[go: nahoru, domu]

e1000_82575.c revision 641ac5c0cd46919dc9be4c933f95edae1e4e4163
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/types.h>
35#include <linux/if_ether.h>
36#include <linux/i2c.h>
37
38#include "e1000_mac.h"
39#include "e1000_82575.h"
40#include "e1000_i210.h"
41
42static s32  igb_get_invariants_82575(struct e1000_hw *);
43static s32  igb_acquire_phy_82575(struct e1000_hw *);
44static void igb_release_phy_82575(struct e1000_hw *);
45static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46static void igb_release_nvm_82575(struct e1000_hw *);
47static s32  igb_check_for_link_82575(struct e1000_hw *);
48static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49static s32  igb_init_hw_82575(struct e1000_hw *);
50static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54static s32  igb_reset_hw_82575(struct e1000_hw *);
55static s32  igb_reset_hw_82580(struct e1000_hw *);
56static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65						 u16 *);
66static s32  igb_get_phy_id_82575(struct e1000_hw *);
67static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68static bool igb_sgmii_active_82575(struct e1000_hw *);
69static s32  igb_reset_init_script_82575(struct e1000_hw *);
70static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77static const u16 e1000_82580_rxpbs_table[] =
78	{ 36, 72, 144, 1, 2, 4, 8, 16,
79	  35, 70, 140 };
80#define E1000_82580_RXPBS_TABLE_SIZE \
81	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83/**
84 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 *  @hw: pointer to the HW structure
86 *
87 *  Called to determine if the I2C pins are being used for I2C or as an
88 *  external MDIO interface since the two options are mutually exclusive.
89 **/
90static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91{
92	u32 reg = 0;
93	bool ext_mdio = false;
94
95	switch (hw->mac.type) {
96	case e1000_82575:
97	case e1000_82576:
98		reg = rd32(E1000_MDIC);
99		ext_mdio = !!(reg & E1000_MDIC_DEST);
100		break;
101	case e1000_82580:
102	case e1000_i350:
103	case e1000_i354:
104	case e1000_i210:
105	case e1000_i211:
106		reg = rd32(E1000_MDICNFG);
107		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108		break;
109	default:
110		break;
111	}
112	return ext_mdio;
113}
114
115/**
116 *  igb_init_phy_params_82575 - Init PHY func ptrs.
117 *  @hw: pointer to the HW structure
118 **/
119static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120{
121	struct e1000_phy_info *phy = &hw->phy;
122	s32 ret_val = 0;
123	u32 ctrl_ext;
124
125	if (hw->phy.media_type != e1000_media_type_copper) {
126		phy->type = e1000_phy_none;
127		goto out;
128	}
129
130	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
131	phy->reset_delay_us	= 100;
132
133	ctrl_ext = rd32(E1000_CTRL_EXT);
134
135	if (igb_sgmii_active_82575(hw)) {
136		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137		ctrl_ext |= E1000_CTRL_I2C_ENA;
138	} else {
139		phy->ops.reset = igb_phy_hw_reset;
140		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141	}
142
143	wr32(E1000_CTRL_EXT, ctrl_ext);
144	igb_reset_mdicnfg_82580(hw);
145
146	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149	} else {
150		switch (hw->mac.type) {
151		case e1000_82580:
152		case e1000_i350:
153		case e1000_i354:
154			phy->ops.read_reg = igb_read_phy_reg_82580;
155			phy->ops.write_reg = igb_write_phy_reg_82580;
156			break;
157		case e1000_i210:
158		case e1000_i211:
159			phy->ops.read_reg = igb_read_phy_reg_gs40g;
160			phy->ops.write_reg = igb_write_phy_reg_gs40g;
161			break;
162		default:
163			phy->ops.read_reg = igb_read_phy_reg_igp;
164			phy->ops.write_reg = igb_write_phy_reg_igp;
165		}
166	}
167
168	/* set lan id */
169	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170			E1000_STATUS_FUNC_SHIFT;
171
172	/* Set phy->phy_addr and phy->id. */
173	ret_val = igb_get_phy_id_82575(hw);
174	if (ret_val)
175		return ret_val;
176
177	/* Verify phy id and set remaining function pointers */
178	switch (phy->id) {
179	case M88E1545_E_PHY_ID:
180	case I347AT4_E_PHY_ID:
181	case M88E1112_E_PHY_ID:
182	case M88E1111_I_PHY_ID:
183		phy->type		= e1000_phy_m88;
184		phy->ops.check_polarity	= igb_check_polarity_m88;
185		phy->ops.get_phy_info	= igb_get_phy_info_m88;
186		if (phy->id != M88E1111_I_PHY_ID)
187			phy->ops.get_cable_length =
188					 igb_get_cable_length_m88_gen2;
189		else
190			phy->ops.get_cable_length = igb_get_cable_length_m88;
191		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192		break;
193	case IGP03E1000_E_PHY_ID:
194		phy->type = e1000_phy_igp_3;
195		phy->ops.get_phy_info = igb_get_phy_info_igp;
196		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200		break;
201	case I82580_I_PHY_ID:
202	case I350_I_PHY_ID:
203		phy->type = e1000_phy_82580;
204		phy->ops.force_speed_duplex =
205					 igb_phy_force_speed_duplex_82580;
206		phy->ops.get_cable_length = igb_get_cable_length_82580;
207		phy->ops.get_phy_info = igb_get_phy_info_82580;
208		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210		break;
211	case I210_I_PHY_ID:
212		phy->type		= e1000_phy_i210;
213		phy->ops.check_polarity	= igb_check_polarity_m88;
214		phy->ops.get_phy_info	= igb_get_phy_info_m88;
215		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219		break;
220	default:
221		ret_val = -E1000_ERR_PHY;
222		goto out;
223	}
224
225out:
226	return ret_val;
227}
228
229/**
230 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
231 *  @hw: pointer to the HW structure
232 **/
233static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234{
235	struct e1000_nvm_info *nvm = &hw->nvm;
236	u32 eecd = rd32(E1000_EECD);
237	u16 size;
238
239	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240		     E1000_EECD_SIZE_EX_SHIFT);
241	/* Added to a constant, "size" becomes the left-shift value
242	 * for setting word_size.
243	 */
244	size += NVM_WORD_SIZE_BASE_SHIFT;
245
246	/* Just in case size is out of range, cap it to the largest
247	 * EEPROM size supported
248	 */
249	if (size > 15)
250		size = 15;
251
252	nvm->word_size = 1 << size;
253	if (hw->mac.type < e1000_i210) {
254		nvm->opcode_bits = 8;
255		nvm->delay_usec = 1;
256
257		switch (nvm->override) {
258		case e1000_nvm_override_spi_large:
259			nvm->page_size = 32;
260			nvm->address_bits = 16;
261			break;
262		case e1000_nvm_override_spi_small:
263			nvm->page_size = 8;
264			nvm->address_bits = 8;
265			break;
266		default:
267			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269					    16 : 8;
270			break;
271		}
272		if (nvm->word_size == (1 << 15))
273			nvm->page_size = 128;
274
275		nvm->type = e1000_nvm_eeprom_spi;
276	} else {
277		nvm->type = e1000_nvm_flash_hw;
278	}
279
280	/* NVM Function Pointers */
281	switch (hw->mac.type) {
282	case e1000_82580:
283		nvm->ops.validate = igb_validate_nvm_checksum_82580;
284		nvm->ops.update = igb_update_nvm_checksum_82580;
285		nvm->ops.acquire = igb_acquire_nvm_82575;
286		nvm->ops.release = igb_release_nvm_82575;
287		if (nvm->word_size < (1 << 15))
288			nvm->ops.read = igb_read_nvm_eerd;
289		else
290			nvm->ops.read = igb_read_nvm_spi;
291		nvm->ops.write = igb_write_nvm_spi;
292		break;
293	case e1000_i354:
294	case e1000_i350:
295		nvm->ops.validate = igb_validate_nvm_checksum_i350;
296		nvm->ops.update = igb_update_nvm_checksum_i350;
297		nvm->ops.acquire = igb_acquire_nvm_82575;
298		nvm->ops.release = igb_release_nvm_82575;
299		if (nvm->word_size < (1 << 15))
300			nvm->ops.read = igb_read_nvm_eerd;
301		else
302			nvm->ops.read = igb_read_nvm_spi;
303		nvm->ops.write = igb_write_nvm_spi;
304		break;
305	case e1000_i210:
306		nvm->ops.validate = igb_validate_nvm_checksum_i210;
307		nvm->ops.update   = igb_update_nvm_checksum_i210;
308		nvm->ops.acquire = igb_acquire_nvm_i210;
309		nvm->ops.release = igb_release_nvm_i210;
310		nvm->ops.read    = igb_read_nvm_srrd_i210;
311		nvm->ops.write   = igb_write_nvm_srwr_i210;
312		nvm->ops.valid_led_default = igb_valid_led_default_i210;
313		break;
314	case e1000_i211:
315		nvm->ops.acquire  = igb_acquire_nvm_i210;
316		nvm->ops.release  = igb_release_nvm_i210;
317		nvm->ops.read     = igb_read_nvm_i211;
318		nvm->ops.valid_led_default = igb_valid_led_default_i210;
319		nvm->ops.validate = NULL;
320		nvm->ops.update   = NULL;
321		nvm->ops.write    = NULL;
322		break;
323	default:
324		nvm->ops.validate = igb_validate_nvm_checksum;
325		nvm->ops.update = igb_update_nvm_checksum;
326		nvm->ops.acquire = igb_acquire_nvm_82575;
327		nvm->ops.release = igb_release_nvm_82575;
328		if (nvm->word_size < (1 << 15))
329			nvm->ops.read = igb_read_nvm_eerd;
330		else
331			nvm->ops.read = igb_read_nvm_spi;
332		nvm->ops.write = igb_write_nvm_spi;
333		break;
334	}
335
336	return 0;
337}
338
339/**
340 *  igb_init_mac_params_82575 - Init MAC func ptrs.
