[go: nahoru, domu]

e1000_82575.c revision 72b36727080c712859d4b8b363ae5ddadb81a0d3
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27/* e1000_82575
28 * e1000_82576
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/types.h>
34#include <linux/if_ether.h>
35#include <linux/i2c.h>
36
37#include "e1000_mac.h"
38#include "e1000_82575.h"
39#include "e1000_i210.h"
40
41static s32  igb_get_invariants_82575(struct e1000_hw *);
42static s32  igb_acquire_phy_82575(struct e1000_hw *);
43static void igb_release_phy_82575(struct e1000_hw *);
44static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45static void igb_release_nvm_82575(struct e1000_hw *);
46static s32  igb_check_for_link_82575(struct e1000_hw *);
47static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48static s32  igb_init_hw_82575(struct e1000_hw *);
49static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53static s32  igb_reset_hw_82575(struct e1000_hw *);
54static s32  igb_reset_hw_82580(struct e1000_hw *);
55static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64						 u16 *);
65static s32  igb_get_phy_id_82575(struct e1000_hw *);
66static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67static bool igb_sgmii_active_82575(struct e1000_hw *);
68static s32  igb_reset_init_script_82575(struct e1000_hw *);
69static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76static const u16 e1000_82580_rxpbs_table[] =
77	{ 36, 72, 144, 1, 2, 4, 8, 16,
78	  35, 70, 140 };
79
80/**
81 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
82 *  @hw: pointer to the HW structure
83 *
84 *  Called to determine if the I2C pins are being used for I2C or as an
85 *  external MDIO interface since the two options are mutually exclusive.
86 **/
87static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
88{
89	u32 reg = 0;
90	bool ext_mdio = false;
91
92	switch (hw->mac.type) {
93	case e1000_82575:
94	case e1000_82576:
95		reg = rd32(E1000_MDIC);
96		ext_mdio = !!(reg & E1000_MDIC_DEST);
97		break;
98	case e1000_82580:
99	case e1000_i350:
100	case e1000_i354:
101	case e1000_i210:
102	case e1000_i211:
103		reg = rd32(E1000_MDICNFG);
104		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
105		break;
106	default:
107		break;
108	}
109	return ext_mdio;
110}
111
112/**
113 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
114 *  @hw: pointer to the HW structure
115 *
116 *  Poll the M88E1112 interfaces to see which interface achieved link.
117 */
118static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
119{
120	struct e1000_phy_info *phy = &hw->phy;
121	s32 ret_val;
122	u16 data;
123	u8 port = 0;
124
125	/* Check the copper medium. */
126	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
127	if (ret_val)
128		return ret_val;
129
130	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
131	if (ret_val)
132		return ret_val;
133
134	if (data & E1000_M88E1112_STATUS_LINK)
135		port = E1000_MEDIA_PORT_COPPER;
136
137	/* Check the other medium. */
138	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
139	if (ret_val)
140		return ret_val;
141
142	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
143	if (ret_val)
144		return ret_val;
145
146	/* reset page to 0 */
147	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
148	if (ret_val)
149		return ret_val;
150
151	if (data & E1000_M88E1112_STATUS_LINK)
152		port = E1000_MEDIA_PORT_OTHER;
153
154	/* Determine if a swap needs to happen. */
155	if (port && (hw->dev_spec._82575.media_port != port)) {
156		hw->dev_spec._82575.media_port = port;
157		hw->dev_spec._82575.media_changed = true;
158	} else {
159		ret_val = igb_check_for_link_82575(hw);
160	}
161
162	return E1000_SUCCESS;
163}
164
165/**
166 *  igb_init_phy_params_82575 - Init PHY func ptrs.
167 *  @hw: pointer to the HW structure
168 **/
169static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
170{
171	struct e1000_phy_info *phy = &hw->phy;
172	s32 ret_val = 0;
173	u32 ctrl_ext;
174
175	if (hw->phy.media_type != e1000_media_type_copper) {
176		phy->type = e1000_phy_none;
177		goto out;
178	}
179
180	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
181	phy->reset_delay_us	= 100;
182
183	ctrl_ext = rd32(E1000_CTRL_EXT);
184
185	if (igb_sgmii_active_82575(hw)) {
186		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
187		ctrl_ext |= E1000_CTRL_I2C_ENA;
188	} else {
189		phy->ops.reset = igb_phy_hw_reset;
190		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
191	}
192
193	wr32(E1000_CTRL_EXT, ctrl_ext);
194	igb_reset_mdicnfg_82580(hw);
195
196	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
197		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
198		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
199	} else {
200		switch (hw->mac.type) {
201		case e1000_82580:
202		case e1000_i350:
203		case e1000_i354:
204			phy->ops.read_reg = igb_read_phy_reg_82580;
205			phy->ops.write_reg = igb_write_phy_reg_82580;
206			break;
207		case e1000_i210:
208		case e1000_i211:
209			phy->ops.read_reg = igb_read_phy_reg_gs40g;
210			phy->ops.write_reg = igb_write_phy_reg_gs40g;
211			break;
212		default:
213			phy->ops.read_reg = igb_read_phy_reg_igp;
214			phy->ops.write_reg = igb_write_phy_reg_igp;
215		}
216	}
217
218	/* set lan id */
219	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
220			E1000_STATUS_FUNC_SHIFT;
221
222	/* Set phy->phy_addr and phy->id. */
223	ret_val = igb_get_phy_id_82575(hw);
224	if (ret_val)
225		return ret_val;
226
227	/* Verify phy id and set remaining function pointers */
228	switch (phy->id) {
229	case M88E1543_E_PHY_ID:
230	case I347AT4_E_PHY_ID:
231	case M88E1112_E_PHY_ID:
232	case M88E1111_I_PHY_ID:
233		phy->type		= e1000_phy_m88;
234		phy->ops.check_polarity	= igb_check_polarity_m88;
235		phy->ops.get_phy_info	= igb_get_phy_info_m88;
236		if (phy->id != M88E1111_I_PHY_ID)
237			phy->ops.get_cable_length =
238					 igb_get_cable_length_m88_gen2;
239		else
240			phy->ops.get_cable_length = igb_get_cable_length_m88;
241		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
242		/* Check if this PHY is confgured for media swap. */
243		if (phy->id == M88E1112_E_PHY_ID) {
244			u16 data;
245
246			ret_val = phy->ops.write_reg(hw,
247						     E1000_M88E1112_PAGE_ADDR,
248						     2);
249			if (ret_val)
250				goto out;
251
252			ret_val = phy->ops.read_reg(hw,
253						    E1000_M88E1112_MAC_CTRL_1,
254						    &data);
255			if (ret_val)
256				goto out;
257
258			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
259			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
260			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
261			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
262				hw->mac.ops.check_for_link =
263						igb_check_for_link_media_swap;
264		}
265		break;
266	case IGP03E1000_E_PHY_ID:
267		phy->type = e1000_phy_igp_3;
268		phy->ops.get_phy_info = igb_get_phy_info_igp;
269		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
270		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
271		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
272		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
273		break;
274	case I82580_I_PHY_ID:
275	case I350_I_PHY_ID:
276		phy->type = e1000_phy_82580;
277		phy->ops.force_speed_duplex =
278					 igb_phy_force_speed_duplex_82580;
279		phy->ops.get_cable_length = igb_get_cable_length_82580;
280		phy->ops.get_phy_info = igb_get_phy_info_82580;
281		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
282		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
283		break;
284	case I210_I_PHY_ID:
285		phy->type		= e1000_phy_i210;
286		phy->ops.check_polarity	= igb_check_polarity_m88;
287		phy->ops.get_phy_info	= igb_get_phy_info_m88;
288		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
289		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
290		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
291		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
292		break;
293	default:
294		ret_val = -E1000_ERR_PHY;
295		goto out;
296	}
297
298out:
299	return ret_val;
300}
301
302/**
303 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
304 *  @hw: pointer to the HW structure
305 **/
306static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
307{
308	struct e1000_nvm_info *nvm = &hw->nvm;
309	u32 eecd = rd32(E1000_EECD);
310	u16 size;
311
312	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
313		     E1000_EECD_SIZE_EX_SHIFT);
314
315	/* Added to a constant, "size" becomes the left-shift value
316	 * for setting word_size.
317	 */
318	size += NVM_WORD_SIZE_BASE_SHIFT;
319
320	/* Just in case size is out of range, cap it to the largest
321	 * EEPROM size supported
322	 */
323	if (size > 15)
324		size = 15;
325
326	nvm->word_size = 1 << size;
327	nvm->opcode_bits = 8;
328	nvm->delay_usec = 1;
329
330	switch (nvm->override) {
331	case e1000_nvm_override_spi_large:
332		nvm->page_size = 32;
333		nvm->address_bits = 16;
334		break;
335	case e1000_nvm_override_spi_small:
336		nvm->page_size = 8;
337		nvm->address_bits = 8;
338		break;
339	default:
340		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
341		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
342				    16 : 8;
343		break;
344	}
345	if (nvm->word_size == (1 << 15))
346		nvm->page_size = 128;
347
348	nvm->type = e1000_nvm_eeprom_spi;
349
350	/* NVM Function Pointers */
351	nvm->ops.acquire = igb_acquire_nvm_82575;
352	nvm->ops.release = igb_release_nvm_82575;
353	nvm->ops.write = igb_write_nvm_spi;
354	nvm->ops.validate = igb_validate_nvm_checksum;
355	nvm->ops.update = igb_update_nvm_checksum;
356	if (nvm->word_size < (1 << 15))
357		nvm->ops.read = igb_read_nvm_eerd;
358	else
359		nvm->ops.read = igb_read_nvm_spi;
360
361	/* override generic family function pointers for specific descendants */
362	switch (hw->mac.type) {
363	case e1000_82580:
364		nvm->ops.validate = igb_validate_nvm_checksum_82580;
365		nvm->ops.update = igb_update_nvm_checksum_82580;
366		break;
367	case e1000_i354:
368	case e1000_i350:
369		nvm->ops.validate = igb_validate_nvm_checksum_i350;
370		nvm->ops.update = igb_update_nvm_checksum_i350;
371		break;
372	default:
373		break;
374	}
375
376	return 0;
377}
378
379/**
380 *  igb_init_mac_params_82575 - Init MAC func ptrs.
