1466
1467	return ret_val;
1468}
1469
1470/**
1471 *  igb_init_hw_82575 - Initialize hardware
1472 *  @hw: pointer to the HW structure
1473 *
1474 *  This inits the hardware readying it for operation.
1475 **/
1476static s32 igb_init_hw_82575(struct e1000_hw *hw)
1477{
1478	struct e1000_mac_info *mac = &hw->mac;
1479	s32 ret_val;
1480	u16 i, rar_count = mac->rar_entry_count;
1481
1482	if ((hw->mac.type >= e1000_i210) &&
1483	    !(igb_get_flash_presence_i210(hw))) {
1484		ret_val = igb_pll_workaround_i210(hw);
1485		if (ret_val)
1486			return ret_val;
1487	}
1488
1489	/* Initialize identification LED */
1490	ret_val = igb_id_led_init(hw);
1491	if (ret_val) {
1492		hw_dbg("Error initializing identification LED\n");
1493		/* This is not fatal and we should not stop init due to this */
1494	}
1495
1496	/* Disabling VLAN filtering */
1497	hw_dbg("Initializing the IEEE VLAN\n");
1498	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1499		igb_clear_vfta_i350(hw);
1500	else
1501		igb_clear_vfta(hw);
1502
1503	/* Setup the receive address */
1504	igb_init_rx_addrs(hw, rar_count);
1505
1506	/* Zero out the Multicast HASH table */
1507	hw_dbg("Zeroing the MTA\n");
1508	for (i = 0; i < mac->mta_reg_count; i++)
1509		array_wr32(E1000_MTA, i, 0);
1510
1511	/* Zero out the Unicast HASH table */
1512	hw_dbg("Zeroing the UTA\n");
1513	for (i = 0; i < mac->uta_reg_count; i++)
1514		array_wr32(E1000_UTA, i, 0);
1515
1516	/* Setup link and flow control */
1517	ret_val = igb_setup_link(hw);
1518
1519	/* Clear all of the statistics registers (clear on read).  It is
1520	 * important that we do this after we have tried to establish link
1521	 * because the symbol error count will increment wildly if there
1522	 * is no link.
1523	 */
1524	igb_clear_hw_cntrs_82575(hw);
1525	return ret_val;
1526}
1527
1528/**
1529 *  igb_setup_copper_link_82575 - Configure copper link settings
1530 *  @hw: pointer to the HW structure
1531 *
1532 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1533 *  for link, once link is established calls to configure collision distance
1534 *  and flow control are called.
1535 **/
1536static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1537{
1538	u32 ctrl;
1539	s32  ret_val;
1540	u32 phpm_reg;
1541
1542	ctrl = rd32(E1000_CTRL);
1543	ctrl |= E1000_CTRL_SLU;
1544	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1545	wr32(E1000_CTRL, ctrl);
1546
1547	/* Clear Go Link Disconnect bit on supported devices */
1548	switch (hw->mac.type) {
1549	case e1000_82580:
1550	case e1000_i350:
1551	case e1000_i210:
1552	case e1000_i211:
1553		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1554		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1555		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1556		break;
1557	default:
1558		break;
1559	}
1560
1561	ret_val = igb_setup_serdes_link_82575(hw);
1562	if (ret_val)
1563		goto out;
1564
1565	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1566		/* allow time for SFP cage time to power up phy */
1567		msleep(300);
1568
1569		ret_val = hw->phy.ops.reset(hw);
1570		if (ret_val) {
1571			hw_dbg("Error resetting the PHY.\n");
1572			goto out;
1573		}
1574	}
1575	switch (hw->phy.type) {
1576	case e1000_phy_i210:
1577	case e1000_phy_m88:
1578		switch (hw->phy.id) {
1579		case I347AT4_E_PHY_ID:
1580		case M88E1112_E_PHY_ID:
1581		case M88E1543_E_PHY_ID:
1582		case I210_I_PHY_ID:
1583			ret_val = igb_copper_link_setup_m88_gen2(hw);
1584			break;
1585		default:
1586			ret_val = igb_copper_link_setup_m88(hw);
1587			break;
1588		}
1589		break;
1590	case e1000_phy_igp_3:
1591		ret_val = igb_copper_link_setup_igp(hw);
1592		break;
1593	case e1000_phy_82580:
1594		ret_val = igb_copper_link_setup_82580(hw);
1595		break;
1596	default:
1597		ret_val = -E1000_ERR_PHY;
1598		break;
1599	}
1600
1601	if (ret_val)
1602		goto out;
1603
1604	ret_val = igb_setup_copper_link(hw);
1605out:
1606	return ret_val;
1607}
1608
1609/**
1610 *  igb_setup_serdes_link_82575 - Setup link for serdes
1611 *  @hw: pointer to the HW structure
1612 *
1613 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1614 *  used on copper connections where the serialized gigabit media independent
1615 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1616 *  for auto-negotiation or forces speed/duplex.