341 *  @hw: pointer to the HW structure
342 **/
343static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
344{
345	struct e1000_mac_info *mac = &hw->mac;
346	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
347
348	/* Set mta register count */
349	mac->mta_reg_count = 128;
350	/* Set rar entry count */
351	switch (mac->type) {
352	case e1000_82576:
353		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
354		break;
355	case e1000_82580:
356		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
357		break;
358	case e1000_i350:
359	case e1000_i354:
360		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
361		break;
362	default:
363		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
364		break;
365	}
366	/* reset */
367	if (mac->type >= e1000_82580)
368		mac->ops.reset_hw = igb_reset_hw_82580;
369	else
370		mac->ops.reset_hw = igb_reset_hw_82575;
371
372	if (mac->type >= e1000_i210) {
373		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
374		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
375
376	} else {
377		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
378		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
379	}
380
381	/* Set if part includes ASF firmware */
382	mac->asf_firmware_present = true;
383	/* Set if manageability features are enabled. */
384	mac->arc_subsystem_valid =
385		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
386			? true : false;
387	/* enable EEE on i350 parts and later parts */
388	if (mac->type >= e1000_i350)
389		dev_spec->eee_disable = false;
390	else
391		dev_spec->eee_disable = true;
392	/* Allow a single clear of the SW semaphore on I210 and newer */
393	if (mac->type >= e1000_i210)
394		dev_spec->clear_semaphore_once = true;
395	/* physical interface link setup */
396	mac->ops.setup_physical_interface =
397		(hw->phy.media_type == e1000_media_type_copper)
398			? igb_setup_copper_link_82575
399			: igb_setup_serdes_link_82575;
400
401	return 0;
402}
403
404/**
405 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
406 *  @hw: pointer to the HW structure
407 *
408 *  The media type is chosen based on SFP module.
409 *  compatibility flags retrieved from SFP ID EEPROM.
410 **/
411static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
412{
413	s32 ret_val = E1000_ERR_CONFIG;
414	u32 ctrl_ext = 0;
415	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
416	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
417	u8 tranceiver_type = 0;
418	s32 timeout = 3;
419
420	/* Turn I2C interface ON and power on sfp cage */
421	ctrl_ext = rd32(E1000_CTRL_EXT);
422	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
423	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
424
425	wrfl();
426
427	/* Read SFP module data */
428	while (timeout) {
429		ret_val = igb_read_sfp_data_byte(hw,
430			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
431			&tranceiver_type);
432		if (ret_val == 0)
433			break;
434		msleep(100);
435		timeout--;
436	}
437	if (ret_val != 0)
438		goto out;
439
440	ret_val = igb_read_sfp_data_byte(hw,
441			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
442			(u8 *)eth_flags);
443	if (ret_val != 0)
444		goto out;
445
446	/* Check if there is some SFP module plugged and powered */
447	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
448	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
449		dev_spec->module_plugged = true;
450		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
451			hw->phy.media_type = e1000_media_type_internal_serdes;
452		} else if (eth_flags->e100_base_fx) {
453			dev_spec->sgmii_active = true;
454			hw->phy.media_type = e1000_media_type_internal_serdes;
455		} else if (eth_flags->e1000_base_t) {
456			dev_spec->sgmii_active = true;
457			hw->phy.media_type = e1000_media_type_copper;
458		} else {
459			hw->phy.media_type = e1000_media_type_unknown;
460			hw_dbg("PHY module has not been recognized\n");
461			goto out;
462		}
463	} else {
464		hw->phy.media_type = e1000_media_type_unknown;
465	}
466	ret_val = 0;
467out:
468	/* Restore I2C interface setting */
469	wr32(E1000_CTRL_EXT, ctrl_ext);
470	return ret_val;
471}
472
473static s32 igb_get_invariants_82575(struct e1000_hw *hw)
474{
475	struct e1000_mac_info *mac = &hw->mac;
476	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
477	s32 ret_val;
478	u32 ctrl_ext = 0;
479	u32 link_mode = 0;
480
481	switch (hw->device_id) {
482	case E1000_DEV_ID_82575EB_COPPER:
483	case E1000_DEV_ID_82575EB_FIBER_SERDES:
484	case E1000_DEV_ID_82575GB_QUAD_COPPER:
485		mac->type = e1000_82575;
486		break;
487	case E1000_DEV_ID_82576:
488	case E1000_DEV_ID_82576_NS:
489	case E1000_DEV_ID_82576_NS_SERDES:
490	case E1000_DEV_ID_82576_FIBER:
491	case E1000_DEV_ID_82576_SERDES:
492	case E1000_DEV_ID_82576_QUAD_COPPER:
493	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
494	case E1000_DEV_ID_82576_SERDES_QUAD:
495		mac->type = e1000_82576;
496		break;
497	case E1000_DEV_ID_82580_COPPER:
498	case E1000_DEV_ID_82580_FIBER:
499	case E1000_DEV_ID_82580_QUAD_FIBER:
500	case E1000_DEV_ID_82580_SERDES:
501	case E1000_DEV_ID_82580_SGMII:
502	case E1000_DEV_ID_82580_COPPER_DUAL:
503	case E1000_DEV_ID_DH89XXCC_SGMII:
504	case E1000_DEV_ID_DH89XXCC_SERDES:
505	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
506	case E1000_DEV_ID_DH89XXCC_SFP:
507		mac->type = e1000_82580;
508		break;
509	case E1000_DEV_ID_I350_COPPER:
510	case E1000_DEV_ID_I350_FIBER:
511	case E1000_DEV_ID_I350_SERDES:
512	case E1000_DEV_ID_I350_SGMII:
513		mac->type = e1000_i350;
514		break;
515	case E1000_DEV_ID_I210_COPPER:
516	case E1000_DEV_ID_I210_FIBER:
517	case E1000_DEV_ID_I210_SERDES:
518	case E1000_DEV_ID_I210_SGMII:
519		mac->type = e1000_i210;
520		break;
521	case E1000_DEV_ID_I211_COPPER:
522		mac->type = e1000_i211;
523		break;
524	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
525	case E1000_DEV_ID_I354_SGMII:
526	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
527		mac->type = e1000_i354;
528		break;
529	default:
530		return -E1000_ERR_MAC_INIT;
531		break;
532	}
533
534	/* Set media type */
535	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
536	 * based on the EEPROM. We cannot rely upon device ID. There
537	 * is no distinguishable difference between fiber and internal
538	 * SerDes mode on the 82575. There can be an external PHY attached
539	 * on the SGMII interface. For this, we'll set sgmii_active to true.
540	 */
541	hw->phy.media_type = e1000_media_type_copper;
542	dev_spec->sgmii_active = false;
543	dev_spec->module_plugged = false;
544
545	ctrl_ext = rd32(E1000_CTRL_EXT);
546
547	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
548	switch (link_mode) {
549	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
550		hw->phy.media_type = e1000_media_type_internal_serdes;
551		break;
552	case E1000_CTRL_EXT_LINK_MODE_SGMII:
553		/* Get phy control interface type set (MDIO vs. I2C)*/
554		if (igb_sgmii_uses_mdio_82575(hw)) {
555			hw->phy.media_type = e1000_media_type_copper;
556			dev_spec->sgmii_active = true;
557			break;
558		}
559		/* fall through for I2C based SGMII */
560	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
561		/* read media type from SFP EEPROM */
562		ret_val = igb_set_sfp_media_type_82575(hw);
563		if ((ret_val != 0) ||
564		    (hw->phy.media_type == e1000_media_type_unknown)) {
565			/* If media type was not identified then return media
566			 * type defined by the CTRL_EXT settings.
567			 */
568			hw->phy.media_type = e1000_media_type_internal_serdes;
569
570			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
571				hw->phy.media_type = e1000_media_type_copper;
572				dev_spec->sgmii_active = true;
573			}
574
575			break;
576		}
577
578		/* do not change link mode for 100BaseFX */
579		if (dev_spec->eth_flags.e100_base_fx)
580			break;
581
582		/* change current link mode setting */
583		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
584
585		if (hw->phy.media_type == e1000_media_type_copper)
586			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
587		else
588			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
589
590		wr32(E1000_CTRL_EXT, ctrl_ext);
591
592		break;
593	default:
594		break;
595	}
596
597	/* mac initialization and operations */
598	ret_val = igb_init_mac_params_82575(hw);
599	if (ret_val)
600		goto out;
601
602	/* NVM initialization */
603	ret_val = igb_init_nvm_params_82575(hw);
604	if (ret_val)
605		goto out;
606
607	/* if part supports SR-IOV then initialize mailbox parameters */
608	switch (mac->type) {
609	case e1000_82576:
610	case e1000_i350:
611		igb_init_mbx_params_pf(hw);
612		break;
613	default:
614		break;
615	}
616
617	/* setup PHY parameters */
618	ret_val = igb_init_phy_params_82575(hw);
619
620out:
621	return ret_val;
622}
623
624/**
625 *  igb_acquire_phy_82575 - Acquire rights to access PHY
626 *  @hw: pointer to the HW structure
627 *
628 *  Acquire access rights to the correct PHY.  This is a
629 *  function pointer entry point called by the api module.
630 **/
631static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
632{
633	u16 mask = E1000_SWFW_PHY0_SM;
634
635	if (hw->bus.func == E1000_FUNC_1)
636		mask = E1000_SWFW_PHY1_SM;
637	else if (hw->bus.func == E1000_FUNC_2)
638		mask = E1000_SWFW_PHY2_SM;
639	else if (hw->bus.func == E1000_FUNC_3)
640		mask = E1000_SWFW_PHY3_SM;
641
642	return hw->mac.ops.acquire_swfw_sync(hw, mask);
643}
644
645/**
646 *  igb_release_phy_82575 - Release rights to access PHY
647 *  @hw: pointer to the HW structure
648 *
649 *  A wrapper to release access rights to the correct PHY.  This is a
650 *  function pointer entry point called by the api module.