381 *  @hw: pointer to the HW structure
382 **/
383static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
384{
385	struct e1000_mac_info *mac = &hw->mac;
386	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
387
388	/* Set mta register count */
389	mac->mta_reg_count = 128;
390	/* Set rar entry count */
391	switch (mac->type) {
392	case e1000_82576:
393		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
394		break;
395	case e1000_82580:
396		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
397		break;
398	case e1000_i350:
399	case e1000_i354:
400		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
401		break;
402	default:
403		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
404		break;
405	}
406	/* reset */
407	if (mac->type >= e1000_82580)
408		mac->ops.reset_hw = igb_reset_hw_82580;
409	else
410		mac->ops.reset_hw = igb_reset_hw_82575;
411
412	if (mac->type >= e1000_i210) {
413		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
414		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
415
416	} else {
417		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
418		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
419	}
420
421	/* Set if part includes ASF firmware */
422	mac->asf_firmware_present = true;
423	/* Set if manageability features are enabled. */
424	mac->arc_subsystem_valid =
425		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
426			? true : false;
427	/* enable EEE on i350 parts and later parts */
428	if (mac->type >= e1000_i350)
429		dev_spec->eee_disable = false;
430	else
431		dev_spec->eee_disable = true;
432	/* Allow a single clear of the SW semaphore on I210 and newer */
433	if (mac->type >= e1000_i210)
434		dev_spec->clear_semaphore_once = true;
435	/* physical interface link setup */
436	mac->ops.setup_physical_interface =
437		(hw->phy.media_type == e1000_media_type_copper)
438			? igb_setup_copper_link_82575
439			: igb_setup_serdes_link_82575;
440
441	if (mac->type == e1000_82580) {
442		switch (hw->device_id) {
443		/* feature not supported on these id's */
444		case E1000_DEV_ID_DH89XXCC_SGMII:
445		case E1000_DEV_ID_DH89XXCC_SERDES:
446		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
447		case E1000_DEV_ID_DH89XXCC_SFP:
448			break;
449		default:
450			hw->dev_spec._82575.mas_capable = true;
451			break;
452		}
453	}
454	return 0;
455}
456
457/**
458 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
459 *  @hw: pointer to the HW structure
460 *
461 *  The media type is chosen based on SFP module.
462 *  compatibility flags retrieved from SFP ID EEPROM.
463 **/
464static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
465{
466	s32 ret_val = E1000_ERR_CONFIG;
467	u32 ctrl_ext = 0;
468	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
469	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
470	u8 tranceiver_type = 0;
471	s32 timeout = 3;
472
473	/* Turn I2C interface ON and power on sfp cage */
474	ctrl_ext = rd32(E1000_CTRL_EXT);
475	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
476	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
477
478	wrfl();
479
480	/* Read SFP module data */
481	while (timeout) {
482		ret_val = igb_read_sfp_data_byte(hw,
483			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
484			&tranceiver_type);
485		if (ret_val == 0)
486			break;
487		msleep(100);
488		timeout--;
489	}
490	if (ret_val != 0)
491		goto out;
492
493	ret_val = igb_read_sfp_data_byte(hw,
494			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
495			(u8 *)eth_flags);
496	if (ret_val != 0)
497		goto out;
498
499	/* Check if there is some SFP module plugged and powered */
500	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
501	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
502		dev_spec->module_plugged = true;
503		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
504			hw->phy.media_type = e1000_media_type_internal_serdes;
505		} else if (eth_flags->e100_base_fx) {
506			dev_spec->sgmii_active = true;
507			hw->phy.media_type = e1000_media_type_internal_serdes;
508		} else if (eth_flags->e1000_base_t) {
509			dev_spec->sgmii_active = true;
510			hw->phy.media_type = e1000_media_type_copper;
511		} else {
512			hw->phy.media_type = e1000_media_type_unknown;
513			hw_dbg("PHY module has not been recognized\n");
514			goto out;
515		}
516	} else {
517		hw->phy.media_type = e1000_media_type_unknown;
518	}
519	ret_val = 0;
520out:
521	/* Restore I2C interface setting */
522	wr32(E1000_CTRL_EXT, ctrl_ext);
523	return ret_val;
524}
525
526static s32 igb_get_invariants_82575(struct e1000_hw *hw)
527{
528	struct e1000_mac_info *mac = &hw->mac;
529	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
530	s32 ret_val;
531	u32 ctrl_ext = 0;
532	u32 link_mode = 0;
533
534	switch (hw->device_id) {
535	case E1000_DEV_ID_82575EB_COPPER:
536	case E1000_DEV_ID_82575EB_FIBER_SERDES:
537	case E1000_DEV_ID_82575GB_QUAD_COPPER:
538		mac->type = e1000_82575;
539		break;
540	case E1000_DEV_ID_82576:
541	case E1000_DEV_ID_82576_NS:
542	case E1000_DEV_ID_82576_NS_SERDES:
543	case E1000_DEV_ID_82576_FIBER:
544	case E1000_DEV_ID_82576_SERDES:
545	case E1000_DEV_ID_82576_QUAD_COPPER:
546	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
547	case E1000_DEV_ID_82576_SERDES_QUAD:
548		mac->type = e1000_82576;
549		break;
550	case E1000_DEV_ID_82580_COPPER:
551	case E1000_DEV_ID_82580_FIBER:
552	case E1000_DEV_ID_82580_QUAD_FIBER:
553	case E1000_DEV_ID_82580_SERDES:
554	case E1000_DEV_ID_82580_SGMII:
555	case E1000_DEV_ID_82580_COPPER_DUAL:
556	case E1000_DEV_ID_DH89XXCC_SGMII:
557	case E1000_DEV_ID_DH89XXCC_SERDES:
558	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
559	case E1000_DEV_ID_DH89XXCC_SFP:
560		mac->type = e1000_82580;
561		break;
562	case E1000_DEV_ID_I350_COPPER:
563	case E1000_DEV_ID_I350_FIBER:
564	case E1000_DEV_ID_I350_SERDES:
565	case E1000_DEV_ID_I350_SGMII:
566		mac->type = e1000_i350;
567		break;
568	case E1000_DEV_ID_I210_COPPER:
569	case E1000_DEV_ID_I210_FIBER:
570	case E1000_DEV_ID_I210_SERDES:
571	case E1000_DEV_ID_I210_SGMII:
572	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
573	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
574		mac->type = e1000_i210;
575		break;
576	case E1000_DEV_ID_I211_COPPER:
577		mac->type = e1000_i211;
578		break;
579	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
580	case E1000_DEV_ID_I354_SGMII:
581	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
582		mac->type = e1000_i354;
583		break;
584	default:
585		return -E1000_ERR_MAC_INIT;
586		break;
587	}
588
589	/* Set media type */
590	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
591	 * based on the EEPROM. We cannot rely upon device ID. There
592	 * is no distinguishable difference between fiber and internal
593	 * SerDes mode on the 82575. There can be an external PHY attached
594	 * on the SGMII interface. For this, we'll set sgmii_active to true.
595	 */
596	hw->phy.media_type = e1000_media_type_copper;
597	dev_spec->sgmii_active = false;
598	dev_spec->module_plugged = false;
599
600	ctrl_ext = rd32(E1000_CTRL_EXT);
601
602	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
603	switch (link_mode) {
604	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
605		hw->phy.media_type = e1000_media_type_internal_serdes;
606		break;
607	case E1000_CTRL_EXT_LINK_MODE_SGMII:
608		/* Get phy control interface type set (MDIO vs. I2C)*/
609		if (igb_sgmii_uses_mdio_82575(hw)) {
610			hw->phy.media_type = e1000_media_type_copper;
611			dev_spec->sgmii_active = true;
612			break;
613		}
614		/* fall through for I2C based SGMII */
615	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
616		/* read media type from SFP EEPROM */
617		ret_val = igb_set_sfp_media_type_82575(hw);
618		if ((ret_val != 0) ||
619		    (hw->phy.media_type == e1000_media_type_unknown)) {
620			/* If media type was not identified then return media
621			 * type defined by the CTRL_EXT settings.
622			 */
623			hw->phy.media_type = e1000_media_type_internal_serdes;
624
625			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
626				hw->phy.media_type = e1000_media_type_copper;
627				dev_spec->sgmii_active = true;
628			}
629
630			break;
631		}
632
633		/* do not change link mode for 100BaseFX */
634		if (dev_spec->eth_flags.e100_base_fx)
635			break;
636
637		/* change current link mode setting */
638		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
639
640		if (hw->phy.media_type == e1000_media_type_copper)
641			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
642		else
643			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
644
645		wr32(E1000_CTRL_EXT, ctrl_ext);
646
647		break;
648	default:
649		break;
650	}
651
652	/* mac initialization and operations */
653	ret_val = igb_init_mac_params_82575(hw);
654	if (ret_val)
655		goto out;
656
657	/* NVM initialization */
658	ret_val = igb_init_nvm_params_82575(hw);
659	switch (hw->mac.type) {
660	case e1000_i210:
661	case e1000_i211:
662		ret_val = igb_init_nvm_params_i210(hw);
663		break;
664	default:
665		break;
666	}
667
668	if (ret_val)
669		goto out;
670
671	/* if part supports SR-IOV then initialize mailbox parameters */
672	switch (mac->type) {
673	case e1000_82576:
674	case e1000_i350:
675		igb_init_mbx_params_pf(hw);
676		break;
677	default:
678		break;
679	}
680
681	/* setup PHY parameters */
682	ret_val = igb_init_phy_params_82575(hw);
683
684out:
685	return ret_val;
686}
687
688/**
689 *  igb_acquire_phy_82575 - Acquire rights to access PHY
690 *  @hw: pointer to the HW structure
691 *
692 *  Acquire access rights to the correct PHY.  This is a
693 *  function pointer entry point called by the api module.
694 **/
695static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
696{
697	u16 mask = E1000_SWFW_PHY0_SM;
698
699	if (hw->bus.func == E1000_FUNC_1)
700		mask = E1000_SWFW_PHY1_SM;
701	else if (hw->bus.func == E1000_FUNC_2)
702		mask = E1000_SWFW_PHY2_SM;
703	else if (hw->bus.func == E1000_FUNC_3)
704		mask = E1000_SWFW_PHY3_SM;
705
706	return hw->mac.ops.acquire_swfw_sync(hw, mask);
707}
708
709/**
710 *  igb_release_phy_82575 - Release rights to access PHY
711 *  @hw: pointer to the HW structure
712 *
713 *  A wrapper to release access rights to the correct PHY.  This is a
714 *  function pointer entry point called by the api module.