1617 **/
1618static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1619{
1620	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1621	bool pcs_autoneg;
1622	s32 ret_val = 0;
1623	u16 data;
1624
1625	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1626	    !igb_sgmii_active_82575(hw))
1627		return ret_val;
1628
1629
1630	/* On the 82575, SerDes loopback mode persists until it is
1631	 * explicitly turned off or a power cycle is performed.  A read to
1632	 * the register does not indicate its status.  Therefore, we ensure
1633	 * loopback mode is disabled during initialization.
1634	 */
1635	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1636
1637	/* power on the sfp cage if present and turn on I2C */
1638	ctrl_ext = rd32(E1000_CTRL_EXT);
1639	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1640	ctrl_ext |= E1000_CTRL_I2C_ENA;
1641	wr32(E1000_CTRL_EXT, ctrl_ext);
1642
1643	ctrl_reg = rd32(E1000_CTRL);
1644	ctrl_reg |= E1000_CTRL_SLU;
1645
1646	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1647		/* set both sw defined pins */
1648		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1649
1650		/* Set switch control to serdes energy detect */
1651		reg = rd32(E1000_CONNSW);
1652		reg |= E1000_CONNSW_ENRGSRC;
1653		wr32(E1000_CONNSW, reg);
1654	}
1655
1656	reg = rd32(E1000_PCS_LCTL);
1657
1658	/* default pcs_autoneg to the same setting as mac autoneg */
1659	pcs_autoneg = hw->mac.autoneg;
1660
1661	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1662	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1663		/* sgmii mode lets the phy handle forcing speed/duplex */
1664		pcs_autoneg = true;
1665		/* autoneg time out should be disabled for SGMII mode */
1666		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1667		break;
1668	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1669		/* disable PCS autoneg and support parallel detect only */
1670		pcs_autoneg = false;
1671	default:
1672		if (hw->mac.type == e1000_82575 ||
1673		    hw->mac.type == e1000_82576) {
1674			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1675			if (ret_val) {
1676				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1677				return ret_val;
1678			}
1679
1680			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1681				pcs_autoneg = false;
1682		}
1683
1684		/* non-SGMII modes only supports a speed of 1000/Full for the
1685		 * link so it is best to just force the MAC and let the pcs
1686		 * link either autoneg or be forced to 1000/Full
1687		 */
1688		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1689				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1690
1691		/* set speed of 1000/Full if speed/duplex is forced */
1692		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1693		break;
1694	}
1695
1696	wr32(E1000_CTRL, ctrl_reg);
1697
1698	/* New SerDes mode allows for forcing speed or autonegotiating speed
1699	 * at 1gb. Autoneg should be default set by most drivers. This is the
1700	 * mode that will be compatible with older link partners and switches.
1701	 * However, both are supported by the hardware and some drivers/tools.
1702	 */
1703	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1704		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1705
1706	if (pcs_autoneg) {
1707		/* Set PCS register for autoneg */
1708		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1709		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1710
1711		/* Disable force flow control for autoneg */
1712		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1713
1714		/* Configure flow control advertisement for autoneg */
1715		anadv_reg = rd32(E1000_PCS_ANADV);
1716		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1717		switch (hw->fc.requested_mode) {
1718		case e1000_fc_full:
1719		case e1000_fc_rx_pause:
1720			anadv_reg |= E1000_TXCW_ASM_DIR;
1721			anadv_reg |= E1000_TXCW_PAUSE;
1722			break;
1723		case e1000_fc_tx_pause:
1724			anadv_reg |= E1000_TXCW_ASM_DIR;
1725			break;
1726		default:
1727			break;
1728		}
1729		wr32(E1000_PCS_ANADV, anadv_reg);
1730
1731		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1732	} else {
1733		/* Set PCS register for forced link */
1734		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1735
1736		/* Force flow control for forced link */
1737		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1738
1739		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1740	}
1741
1742	wr32(E1000_PCS_LCTL, reg);
1743
1744	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1745		igb_force_mac_fc(hw);
1746
1747	return ret_val;
1748}
1749
1750/**
1751 *  igb_sgmii_active_82575 - Return sgmii state
1752 *  @hw: pointer to the HW structure
1753 *
1754 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1755 *  which can be enabled for use in the embedded applications.  Simply
1756 *  return the current state of the sgmii interface.
1757 **/
1758static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1759{
1760	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1761	return dev_spec->sgmii_active;
1762}
1763
1764/**
1765 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Inits recommended HW defaults after a reset when there is no EEPROM
1769 *  detected. This is only for the 82575.
1770 **/
1771static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1772{
1773	if (hw->mac.type == e1000_82575) {
1774		hw_dbg("Running reset init script for 82575\n");
1775		/* SerDes configuration via SERDESCTRL */
1776		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1777		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1778		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1779		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1780
1781		/* CCM configuration via CCMCTL register */
1782		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1783		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1784
1785		/* PCIe lanes configuration */
1786		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1787		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1788		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1789		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1790
1791		/* PCIe PLL Configuration */
1792		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1793		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1794		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1795	}
1796
1797	return 0;
1798}
1799
1800/**
1801 *  igb_read_mac_addr_82575 - Read device MAC address
1802 *  @hw: pointer to the HW structure
1803 **/
1804static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1805{
1806	s32 ret_val = 0;
1807
1808	/* If there's an alternate MAC address place it in RAR0
1809	 * so that it will override the Si installed default perm
1810	 * address.