651 **/
652static void igb_release_phy_82575(struct e1000_hw *hw)
653{
654	u16 mask = E1000_SWFW_PHY0_SM;
655
656	if (hw->bus.func == E1000_FUNC_1)
657		mask = E1000_SWFW_PHY1_SM;
658	else if (hw->bus.func == E1000_FUNC_2)
659		mask = E1000_SWFW_PHY2_SM;
660	else if (hw->bus.func == E1000_FUNC_3)
661		mask = E1000_SWFW_PHY3_SM;
662
663	hw->mac.ops.release_swfw_sync(hw, mask);
664}
665
666/**
667 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
668 *  @hw: pointer to the HW structure
669 *  @offset: register offset to be read
670 *  @data: pointer to the read data
671 *
672 *  Reads the PHY register at offset using the serial gigabit media independent
673 *  interface and stores the retrieved information in data.
674 **/
675static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
676					  u16 *data)
677{
678	s32 ret_val = -E1000_ERR_PARAM;
679
680	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
681		hw_dbg("PHY Address %u is out of range\n", offset);
682		goto out;
683	}
684
685	ret_val = hw->phy.ops.acquire(hw);
686	if (ret_val)
687		goto out;
688
689	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
690
691	hw->phy.ops.release(hw);
692
693out:
694	return ret_val;
695}
696
697/**
698 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
699 *  @hw: pointer to the HW structure
700 *  @offset: register offset to write to
701 *  @data: data to write at register offset
702 *
703 *  Writes the data to PHY register at the offset using the serial gigabit
704 *  media independent interface.
705 **/
706static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
707					   u16 data)
708{
709	s32 ret_val = -E1000_ERR_PARAM;
710
711
712	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
713		hw_dbg("PHY Address %d is out of range\n", offset);
714		goto out;
715	}
716
717	ret_val = hw->phy.ops.acquire(hw);
718	if (ret_val)
719		goto out;
720
721	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
722
723	hw->phy.ops.release(hw);
724
725out:
726	return ret_val;
727}
728
729/**
730 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
731 *  @hw: pointer to the HW structure
732 *
733 *  Retrieves the PHY address and ID for both PHY's which do and do not use
734 *  sgmi interface.
735 **/
736static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
737{
738	struct e1000_phy_info *phy = &hw->phy;
739	s32  ret_val = 0;
740	u16 phy_id;
741	u32 ctrl_ext;
742	u32 mdic;
743
744	/* For SGMII PHYs, we try the list of possible addresses until
745	 * we find one that works.  For non-SGMII PHYs
746	 * (e.g. integrated copper PHYs), an address of 1 should
747	 * work.  The result of this function should mean phy->phy_addr
748	 * and phy->id are set correctly.
749	 */
750	if (!(igb_sgmii_active_82575(hw))) {
751		phy->addr = 1;
752		ret_val = igb_get_phy_id(hw);
753		goto out;
754	}
755
756	if (igb_sgmii_uses_mdio_82575(hw)) {
757		switch (hw->mac.type) {
758		case e1000_82575:
759		case e1000_82576:
760			mdic = rd32(E1000_MDIC);
761			mdic &= E1000_MDIC_PHY_MASK;
762			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
763			break;
764		case e1000_82580:
765		case e1000_i350:
766		case e1000_i354:
767		case e1000_i210:
768		case e1000_i211:
769			mdic = rd32(E1000_MDICNFG);
770			mdic &= E1000_MDICNFG_PHY_MASK;
771			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
772			break;
773		default:
774			ret_val = -E1000_ERR_PHY;
775			goto out;
776			break;
777		}
778		ret_val = igb_get_phy_id(hw);
779		goto out;
780	}
781
782	/* Power on sgmii phy if it is disabled */
783	ctrl_ext = rd32(E1000_CTRL_EXT);
784	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
785	wrfl();
786	msleep(300);
787
788	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
789	 * Therefore, we need to test 1-7
790	 */
791	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
792		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
793		if (ret_val == 0) {
794			hw_dbg("Vendor ID 0x%08X read at address %u\n",
795			       phy_id, phy->addr);
796			/* At the time of this writing, The M88 part is
797			 * the only supported SGMII PHY product.
798			 */
799			if (phy_id == M88_VENDOR)
800				break;
801		} else {
802			hw_dbg("PHY address %u was unreadable\n", phy->addr);
803		}
804	}
805
806	/* A valid PHY type couldn't be found. */
807	if (phy->addr == 8) {
808		phy->addr = 0;
809		ret_val = -E1000_ERR_PHY;
810		goto out;
811	} else {
812		ret_val = igb_get_phy_id(hw);
813	}
814
815	/* restore previous sfp cage power state */
816	wr32(E1000_CTRL_EXT, ctrl_ext);
817
818out:
819	return ret_val;
820}
821
822/**
823 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
824 *  @hw: pointer to the HW structure
825 *
826 *  Resets the PHY using the serial gigabit media independent interface.
827 **/
828static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
829{
830	s32 ret_val;
831
832	/* This isn't a true "hard" reset, but is the only reset
833	 * available to us at this time.
834	 */
835
836	hw_dbg("Soft resetting SGMII attached PHY...\n");
837
838	/* SFP documentation requires the following to configure the SPF module
839	 * to work on SGMII.  No further documentation is given.
840	 */
841	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
842	if (ret_val)
843		goto out;
844
845	ret_val = igb_phy_sw_reset(hw);
846
847out:
848	return ret_val;
849}
850
851/**
852 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
853 *  @hw: pointer to the HW structure
854 *  @active: true to enable LPLU, false to disable
855 *
856 *  Sets the LPLU D0 state according to the active flag.  When
857 *  activating LPLU this function also disables smart speed
858 *  and vice versa.  LPLU will not be activated unless the
859 *  device autonegotiation advertisement meets standards of
860 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
861 *  This is a function pointer entry point only called by
862 *  PHY setup routines.
863 **/
864static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
865{
866	struct e1000_phy_info *phy = &hw->phy;
867	s32 ret_val;
868	u16 data;
869
870	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
871	if (ret_val)
872		goto out;
873
874	if (active) {
875		data |= IGP02E1000_PM_D0_LPLU;
876		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
877						 data);
878		if (ret_val)
879			goto out;
880
881		/* When LPLU is enabled, we should disable SmartSpeed */
882		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
883						&data);
884		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
885		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
886						 data);
887		if (ret_val)
888			goto out;
889	} else {
890		data &= ~IGP02E1000_PM_D0_LPLU;
891		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
892						 data);
893		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
894		 * during Dx states where the power conservation is most
895		 * important.  During driver activity we should enable
896		 * SmartSpeed, so performance is maintained.
897		 */
898		if (phy->smart_speed == e1000_smart_speed_on) {
899			ret_val = phy->ops.read_reg(hw,
900					IGP01E1000_PHY_PORT_CONFIG, &data);
901			if (ret_val)
902				goto out;
903
904			data |= IGP01E1000_PSCFR_SMART_SPEED;
905			ret_val = phy->ops.write_reg(hw,
906					IGP01E1000_PHY_PORT_CONFIG, data);
907			if (ret_val)
908				goto out;
909		} else if (phy->smart_speed == e1000_smart_speed_off) {
910			ret_val = phy->ops.read_reg(hw,
911					IGP01E1000_PHY_PORT_CONFIG, &data);
912			if (ret_val)
913				goto out;
914
915			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
916			ret_val = phy->ops.write_reg(hw,
917					IGP01E1000_PHY_PORT_CONFIG, data);
918			if (ret_val)
919				goto out;
920		}
921	}
922
923out:
924	return ret_val;
925}
926
927/**
928 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
929 *  @hw: pointer to the HW structure
930 *  @active: true to enable LPLU, false to disable
931 *
932 *  Sets the LPLU D0 state according to the active flag.  When
933 *  activating LPLU this function also disables smart speed
934 *  and vice versa.  LPLU will not be activated unless the
935 *  device autonegotiation advertisement meets standards of
936 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
937 *  This is a function pointer entry point only called by
938 *  PHY setup routines.
939 **/
940static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
941{
942	struct e1000_phy_info *phy = &hw->phy;
943	s32 ret_val = 0;
944	u16 data;
945
946	data = rd32(E1000_82580_PHY_POWER_MGMT);
947
948	if (active) {
949		data |= E1000_82580_PM_D0_LPLU;
950
951		/* When LPLU is enabled, we should disable SmartSpeed */
952		data &= ~E1000_82580_PM_SPD;
953	} else {
954		data &= ~E1000_82580_PM_D0_LPLU;
955
956		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
957		 * during Dx states where the power conservation is most
958		 * important.  During driver activity we should enable
959		 * SmartSpeed, so performance is maintained.
960		 */
961		if (phy->smart_speed == e1000_smart_speed_on)
962			data |= E1000_82580_PM_SPD;
963		else if (phy->smart_speed == e1000_smart_speed_off)
964			data &= ~E1000_82580_PM_SPD; }
965
966	wr32(E1000_82580_PHY_POWER_MGMT, data);
967	return ret_val;
968}
969
970/**
971 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
972 *  @hw: pointer to the HW structure
973 *  @active: boolean used to enable/disable lplu
974 *
975 *  Success returns 0, Failure returns 1
976 *
977 *  The low power link up (lplu) state is set to the power management level D3
978 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
979 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
980 *  is used during Dx states where the power conservation is most important.
981 *  During driver activity, SmartSpeed should be enabled so performance is
982 *  maintained.
983 **/
984static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
985{
986	struct e1000_phy_info *phy = &hw->phy;
987	s32 ret_val = 0;
988	u16 data;
989
990	data = rd32(E1000_82580_PHY_POWER_MGMT);
991
992	if (!active) {
993		data &= ~E1000_82580_PM_D3_LPLU;
994		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
995		 * during Dx states where the power conservation is most
996		 * important.  During driver activity we should enable
997		 * SmartSpeed, so performance is maintained.