715 **/
716static void igb_release_phy_82575(struct e1000_hw *hw)
717{
718	u16 mask = E1000_SWFW_PHY0_SM;
719
720	if (hw->bus.func == E1000_FUNC_1)
721		mask = E1000_SWFW_PHY1_SM;
722	else if (hw->bus.func == E1000_FUNC_2)
723		mask = E1000_SWFW_PHY2_SM;
724	else if (hw->bus.func == E1000_FUNC_3)
725		mask = E1000_SWFW_PHY3_SM;
726
727	hw->mac.ops.release_swfw_sync(hw, mask);
728}
729
730/**
731 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
732 *  @hw: pointer to the HW structure
733 *  @offset: register offset to be read
734 *  @data: pointer to the read data
735 *
736 *  Reads the PHY register at offset using the serial gigabit media independent
737 *  interface and stores the retrieved information in data.
738 **/
739static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
740					  u16 *data)
741{
742	s32 ret_val = -E1000_ERR_PARAM;
743
744	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
745		hw_dbg("PHY Address %u is out of range\n", offset);
746		goto out;
747	}
748
749	ret_val = hw->phy.ops.acquire(hw);
750	if (ret_val)
751		goto out;
752
753	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
754
755	hw->phy.ops.release(hw);
756
757out:
758	return ret_val;
759}
760
761/**
762 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
763 *  @hw: pointer to the HW structure
764 *  @offset: register offset to write to
765 *  @data: data to write at register offset
766 *
767 *  Writes the data to PHY register at the offset using the serial gigabit
768 *  media independent interface.
769 **/
770static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
771					   u16 data)
772{
773	s32 ret_val = -E1000_ERR_PARAM;
774
775
776	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
777		hw_dbg("PHY Address %d is out of range\n", offset);
778		goto out;
779	}
780
781	ret_val = hw->phy.ops.acquire(hw);
782	if (ret_val)
783		goto out;
784
785	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
786
787	hw->phy.ops.release(hw);
788
789out:
790	return ret_val;
791}
792
793/**
794 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
795 *  @hw: pointer to the HW structure
796 *
797 *  Retrieves the PHY address and ID for both PHY's which do and do not use
798 *  sgmi interface.
799 **/
800static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
801{
802	struct e1000_phy_info *phy = &hw->phy;
803	s32  ret_val = 0;
804	u16 phy_id;
805	u32 ctrl_ext;
806	u32 mdic;
807
808	/* Extra read required for some PHY's on i354 */
809	if (hw->mac.type == e1000_i354)
810		igb_get_phy_id(hw);
811
812	/* For SGMII PHYs, we try the list of possible addresses until
813	 * we find one that works.  For non-SGMII PHYs
814	 * (e.g. integrated copper PHYs), an address of 1 should
815	 * work.  The result of this function should mean phy->phy_addr
816	 * and phy->id are set correctly.
817	 */
818	if (!(igb_sgmii_active_82575(hw))) {
819		phy->addr = 1;
820		ret_val = igb_get_phy_id(hw);
821		goto out;
822	}
823
824	if (igb_sgmii_uses_mdio_82575(hw)) {
825		switch (hw->mac.type) {
826		case e1000_82575:
827		case e1000_82576:
828			mdic = rd32(E1000_MDIC);
829			mdic &= E1000_MDIC_PHY_MASK;
830			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
831			break;
832		case e1000_82580:
833		case e1000_i350:
834		case e1000_i354:
835		case e1000_i210:
836		case e1000_i211:
837			mdic = rd32(E1000_MDICNFG);
838			mdic &= E1000_MDICNFG_PHY_MASK;
839			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
840			break;
841		default:
842			ret_val = -E1000_ERR_PHY;
843			goto out;
844			break;
845		}
846		ret_val = igb_get_phy_id(hw);
847		goto out;
848	}
849
850	/* Power on sgmii phy if it is disabled */
851	ctrl_ext = rd32(E1000_CTRL_EXT);
852	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
853	wrfl();
854	msleep(300);
855
856	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
857	 * Therefore, we need to test 1-7
858	 */
859	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
860		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
861		if (ret_val == 0) {
862			hw_dbg("Vendor ID 0x%08X read at address %u\n",
863			       phy_id, phy->addr);
864			/* At the time of this writing, The M88 part is
865			 * the only supported SGMII PHY product.
866			 */
867			if (phy_id == M88_VENDOR)
868				break;
869		} else {
870			hw_dbg("PHY address %u was unreadable\n", phy->addr);
871		}
872	}
873
874	/* A valid PHY type couldn't be found. */
875	if (phy->addr == 8) {
876		phy->addr = 0;
877		ret_val = -E1000_ERR_PHY;
878		goto out;
879	} else {
880		ret_val = igb_get_phy_id(hw);
881	}
882
883	/* restore previous sfp cage power state */
884	wr32(E1000_CTRL_EXT, ctrl_ext);
885
886out:
887	return ret_val;
888}
889
890/**
891 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
892 *  @hw: pointer to the HW structure
893 *
894 *  Resets the PHY using the serial gigabit media independent interface.
895 **/
896static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
897{
898	s32 ret_val;
899
900	/* This isn't a true "hard" reset, but is the only reset
901	 * available to us at this time.
902	 */
903
904	hw_dbg("Soft resetting SGMII attached PHY...\n");
905
906	/* SFP documentation requires the following to configure the SPF module
907	 * to work on SGMII.  No further documentation is given.
908	 */
909	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
910	if (ret_val)
911		goto out;
912
913	ret_val = igb_phy_sw_reset(hw);
914
915out:
916	return ret_val;
917}
918
919/**
920 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
921 *  @hw: pointer to the HW structure
922 *  @active: true to enable LPLU, false to disable
923 *
924 *  Sets the LPLU D0 state according to the active flag.  When
925 *  activating LPLU this function also disables smart speed
926 *  and vice versa.  LPLU will not be activated unless the
927 *  device autonegotiation advertisement meets standards of
928 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
929 *  This is a function pointer entry point only called by
930 *  PHY setup routines.
931 **/
932static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
933{
934	struct e1000_phy_info *phy = &hw->phy;
935	s32 ret_val;
936	u16 data;
937
938	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
939	if (ret_val)
940		goto out;
941
942	if (active) {
943		data |= IGP02E1000_PM_D0_LPLU;
944		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
945						 data);
946		if (ret_val)
947			goto out;
948
949		/* When LPLU is enabled, we should disable SmartSpeed */
950		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
951						&data);
952		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
953		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
954						 data);
955		if (ret_val)
956			goto out;
957	} else {
958		data &= ~IGP02E1000_PM_D0_LPLU;
959		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
960						 data);
961		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
962		 * during Dx states where the power conservation is most
963		 * important.  During driver activity we should enable
964		 * SmartSpeed, so performance is maintained.
965		 */
966		if (phy->smart_speed == e1000_smart_speed_on) {
967			ret_val = phy->ops.read_reg(hw,
968					IGP01E1000_PHY_PORT_CONFIG, &data);
969			if (ret_val)
970				goto out;
971
972			data |= IGP01E1000_PSCFR_SMART_SPEED;
973			ret_val = phy->ops.write_reg(hw,
974					IGP01E1000_PHY_PORT_CONFIG, data);
975			if (ret_val)
976				goto out;
977		} else if (phy->smart_speed == e1000_smart_speed_off) {
978			ret_val = phy->ops.read_reg(hw,
979					IGP01E1000_PHY_PORT_CONFIG, &data);
980			if (ret_val)
981				goto out;
982
983			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984			ret_val = phy->ops.write_reg(hw,
985					IGP01E1000_PHY_PORT_CONFIG, data);
986			if (ret_val)
987				goto out;
988		}
989	}
990
991out:
992	return ret_val;
993}
994
995/**
996 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
997 *  @hw: pointer to the HW structure
998 *  @active: true to enable LPLU, false to disable
999 *
1000 *  Sets the LPLU D0 state according to the active flag.  When
1001 *  activating LPLU this function also disables smart speed
1002 *  and vice versa.  LPLU will not be activated unless the
1003 *  device autonegotiation advertisement meets standards of
1004 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1005 *  This is a function pointer entry point only called by
1006 *  PHY setup routines.
1007 **/
1008static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1009{
1010	struct e1000_phy_info *phy = &hw->phy;
1011	s32 ret_val = 0;
1012	u16 data;
1013
1014	data = rd32(E1000_82580_PHY_POWER_MGMT);
1015
1016	if (active) {
1017		data |= E1000_82580_PM_D0_LPLU;
1018
1019		/* When LPLU is enabled, we should disable SmartSpeed */
1020		data &= ~E1000_82580_PM_SPD;
1021	} else {
1022		data &= ~E1000_82580_PM_D0_LPLU;
1023
1024		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1025		 * during Dx states where the power conservation is most
1026		 * important.  During driver activity we should enable
1027		 * SmartSpeed, so performance is maintained.
1028		 */
1029		if (phy->smart_speed == e1000_smart_speed_on)
1030			data |= E1000_82580_PM_SPD;
1031		else if (phy->smart_speed == e1000_smart_speed_off)
1032			data &= ~E1000_82580_PM_SPD; }
1033
1034	wr32(E1000_82580_PHY_POWER_MGMT, data);
1035	return ret_val;
1036}
1037
1038/**
1039 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1040 *  @hw: pointer to the HW structure
1041 *  @active: boolean used to enable/disable lplu
1042 *
1043 *  Success returns 0, Failure returns 1
1044 *
1045 *  The low power link up (lplu) state is set to the power management level D3
1046 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1047 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1048 *  is used during Dx states where the power conservation is most important.
1049 *  During driver activity, SmartSpeed should be enabled so performance is
1050 *  maintained.
1051 **/
1052static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1053{
1054	struct e1000_phy_info *phy = &hw->phy;
1055	s32 ret_val = 0;
1056	u16 data;
1057
1058	data = rd32(E1000_82580_PHY_POWER_MGMT);
1059
1060	if (!active) {
1061		data &= ~E1000_82580_PM_D3_LPLU;
1062		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1063		 * during Dx states where the power conservation is most
1064		 * important.  During driver activity we should enable
1065		 * SmartSpeed, so performance is maintained.