1811	 */
1812	ret_val = igb_check_alt_mac_addr(hw);
1813	if (ret_val)
1814		goto out;
1815
1816	ret_val = igb_read_mac_addr(hw);
1817
1818out:
1819	return ret_val;
1820}
1821
1822/**
1823 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1824 * @hw: pointer to the HW structure
1825 *
1826 * In the case of a PHY power down to save power, or to turn off link during a
1827 * driver unload, or wake on lan is not enabled, remove the link.
1828 **/
1829void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1830{
1831	/* If the management interface is not enabled, then power down */
1832	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1833		igb_power_down_phy_copper(hw);
1834}
1835
1836/**
1837 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1838 *  @hw: pointer to the HW structure
1839 *
1840 *  Clears the hardware counters by reading the counter registers.
1841 **/
1842static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1843{
1844	igb_clear_hw_cntrs_base(hw);
1845
1846	rd32(E1000_PRC64);
1847	rd32(E1000_PRC127);
1848	rd32(E1000_PRC255);
1849	rd32(E1000_PRC511);
1850	rd32(E1000_PRC1023);
1851	rd32(E1000_PRC1522);
1852	rd32(E1000_PTC64);
1853	rd32(E1000_PTC127);
1854	rd32(E1000_PTC255);
1855	rd32(E1000_PTC511);
1856	rd32(E1000_PTC1023);
1857	rd32(E1000_PTC1522);
1858
1859	rd32(E1000_ALGNERRC);
1860	rd32(E1000_RXERRC);
1861	rd32(E1000_TNCRS);
1862	rd32(E1000_CEXTERR);
1863	rd32(E1000_TSCTC);
1864	rd32(E1000_TSCTFC);
1865
1866	rd32(E1000_MGTPRC);
1867	rd32(E1000_MGTPDC);
1868	rd32(E1000_MGTPTC);
1869
1870	rd32(E1000_IAC);
1871	rd32(E1000_ICRXOC);
1872
1873	rd32(E1000_ICRXPTC);
1874	rd32(E1000_ICRXATC);
1875	rd32(E1000_ICTXPTC);
1876	rd32(E1000_ICTXATC);
1877	rd32(E1000_ICTXQEC);
1878	rd32(E1000_ICTXQMTC);
1879	rd32(E1000_ICRXDMTC);
1880
1881	rd32(E1000_CBTMPC);
1882	rd32(E1000_HTDPMC);
1883	rd32(E1000_CBRMPC);
1884	rd32(E1000_RPTHC);
1885	rd32(E1000_HGPTC);
1886	rd32(E1000_HTCBDPC);
1887	rd32(E1000_HGORCL);
1888	rd32(E1000_HGORCH);
1889	rd32(E1000_HGOTCL);
1890	rd32(E1000_HGOTCH);
1891	rd32(E1000_LENERRS);
1892
1893	/* This register should not be read in copper configurations */
1894	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1895	    igb_sgmii_active_82575(hw))
1896		rd32(E1000_SCVPC);
1897}
1898
1899/**
1900 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1901 *  @hw: pointer to the HW structure
1902 *
1903 *  After rx enable if managability is enabled then there is likely some
1904 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1905 *  function clears the fifos and flushes any packets that came in as rx was
1906 *  being enabled.
1907 **/
1908void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1909{
1910	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1911	int i, ms_wait;
1912
1913	if (hw->mac.type != e1000_82575 ||
1914	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1915		return;
1916
1917	/* Disable all RX queues */
1918	for (i = 0; i < 4; i++) {
1919		rxdctl[i] = rd32(E1000_RXDCTL(i));
1920		wr32(E1000_RXDCTL(i),
1921		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1922	}
1923	/* Poll all queues to verify they have shut down */
1924	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1925		usleep_range(1000, 2000);
1926		rx_enabled = 0;
1927		for (i = 0; i < 4; i++)
1928			rx_enabled |= rd32(E1000_RXDCTL(i));
1929		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1930			break;
1931	}
1932
1933	if (ms_wait == 10)
1934		hw_dbg("Queue disable timed out after 10ms\n");
1935
1936	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1937	 * incoming packets are rejected.  Set enable and wait 2ms so that
1938	 * any packet that was coming in as RCTL.EN was set is flushed
1939	 */
1940	rfctl = rd32(E1000_RFCTL);
1941	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1942
1943	rlpml = rd32(E1000_RLPML);
1944	wr32(E1000_RLPML, 0);
1945
1946	rctl = rd32(E1000_RCTL);
1947	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1948	temp_rctl |= E1000_RCTL_LPE;
1949
1950	wr32(E1000_RCTL, temp_rctl);
1951	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1952	wrfl();
1953	usleep_range(2000, 3000);
1954
1955	/* Enable RX queues that were previously enabled and restore our
1956	 * previous state
1957	 */
1958	for (i = 0; i < 4; i++)
1959		wr32(E1000_RXDCTL(i), rxdctl[i]);
1960	wr32(E1000_RCTL, rctl);
1961	wrfl();
1962
1963	wr32(E1000_RLPML, rlpml);
1964	wr32(E1000_RFCTL, rfctl);
1965
1966	/* Flush receive errors generated by workaround */
1967	rd32(E1000_ROC);
1968	rd32(E1000_RNBC);
1969	rd32(E1000_MPC);
1970}
1971
1972/**
1973 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1974 *  @hw: pointer to the HW structure
1975 *
1976 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1977 *  however the hardware default for these parts is 500us to 1ms which is less
1978 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1979 *  increase the value to either 10ms to 200ms for capability version 1 config,
1980 *  or 16ms to 55ms for version 2.