998		 */
999		if (phy->smart_speed == e1000_smart_speed_on)
1000			data |= E1000_82580_PM_SPD;
1001		else if (phy->smart_speed == e1000_smart_speed_off)
1002			data &= ~E1000_82580_PM_SPD;
1003	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1004		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1005		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1006		data |= E1000_82580_PM_D3_LPLU;
1007		/* When LPLU is enabled, we should disable SmartSpeed */
1008		data &= ~E1000_82580_PM_SPD;
1009	}
1010
1011	wr32(E1000_82580_PHY_POWER_MGMT, data);
1012	return ret_val;
1013}
1014
1015/**
1016 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1017 *  @hw: pointer to the HW structure
1018 *
1019 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1020 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1021 *  Return successful if access grant bit set, else clear the request for
1022 *  EEPROM access and return -E1000_ERR_NVM (-1).
1023 **/
1024static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1025{
1026	s32 ret_val;
1027
1028	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1029	if (ret_val)
1030		goto out;
1031
1032	ret_val = igb_acquire_nvm(hw);
1033
1034	if (ret_val)
1035		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1036
1037out:
1038	return ret_val;
1039}
1040
1041/**
1042 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1043 *  @hw: pointer to the HW structure
1044 *
1045 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1046 *  then release the semaphores acquired.
1047 **/
1048static void igb_release_nvm_82575(struct e1000_hw *hw)
1049{
1050	igb_release_nvm(hw);
1051	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1052}
1053
1054/**
1055 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1056 *  @hw: pointer to the HW structure
1057 *  @mask: specifies which semaphore to acquire
1058 *
1059 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1060 *  will also specify which port we're acquiring the lock for.
1061 **/
1062static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1063{
1064	u32 swfw_sync;
1065	u32 swmask = mask;
1066	u32 fwmask = mask << 16;
1067	s32 ret_val = 0;
1068	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1069
1070	while (i < timeout) {
1071		if (igb_get_hw_semaphore(hw)) {
1072			ret_val = -E1000_ERR_SWFW_SYNC;
1073			goto out;
1074		}
1075
1076		swfw_sync = rd32(E1000_SW_FW_SYNC);
1077		if (!(swfw_sync & (fwmask | swmask)))
1078			break;
1079
1080		/* Firmware currently using resource (fwmask)
1081		 * or other software thread using resource (swmask)
1082		 */
1083		igb_put_hw_semaphore(hw);
1084		mdelay(5);
1085		i++;
1086	}
1087
1088	if (i == timeout) {
1089		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1090		ret_val = -E1000_ERR_SWFW_SYNC;
1091		goto out;
1092	}
1093
1094	swfw_sync |= swmask;
1095	wr32(E1000_SW_FW_SYNC, swfw_sync);
1096
1097	igb_put_hw_semaphore(hw);
1098
1099out:
1100	return ret_val;
1101}
1102
1103/**
1104 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1105 *  @hw: pointer to the HW structure
1106 *  @mask: specifies which semaphore to acquire
1107 *
1108 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1109 *  will also specify which port we're releasing the lock for.
1110 **/
1111static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1112{
1113	u32 swfw_sync;
1114
1115	while (igb_get_hw_semaphore(hw) != 0);
1116	/* Empty */
1117
1118	swfw_sync = rd32(E1000_SW_FW_SYNC);
1119	swfw_sync &= ~mask;
1120	wr32(E1000_SW_FW_SYNC, swfw_sync);
1121
1122	igb_put_hw_semaphore(hw);
1123}
1124
1125/**
1126 *  igb_get_cfg_done_82575 - Read config done bit
1127 *  @hw: pointer to the HW structure
1128 *
1129 *  Read the management control register for the config done bit for
1130 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1131 *  to read the config done bit, so an error is *ONLY* logged and returns
1132 *  0.  If we were to return with error, EEPROM-less silicon
1133 *  would not be able to be reset or change link.
1134 **/
1135static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1136{
1137	s32 timeout = PHY_CFG_TIMEOUT;
1138	s32 ret_val = 0;
1139	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1140
1141	if (hw->bus.func == 1)
1142		mask = E1000_NVM_CFG_DONE_PORT_1;
1143	else if (hw->bus.func == E1000_FUNC_2)
1144		mask = E1000_NVM_CFG_DONE_PORT_2;
1145	else if (hw->bus.func == E1000_FUNC_3)
1146		mask = E1000_NVM_CFG_DONE_PORT_3;
1147
1148	while (timeout) {
1149		if (rd32(E1000_EEMNGCTL) & mask)
1150			break;
1151		msleep(1);
1152		timeout--;
1153	}
1154	if (!timeout)
1155		hw_dbg("MNG configuration cycle has not completed.\n");
1156
1157	/* If EEPROM is not marked present, init the PHY manually */
1158	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1159	    (hw->phy.type == e1000_phy_igp_3))
1160		igb_phy_init_script_igp3(hw);
1161
1162	return ret_val;
1163}
1164
1165/**
1166 *  igb_check_for_link_82575 - Check for link
1167 *  @hw: pointer to the HW structure
1168 *
1169 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1170 *  use the generic interface for determining link.
1171 **/
1172static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1173{
1174	s32 ret_val;
1175	u16 speed, duplex;
1176
1177	if (hw->phy.media_type != e1000_media_type_copper) {
1178		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1179		                                             &duplex);
1180		/* Use this flag to determine if link needs to be checked or
1181		 * not.  If  we have link clear the flag so that we do not
1182		 * continue to check for link.
1183		 */
1184		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1185
1186		/* Configure Flow Control now that Auto-Neg has completed.
1187		 * First, we need to restore the desired flow control
1188		 * settings because we may have had to re-autoneg with a
1189		 * different link partner.
1190		 */
1191		ret_val = igb_config_fc_after_link_up(hw);
1192		if (ret_val)
1193			hw_dbg("Error configuring flow control\n");
1194	} else {
1195		ret_val = igb_check_for_copper_link(hw);
1196	}
1197
1198	return ret_val;
1199}
1200
1201/**
1202 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1203 *  @hw: pointer to the HW structure
1204 **/
1205void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1206{
1207	u32 reg;
1208
1209
1210	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1211	    !igb_sgmii_active_82575(hw))
1212		return;
1213
1214	/* Enable PCS to turn on link */
1215	reg = rd32(E1000_PCS_CFG0);
1216	reg |= E1000_PCS_CFG_PCS_EN;
1217	wr32(E1000_PCS_CFG0, reg);
1218
1219	/* Power up the laser */
1220	reg = rd32(E1000_CTRL_EXT);
1221	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1222	wr32(E1000_CTRL_EXT, reg);
1223
1224	/* flush the write to verify completion */
1225	wrfl();
1226	msleep(1);
1227}
1228
1229/**
1230 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1231 *  @hw: pointer to the HW structure
1232 *  @speed: stores the current speed
1233 *  @duplex: stores the current duplex
1234 *
1235 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1236 *  duplex, then store the values in the pointers provided.
1237 **/
1238static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1239						u16 *duplex)
1240{
1241	struct e1000_mac_info *mac = &hw->mac;
1242	u32 pcs;
1243
1244	/* Set up defaults for the return values of this function */
1245	mac->serdes_has_link = false;
1246	*speed = 0;
1247	*duplex = 0;
1248
1249	/* Read the PCS Status register for link state. For non-copper mode,
1250	 * the status register is not accurate. The PCS status register is
1251	 * used instead.
1252	 */
1253	pcs = rd32(E1000_PCS_LSTAT);
1254
1255	/* The link up bit determines when link is up on autoneg. The sync ok
1256	 * gets set once both sides sync up and agree upon link. Stable link
1257	 * can be determined by checking for both link up and link sync ok
1258	 */
1259	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1260		mac->serdes_has_link = true;
1261
1262		/* Detect and store PCS speed */
1263		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1264			*speed = SPEED_1000;
1265		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1266			*speed = SPEED_100;
1267		} else {
1268			*speed = SPEED_10;
1269		}
1270
1271		/* Detect and store PCS duplex */
1272		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1273			*duplex = FULL_DUPLEX;
1274		} else {
1275			*duplex = HALF_DUPLEX;
1276		}
1277	}
1278
1279	return 0;
1280}
1281
1282/**
1283 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1287 *  when management pass thru is not enabled.
1288 **/
1289void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1290{
1291	u32 reg;
1292
1293	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1294	    igb_sgmii_active_82575(hw))
1295		return;
1296
1297	if (!igb_enable_mng_pass_thru(hw)) {
1298		/* Disable PCS to turn off link */
1299		reg = rd32(E1000_PCS_CFG0);
1300		reg &= ~E1000_PCS_CFG_PCS_EN;
1301		wr32(E1000_PCS_CFG0, reg);
1302
1303		/* shutdown the laser */
1304		reg = rd32(E1000_CTRL_EXT);
1305		reg |= E1000_CTRL_EXT_SDP3_DATA;
1306		wr32(E1000_CTRL_EXT, reg);
1307
1308		/* flush the write to verify completion */
1309		wrfl();
1310		msleep(1);
1311	}
1312}
1313
1314/**
1315 *  igb_reset_hw_82575 - Reset hardware
1316 *  @hw: pointer to the HW structure
1317 *
1318 *  This resets the hardware into a known state.  This is a
1319 *  function pointer entry point called by the api module.
1320 **/
1321static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1322{
1323	u32 ctrl, icr;
1324	s32 ret_val;
1325
1326	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1327	 * on the last TLP read/write transaction when MAC is reset.
1328	 */
1329	ret_val = igb_disable_pcie_master(hw);
1330	if (ret_val)
1331		hw_dbg("PCI-E Master disable polling has failed.\n");
1332
1333	/* set the completion timeout for interface */
1334	ret_val = igb_set_pcie_completion_timeout(hw);
1335	if (ret_val) {
1336		hw_dbg("PCI-E Set completion timeout has failed.\n");
1337	}
1338
1339	hw_dbg("Masking off all interrupts\n");
1340	wr32(E1000_IMC, 0xffffffff);
1341
1342	wr32(E1000_RCTL, 0);
1343	wr32(E1000_TCTL, E1000_TCTL_PSP);
1344	wrfl();
1345
1346	msleep(10);
1347
1348	ctrl = rd32(E1000_CTRL);
1349
1350	hw_dbg("Issuing a global reset to MAC\n");
1351	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1352
1353	ret_val = igb_get_auto_rd_done(hw);
1354	if (ret_val) {
1355		/* When auto config read does not complete, do not
1356		 * return with an error. This can happen in situations
1357		 * where there is no eeprom and prevents getting link.