1066		 */
1067		if (phy->smart_speed == e1000_smart_speed_on)
1068			data |= E1000_82580_PM_SPD;
1069		else if (phy->smart_speed == e1000_smart_speed_off)
1070			data &= ~E1000_82580_PM_SPD;
1071	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1072		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1073		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1074		data |= E1000_82580_PM_D3_LPLU;
1075		/* When LPLU is enabled, we should disable SmartSpeed */
1076		data &= ~E1000_82580_PM_SPD;
1077	}
1078
1079	wr32(E1000_82580_PHY_POWER_MGMT, data);
1080	return ret_val;
1081}
1082
1083/**
1084 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1085 *  @hw: pointer to the HW structure
1086 *
1087 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1088 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1089 *  Return successful if access grant bit set, else clear the request for
1090 *  EEPROM access and return -E1000_ERR_NVM (-1).
1091 **/
1092static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1093{
1094	s32 ret_val;
1095
1096	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1097	if (ret_val)
1098		goto out;
1099
1100	ret_val = igb_acquire_nvm(hw);
1101
1102	if (ret_val)
1103		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1104
1105out:
1106	return ret_val;
1107}
1108
1109/**
1110 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1111 *  @hw: pointer to the HW structure
1112 *
1113 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1114 *  then release the semaphores acquired.
1115 **/
1116static void igb_release_nvm_82575(struct e1000_hw *hw)
1117{
1118	igb_release_nvm(hw);
1119	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1120}
1121
1122/**
1123 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1124 *  @hw: pointer to the HW structure
1125 *  @mask: specifies which semaphore to acquire
1126 *
1127 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1128 *  will also specify which port we're acquiring the lock for.
1129 **/
1130static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1131{
1132	u32 swfw_sync;
1133	u32 swmask = mask;
1134	u32 fwmask = mask << 16;
1135	s32 ret_val = 0;
1136	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1137
1138	while (i < timeout) {
1139		if (igb_get_hw_semaphore(hw)) {
1140			ret_val = -E1000_ERR_SWFW_SYNC;
1141			goto out;
1142		}
1143
1144		swfw_sync = rd32(E1000_SW_FW_SYNC);
1145		if (!(swfw_sync & (fwmask | swmask)))
1146			break;
1147
1148		/* Firmware currently using resource (fwmask)
1149		 * or other software thread using resource (swmask)
1150		 */
1151		igb_put_hw_semaphore(hw);
1152		mdelay(5);
1153		i++;
1154	}
1155
1156	if (i == timeout) {
1157		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1158		ret_val = -E1000_ERR_SWFW_SYNC;
1159		goto out;
1160	}
1161
1162	swfw_sync |= swmask;
1163	wr32(E1000_SW_FW_SYNC, swfw_sync);
1164
1165	igb_put_hw_semaphore(hw);
1166
1167out:
1168	return ret_val;
1169}
1170
1171/**
1172 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1173 *  @hw: pointer to the HW structure
1174 *  @mask: specifies which semaphore to acquire
1175 *
1176 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1177 *  will also specify which port we're releasing the lock for.
1178 **/
1179static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1180{
1181	u32 swfw_sync;
1182
1183	while (igb_get_hw_semaphore(hw) != 0);
1184	/* Empty */
1185
1186	swfw_sync = rd32(E1000_SW_FW_SYNC);
1187	swfw_sync &= ~mask;
1188	wr32(E1000_SW_FW_SYNC, swfw_sync);
1189
1190	igb_put_hw_semaphore(hw);
1191}
1192
1193/**
1194 *  igb_get_cfg_done_82575 - Read config done bit
1195 *  @hw: pointer to the HW structure
1196 *
1197 *  Read the management control register for the config done bit for
1198 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1199 *  to read the config done bit, so an error is *ONLY* logged and returns
1200 *  0.  If we were to return with error, EEPROM-less silicon
1201 *  would not be able to be reset or change link.
1202 **/
1203static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1204{
1205	s32 timeout = PHY_CFG_TIMEOUT;
1206	s32 ret_val = 0;
1207	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1208
1209	if (hw->bus.func == 1)
1210		mask = E1000_NVM_CFG_DONE_PORT_1;
1211	else if (hw->bus.func == E1000_FUNC_2)
1212		mask = E1000_NVM_CFG_DONE_PORT_2;
1213	else if (hw->bus.func == E1000_FUNC_3)
1214		mask = E1000_NVM_CFG_DONE_PORT_3;
1215
1216	while (timeout) {
1217		if (rd32(E1000_EEMNGCTL) & mask)
1218			break;
1219		msleep(1);
1220		timeout--;
1221	}
1222	if (!timeout)
1223		hw_dbg("MNG configuration cycle has not completed.\n");
1224
1225	/* If EEPROM is not marked present, init the PHY manually */
1226	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1227	    (hw->phy.type == e1000_phy_igp_3))
1228		igb_phy_init_script_igp3(hw);
1229
1230	return ret_val;
1231}
1232
1233/**
1234 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1235 *  @hw: pointer to the HW structure
1236 *  @speed: stores the current speed
1237 *  @duplex: stores the current duplex
1238 *
1239 *  This is a wrapper function, if using the serial gigabit media independent
1240 *  interface, use PCS to retrieve the link speed and duplex information.
1241 *  Otherwise, use the generic function to get the link speed and duplex info.
1242 **/
1243static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1244					u16 *duplex)
1245{
1246	s32 ret_val;
1247
1248	if (hw->phy.media_type != e1000_media_type_copper)
1249		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1250							       duplex);
1251	else
1252		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1253								    duplex);
1254
1255	return ret_val;
1256}
1257
1258/**
1259 *  igb_check_for_link_82575 - Check for link
1260 *  @hw: pointer to the HW structure
1261 *
1262 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1263 *  use the generic interface for determining link.
1264 **/
1265static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1266{
1267	s32 ret_val;
1268	u16 speed, duplex;
1269
1270	if (hw->phy.media_type != e1000_media_type_copper) {
1271		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1272		                                             &duplex);
1273		/* Use this flag to determine if link needs to be checked or
1274		 * not.  If  we have link clear the flag so that we do not
1275		 * continue to check for link.
1276		 */
1277		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1278
1279		/* Configure Flow Control now that Auto-Neg has completed.
1280		 * First, we need to restore the desired flow control
1281		 * settings because we may have had to re-autoneg with a
1282		 * different link partner.
1283		 */
1284		ret_val = igb_config_fc_after_link_up(hw);
1285		if (ret_val)
1286			hw_dbg("Error configuring flow control\n");
1287	} else {
1288		ret_val = igb_check_for_copper_link(hw);
1289	}
1290
1291	return ret_val;
1292}
1293
1294/**
1295 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1296 *  @hw: pointer to the HW structure
1297 **/
1298void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1299{
1300	u32 reg;
1301
1302
1303	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1304	    !igb_sgmii_active_82575(hw))
1305		return;
1306
1307	/* Enable PCS to turn on link */
1308	reg = rd32(E1000_PCS_CFG0);
1309	reg |= E1000_PCS_CFG_PCS_EN;
1310	wr32(E1000_PCS_CFG0, reg);
1311
1312	/* Power up the laser */
1313	reg = rd32(E1000_CTRL_EXT);
1314	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1315	wr32(E1000_CTRL_EXT, reg);
1316
1317	/* flush the write to verify completion */
1318	wrfl();
1319	msleep(1);
1320}
1321
1322/**
1323 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1324 *  @hw: pointer to the HW structure
1325 *  @speed: stores the current speed
1326 *  @duplex: stores the current duplex
1327 *
1328 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1329 *  duplex, then store the values in the pointers provided.
1330 **/
1331static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1332						u16 *duplex)
1333{
1334	struct e1000_mac_info *mac = &hw->mac;
1335	u32 pcs, status;
1336
1337	/* Set up defaults for the return values of this function */
1338	mac->serdes_has_link = false;
1339	*speed = 0;
1340	*duplex = 0;
1341
1342	/* Read the PCS Status register for link state. For non-copper mode,
1343	 * the status register is not accurate. The PCS status register is
1344	 * used instead.
1345	 */
1346	pcs = rd32(E1000_PCS_LSTAT);
1347
1348	/* The link up bit determines when link is up on autoneg. The sync ok
1349	 * gets set once both sides sync up and agree upon link. Stable link
1350	 * can be determined by checking for both link up and link sync ok
1351	 */
1352	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1353		mac->serdes_has_link = true;
1354
1355		/* Detect and store PCS speed */
1356		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1357			*speed = SPEED_1000;
1358		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1359			*speed = SPEED_100;
1360		else
1361			*speed = SPEED_10;
1362
1363		/* Detect and store PCS duplex */
1364		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1365			*duplex = FULL_DUPLEX;
1366		else
1367			*duplex = HALF_DUPLEX;
1368
1369	/* Check if it is an I354 2.5Gb backplane connection. */
1370		if (mac->type == e1000_i354) {
1371			status = rd32(E1000_STATUS);
1372			if ((status & E1000_STATUS_2P5_SKU) &&
1373			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1374				*speed = SPEED_2500;
1375				*duplex = FULL_DUPLEX;
1376				hw_dbg("2500 Mbs, ");
1377				hw_dbg("Full Duplex\n");
1378			}
1379		}
1380
1381	}
1382
1383	return 0;
1384}
1385
1386/**
1387 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1388 *  @hw: pointer to the HW structure
1389 *
1390 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1391 *  when management pass thru is not enabled.
1392 **/
1393void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1394{
1395	u32 reg;
1396
1397	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1398	    igb_sgmii_active_82575(hw))
1399		return;
1400
1401	if (!igb_enable_mng_pass_thru(hw)) {
1402		/* Disable PCS to turn off link */
1403		reg = rd32(E1000_PCS_CFG0);
1404		reg &= ~E1000_PCS_CFG_PCS_EN;
1405		wr32(E1000_PCS_CFG0, reg);
1406
1407		/* shutdown the laser */
1408		reg = rd32(E1000_CTRL_EXT);
1409		reg |= E1000_CTRL_EXT_SDP3_DATA;
1410		wr32(E1000_CTRL_EXT, reg);
1411
1412		/* flush the write to verify completion */
1413		wrfl();
1414		msleep(1);
1415	}
1416}
1417
1418/**
1419 *  igb_reset_hw_82575 - Reset hardware
1420 *  @hw: pointer to the HW structure
1421 *
1422 *  This resets the hardware into a known state.  This is a
1423 *  function pointer entry point called by the api module.