1981 **/
1982static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1983{
1984	u32 gcr = rd32(E1000_GCR);
1985	s32 ret_val = 0;
1986	u16 pcie_devctl2;
1987
1988	/* only take action if timeout value is defaulted to 0 */
1989	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1990		goto out;
1991
1992	/* if capabilities version is type 1 we can write the
1993	 * timeout of 10ms to 200ms through the GCR register
1994	 */
1995	if (!(gcr & E1000_GCR_CAP_VER2)) {
1996		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1997		goto out;
1998	}
1999
2000	/* for version 2 capabilities we need to write the config space
2001	 * directly in order to set the completion timeout value for
2002	 * 16ms to 55ms
2003	 */
2004	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2005					&pcie_devctl2);
2006	if (ret_val)
2007		goto out;
2008
2009	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2010
2011	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2012					 &pcie_devctl2);
2013out:
2014	/* disable completion timeout resend */
2015	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2016
2017	wr32(E1000_GCR, gcr);
2018	return ret_val;
2019}
2020
2021/**
2022 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2023 *  @hw: pointer to the hardware struct
2024 *  @enable: state to enter, either enabled or disabled
2025 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2026 *
2027 *  enables/disables L2 switch anti-spoofing functionality.
2028 **/
2029void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2030{
2031	u32 reg_val, reg_offset;
2032
2033	switch (hw->mac.type) {
2034	case e1000_82576:
2035		reg_offset = E1000_DTXSWC;
2036		break;
2037	case e1000_i350:
2038	case e1000_i354:
2039		reg_offset = E1000_TXSWC;
2040		break;
2041	default:
2042		return;
2043	}
2044
2045	reg_val = rd32(reg_offset);
2046	if (enable) {
2047		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2048			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2049		/* The PF can spoof - it has to in order to
2050		 * support emulation mode NICs
2051		 */
2052		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2053	} else {
2054		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2055			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2056	}
2057	wr32(reg_offset, reg_val);
2058}
2059
2060/**
2061 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2062 *  @hw: pointer to the hardware struct
2063 *  @enable: state to enter, either enabled or disabled
2064 *
2065 *  enables/disables L2 switch loopback functionality.
2066 **/
2067void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2068{
2069	u32 dtxswc;
2070
2071	switch (hw->mac.type) {
2072	case e1000_82576:
2073		dtxswc = rd32(E1000_DTXSWC);
2074		if (enable)
2075			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2076		else
2077			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2078		wr32(E1000_DTXSWC, dtxswc);
2079		break;
2080	case e1000_i354:
2081	case e1000_i350:
2082		dtxswc = rd32(E1000_TXSWC);
2083		if (enable)
2084			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2085		else
2086			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2087		wr32(E1000_TXSWC, dtxswc);
2088		break;
2089	default:
2090		/* Currently no other hardware supports loopback */
2091		break;
2092	}
2093
2094}
2095
2096/**
2097 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2098 *  @hw: pointer to the hardware struct
2099 *  @enable: state to enter, either enabled or disabled
2100 *
2101 *  enables/disables replication of packets across multiple pools.
2102 **/
2103void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2104{
2105	u32 vt_ctl = rd32(E1000_VT_CTL);
2106
2107	if (enable)
2108		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2109	else
2110		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2111
2112	wr32(E1000_VT_CTL, vt_ctl);
2113}
2114
2115/**
2116 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2117 *  @hw: pointer to the HW structure
2118 *  @offset: register offset to be read
2119 *  @data: pointer to the read data
2120 *
2121 *  Reads the MDI control register in the PHY at offset and stores the
2122 *  information read to data.
2123 **/
2124static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2125{
2126	s32 ret_val;
2127
2128	ret_val = hw->phy.ops.acquire(hw);
2129	if (ret_val)
2130		goto out;
2131
2132	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2133
2134	hw->phy.ops.release(hw);
2135
2136out:
2137	return ret_val;
2138}
2139
2140/**
2141 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2142 *  @hw: pointer to the HW structure
2143 *  @offset: register offset to write to
2144 *  @data: data to write to register at offset
2145 *
2146 *  Writes data to MDI control register in the PHY at offset.