1358		 */
1359		hw_dbg("Auto Read Done did not complete\n");
1360	}
1361
1362	/* If EEPROM is not present, run manual init scripts */
1363	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1364		igb_reset_init_script_82575(hw);
1365
1366	/* Clear any pending interrupt events. */
1367	wr32(E1000_IMC, 0xffffffff);
1368	icr = rd32(E1000_ICR);
1369
1370	/* Install any alternate MAC address into RAR0 */
1371	ret_val = igb_check_alt_mac_addr(hw);
1372
1373	return ret_val;
1374}
1375
1376/**
1377 *  igb_init_hw_82575 - Initialize hardware
1378 *  @hw: pointer to the HW structure
1379 *
1380 *  This inits the hardware readying it for operation.
1381 **/
1382static s32 igb_init_hw_82575(struct e1000_hw *hw)
1383{
1384	struct e1000_mac_info *mac = &hw->mac;
1385	s32 ret_val;
1386	u16 i, rar_count = mac->rar_entry_count;
1387
1388	/* Initialize identification LED */
1389	ret_val = igb_id_led_init(hw);
1390	if (ret_val) {
1391		hw_dbg("Error initializing identification LED\n");
1392		/* This is not fatal and we should not stop init due to this */
1393	}
1394
1395	/* Disabling VLAN filtering */
1396	hw_dbg("Initializing the IEEE VLAN\n");
1397	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1398		igb_clear_vfta_i350(hw);
1399	else
1400		igb_clear_vfta(hw);
1401
1402	/* Setup the receive address */
1403	igb_init_rx_addrs(hw, rar_count);
1404
1405	/* Zero out the Multicast HASH table */
1406	hw_dbg("Zeroing the MTA\n");
1407	for (i = 0; i < mac->mta_reg_count; i++)
1408		array_wr32(E1000_MTA, i, 0);
1409
1410	/* Zero out the Unicast HASH table */
1411	hw_dbg("Zeroing the UTA\n");
1412	for (i = 0; i < mac->uta_reg_count; i++)
1413		array_wr32(E1000_UTA, i, 0);
1414
1415	/* Setup link and flow control */
1416	ret_val = igb_setup_link(hw);
1417
1418	/* Clear all of the statistics registers (clear on read).  It is
1419	 * important that we do this after we have tried to establish link
1420	 * because the symbol error count will increment wildly if there
1421	 * is no link.
1422	 */
1423	igb_clear_hw_cntrs_82575(hw);
1424	return ret_val;
1425}
1426
1427/**
1428 *  igb_setup_copper_link_82575 - Configure copper link settings
1429 *  @hw: pointer to the HW structure
1430 *
1431 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1432 *  for link, once link is established calls to configure collision distance
1433 *  and flow control are called.
1434 **/
1435static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1436{
1437	u32 ctrl;
1438	s32  ret_val;
1439	u32 phpm_reg;
1440
1441	ctrl = rd32(E1000_CTRL);
1442	ctrl |= E1000_CTRL_SLU;
1443	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1444	wr32(E1000_CTRL, ctrl);
1445
1446	/* Clear Go Link Disconnect bit */
1447	if (hw->mac.type >= e1000_82580) {
1448		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1449		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1450		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1451	}
1452
1453	ret_val = igb_setup_serdes_link_82575(hw);
1454	if (ret_val)
1455		goto out;
1456
1457	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1458		/* allow time for SFP cage time to power up phy */
1459		msleep(300);
1460
1461		ret_val = hw->phy.ops.reset(hw);
1462		if (ret_val) {
1463			hw_dbg("Error resetting the PHY.\n");
1464			goto out;
1465		}
1466	}
1467	switch (hw->phy.type) {
1468	case e1000_phy_i210:
1469	case e1000_phy_m88:
1470		switch (hw->phy.id) {
1471		case I347AT4_E_PHY_ID:
1472		case M88E1112_E_PHY_ID:
1473		case M88E1545_E_PHY_ID:
1474		case I210_I_PHY_ID:
1475			ret_val = igb_copper_link_setup_m88_gen2(hw);
1476			break;
1477		default:
1478			ret_val = igb_copper_link_setup_m88(hw);
1479			break;
1480		}
1481		break;
1482	case e1000_phy_igp_3:
1483		ret_val = igb_copper_link_setup_igp(hw);
1484		break;
1485	case e1000_phy_82580:
1486		ret_val = igb_copper_link_setup_82580(hw);
1487		break;
1488	default:
1489		ret_val = -E1000_ERR_PHY;
1490		break;
1491	}
1492
1493	if (ret_val)
1494		goto out;
1495
1496	ret_val = igb_setup_copper_link(hw);
1497out:
1498	return ret_val;
1499}
1500
1501/**
1502 *  igb_setup_serdes_link_82575 - Setup link for serdes
1503 *  @hw: pointer to the HW structure
1504 *
1505 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1506 *  used on copper connections where the serialized gigabit media independent
1507 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1508 *  for auto-negotiation or forces speed/duplex.
1509 **/
1510static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1511{
1512	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1513	bool pcs_autoneg;
1514	s32 ret_val = E1000_SUCCESS;
1515	u16 data;
1516
1517	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1518	    !igb_sgmii_active_82575(hw))
1519		return ret_val;
1520
1521
1522	/* On the 82575, SerDes loopback mode persists until it is
1523	 * explicitly turned off or a power cycle is performed.  A read to
1524	 * the register does not indicate its status.  Therefore, we ensure
1525	 * loopback mode is disabled during initialization.
1526	 */
1527	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1528
1529	/* power on the sfp cage if present and turn on I2C */
1530	ctrl_ext = rd32(E1000_CTRL_EXT);
1531	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1532	ctrl_ext |= E1000_CTRL_I2C_ENA;
1533	wr32(E1000_CTRL_EXT, ctrl_ext);
1534
1535	ctrl_reg = rd32(E1000_CTRL);
1536	ctrl_reg |= E1000_CTRL_SLU;
1537
1538	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1539		/* set both sw defined pins */
1540		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1541
1542		/* Set switch control to serdes energy detect */
1543		reg = rd32(E1000_CONNSW);
1544		reg |= E1000_CONNSW_ENRGSRC;
1545		wr32(E1000_CONNSW, reg);
1546	}
1547
1548	reg = rd32(E1000_PCS_LCTL);
1549
1550	/* default pcs_autoneg to the same setting as mac autoneg */
1551	pcs_autoneg = hw->mac.autoneg;
1552
1553	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1554	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1555		/* sgmii mode lets the phy handle forcing speed/duplex */
1556		pcs_autoneg = true;
1557		/* autoneg time out should be disabled for SGMII mode */
1558		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1559		break;
1560	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1561		/* disable PCS autoneg and support parallel detect only */
1562		pcs_autoneg = false;
1563	default:
1564		if (hw->mac.type == e1000_82575 ||
1565		    hw->mac.type == e1000_82576) {
1566			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1567			if (ret_val) {
1568				printk(KERN_DEBUG "NVM Read Error\n\n");
1569				return ret_val;
1570			}
1571
1572			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1573				pcs_autoneg = false;
1574		}
1575
1576		/* non-SGMII modes only supports a speed of 1000/Full for the
1577		 * link so it is best to just force the MAC and let the pcs
1578		 * link either autoneg or be forced to 1000/Full
1579		 */
1580		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1581		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1582
1583		/* set speed of 1000/Full if speed/duplex is forced */
1584		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1585		break;
1586	}
1587
1588	wr32(E1000_CTRL, ctrl_reg);
1589
1590	/* New SerDes mode allows for forcing speed or autonegotiating speed
1591	 * at 1gb. Autoneg should be default set by most drivers. This is the
1592	 * mode that will be compatible with older link partners and switches.
1593	 * However, both are supported by the hardware and some drivers/tools.
1594	 */
1595	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1596		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1597
1598	if (pcs_autoneg) {
1599		/* Set PCS register for autoneg */
1600		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1601		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1602
1603		/* Disable force flow control for autoneg */
1604		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1605
1606		/* Configure flow control advertisement for autoneg */
1607		anadv_reg = rd32(E1000_PCS_ANADV);
1608		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1609		switch (hw->fc.requested_mode) {
1610		case e1000_fc_full:
1611		case e1000_fc_rx_pause:
1612			anadv_reg |= E1000_TXCW_ASM_DIR;
1613			anadv_reg |= E1000_TXCW_PAUSE;
1614			break;
1615		case e1000_fc_tx_pause:
1616			anadv_reg |= E1000_TXCW_ASM_DIR;
1617			break;
1618		default:
1619			break;
1620		}
1621		wr32(E1000_PCS_ANADV, anadv_reg);
1622
1623		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1624	} else {
1625		/* Set PCS register for forced link */
1626		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1627
1628		/* Force flow control for forced link */
1629		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1630
1631		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1632	}
1633
1634	wr32(E1000_PCS_LCTL, reg);
1635
1636	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1637		igb_force_mac_fc(hw);
1638
1639	return ret_val;
1640}
1641
1642/**
1643 *  igb_sgmii_active_82575 - Return sgmii state
1644 *  @hw: pointer to the HW structure
1645 *
1646 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1647 *  which can be enabled for use in the embedded applications.  Simply
1648 *  return the current state of the sgmii interface.
1649 **/
1650static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1651{
1652	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1653	return dev_spec->sgmii_active;
1654}
1655
1656/**
1657 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Inits recommended HW defaults after a reset when there is no EEPROM
1661 *  detected. This is only for the 82575.
1662 **/
1663static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1664{
1665	if (hw->mac.type == e1000_82575) {
1666		hw_dbg("Running reset init script for 82575\n");
1667		/* SerDes configuration via SERDESCTRL */
1668		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1669		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1670		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1671		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1672
1673		/* CCM configuration via CCMCTL register */
1674		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1675		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1676
1677		/* PCIe lanes configuration */
1678		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1679		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1680		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1681		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1682
1683		/* PCIe PLL Configuration */
1684		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1685		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1686		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1687	}
1688
1689	return 0;
1690}
1691
1692/**
1693 *  igb_read_mac_addr_82575 - Read device MAC address
1694 *  @hw: pointer to the HW structure
1695 **/
1696static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1697{
1698	s32 ret_val = 0;
1699
1700	/* If there's an alternate MAC address place it in RAR0
1701	 * so that it will override the Si installed default perm
1702	 * address.