1424 **/
1425static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1426{
1427	u32 ctrl;
1428	s32 ret_val;
1429
1430	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1431	 * on the last TLP read/write transaction when MAC is reset.
1432	 */
1433	ret_val = igb_disable_pcie_master(hw);
1434	if (ret_val)
1435		hw_dbg("PCI-E Master disable polling has failed.\n");
1436
1437	/* set the completion timeout for interface */
1438	ret_val = igb_set_pcie_completion_timeout(hw);
1439	if (ret_val) {
1440		hw_dbg("PCI-E Set completion timeout has failed.\n");
1441	}
1442
1443	hw_dbg("Masking off all interrupts\n");
1444	wr32(E1000_IMC, 0xffffffff);
1445
1446	wr32(E1000_RCTL, 0);
1447	wr32(E1000_TCTL, E1000_TCTL_PSP);
1448	wrfl();
1449
1450	msleep(10);
1451
1452	ctrl = rd32(E1000_CTRL);
1453
1454	hw_dbg("Issuing a global reset to MAC\n");
1455	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1456
1457	ret_val = igb_get_auto_rd_done(hw);
1458	if (ret_val) {
1459		/* When auto config read does not complete, do not
1460		 * return with an error. This can happen in situations
1461		 * where there is no eeprom and prevents getting link.
1462		 */
1463		hw_dbg("Auto Read Done did not complete\n");
1464	}
1465
1466	/* If EEPROM is not present, run manual init scripts */
1467	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1468		igb_reset_init_script_82575(hw);
1469
1470	/* Clear any pending interrupt events. */
1471	wr32(E1000_IMC, 0xffffffff);
1472	rd32(E1000_ICR);
1473
1474	/* Install any alternate MAC address into RAR0 */
1475	ret_val = igb_check_alt_mac_addr(hw);
1476
1477	return ret_val;
1478}
1479
1480/**
1481 *  igb_init_hw_82575 - Initialize hardware
1482 *  @hw: pointer to the HW structure
1483 *
1484 *  This inits the hardware readying it for operation.
1485 **/
1486static s32 igb_init_hw_82575(struct e1000_hw *hw)
1487{
1488	struct e1000_mac_info *mac = &hw->mac;
1489	s32 ret_val;
1490	u16 i, rar_count = mac->rar_entry_count;
1491
1492	/* Initialize identification LED */
1493	ret_val = igb_id_led_init(hw);
1494	if (ret_val) {
1495		hw_dbg("Error initializing identification LED\n");
1496		/* This is not fatal and we should not stop init due to this */
1497	}
1498
1499	/* Disabling VLAN filtering */
1500	hw_dbg("Initializing the IEEE VLAN\n");
1501	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1502		igb_clear_vfta_i350(hw);
1503	else
1504		igb_clear_vfta(hw);
1505
1506	/* Setup the receive address */
1507	igb_init_rx_addrs(hw, rar_count);
1508
1509	/* Zero out the Multicast HASH table */
1510	hw_dbg("Zeroing the MTA\n");
1511	for (i = 0; i < mac->mta_reg_count; i++)
1512		array_wr32(E1000_MTA, i, 0);
1513
1514	/* Zero out the Unicast HASH table */
1515	hw_dbg("Zeroing the UTA\n");
1516	for (i = 0; i < mac->uta_reg_count; i++)
1517		array_wr32(E1000_UTA, i, 0);
1518
1519	/* Setup link and flow control */
1520	ret_val = igb_setup_link(hw);
1521
1522	/* Clear all of the statistics registers (clear on read).  It is
1523	 * important that we do this after we have tried to establish link
1524	 * because the symbol error count will increment wildly if there
1525	 * is no link.
1526	 */
1527	igb_clear_hw_cntrs_82575(hw);
1528	return ret_val;
1529}
1530
1531/**
1532 *  igb_setup_copper_link_82575 - Configure copper link settings
1533 *  @hw: pointer to the HW structure
1534 *
1535 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1536 *  for link, once link is established calls to configure collision distance
1537 *  and flow control are called.
1538 **/
1539static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1540{
1541	u32 ctrl;
1542	s32  ret_val;
1543	u32 phpm_reg;
1544
1545	ctrl = rd32(E1000_CTRL);
1546	ctrl |= E1000_CTRL_SLU;
1547	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1548	wr32(E1000_CTRL, ctrl);
1549
1550	/* Clear Go Link Disconnect bit on supported devices */
1551	switch (hw->mac.type) {
1552	case e1000_82580:
1553	case e1000_i350:
1554	case e1000_i210:
1555	case e1000_i211:
1556		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1557		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1558		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1559		break;
1560	default:
1561		break;
1562	}
1563
1564	ret_val = igb_setup_serdes_link_82575(hw);
1565	if (ret_val)
1566		goto out;
1567
1568	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1569		/* allow time for SFP cage time to power up phy */
1570		msleep(300);
1571
1572		ret_val = hw->phy.ops.reset(hw);
1573		if (ret_val) {
1574			hw_dbg("Error resetting the PHY.\n");
1575			goto out;
1576		}
1577	}
1578	switch (hw->phy.type) {
1579	case e1000_phy_i210:
1580	case e1000_phy_m88:
1581		switch (hw->phy.id) {
1582		case I347AT4_E_PHY_ID:
1583		case M88E1112_E_PHY_ID:
1584		case M88E1543_E_PHY_ID:
1585		case I210_I_PHY_ID:
1586			ret_val = igb_copper_link_setup_m88_gen2(hw);
1587			break;
1588		default:
1589			ret_val = igb_copper_link_setup_m88(hw);
1590			break;
1591		}
1592		break;
1593	case e1000_phy_igp_3:
1594		ret_val = igb_copper_link_setup_igp(hw);
1595		break;
1596	case e1000_phy_82580:
1597		ret_val = igb_copper_link_setup_82580(hw);
1598		break;
1599	default:
1600		ret_val = -E1000_ERR_PHY;
1601		break;
1602	}
1603
1604	if (ret_val)
1605		goto out;
1606
1607	ret_val = igb_setup_copper_link(hw);
1608out:
1609	return ret_val;
1610}
1611
1612/**
1613 *  igb_setup_serdes_link_82575 - Setup link for serdes
1614 *  @hw: pointer to the HW structure
1615 *
1616 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1617 *  used on copper connections where the serialized gigabit media independent
1618 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1619 *  for auto-negotiation or forces speed/duplex.
1620 **/
1621static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1622{
1623	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1624	bool pcs_autoneg;
1625	s32 ret_val = E1000_SUCCESS;
1626	u16 data;
1627
1628	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1629	    !igb_sgmii_active_82575(hw))
1630		return ret_val;
1631
1632
1633	/* On the 82575, SerDes loopback mode persists until it is
1634	 * explicitly turned off or a power cycle is performed.  A read to
1635	 * the register does not indicate its status.  Therefore, we ensure
1636	 * loopback mode is disabled during initialization.
1637	 */
1638	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1639
1640	/* power on the sfp cage if present and turn on I2C */
1641	ctrl_ext = rd32(E1000_CTRL_EXT);
1642	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1643	ctrl_ext |= E1000_CTRL_I2C_ENA;
1644	wr32(E1000_CTRL_EXT, ctrl_ext);
1645
1646	ctrl_reg = rd32(E1000_CTRL);
1647	ctrl_reg |= E1000_CTRL_SLU;
1648
1649	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1650		/* set both sw defined pins */
1651		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1652
1653		/* Set switch control to serdes energy detect */
1654		reg = rd32(E1000_CONNSW);
1655		reg |= E1000_CONNSW_ENRGSRC;
1656		wr32(E1000_CONNSW, reg);
1657	}
1658
1659	reg = rd32(E1000_PCS_LCTL);
1660
1661	/* default pcs_autoneg to the same setting as mac autoneg */
1662	pcs_autoneg = hw->mac.autoneg;
1663
1664	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1665	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1666		/* sgmii mode lets the phy handle forcing speed/duplex */
1667		pcs_autoneg = true;
1668		/* autoneg time out should be disabled for SGMII mode */
1669		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1670		break;
1671	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1672		/* disable PCS autoneg and support parallel detect only */
1673		pcs_autoneg = false;
1674	default:
1675		if (hw->mac.type == e1000_82575 ||
1676		    hw->mac.type == e1000_82576) {
1677			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1678			if (ret_val) {
1679				printk(KERN_DEBUG "NVM Read Error\n\n");
1680				return ret_val;
1681			}
1682
1683			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1684				pcs_autoneg = false;
1685		}
1686
1687		/* non-SGMII modes only supports a speed of 1000/Full for the
1688		 * link so it is best to just force the MAC and let the pcs
1689		 * link either autoneg or be forced to 1000/Full
1690		 */
1691		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1692		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1693
1694		/* set speed of 1000/Full if speed/duplex is forced */
1695		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1696		break;
1697	}
1698
1699	wr32(E1000_CTRL, ctrl_reg);
1700
1701	/* New SerDes mode allows for forcing speed or autonegotiating speed
1702	 * at 1gb. Autoneg should be default set by most drivers. This is the
1703	 * mode that will be compatible with older link partners and switches.
1704	 * However, both are supported by the hardware and some drivers/tools.
1705	 */
1706	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1707		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1708
1709	if (pcs_autoneg) {
1710		/* Set PCS register for autoneg */
1711		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1712		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1713
1714		/* Disable force flow control for autoneg */
1715		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1716
1717		/* Configure flow control advertisement for autoneg */
1718		anadv_reg = rd32(E1000_PCS_ANADV);
1719		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1720		switch (hw->fc.requested_mode) {
1721		case e1000_fc_full:
1722		case e1000_fc_rx_pause:
1723			anadv_reg |= E1000_TXCW_ASM_DIR;
1724			anadv_reg |= E1000_TXCW_PAUSE;
1725			break;
1726		case e1000_fc_tx_pause:
1727			anadv_reg |= E1000_TXCW_ASM_DIR;
1728			break;
1729		default:
1730			break;
1731		}
1732		wr32(E1000_PCS_ANADV, anadv_reg);
1733
1734		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1735	} else {
1736		/* Set PCS register for forced link */
1737		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1738
1739		/* Force flow control for forced link */
1740		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1741
1742		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1743	}
1744
1745	wr32(E1000_PCS_LCTL, reg);
1746
1747	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1748		igb_force_mac_fc(hw);
1749
1750	return ret_val;
1751}
1752
1753/**
1754 *  igb_sgmii_active_82575 - Return sgmii state
1755 *  @hw: pointer to the HW structure
1756 *
1757 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1758 *  which can be enabled for use in the embedded applications.  Simply
1759 *  return the current state of the sgmii interface.