2147 **/
2148static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2149{
2150	s32 ret_val;
2151
2152
2153	ret_val = hw->phy.ops.acquire(hw);
2154	if (ret_val)
2155		goto out;
2156
2157	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2158
2159	hw->phy.ops.release(hw);
2160
2161out:
2162	return ret_val;
2163}
2164
2165/**
2166 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2167 *  @hw: pointer to the HW structure
2168 *
2169 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2170 *  the values found in the EEPROM.  This addresses an issue in which these
2171 *  bits are not restored from EEPROM after reset.
2172 **/
2173static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2174{
2175	s32 ret_val = 0;
2176	u32 mdicnfg;
2177	u16 nvm_data = 0;
2178
2179	if (hw->mac.type != e1000_82580)
2180		goto out;
2181	if (!igb_sgmii_active_82575(hw))
2182		goto out;
2183
2184	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2185				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2186				   &nvm_data);
2187	if (ret_val) {
2188		hw_dbg("NVM Read Error\n");
2189		goto out;
2190	}
2191
2192	mdicnfg = rd32(E1000_MDICNFG);
2193	if (nvm_data & NVM_WORD24_EXT_MDIO)
2194		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2195	if (nvm_data & NVM_WORD24_COM_MDIO)
2196		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2197	wr32(E1000_MDICNFG, mdicnfg);
2198out:
2199	return ret_val;
2200}
2201
2202/**
2203 *  igb_reset_hw_82580 - Reset hardware
2204 *  @hw: pointer to the HW structure
2205 *
2206 *  This resets function or entire device (all ports, etc.)
2207 *  to a known state.
2208 **/
2209static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2210{
2211	s32 ret_val = 0;
2212	/* BH SW mailbox bit in SW_FW_SYNC */
2213	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2214	u32 ctrl;
2215	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2216
2217	hw->dev_spec._82575.global_device_reset = false;
2218
2219	/* due to hw errata, global device reset doesn't always
2220	 * work on 82580
2221	 */
2222	if (hw->mac.type == e1000_82580)
2223		global_device_reset = false;
2224
2225	/* Get current control state. */
2226	ctrl = rd32(E1000_CTRL);
2227
2228	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2229	 * on the last TLP read/write transaction when MAC is reset.
2230	 */
2231	ret_val = igb_disable_pcie_master(hw);
2232	if (ret_val)
2233		hw_dbg("PCI-E Master disable polling has failed.\n");
2234
2235	hw_dbg("Masking off all interrupts\n");
2236	wr32(E1000_IMC, 0xffffffff);
2237	wr32(E1000_RCTL, 0);
2238	wr32(E1000_TCTL, E1000_TCTL_PSP);
2239	wrfl();
2240
2241	usleep_range(10000, 11000);
2242
2243	/* Determine whether or not a global dev reset is requested */
2244	if (global_device_reset &&
2245		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2246			global_device_reset = false;
2247
2248	if (global_device_reset &&
2249		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2250		ctrl |= E1000_CTRL_DEV_RST;
2251	else
2252		ctrl |= E1000_CTRL_RST;
2253
2254	wr32(E1000_CTRL, ctrl);
2255	wrfl();
2256
2257	/* Add delay to insure DEV_RST has time to complete */
2258	if (global_device_reset)
2259		usleep_range(5000, 6000);
2260
2261	ret_val = igb_get_auto_rd_done(hw);
2262	if (ret_val) {
2263		/* When auto config read does not complete, do not
2264		 * return with an error. This can happen in situations
2265		 * where there is no eeprom and prevents getting link.
2266		 */
2267		hw_dbg("Auto Read Done did not complete\n");
2268	}
2269
2270	/* clear global device reset status bit */
2271	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2272
2273	/* Clear any pending interrupt events. */
2274	wr32(E1000_IMC, 0xffffffff);
2275	rd32(E1000_ICR);
2276
2277	ret_val = igb_reset_mdicnfg_82580(hw);
2278	if (ret_val)
2279		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2280
2281	/* Install any alternate MAC address into RAR0 */
2282	ret_val = igb_check_alt_mac_addr(hw);
2283
2284	/* Release semaphore */
2285	if (global_device_reset)
2286		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2287
2288	return ret_val;
2289}
2290
2291/**
2292 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2293 *  @data: data received by reading RXPBS register
2294 *
2295 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2296 *  This function converts the retrieved value into the correct table value
2297 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2298 *  0x0 36  72 144   1   2   4   8  16
2299 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2300 */
2301u16 igb_rxpbs_adjust_82580(u32 data)
2302{
2303	u16 ret_val = 0;
2304
2305	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2306		ret_val = e1000_82580_rxpbs_table[data];
2307
2308	return ret_val;
2309}
2310
2311/**
2312 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2313 *  checksum
2314 *  @hw: pointer to the HW structure
2315 *  @offset: offset in words of the checksum protected region
2316 *
2317 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2318 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2319 **/
2320static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2321						 u16 offset)
2322{
2323	s32 ret_val = 0;
2324	u16 checksum = 0;
2325	u16 i, nvm_data;
2326
2327	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2328		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2329		if (ret_val) {
2330			hw_dbg("NVM Read Error\n");
2331			goto out;
2332		}
2333		checksum += nvm_data;
2334	}
2335
2336	if (checksum != (u16) NVM_SUM) {
2337		hw_dbg("NVM Checksum Invalid\n");
2338		ret_val = -E1000_ERR_NVM;
2339		goto out;
2340	}
2341
2342out:
2343	return ret_val;
2344}
2345
2346/**
2347 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2348 *  checksum
2349 *  @hw: pointer to the HW structure
2350 *  @offset: offset in words of the checksum protected region
2351 *
2352 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2353 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2354 *  value to the EEPROM.