1703	 */
1704	ret_val = igb_check_alt_mac_addr(hw);
1705	if (ret_val)
1706		goto out;
1707
1708	ret_val = igb_read_mac_addr(hw);
1709
1710out:
1711	return ret_val;
1712}
1713
1714/**
1715 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1716 * @hw: pointer to the HW structure
1717 *
1718 * In the case of a PHY power down to save power, or to turn off link during a
1719 * driver unload, or wake on lan is not enabled, remove the link.
1720 **/
1721void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1722{
1723	/* If the management interface is not enabled, then power down */
1724	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1725		igb_power_down_phy_copper(hw);
1726}
1727
1728/**
1729 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1730 *  @hw: pointer to the HW structure
1731 *
1732 *  Clears the hardware counters by reading the counter registers.
1733 **/
1734static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1735{
1736	igb_clear_hw_cntrs_base(hw);
1737
1738	rd32(E1000_PRC64);
1739	rd32(E1000_PRC127);
1740	rd32(E1000_PRC255);
1741	rd32(E1000_PRC511);
1742	rd32(E1000_PRC1023);
1743	rd32(E1000_PRC1522);
1744	rd32(E1000_PTC64);
1745	rd32(E1000_PTC127);
1746	rd32(E1000_PTC255);
1747	rd32(E1000_PTC511);
1748	rd32(E1000_PTC1023);
1749	rd32(E1000_PTC1522);
1750
1751	rd32(E1000_ALGNERRC);
1752	rd32(E1000_RXERRC);
1753	rd32(E1000_TNCRS);
1754	rd32(E1000_CEXTERR);
1755	rd32(E1000_TSCTC);
1756	rd32(E1000_TSCTFC);
1757
1758	rd32(E1000_MGTPRC);
1759	rd32(E1000_MGTPDC);
1760	rd32(E1000_MGTPTC);
1761
1762	rd32(E1000_IAC);
1763	rd32(E1000_ICRXOC);
1764
1765	rd32(E1000_ICRXPTC);
1766	rd32(E1000_ICRXATC);
1767	rd32(E1000_ICTXPTC);
1768	rd32(E1000_ICTXATC);
1769	rd32(E1000_ICTXQEC);
1770	rd32(E1000_ICTXQMTC);
1771	rd32(E1000_ICRXDMTC);
1772
1773	rd32(E1000_CBTMPC);
1774	rd32(E1000_HTDPMC);
1775	rd32(E1000_CBRMPC);
1776	rd32(E1000_RPTHC);
1777	rd32(E1000_HGPTC);
1778	rd32(E1000_HTCBDPC);
1779	rd32(E1000_HGORCL);
1780	rd32(E1000_HGORCH);
1781	rd32(E1000_HGOTCL);
1782	rd32(E1000_HGOTCH);
1783	rd32(E1000_LENERRS);
1784
1785	/* This register should not be read in copper configurations */
1786	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1787	    igb_sgmii_active_82575(hw))
1788		rd32(E1000_SCVPC);
1789}
1790
1791/**
1792 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1793 *  @hw: pointer to the HW structure
1794 *
1795 *  After rx enable if managability is enabled then there is likely some
1796 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1797 *  function clears the fifos and flushes any packets that came in as rx was
1798 *  being enabled.
1799 **/
1800void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1801{
1802	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1803	int i, ms_wait;
1804
1805	if (hw->mac.type != e1000_82575 ||
1806	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1807		return;
1808
1809	/* Disable all RX queues */
1810	for (i = 0; i < 4; i++) {
1811		rxdctl[i] = rd32(E1000_RXDCTL(i));
1812		wr32(E1000_RXDCTL(i),
1813		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1814	}
1815	/* Poll all queues to verify they have shut down */
1816	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1817		msleep(1);
1818		rx_enabled = 0;
1819		for (i = 0; i < 4; i++)
1820			rx_enabled |= rd32(E1000_RXDCTL(i));
1821		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1822			break;
1823	}
1824
1825	if (ms_wait == 10)
1826		hw_dbg("Queue disable timed out after 10ms\n");
1827
1828	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1829	 * incoming packets are rejected.  Set enable and wait 2ms so that
1830	 * any packet that was coming in as RCTL.EN was set is flushed
1831	 */
1832	rfctl = rd32(E1000_RFCTL);
1833	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1834
1835	rlpml = rd32(E1000_RLPML);
1836	wr32(E1000_RLPML, 0);
1837
1838	rctl = rd32(E1000_RCTL);
1839	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1840	temp_rctl |= E1000_RCTL_LPE;
1841
1842	wr32(E1000_RCTL, temp_rctl);
1843	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1844	wrfl();
1845	msleep(2);
1846
1847	/* Enable RX queues that were previously enabled and restore our
1848	 * previous state
1849	 */
1850	for (i = 0; i < 4; i++)
1851		wr32(E1000_RXDCTL(i), rxdctl[i]);
1852	wr32(E1000_RCTL, rctl);
1853	wrfl();
1854
1855	wr32(E1000_RLPML, rlpml);
1856	wr32(E1000_RFCTL, rfctl);
1857
1858	/* Flush receive errors generated by workaround */
1859	rd32(E1000_ROC);
1860	rd32(E1000_RNBC);
1861	rd32(E1000_MPC);
1862}
1863
1864/**
1865 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1866 *  @hw: pointer to the HW structure
1867 *
1868 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1869 *  however the hardware default for these parts is 500us to 1ms which is less
1870 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1871 *  increase the value to either 10ms to 200ms for capability version 1 config,
1872 *  or 16ms to 55ms for version 2.
1873 **/
1874static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1875{
1876	u32 gcr = rd32(E1000_GCR);
1877	s32 ret_val = 0;
1878	u16 pcie_devctl2;
1879
1880	/* only take action if timeout value is defaulted to 0 */
1881	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1882		goto out;
1883
1884	/* if capabilities version is type 1 we can write the
1885	 * timeout of 10ms to 200ms through the GCR register
1886	 */
1887	if (!(gcr & E1000_GCR_CAP_VER2)) {
1888		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1889		goto out;
1890	}
1891
1892	/* for version 2 capabilities we need to write the config space
1893	 * directly in order to set the completion timeout value for
1894	 * 16ms to 55ms
1895	 */
1896	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1897	                                &pcie_devctl2);
1898	if (ret_val)
1899		goto out;
1900
1901	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1902
1903	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1904	                                 &pcie_devctl2);
1905out:
1906	/* disable completion timeout resend */
1907	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1908
1909	wr32(E1000_GCR, gcr);
1910	return ret_val;
1911}
1912
1913/**
1914 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1915 *  @hw: pointer to the hardware struct
1916 *  @enable: state to enter, either enabled or disabled
1917 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1918 *
1919 *  enables/disables L2 switch anti-spoofing functionality.
1920 **/
1921void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1922{
1923	u32 reg_val, reg_offset;
1924
1925	switch (hw->mac.type) {
1926	case e1000_82576:
1927		reg_offset = E1000_DTXSWC;
1928		break;
1929	case e1000_i350:
1930	case e1000_i354:
1931		reg_offset = E1000_TXSWC;
1932		break;
1933	default:
1934		return;
1935	}
1936
1937	reg_val = rd32(reg_offset);
1938	if (enable) {
1939		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1940			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1941		/* The PF can spoof - it has to in order to
1942		 * support emulation mode NICs
1943		 */
1944		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1945	} else {
1946		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1947			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1948	}
1949	wr32(reg_offset, reg_val);
1950}
1951
1952/**
1953 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1954 *  @hw: pointer to the hardware struct
1955 *  @enable: state to enter, either enabled or disabled
1956 *
1957 *  enables/disables L2 switch loopback functionality.
1958 **/
1959void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1960{
1961	u32 dtxswc;
1962
1963	switch (hw->mac.type) {
1964	case e1000_82576:
1965		dtxswc = rd32(E1000_DTXSWC);
1966		if (enable)
1967			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1968		else
1969			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1970		wr32(E1000_DTXSWC, dtxswc);
1971		break;
1972	case e1000_i354:
1973	case e1000_i350:
1974		dtxswc = rd32(E1000_TXSWC);
1975		if (enable)
1976			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1977		else
1978			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1979		wr32(E1000_TXSWC, dtxswc);
1980		break;
1981	default:
1982		/* Currently no other hardware supports loopback */
1983		break;
1984	}
1985
1986}
1987
1988/**
1989 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1990 *  @hw: pointer to the hardware struct
1991 *  @enable: state to enter, either enabled or disabled
1992 *
1993 *  enables/disables replication of packets across multiple pools.
1994 **/
1995void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1996{
1997	u32 vt_ctl = rd32(E1000_VT_CTL);
1998
1999	if (enable)
2000		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2001	else
2002		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2003
2004	wr32(E1000_VT_CTL, vt_ctl);
2005}
2006
2007/**
2008 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2009 *  @hw: pointer to the HW structure
2010 *  @offset: register offset to be read
2011 *  @data: pointer to the read data
2012 *
2013 *  Reads the MDI control register in the PHY at offset and stores the
2014 *  information read to data.
2015 **/
2016static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2017{
2018	s32 ret_val;
2019
2020	ret_val = hw->phy.ops.acquire(hw);
2021	if (ret_val)
2022		goto out;
2023
2024	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2025
2026	hw->phy.ops.release(hw);
2027
2028out:
2029	return ret_val;
2030}
2031
2032/**
2033 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2034 *  @hw: pointer to the HW structure
2035 *  @offset: register offset to write to
2036 *  @data: data to write to register at offset
2037 *
2038 *  Writes data to MDI control register in the PHY at offset.