1760 **/
1761static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1762{
1763	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1764	return dev_spec->sgmii_active;
1765}
1766
1767/**
1768 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1769 *  @hw: pointer to the HW structure
1770 *
1771 *  Inits recommended HW defaults after a reset when there is no EEPROM
1772 *  detected. This is only for the 82575.
1773 **/
1774static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1775{
1776	if (hw->mac.type == e1000_82575) {
1777		hw_dbg("Running reset init script for 82575\n");
1778		/* SerDes configuration via SERDESCTRL */
1779		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1780		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1781		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1782		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1783
1784		/* CCM configuration via CCMCTL register */
1785		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1786		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1787
1788		/* PCIe lanes configuration */
1789		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1790		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1791		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1792		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1793
1794		/* PCIe PLL Configuration */
1795		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1796		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1797		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1798	}
1799
1800	return 0;
1801}
1802
1803/**
1804 *  igb_read_mac_addr_82575 - Read device MAC address
1805 *  @hw: pointer to the HW structure
1806 **/
1807static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1808{
1809	s32 ret_val = 0;
1810
1811	/* If there's an alternate MAC address place it in RAR0
1812	 * so that it will override the Si installed default perm
1813	 * address.
1814	 */
1815	ret_val = igb_check_alt_mac_addr(hw);
1816	if (ret_val)
1817		goto out;
1818
1819	ret_val = igb_read_mac_addr(hw);
1820
1821out:
1822	return ret_val;
1823}
1824
1825/**
1826 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1827 * @hw: pointer to the HW structure
1828 *
1829 * In the case of a PHY power down to save power, or to turn off link during a
1830 * driver unload, or wake on lan is not enabled, remove the link.
1831 **/
1832void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1833{
1834	/* If the management interface is not enabled, then power down */
1835	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1836		igb_power_down_phy_copper(hw);
1837}
1838
1839/**
1840 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1841 *  @hw: pointer to the HW structure
1842 *
1843 *  Clears the hardware counters by reading the counter registers.
1844 **/
1845static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1846{
1847	igb_clear_hw_cntrs_base(hw);
1848
1849	rd32(E1000_PRC64);
1850	rd32(E1000_PRC127);
1851	rd32(E1000_PRC255);
1852	rd32(E1000_PRC511);
1853	rd32(E1000_PRC1023);
1854	rd32(E1000_PRC1522);
1855	rd32(E1000_PTC64);
1856	rd32(E1000_PTC127);
1857	rd32(E1000_PTC255);
1858	rd32(E1000_PTC511);
1859	rd32(E1000_PTC1023);
1860	rd32(E1000_PTC1522);
1861
1862	rd32(E1000_ALGNERRC);
1863	rd32(E1000_RXERRC);
1864	rd32(E1000_TNCRS);
1865	rd32(E1000_CEXTERR);
1866	rd32(E1000_TSCTC);
1867	rd32(E1000_TSCTFC);
1868
1869	rd32(E1000_MGTPRC);
1870	rd32(E1000_MGTPDC);
1871	rd32(E1000_MGTPTC);
1872
1873	rd32(E1000_IAC);
1874	rd32(E1000_ICRXOC);
1875
1876	rd32(E1000_ICRXPTC);
1877	rd32(E1000_ICRXATC);
1878	rd32(E1000_ICTXPTC);
1879	rd32(E1000_ICTXATC);
1880	rd32(E1000_ICTXQEC);
1881	rd32(E1000_ICTXQMTC);
1882	rd32(E1000_ICRXDMTC);
1883
1884	rd32(E1000_CBTMPC);
1885	rd32(E1000_HTDPMC);
1886	rd32(E1000_CBRMPC);
1887	rd32(E1000_RPTHC);
1888	rd32(E1000_HGPTC);
1889	rd32(E1000_HTCBDPC);
1890	rd32(E1000_HGORCL);
1891	rd32(E1000_HGORCH);
1892	rd32(E1000_HGOTCL);
1893	rd32(E1000_HGOTCH);
1894	rd32(E1000_LENERRS);
1895
1896	/* This register should not be read in copper configurations */
1897	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1898	    igb_sgmii_active_82575(hw))
1899		rd32(E1000_SCVPC);
1900}
1901
1902/**
1903 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1904 *  @hw: pointer to the HW structure
1905 *
1906 *  After rx enable if managability is enabled then there is likely some
1907 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1908 *  function clears the fifos and flushes any packets that came in as rx was
1909 *  being enabled.
1910 **/
1911void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1912{
1913	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1914	int i, ms_wait;
1915
1916	if (hw->mac.type != e1000_82575 ||
1917	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1918		return;
1919
1920	/* Disable all RX queues */
1921	for (i = 0; i < 4; i++) {
1922		rxdctl[i] = rd32(E1000_RXDCTL(i));
1923		wr32(E1000_RXDCTL(i),
1924		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1925	}
1926	/* Poll all queues to verify they have shut down */
1927	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1928		msleep(1);
1929		rx_enabled = 0;
1930		for (i = 0; i < 4; i++)
1931			rx_enabled |= rd32(E1000_RXDCTL(i));
1932		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1933			break;
1934	}
1935
1936	if (ms_wait == 10)
1937		hw_dbg("Queue disable timed out after 10ms\n");
1938
1939	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1940	 * incoming packets are rejected.  Set enable and wait 2ms so that
1941	 * any packet that was coming in as RCTL.EN was set is flushed
1942	 */
1943	rfctl = rd32(E1000_RFCTL);
1944	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1945
1946	rlpml = rd32(E1000_RLPML);
1947	wr32(E1000_RLPML, 0);
1948
1949	rctl = rd32(E1000_RCTL);
1950	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1951	temp_rctl |= E1000_RCTL_LPE;
1952
1953	wr32(E1000_RCTL, temp_rctl);
1954	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1955	wrfl();
1956	msleep(2);
1957
1958	/* Enable RX queues that were previously enabled and restore our
1959	 * previous state
1960	 */
1961	for (i = 0; i < 4; i++)
1962		wr32(E1000_RXDCTL(i), rxdctl[i]);
1963	wr32(E1000_RCTL, rctl);
1964	wrfl();
1965
1966	wr32(E1000_RLPML, rlpml);
1967	wr32(E1000_RFCTL, rfctl);
1968
1969	/* Flush receive errors generated by workaround */
1970	rd32(E1000_ROC);
1971	rd32(E1000_RNBC);
1972	rd32(E1000_MPC);
1973}
1974
1975/**
1976 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1977 *  @hw: pointer to the HW structure
1978 *
1979 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1980 *  however the hardware default for these parts is 500us to 1ms which is less
1981 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1982 *  increase the value to either 10ms to 200ms for capability version 1 config,
1983 *  or 16ms to 55ms for version 2.
1984 **/
1985static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1986{
1987	u32 gcr = rd32(E1000_GCR);
1988	s32 ret_val = 0;
1989	u16 pcie_devctl2;
1990
1991	/* only take action if timeout value is defaulted to 0 */
1992	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1993		goto out;
1994
1995	/* if capabilities version is type 1 we can write the
1996	 * timeout of 10ms to 200ms through the GCR register
1997	 */
1998	if (!(gcr & E1000_GCR_CAP_VER2)) {
1999		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2000		goto out;
2001	}
2002
2003	/* for version 2 capabilities we need to write the config space
2004	 * directly in order to set the completion timeout value for
2005	 * 16ms to 55ms
2006	 */
2007	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2008	                                &pcie_devctl2);
2009	if (ret_val)
2010		goto out;
2011
2012	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2013
2014	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2015	                                 &pcie_devctl2);
2016out:
2017	/* disable completion timeout resend */
2018	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2019
2020	wr32(E1000_GCR, gcr);
2021	return ret_val;
2022}
2023
2024/**
2025 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2026 *  @hw: pointer to the hardware struct
2027 *  @enable: state to enter, either enabled or disabled
2028 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2029 *
2030 *  enables/disables L2 switch anti-spoofing functionality.
2031 **/
2032void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2033{
2034	u32 reg_val, reg_offset;
2035
2036	switch (hw->mac.type) {
2037	case e1000_82576:
2038		reg_offset = E1000_DTXSWC;
2039		break;
2040	case e1000_i350:
2041	case e1000_i354:
2042		reg_offset = E1000_TXSWC;
2043		break;
2044	default:
2045		return;
2046	}
2047
2048	reg_val = rd32(reg_offset);
2049	if (enable) {
2050		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2051			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2052		/* The PF can spoof - it has to in order to
2053		 * support emulation mode NICs
2054		 */
2055		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2056	} else {
2057		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2058			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2059	}
2060	wr32(reg_offset, reg_val);
2061}
2062
2063/**
2064 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2065 *  @hw: pointer to the hardware struct
2066 *  @enable: state to enter, either enabled or disabled
2067 *
2068 *  enables/disables L2 switch loopback functionality.
2069 **/
2070void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2071{
2072	u32 dtxswc;
2073
2074	switch (hw->mac.type) {
2075	case e1000_82576:
2076		dtxswc = rd32(E1000_DTXSWC);
2077		if (enable)
2078			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2079		else
2080			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2081		wr32(E1000_DTXSWC, dtxswc);
2082		break;
2083	case e1000_i354:
2084	case e1000_i350:
2085		dtxswc = rd32(E1000_TXSWC);
2086		if (enable)
2087			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2088		else
2089			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2090		wr32(E1000_TXSWC, dtxswc);
2091		break;
2092	default:
2093		/* Currently no other hardware supports loopback */
2094		break;
2095	}
2096
2097}
2098
2099/**
2100 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2101 *  @hw: pointer to the hardware struct
2102 *  @enable: state to enter, either enabled or disabled
2103 *
2104 *  enables/disables replication of packets across multiple pools.