2355 **/
2356static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2357{
2358	s32 ret_val;
2359	u16 checksum = 0;
2360	u16 i, nvm_data;
2361
2362	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2363		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2364		if (ret_val) {
2365			hw_dbg("NVM Read Error while updating checksum.\n");
2366			goto out;
2367		}
2368		checksum += nvm_data;
2369	}
2370	checksum = (u16) NVM_SUM - checksum;
2371	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2372				&checksum);
2373	if (ret_val)
2374		hw_dbg("NVM Write Error while updating checksum.\n");
2375
2376out:
2377	return ret_val;
2378}
2379
2380/**
2381 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2382 *  @hw: pointer to the HW structure
2383 *
2384 *  Calculates the EEPROM section checksum by reading/adding each word of
2385 *  the EEPROM and then verifies that the sum of the EEPROM is
2386 *  equal to 0xBABA.
2387 **/
2388static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2389{
2390	s32 ret_val = 0;
2391	u16 eeprom_regions_count = 1;
2392	u16 j, nvm_data;
2393	u16 nvm_offset;
2394
2395	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2396	if (ret_val) {
2397		hw_dbg("NVM Read Error\n");
2398		goto out;
2399	}
2400
2401	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2402		/* if checksums compatibility bit is set validate checksums
2403		 * for all 4 ports.
2404		 */
2405		eeprom_regions_count = 4;
2406	}
2407
2408	for (j = 0; j < eeprom_regions_count; j++) {
2409		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2410		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2411								nvm_offset);
2412		if (ret_val != 0)
2413			goto out;
2414	}
2415
2416out:
2417	return ret_val;
2418}
2419
2420/**
2421 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2422 *  @hw: pointer to the HW structure
2423 *
2424 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2425 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2426 *  checksum and writes the value to the EEPROM.
2427 **/
2428static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2429{
2430	s32 ret_val;
2431	u16 j, nvm_data;
2432	u16 nvm_offset;
2433
2434	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435	if (ret_val) {
2436		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2437		goto out;
2438	}
2439
2440	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2441		/* set compatibility bit to validate checksums appropriately */
2442		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2443		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2444					&nvm_data);
2445		if (ret_val) {
2446			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2447			goto out;
2448		}
2449	}
2450
2451	for (j = 0; j < 4; j++) {
2452		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2453		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2454		if (ret_val)
2455			goto out;
2456	}
2457
2458out:
2459	return ret_val;
2460}
2461
2462/**
2463 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2464 *  @hw: pointer to the HW structure
2465 *
2466 *  Calculates the EEPROM section checksum by reading/adding each word of
2467 *  the EEPROM and then verifies that the sum of the EEPROM is
2468 *  equal to 0xBABA.
2469 **/
2470static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2471{
2472	s32 ret_val = 0;
2473	u16 j;
2474	u16 nvm_offset;
2475
2476	for (j = 0; j < 4; j++) {
2477		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2478		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2479								nvm_offset);
2480		if (ret_val != 0)
2481			goto out;
2482	}
2483
2484out:
2485	return ret_val;
2486}
2487
2488/**
2489 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2490 *  @hw: pointer to the HW structure
2491 *
2492 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2493 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2494 *  checksum and writes the value to the EEPROM.
2495 **/
2496static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2497{
2498	s32 ret_val = 0;
2499	u16 j;
2500	u16 nvm_offset;
2501
2502	for (j = 0; j < 4; j++) {
2503		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2504		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2505		if (ret_val != 0)
2506			goto out;
2507	}
2508
2509out:
2510	return ret_val;
2511}
2512
2513/**
2514 *  __igb_access_emi_reg - Read/write EMI register
2515 *  @hw: pointer to the HW structure
2516 *  @addr: EMI address to program
2517 *  @data: pointer to value to read/write from/to the EMI address
2518 *  @read: boolean flag to indicate read or write
2519 **/
2520static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2521				  u16 *data, bool read)
2522{
2523	s32 ret_val = 0;
2524
2525	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2526	if (ret_val)
2527		return ret_val;
2528
2529	if (read)
2530		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2531	else
2532		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2533
2534	return ret_val;
2535}
2536
2537/**
2538 *  igb_read_emi_reg - Read Extended Management Interface register
2539 *  @hw: pointer to the HW structure
2540 *  @addr: EMI address to program
2541 *  @data: value to be read from the EMI address
2542 **/
2543s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2544{
2545	return __igb_access_emi_reg(hw, addr, data, true);
2546}
2547
2548/**
2549 *  igb_set_eee_i350 - Enable/disable EEE support
2550 *  @hw: pointer to the HW structure
2551 *  @adv1G: boolean flag enabling 1G EEE advertisement
2552 *  @adv100m: boolean flag enabling 100M EEE advertisement
2553 *
2554 *  Enable/disable EEE based on setting in dev_spec structure.