2039 **/
2040static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2041{
2042	s32 ret_val;
2043
2044
2045	ret_val = hw->phy.ops.acquire(hw);
2046	if (ret_val)
2047		goto out;
2048
2049	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2050
2051	hw->phy.ops.release(hw);
2052
2053out:
2054	return ret_val;
2055}
2056
2057/**
2058 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2059 *  @hw: pointer to the HW structure
2060 *
2061 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2062 *  the values found in the EEPROM.  This addresses an issue in which these
2063 *  bits are not restored from EEPROM after reset.
2064 **/
2065static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2066{
2067	s32 ret_val = 0;
2068	u32 mdicnfg;
2069	u16 nvm_data = 0;
2070
2071	if (hw->mac.type != e1000_82580)
2072		goto out;
2073	if (!igb_sgmii_active_82575(hw))
2074		goto out;
2075
2076	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2077				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2078				   &nvm_data);
2079	if (ret_val) {
2080		hw_dbg("NVM Read Error\n");
2081		goto out;
2082	}
2083
2084	mdicnfg = rd32(E1000_MDICNFG);
2085	if (nvm_data & NVM_WORD24_EXT_MDIO)
2086		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2087	if (nvm_data & NVM_WORD24_COM_MDIO)
2088		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2089	wr32(E1000_MDICNFG, mdicnfg);
2090out:
2091	return ret_val;
2092}
2093
2094/**
2095 *  igb_reset_hw_82580 - Reset hardware
2096 *  @hw: pointer to the HW structure
2097 *
2098 *  This resets function or entire device (all ports, etc.)
2099 *  to a known state.
2100 **/
2101static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2102{
2103	s32 ret_val = 0;
2104	/* BH SW mailbox bit in SW_FW_SYNC */
2105	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2106	u32 ctrl, icr;
2107	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2108
2109
2110	hw->dev_spec._82575.global_device_reset = false;
2111
2112	/* due to hw errata, global device reset doesn't always
2113	 * work on 82580
2114	 */
2115	if (hw->mac.type == e1000_82580)
2116		global_device_reset = false;
2117
2118	/* Get current control state. */
2119	ctrl = rd32(E1000_CTRL);
2120
2121	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2122	 * on the last TLP read/write transaction when MAC is reset.
2123	 */
2124	ret_val = igb_disable_pcie_master(hw);
2125	if (ret_val)
2126		hw_dbg("PCI-E Master disable polling has failed.\n");
2127
2128	hw_dbg("Masking off all interrupts\n");
2129	wr32(E1000_IMC, 0xffffffff);
2130	wr32(E1000_RCTL, 0);
2131	wr32(E1000_TCTL, E1000_TCTL_PSP);
2132	wrfl();
2133
2134	msleep(10);
2135
2136	/* Determine whether or not a global dev reset is requested */
2137	if (global_device_reset &&
2138		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2139			global_device_reset = false;
2140
2141	if (global_device_reset &&
2142		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2143		ctrl |= E1000_CTRL_DEV_RST;
2144	else
2145		ctrl |= E1000_CTRL_RST;
2146
2147	wr32(E1000_CTRL, ctrl);
2148	wrfl();
2149
2150	/* Add delay to insure DEV_RST has time to complete */
2151	if (global_device_reset)
2152		msleep(5);
2153
2154	ret_val = igb_get_auto_rd_done(hw);
2155	if (ret_val) {
2156		/* When auto config read does not complete, do not
2157		 * return with an error. This can happen in situations
2158		 * where there is no eeprom and prevents getting link.
2159		 */
2160		hw_dbg("Auto Read Done did not complete\n");
2161	}
2162
2163	/* clear global device reset status bit */
2164	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2165
2166	/* Clear any pending interrupt events. */
2167	wr32(E1000_IMC, 0xffffffff);
2168	icr = rd32(E1000_ICR);
2169
2170	ret_val = igb_reset_mdicnfg_82580(hw);
2171	if (ret_val)
2172		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2173
2174	/* Install any alternate MAC address into RAR0 */
2175	ret_val = igb_check_alt_mac_addr(hw);
2176
2177	/* Release semaphore */
2178	if (global_device_reset)
2179		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2180
2181	return ret_val;
2182}
2183
2184/**
2185 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2186 *  @data: data received by reading RXPBS register
2187 *
2188 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2189 *  This function converts the retrieved value into the correct table value
2190 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2191 *  0x0 36  72 144   1   2   4   8  16
2192 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2193 */
2194u16 igb_rxpbs_adjust_82580(u32 data)
2195{
2196	u16 ret_val = 0;
2197
2198	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2199		ret_val = e1000_82580_rxpbs_table[data];
2200
2201	return ret_val;
2202}
2203
2204/**
2205 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2206 *  checksum
2207 *  @hw: pointer to the HW structure
2208 *  @offset: offset in words of the checksum protected region
2209 *
2210 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2211 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2212 **/
2213static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2214						 u16 offset)
2215{
2216	s32 ret_val = 0;
2217	u16 checksum = 0;
2218	u16 i, nvm_data;
2219
2220	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2221		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2222		if (ret_val) {
2223			hw_dbg("NVM Read Error\n");
2224			goto out;
2225		}
2226		checksum += nvm_data;
2227	}
2228
2229	if (checksum != (u16) NVM_SUM) {
2230		hw_dbg("NVM Checksum Invalid\n");
2231		ret_val = -E1000_ERR_NVM;
2232		goto out;
2233	}
2234
2235out:
2236	return ret_val;
2237}
2238
2239/**
2240 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2241 *  checksum
2242 *  @hw: pointer to the HW structure
2243 *  @offset: offset in words of the checksum protected region
2244 *
2245 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2246 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2247 *  value to the EEPROM.
2248 **/
2249static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2250{
2251	s32 ret_val;
2252	u16 checksum = 0;
2253	u16 i, nvm_data;
2254
2255	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2256		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2257		if (ret_val) {
2258			hw_dbg("NVM Read Error while updating checksum.\n");
2259			goto out;
2260		}
2261		checksum += nvm_data;
2262	}
2263	checksum = (u16) NVM_SUM - checksum;
2264	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2265				&checksum);
2266	if (ret_val)
2267		hw_dbg("NVM Write Error while updating checksum.\n");
2268
2269out:
2270	return ret_val;
2271}
2272
2273/**
2274 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2275 *  @hw: pointer to the HW structure
2276 *
2277 *  Calculates the EEPROM section checksum by reading/adding each word of
2278 *  the EEPROM and then verifies that the sum of the EEPROM is
2279 *  equal to 0xBABA.
2280 **/
2281static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2282{
2283	s32 ret_val = 0;
2284	u16 eeprom_regions_count = 1;
2285	u16 j, nvm_data;
2286	u16 nvm_offset;
2287
2288	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2289	if (ret_val) {
2290		hw_dbg("NVM Read Error\n");
2291		goto out;
2292	}
2293
2294	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2295		/* if checksums compatibility bit is set validate checksums
2296		 * for all 4 ports.
2297		 */
2298		eeprom_regions_count = 4;
2299	}
2300
2301	for (j = 0; j < eeprom_regions_count; j++) {
2302		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2303		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2304								nvm_offset);
2305		if (ret_val != 0)
2306			goto out;
2307	}
2308
2309out:
2310	return ret_val;
2311}
2312
2313/**
2314 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2315 *  @hw: pointer to the HW structure
2316 *
2317 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2318 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2319 *  checksum and writes the value to the EEPROM.
2320 **/
2321static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2322{
2323	s32 ret_val;
2324	u16 j, nvm_data;
2325	u16 nvm_offset;
2326
2327	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2328	if (ret_val) {
2329		hw_dbg("NVM Read Error while updating checksum"
2330			" compatibility bit.\n");
2331		goto out;
2332	}
2333
2334	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2335		/* set compatibility bit to validate checksums appropriately */
2336		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2337		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2338					&nvm_data);
2339		if (ret_val) {
2340			hw_dbg("NVM Write Error while updating checksum"
2341				" compatibility bit.\n");
2342			goto out;
2343		}
2344	}
2345
2346	for (j = 0; j < 4; j++) {
2347		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2348		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2349		if (ret_val)
2350			goto out;
2351	}
2352
2353out:
2354	return ret_val;
2355}
2356
2357/**
2358 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2359 *  @hw: pointer to the HW structure
2360 *
2361 *  Calculates the EEPROM section checksum by reading/adding each word of
2362 *  the EEPROM and then verifies that the sum of the EEPROM is
2363 *  equal to 0xBABA.
2364 **/
2365static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2366{
2367	s32 ret_val = 0;
2368	u16 j;
2369	u16 nvm_offset;
2370
2371	for (j = 0; j < 4; j++) {
2372		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2373		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2374								nvm_offset);
2375		if (ret_val != 0)
2376			goto out;
2377	}
2378
2379out:
2380	return ret_val;
2381}
2382
2383/**
2384 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2385 *  @hw: pointer to the HW structure
2386 *
2387 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2388 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2389 *  checksum and writes the value to the EEPROM.
2390 **/
2391static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2392{
2393	s32 ret_val = 0;
2394	u16 j;
2395	u16 nvm_offset;
2396
2397	for (j = 0; j < 4; j++) {
2398		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2399		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2400		if (ret_val != 0)
2401			goto out;
2402	}
2403
2404out:
2405	return ret_val;
2406}
2407
2408/**
2409 *  __igb_access_emi_reg - Read/write EMI register
2410 *  @hw: pointer to the HW structure
2411 *  @addr: EMI address to program
2412 *  @data: pointer to value to read/write from/to the EMI address
2413 *  @read: boolean flag to indicate read or write
2414 **/
2415static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2416				  u16 *data, bool read)
2417{
2418	s32 ret_val = E1000_SUCCESS;
2419
2420	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2421	if (ret_val)
2422		return ret_val;
2423
2424	if (read)
2425		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2426	else
2427		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2428
2429	return ret_val;
2430}
2431
2432/**
2433 *  igb_read_emi_reg - Read Extended Management Interface register
2434 *  @hw: pointer to the HW structure
2435 *  @addr: EMI address to program
2436 *  @data: value to be read from the EMI address
2437 **/
2438s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2439{
2440	return __igb_access_emi_reg(hw, addr, data, true);
2441}
2442
2443/**
2444 *  igb_set_eee_i350 - Enable/disable EEE support
2445 *  @hw: pointer to the HW structure
2446 *
2447 *  Enable/disable EEE based on setting in dev_spec structure.