2105 **/
2106void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2107{
2108	u32 vt_ctl = rd32(E1000_VT_CTL);
2109
2110	if (enable)
2111		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2112	else
2113		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2114
2115	wr32(E1000_VT_CTL, vt_ctl);
2116}
2117
2118/**
2119 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2120 *  @hw: pointer to the HW structure
2121 *  @offset: register offset to be read
2122 *  @data: pointer to the read data
2123 *
2124 *  Reads the MDI control register in the PHY at offset and stores the
2125 *  information read to data.
2126 **/
2127static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2128{
2129	s32 ret_val;
2130
2131	ret_val = hw->phy.ops.acquire(hw);
2132	if (ret_val)
2133		goto out;
2134
2135	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2136
2137	hw->phy.ops.release(hw);
2138
2139out:
2140	return ret_val;
2141}
2142
2143/**
2144 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2145 *  @hw: pointer to the HW structure
2146 *  @offset: register offset to write to
2147 *  @data: data to write to register at offset
2148 *
2149 *  Writes data to MDI control register in the PHY at offset.
2150 **/
2151static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2152{
2153	s32 ret_val;
2154
2155
2156	ret_val = hw->phy.ops.acquire(hw);
2157	if (ret_val)
2158		goto out;
2159
2160	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2161
2162	hw->phy.ops.release(hw);
2163
2164out:
2165	return ret_val;
2166}
2167
2168/**
2169 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2170 *  @hw: pointer to the HW structure
2171 *
2172 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2173 *  the values found in the EEPROM.  This addresses an issue in which these
2174 *  bits are not restored from EEPROM after reset.
2175 **/
2176static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2177{
2178	s32 ret_val = 0;
2179	u32 mdicnfg;
2180	u16 nvm_data = 0;
2181
2182	if (hw->mac.type != e1000_82580)
2183		goto out;
2184	if (!igb_sgmii_active_82575(hw))
2185		goto out;
2186
2187	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2188				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2189				   &nvm_data);
2190	if (ret_val) {
2191		hw_dbg("NVM Read Error\n");
2192		goto out;
2193	}
2194
2195	mdicnfg = rd32(E1000_MDICNFG);
2196	if (nvm_data & NVM_WORD24_EXT_MDIO)
2197		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2198	if (nvm_data & NVM_WORD24_COM_MDIO)
2199		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2200	wr32(E1000_MDICNFG, mdicnfg);
2201out:
2202	return ret_val;
2203}
2204
2205/**
2206 *  igb_reset_hw_82580 - Reset hardware
2207 *  @hw: pointer to the HW structure
2208 *
2209 *  This resets function or entire device (all ports, etc.)
2210 *  to a known state.
2211 **/
2212static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2213{
2214	s32 ret_val = 0;
2215	/* BH SW mailbox bit in SW_FW_SYNC */
2216	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2217	u32 ctrl;
2218	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2219
2220	hw->dev_spec._82575.global_device_reset = false;
2221
2222	/* due to hw errata, global device reset doesn't always
2223	 * work on 82580
2224	 */
2225	if (hw->mac.type == e1000_82580)
2226		global_device_reset = false;
2227
2228	/* Get current control state. */
2229	ctrl = rd32(E1000_CTRL);
2230
2231	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2232	 * on the last TLP read/write transaction when MAC is reset.
2233	 */
2234	ret_val = igb_disable_pcie_master(hw);
2235	if (ret_val)
2236		hw_dbg("PCI-E Master disable polling has failed.\n");
2237
2238	hw_dbg("Masking off all interrupts\n");
2239	wr32(E1000_IMC, 0xffffffff);
2240	wr32(E1000_RCTL, 0);
2241	wr32(E1000_TCTL, E1000_TCTL_PSP);
2242	wrfl();
2243
2244	msleep(10);
2245
2246	/* Determine whether or not a global dev reset is requested */
2247	if (global_device_reset &&
2248		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2249			global_device_reset = false;
2250
2251	if (global_device_reset &&
2252		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2253		ctrl |= E1000_CTRL_DEV_RST;
2254	else
2255		ctrl |= E1000_CTRL_RST;
2256
2257	wr32(E1000_CTRL, ctrl);
2258	wrfl();
2259
2260	/* Add delay to insure DEV_RST has time to complete */
2261	if (global_device_reset)
2262		msleep(5);
2263
2264	ret_val = igb_get_auto_rd_done(hw);
2265	if (ret_val) {
2266		/* When auto config read does not complete, do not
2267		 * return with an error. This can happen in situations
2268		 * where there is no eeprom and prevents getting link.
2269		 */
2270		hw_dbg("Auto Read Done did not complete\n");
2271	}
2272
2273	/* clear global device reset status bit */
2274	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2275
2276	/* Clear any pending interrupt events. */
2277	wr32(E1000_IMC, 0xffffffff);
2278	rd32(E1000_ICR);
2279
2280	ret_val = igb_reset_mdicnfg_82580(hw);
2281	if (ret_val)
2282		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2283
2284	/* Install any alternate MAC address into RAR0 */
2285	ret_val = igb_check_alt_mac_addr(hw);
2286
2287	/* Release semaphore */
2288	if (global_device_reset)
2289		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2290
2291	return ret_val;
2292}
2293
2294/**
2295 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2296 *  @data: data received by reading RXPBS register
2297 *
2298 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2299 *  This function converts the retrieved value into the correct table value
2300 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2301 *  0x0 36  72 144   1   2   4   8  16
2302 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2303 */
2304u16 igb_rxpbs_adjust_82580(u32 data)
2305{
2306	u16 ret_val = 0;
2307
2308	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2309		ret_val = e1000_82580_rxpbs_table[data];
2310
2311	return ret_val;
2312}
2313
2314/**
2315 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2316 *  checksum
2317 *  @hw: pointer to the HW structure
2318 *  @offset: offset in words of the checksum protected region
2319 *
2320 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2321 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2322 **/
2323static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2324						 u16 offset)
2325{
2326	s32 ret_val = 0;
2327	u16 checksum = 0;
2328	u16 i, nvm_data;
2329
2330	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2331		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2332		if (ret_val) {
2333			hw_dbg("NVM Read Error\n");
2334			goto out;
2335		}
2336		checksum += nvm_data;
2337	}
2338
2339	if (checksum != (u16) NVM_SUM) {
2340		hw_dbg("NVM Checksum Invalid\n");
2341		ret_val = -E1000_ERR_NVM;
2342		goto out;
2343	}
2344
2345out:
2346	return ret_val;
2347}
2348
2349/**
2350 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2351 *  checksum
2352 *  @hw: pointer to the HW structure
2353 *  @offset: offset in words of the checksum protected region
2354 *
2355 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2356 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2357 *  value to the EEPROM.
2358 **/
2359static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2360{
2361	s32 ret_val;
2362	u16 checksum = 0;
2363	u16 i, nvm_data;
2364
2365	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2366		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2367		if (ret_val) {
2368			hw_dbg("NVM Read Error while updating checksum.\n");
2369			goto out;
2370		}
2371		checksum += nvm_data;
2372	}
2373	checksum = (u16) NVM_SUM - checksum;
2374	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2375				&checksum);
2376	if (ret_val)
2377		hw_dbg("NVM Write Error while updating checksum.\n");
2378
2379out:
2380	return ret_val;
2381}
2382
2383/**
2384 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2385 *  @hw: pointer to the HW structure
2386 *
2387 *  Calculates the EEPROM section checksum by reading/adding each word of
2388 *  the EEPROM and then verifies that the sum of the EEPROM is
2389 *  equal to 0xBABA.
2390 **/
2391static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2392{
2393	s32 ret_val = 0;
2394	u16 eeprom_regions_count = 1;
2395	u16 j, nvm_data;
2396	u16 nvm_offset;
2397
2398	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2399	if (ret_val) {
2400		hw_dbg("NVM Read Error\n");
2401		goto out;
2402	}
2403
2404	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2405		/* if checksums compatibility bit is set validate checksums
2406		 * for all 4 ports.
2407		 */
2408		eeprom_regions_count = 4;
2409	}
2410
2411	for (j = 0; j < eeprom_regions_count; j++) {
2412		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2413		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2414								nvm_offset);
2415		if (ret_val != 0)
2416			goto out;
2417	}
2418
2419out:
2420	return ret_val;
2421}
2422
2423/**
2424 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2425 *  @hw: pointer to the HW structure
2426 *
2427 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2428 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2429 *  checksum and writes the value to the EEPROM.
2430 **/
2431static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2432{
2433	s32 ret_val;
2434	u16 j, nvm_data;
2435	u16 nvm_offset;
2436
2437	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2438	if (ret_val) {
2439		hw_dbg("NVM Read Error while updating checksum"
2440			" compatibility bit.\n");
2441		goto out;
2442	}
2443
2444	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2445		/* set compatibility bit to validate checksums appropriately */
2446		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2447		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2448					&nvm_data);
2449		if (ret_val) {
2450			hw_dbg("NVM Write Error while updating checksum"
2451				" compatibility bit.\n");
2452			goto out;
2453		}
2454	}
2455
2456	for (j = 0; j < 4; j++) {
2457		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2458		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2459		if (ret_val)
2460			goto out;
2461	}
2462
2463out:
2464	return ret_val;
2465}
2466
2467/**
2468 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2469 *  @hw: pointer to the HW structure
2470 *
2471 *  Calculates the EEPROM section checksum by reading/adding each word of
2472 *  the EEPROM and then verifies that the sum of the EEPROM is
2473 *  equal to 0xBABA.
2474 **/
2475static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2476{
2477	s32 ret_val = 0;
2478	u16 j;
2479	u16 nvm_offset;
2480
2481	for (j = 0; j < 4; j++) {
2482		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2483		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2484								nvm_offset);
2485		if (ret_val != 0)
2486			goto out;
2487	}
2488
2489out:
2490	return ret_val;
2491}
2492
2493/**
2494 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2495 *  @hw: pointer to the HW structure
2496 *
2497 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2498 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2499 *  checksum and writes the value to the EEPROM.