2555 *
2556 **/
2557s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2558{
2559	u32 ipcnfg, eeer;
2560
2561	if ((hw->mac.type < e1000_i350) ||
2562	    (hw->phy.media_type != e1000_media_type_copper))
2563		goto out;
2564	ipcnfg = rd32(E1000_IPCNFG);
2565	eeer = rd32(E1000_EEER);
2566
2567	/* enable or disable per user setting */
2568	if (!(hw->dev_spec._82575.eee_disable)) {
2569		u32 eee_su = rd32(E1000_EEE_SU);
2570
2571		if (adv100M)
2572			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2573		else
2574			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2575
2576		if (adv1G)
2577			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2578		else
2579			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2580
2581		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2582			E1000_EEER_LPI_FC);
2583
2584		/* This bit should not be set in normal operation. */
2585		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2586			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2587
2588	} else {
2589		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2590			E1000_IPCNFG_EEE_100M_AN);
2591		eeer &= ~(E1000_EEER_TX_LPI_EN |
2592			E1000_EEER_RX_LPI_EN |
2593			E1000_EEER_LPI_FC);
2594	}
2595	wr32(E1000_IPCNFG, ipcnfg);
2596	wr32(E1000_EEER, eeer);
2597	rd32(E1000_IPCNFG);
2598	rd32(E1000_EEER);
2599out:
2600
2601	return 0;
2602}
2603
2604/**
2605 *  igb_set_eee_i354 - Enable/disable EEE support
2606 *  @hw: pointer to the HW structure
2607 *  @adv1G: boolean flag enabling 1G EEE advertisement
2608 *  @adv100m: boolean flag enabling 100M EEE advertisement
2609 *
2610 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2611 *
2612 **/
2613s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2614{
2615	struct e1000_phy_info *phy = &hw->phy;
2616	s32 ret_val = 0;
2617	u16 phy_data;
2618
2619	if ((hw->phy.media_type != e1000_media_type_copper) ||
2620	    (phy->id != M88E1543_E_PHY_ID))
2621		goto out;
2622
2623	if (!hw->dev_spec._82575.eee_disable) {
2624		/* Switch to PHY page 18. */
2625		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2626		if (ret_val)
2627			goto out;
2628
2629		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2630					    &phy_data);
2631		if (ret_val)
2632			goto out;
2633
2634		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2635		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2636					     phy_data);
2637		if (ret_val)
2638			goto out;
2639
2640		/* Return the PHY to page 0. */
2641		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2642		if (ret_val)
2643			goto out;
2644
2645		/* Turn on EEE advertisement. */
2646		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2647					     E1000_EEE_ADV_DEV_I354,
2648					     &phy_data);
2649		if (ret_val)
2650			goto out;
2651
2652		if (adv100M)
2653			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2654		else
2655			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2656
2657		if (adv1G)
2658			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2659		else
2660			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2661
2662		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2663						E1000_EEE_ADV_DEV_I354,
2664						phy_data);
2665	} else {
2666		/* Turn off EEE advertisement. */
2667		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2668					     E1000_EEE_ADV_DEV_I354,
2669					     &phy_data);
2670		if (ret_val)
2671			goto out;
2672
2673		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2674			      E1000_EEE_ADV_1000_SUPPORTED);
2675		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2676					      E1000_EEE_ADV_DEV_I354,
2677					      phy_data);
2678	}
2679
2680out:
2681	return ret_val;
2682}
2683
2684/**
2685 *  igb_get_eee_status_i354 - Get EEE status
2686 *  @hw: pointer to the HW structure
2687 *  @status: EEE status
2688 *
2689 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2690 *  been received.