2448 *
2449 **/
2450s32 igb_set_eee_i350(struct e1000_hw *hw)
2451{
2452	s32 ret_val = 0;
2453	u32 ipcnfg, eeer;
2454
2455	if ((hw->mac.type < e1000_i350) ||
2456	    (hw->phy.media_type != e1000_media_type_copper))
2457		goto out;
2458	ipcnfg = rd32(E1000_IPCNFG);
2459	eeer = rd32(E1000_EEER);
2460
2461	/* enable or disable per user setting */
2462	if (!(hw->dev_spec._82575.eee_disable)) {
2463		u32 eee_su = rd32(E1000_EEE_SU);
2464
2465		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2466		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2467			E1000_EEER_LPI_FC);
2468
2469		/* This bit should not be set in normal operation. */
2470		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2471			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2472
2473	} else {
2474		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2475			E1000_IPCNFG_EEE_100M_AN);
2476		eeer &= ~(E1000_EEER_TX_LPI_EN |
2477			E1000_EEER_RX_LPI_EN |
2478			E1000_EEER_LPI_FC);
2479	}
2480	wr32(E1000_IPCNFG, ipcnfg);
2481	wr32(E1000_EEER, eeer);
2482	rd32(E1000_IPCNFG);
2483	rd32(E1000_EEER);
2484out:
2485
2486	return ret_val;
2487}
2488
2489/**
2490 *  igb_set_eee_i354 - Enable/disable EEE support
2491 *  @hw: pointer to the HW structure
2492 *
2493 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2494 *
2495 **/
2496s32 igb_set_eee_i354(struct e1000_hw *hw)
2497{
2498	struct e1000_phy_info *phy = &hw->phy;
2499	s32 ret_val = 0;
2500	u16 phy_data;
2501
2502	if ((hw->phy.media_type != e1000_media_type_copper) ||
2503	    (phy->id != M88E1545_E_PHY_ID))
2504		goto out;
2505
2506	if (!hw->dev_spec._82575.eee_disable) {
2507		/* Switch to PHY page 18. */
2508		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 18);
2509		if (ret_val)
2510			goto out;
2511
2512		ret_val = phy->ops.read_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2513					    &phy_data);
2514		if (ret_val)
2515			goto out;
2516
2517		phy_data |= E1000_M88E1545_EEE_CTRL_1_MS;
2518		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2519					     phy_data);
2520		if (ret_val)
2521			goto out;
2522
2523		/* Return the PHY to page 0. */
2524		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 0);
2525		if (ret_val)
2526			goto out;
2527
2528		/* Turn on EEE advertisement. */
2529		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2530					     E1000_EEE_ADV_DEV_I354,
2531					     &phy_data);
2532		if (ret_val)
2533			goto out;
2534
2535		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2536			    E1000_EEE_ADV_1000_SUPPORTED;
2537		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2538						E1000_EEE_ADV_DEV_I354,
2539						phy_data);
2540	} else {
2541		/* Turn off EEE advertisement. */
2542		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2543					     E1000_EEE_ADV_DEV_I354,
2544					     &phy_data);
2545		if (ret_val)
2546			goto out;
2547
2548		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2549			      E1000_EEE_ADV_1000_SUPPORTED);
2550		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2551					      E1000_EEE_ADV_DEV_I354,
2552					      phy_data);
2553	}
2554
2555out:
2556	return ret_val;
2557}
2558
2559/**
2560 *  igb_get_eee_status_i354 - Get EEE status
2561 *  @hw: pointer to the HW structure
2562 *  @status: EEE status
2563 *
2564 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2565 *  been received.
2566 **/
2567s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2568{
2569	struct e1000_phy_info *phy = &hw->phy;
2570	s32 ret_val = 0;
2571	u16 phy_data;
2572
2573	/* Check if EEE is supported on this device. */
2574	if ((hw->phy.media_type != e1000_media_type_copper) ||
2575	    (phy->id != M88E1545_E_PHY_ID))
2576		goto out;
2577
2578	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2579				     E1000_PCS_STATUS_DEV_I354,
2580				     &phy_data);
2581	if (ret_val)
2582		goto out;
2583
2584	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2585			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2586
2587out:
2588	return ret_val;
2589}
2590
2591static const u8 e1000_emc_temp_data[4] = {
2592	E1000_EMC_INTERNAL_DATA,
2593	E1000_EMC_DIODE1_DATA,
2594	E1000_EMC_DIODE2_DATA,
2595	E1000_EMC_DIODE3_DATA
2596};
2597static const u8 e1000_emc_therm_limit[4] = {
2598	E1000_EMC_INTERNAL_THERM_LIMIT,
2599	E1000_EMC_DIODE1_THERM_LIMIT,
2600	E1000_EMC_DIODE2_THERM_LIMIT,
2601	E1000_EMC_DIODE3_THERM_LIMIT
2602};
2603
2604/**
2605 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2606 *  @hw: pointer to hardware structure
2607 *
2608 *  Updates the temperatures in mac.thermal_sensor_data
2609 **/
2610s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2611{
2612	s32 status = E1000_SUCCESS;
2613	u16 ets_offset;
2614	u16 ets_cfg;
2615	u16 ets_sensor;
2616	u8  num_sensors;
2617	u8  sensor_index;
2618	u8  sensor_location;
2619	u8  i;
2620	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2621
2622	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2623		return E1000_NOT_IMPLEMENTED;
2624
2625	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2626
2627	/* Return the internal sensor only if ETS is unsupported */
2628	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2629	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2630		return status;
2631
2632	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2633	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2634	    != NVM_ETS_TYPE_EMC)
2635		return E1000_NOT_IMPLEMENTED;
2636
2637	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2638	if (num_sensors > E1000_MAX_SENSORS)
2639		num_sensors = E1000_MAX_SENSORS;
2640
2641	for (i = 1; i < num_sensors; i++) {
2642		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2643		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2644				NVM_ETS_DATA_INDEX_SHIFT);
2645		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2646				   NVM_ETS_DATA_LOC_SHIFT);
2647
2648		if (sensor_location != 0)
2649			hw->phy.ops.read_i2c_byte(hw,
2650					e1000_emc_temp_data[sensor_index],
2651					E1000_I2C_THERMAL_SENSOR_ADDR,
2652					&data->sensor[i].temp);
2653	}
2654	return status;
2655}
2656
2657/**
2658 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2659 *  @hw: pointer to hardware structure
2660 *
2661 *  Sets the thermal sensor thresholds according to the NVM map
2662 *  and save off the threshold and location values into mac.thermal_sensor_data
2663 **/
2664s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2665{
2666	s32 status = E1000_SUCCESS;
2667	u16 ets_offset;
2668	u16 ets_cfg;
2669	u16 ets_sensor;
2670	u8  low_thresh_delta;
2671	u8  num_sensors;
2672	u8  sensor_index;
2673	u8  sensor_location;
2674	u8  therm_limit;
2675	u8  i;
2676	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2677
2678	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2679		return E1000_NOT_IMPLEMENTED;
2680
2681	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2682
2683	data->sensor[0].location = 0x1;
2684	data->sensor[0].caution_thresh =
2685		(rd32(E1000_THHIGHTC) & 0xFF);
2686	data->sensor[0].max_op_thresh =
2687		(rd32(E1000_THLOWTC) & 0xFF);
2688
2689	/* Return the internal sensor only if ETS is unsupported */
2690	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2691	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2692		return status;
2693
2694	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2695	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2696	    != NVM_ETS_TYPE_EMC)
2697		return E1000_NOT_IMPLEMENTED;
2698
2699	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2700			    NVM_ETS_LTHRES_DELTA_SHIFT);
2701	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2702
2703	for (i = 1; i <= num_sensors; i++) {
2704		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2705		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2706				NVM_ETS_DATA_INDEX_SHIFT);
2707		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2708				   NVM_ETS_DATA_LOC_SHIFT);
2709		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2710
2711		hw->phy.ops.write_i2c_byte(hw,
2712			e1000_emc_therm_limit[sensor_index],
2713			E1000_I2C_THERMAL_SENSOR_ADDR,
2714			therm_limit);
2715
2716		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2717			data->sensor[i].location = sensor_location;
2718			data->sensor[i].caution_thresh = therm_limit;
2719			data->sensor[i].max_op_thresh = therm_limit -
2720							low_thresh_delta;
2721		}
2722	}
2723	return status;
2724}
2725
2726static struct e1000_mac_operations e1000_mac_ops_82575 = {
2727	.init_hw              = igb_init_hw_82575,
2728	.check_for_link       = igb_check_for_link_82575,
2729	.rar_set              = igb_rar_set,
2730	.read_mac_addr        = igb_read_mac_addr_82575,
2731	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2732#ifdef CONFIG_IGB_HWMON
2733	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2734	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2735#endif
2736};
2737
2738static struct e1000_phy_operations e1000_phy_ops_82575 = {
2739	.acquire              = igb_acquire_phy_82575,
2740	.get_cfg_done         = igb_get_cfg_done_82575,
2741	.release              = igb_release_phy_82575,
2742	.write_i2c_byte       = igb_write_i2c_byte,
2743	.read_i2c_byte        = igb_read_i2c_byte,
2744};
2745
2746static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2747	.acquire              = igb_acquire_nvm_82575,
2748	.read                 = igb_read_nvm_eerd,
2749	.release              = igb_release_nvm_82575,
2750	.write                = igb_write_nvm_spi,
2751};
2752
2753const struct e1000_info e1000_82575_info = {
2754	.get_invariants = igb_get_invariants_82575,
2755	.mac_ops = &e1000_mac_ops_82575,
2756	.phy_ops = &e1000_phy_ops_82575,
2757	.nvm_ops = &e1000_nvm_ops_82575,
2758};
2759
2760