2691 **/
2692s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2693{
2694	struct e1000_phy_info *phy = &hw->phy;
2695	s32 ret_val = 0;
2696	u16 phy_data;
2697
2698	/* Check if EEE is supported on this device. */
2699	if ((hw->phy.media_type != e1000_media_type_copper) ||
2700	    (phy->id != M88E1543_E_PHY_ID))
2701		goto out;
2702
2703	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2704				     E1000_PCS_STATUS_DEV_I354,
2705				     &phy_data);
2706	if (ret_val)
2707		goto out;
2708
2709	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2710			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2711
2712out:
2713	return ret_val;
2714}
2715
2716static const u8 e1000_emc_temp_data[4] = {
2717	E1000_EMC_INTERNAL_DATA,
2718	E1000_EMC_DIODE1_DATA,
2719	E1000_EMC_DIODE2_DATA,
2720	E1000_EMC_DIODE3_DATA
2721};
2722static const u8 e1000_emc_therm_limit[4] = {
2723	E1000_EMC_INTERNAL_THERM_LIMIT,
2724	E1000_EMC_DIODE1_THERM_LIMIT,
2725	E1000_EMC_DIODE2_THERM_LIMIT,
2726	E1000_EMC_DIODE3_THERM_LIMIT
2727};
2728
2729#ifdef CONFIG_IGB_HWMON
2730/**
2731 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2732 *  @hw: pointer to hardware structure
2733 *
2734 *  Updates the temperatures in mac.thermal_sensor_data
2735 **/
2736static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2737{
2738	u16 ets_offset;
2739	u16 ets_cfg;
2740	u16 ets_sensor;
2741	u8  num_sensors;
2742	u8  sensor_index;
2743	u8  sensor_location;
2744	u8  i;
2745	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2746
2747	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2748		return E1000_NOT_IMPLEMENTED;
2749
2750	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2751
2752	/* Return the internal sensor only if ETS is unsupported */
2753	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2754	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2755		return 0;
2756
2757	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2758	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2759	    != NVM_ETS_TYPE_EMC)
2760		return E1000_NOT_IMPLEMENTED;
2761
2762	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2763	if (num_sensors > E1000_MAX_SENSORS)
2764		num_sensors = E1000_MAX_SENSORS;
2765
2766	for (i = 1; i < num_sensors; i++) {
2767		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2768		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2769				NVM_ETS_DATA_INDEX_SHIFT);
2770		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2771				   NVM_ETS_DATA_LOC_SHIFT);
2772
2773		if (sensor_location != 0)
2774			hw->phy.ops.read_i2c_byte(hw,
2775					e1000_emc_temp_data[sensor_index],
2776					E1000_I2C_THERMAL_SENSOR_ADDR,
2777					&data->sensor[i].temp);
2778	}
2779	return 0;
2780}
2781
2782/**
2783 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2784 *  @hw: pointer to hardware structure
2785 *
2786 *  Sets the thermal sensor thresholds according to the NVM map
2787 *  and save off the threshold and location values into mac.thermal_sensor_data
2788 **/
2789static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2790{
2791	u16 ets_offset;
2792	u16 ets_cfg;
2793	u16 ets_sensor;
2794	u8  low_thresh_delta;
2795	u8  num_sensors;
2796	u8  sensor_index;
2797	u8  sensor_location;
2798	u8  therm_limit;
2799	u8  i;
2800	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2801
2802	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2803		return E1000_NOT_IMPLEMENTED;
2804
2805	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2806
2807	data->sensor[0].location = 0x1;
2808	data->sensor[0].caution_thresh =
2809		(rd32(E1000_THHIGHTC) & 0xFF);
2810	data->sensor[0].max_op_thresh =
2811		(rd32(E1000_THLOWTC) & 0xFF);
2812
2813	/* Return the internal sensor only if ETS is unsupported */
2814	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2815	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2816		return 0;
2817
2818	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2819	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2820	    != NVM_ETS_TYPE_EMC)
2821		return E1000_NOT_IMPLEMENTED;
2822
2823	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2824			    NVM_ETS_LTHRES_DELTA_SHIFT);
2825	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2826
2827	for (i = 1; i <= num_sensors; i++) {
2828		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2829		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2830				NVM_ETS_DATA_INDEX_SHIFT);
2831		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2832				   NVM_ETS_DATA_LOC_SHIFT);
2833		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2834
2835		hw->phy.ops.write_i2c_byte(hw,
2836			e1000_emc_therm_limit[sensor_index],
2837			E1000_I2C_THERMAL_SENSOR_ADDR,
2838			therm_limit);
2839
2840		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2841			data->sensor[i].location = sensor_location;
2842			data->sensor[i].caution_thresh = therm_limit;
2843			data->sensor[i].max_op_thresh = therm_limit -
2844							low_thresh_delta;
2845		}
2846	}
2847	return 0;
2848}
2849
2850#endif
2851static struct e1000_mac_operations e1000_mac_ops_82575 = {
2852	.init_hw              = igb_init_hw_82575,
2853	.check_for_link       = igb_check_for_link_82575,
2854	.rar_set              = igb_rar_set,
2855	.read_mac_addr        = igb_read_mac_addr_82575,
2856	.get_speed_and_duplex = igb_get_link_up_info_82575,
2857#ifdef CONFIG_IGB_HWMON
2858	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2859	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2860#endif
2861};
2862
2863static struct e1000_phy_operations e1000_phy_ops_82575 = {
2864	.acquire              = igb_acquire_phy_82575,
2865	.get_cfg_done         = igb_get_cfg_done_82575,
2866	.release              = igb_release_phy_82575,
2867	.write_i2c_byte       = igb_write_i2c_byte,
2868	.read_i2c_byte        = igb_read_i2c_byte,
2869};
2870
2871static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2872	.acquire              = igb_acquire_nvm_82575,
2873	.read                 = igb_read_nvm_eerd,
2874	.release              = igb_release_nvm_82575,
2875	.write                = igb_write_nvm_spi,
2876};
2877
2878const struct e1000_info e1000_82575_info = {
2879	.get_invariants = igb_get_invariants_82575,
2880	.mac_ops = &e1000_mac_ops_82575,
2881	.phy_ops = &e1000_phy_ops_82575,
2882	.nvm_ops = &e1000_nvm_ops_82575,
2883};
2884
2885