2500 **/
2501static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2502{
2503	s32 ret_val = 0;
2504	u16 j;
2505	u16 nvm_offset;
2506
2507	for (j = 0; j < 4; j++) {
2508		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2509		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2510		if (ret_val != 0)
2511			goto out;
2512	}
2513
2514out:
2515	return ret_val;
2516}
2517
2518/**
2519 *  __igb_access_emi_reg - Read/write EMI register
2520 *  @hw: pointer to the HW structure
2521 *  @addr: EMI address to program
2522 *  @data: pointer to value to read/write from/to the EMI address
2523 *  @read: boolean flag to indicate read or write
2524 **/
2525static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2526				  u16 *data, bool read)
2527{
2528	s32 ret_val = E1000_SUCCESS;
2529
2530	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2531	if (ret_val)
2532		return ret_val;
2533
2534	if (read)
2535		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2536	else
2537		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2538
2539	return ret_val;
2540}
2541
2542/**
2543 *  igb_read_emi_reg - Read Extended Management Interface register
2544 *  @hw: pointer to the HW structure
2545 *  @addr: EMI address to program
2546 *  @data: value to be read from the EMI address
2547 **/
2548s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2549{
2550	return __igb_access_emi_reg(hw, addr, data, true);
2551}
2552
2553/**
2554 *  igb_set_eee_i350 - Enable/disable EEE support
2555 *  @hw: pointer to the HW structure
2556 *
2557 *  Enable/disable EEE based on setting in dev_spec structure.
2558 *
2559 **/
2560s32 igb_set_eee_i350(struct e1000_hw *hw)
2561{
2562	s32 ret_val = 0;
2563	u32 ipcnfg, eeer;
2564
2565	if ((hw->mac.type < e1000_i350) ||
2566	    (hw->phy.media_type != e1000_media_type_copper))
2567		goto out;
2568	ipcnfg = rd32(E1000_IPCNFG);
2569	eeer = rd32(E1000_EEER);
2570
2571	/* enable or disable per user setting */
2572	if (!(hw->dev_spec._82575.eee_disable)) {
2573		u32 eee_su = rd32(E1000_EEE_SU);
2574
2575		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2576		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2577			E1000_EEER_LPI_FC);
2578
2579		/* This bit should not be set in normal operation. */
2580		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2581			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2582
2583	} else {
2584		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2585			E1000_IPCNFG_EEE_100M_AN);
2586		eeer &= ~(E1000_EEER_TX_LPI_EN |
2587			E1000_EEER_RX_LPI_EN |
2588			E1000_EEER_LPI_FC);
2589	}
2590	wr32(E1000_IPCNFG, ipcnfg);
2591	wr32(E1000_EEER, eeer);
2592	rd32(E1000_IPCNFG);
2593	rd32(E1000_EEER);
2594out:
2595
2596	return ret_val;
2597}
2598
2599/**
2600 *  igb_set_eee_i354 - Enable/disable EEE support
2601 *  @hw: pointer to the HW structure
2602 *
2603 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2604 *
2605 **/
2606s32 igb_set_eee_i354(struct e1000_hw *hw)
2607{
2608	struct e1000_phy_info *phy = &hw->phy;
2609	s32 ret_val = 0;
2610	u16 phy_data;
2611
2612	if ((hw->phy.media_type != e1000_media_type_copper) ||
2613	    (phy->id != M88E1543_E_PHY_ID))
2614		goto out;
2615
2616	if (!hw->dev_spec._82575.eee_disable) {
2617		/* Switch to PHY page 18. */
2618		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2619		if (ret_val)
2620			goto out;
2621
2622		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2623					    &phy_data);
2624		if (ret_val)
2625			goto out;
2626
2627		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2628		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2629					     phy_data);
2630		if (ret_val)
2631			goto out;
2632
2633		/* Return the PHY to page 0. */
2634		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2635		if (ret_val)
2636			goto out;
2637
2638		/* Turn on EEE advertisement. */
2639		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2640					     E1000_EEE_ADV_DEV_I354,
2641					     &phy_data);
2642		if (ret_val)
2643			goto out;
2644
2645		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2646			    E1000_EEE_ADV_1000_SUPPORTED;
2647		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2648						E1000_EEE_ADV_DEV_I354,
2649						phy_data);
2650	} else {
2651		/* Turn off EEE advertisement. */
2652		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2653					     E1000_EEE_ADV_DEV_I354,
2654					     &phy_data);
2655		if (ret_val)
2656			goto out;
2657
2658		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2659			      E1000_EEE_ADV_1000_SUPPORTED);
2660		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2661					      E1000_EEE_ADV_DEV_I354,
2662					      phy_data);
2663	}
2664
2665out:
2666	return ret_val;
2667}
2668
2669/**
2670 *  igb_get_eee_status_i354 - Get EEE status
2671 *  @hw: pointer to the HW structure
2672 *  @status: EEE status
2673 *
2674 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2675 *  been received.
2676 **/
2677s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2678{
2679	struct e1000_phy_info *phy = &hw->phy;
2680	s32 ret_val = 0;
2681	u16 phy_data;
2682
2683	/* Check if EEE is supported on this device. */
2684	if ((hw->phy.media_type != e1000_media_type_copper) ||
2685	    (phy->id != M88E1543_E_PHY_ID))
2686		goto out;
2687
2688	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2689				     E1000_PCS_STATUS_DEV_I354,
2690				     &phy_data);
2691	if (ret_val)
2692		goto out;
2693
2694	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2695			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2696
2697out:
2698	return ret_val;
2699}
2700
2701static const u8 e1000_emc_temp_data[4] = {
2702	E1000_EMC_INTERNAL_DATA,
2703	E1000_EMC_DIODE1_DATA,
2704	E1000_EMC_DIODE2_DATA,
2705	E1000_EMC_DIODE3_DATA
2706};
2707static const u8 e1000_emc_therm_limit[4] = {
2708	E1000_EMC_INTERNAL_THERM_LIMIT,
2709	E1000_EMC_DIODE1_THERM_LIMIT,
2710	E1000_EMC_DIODE2_THERM_LIMIT,
2711	E1000_EMC_DIODE3_THERM_LIMIT
2712};
2713
2714/**
2715 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2716 *  @hw: pointer to hardware structure
2717 *
2718 *  Updates the temperatures in mac.thermal_sensor_data
2719 **/
2720static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2721{
2722	s32 status = E1000_SUCCESS;
2723	u16 ets_offset;
2724	u16 ets_cfg;
2725	u16 ets_sensor;
2726	u8  num_sensors;
2727	u8  sensor_index;
2728	u8  sensor_location;
2729	u8  i;
2730	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2731
2732	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2733		return E1000_NOT_IMPLEMENTED;
2734
2735	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2736
2737	/* Return the internal sensor only if ETS is unsupported */
2738	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2739	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2740		return status;
2741
2742	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2743	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2744	    != NVM_ETS_TYPE_EMC)
2745		return E1000_NOT_IMPLEMENTED;
2746
2747	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2748	if (num_sensors > E1000_MAX_SENSORS)
2749		num_sensors = E1000_MAX_SENSORS;
2750
2751	for (i = 1; i < num_sensors; i++) {
2752		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2753		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2754				NVM_ETS_DATA_INDEX_SHIFT);
2755		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2756				   NVM_ETS_DATA_LOC_SHIFT);
2757
2758		if (sensor_location != 0)
2759			hw->phy.ops.read_i2c_byte(hw,
2760					e1000_emc_temp_data[sensor_index],
2761					E1000_I2C_THERMAL_SENSOR_ADDR,
2762					&data->sensor[i].temp);
2763	}
2764	return status;
2765}
2766
2767/**
2768 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2769 *  @hw: pointer to hardware structure
2770 *
2771 *  Sets the thermal sensor thresholds according to the NVM map
2772 *  and save off the threshold and location values into mac.thermal_sensor_data
2773 **/
2774static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2775{
2776	s32 status = E1000_SUCCESS;
2777	u16 ets_offset;
2778	u16 ets_cfg;
2779	u16 ets_sensor;
2780	u8  low_thresh_delta;
2781	u8  num_sensors;
2782	u8  sensor_index;
2783	u8  sensor_location;
2784	u8  therm_limit;
2785	u8  i;
2786	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2787
2788	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2789		return E1000_NOT_IMPLEMENTED;
2790
2791	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2792
2793	data->sensor[0].location = 0x1;
2794	data->sensor[0].caution_thresh =
2795		(rd32(E1000_THHIGHTC) & 0xFF);
2796	data->sensor[0].max_op_thresh =
2797		(rd32(E1000_THLOWTC) & 0xFF);
2798
2799	/* Return the internal sensor only if ETS is unsupported */
2800	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2801	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2802		return status;
2803
2804	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2805	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2806	    != NVM_ETS_TYPE_EMC)
2807		return E1000_NOT_IMPLEMENTED;
2808
2809	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2810			    NVM_ETS_LTHRES_DELTA_SHIFT);
2811	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2812
2813	for (i = 1; i <= num_sensors; i++) {
2814		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2815		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2816				NVM_ETS_DATA_INDEX_SHIFT);
2817		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2818				   NVM_ETS_DATA_LOC_SHIFT);
2819		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2820
2821		hw->phy.ops.write_i2c_byte(hw,
2822			e1000_emc_therm_limit[sensor_index],
2823			E1000_I2C_THERMAL_SENSOR_ADDR,
2824			therm_limit);
2825
2826		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2827			data->sensor[i].location = sensor_location;
2828			data->sensor[i].caution_thresh = therm_limit;
2829			data->sensor[i].max_op_thresh = therm_limit -
2830							low_thresh_delta;
2831		}
2832	}
2833	return status;
2834}
2835
2836static struct e1000_mac_operations e1000_mac_ops_82575 = {
2837	.init_hw              = igb_init_hw_82575,
2838	.check_for_link       = igb_check_for_link_82575,
2839	.rar_set              = igb_rar_set,
2840	.read_mac_addr        = igb_read_mac_addr_82575,
2841	.get_speed_and_duplex = igb_get_link_up_info_82575,
2842#ifdef CONFIG_IGB_HWMON
2843	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2844	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2845#endif
2846};
2847
2848static struct e1000_phy_operations e1000_phy_ops_82575 = {
2849	.acquire              = igb_acquire_phy_82575,
2850	.get_cfg_done         = igb_get_cfg_done_82575,
2851	.release              = igb_release_phy_82575,
2852	.write_i2c_byte       = igb_write_i2c_byte,
2853	.read_i2c_byte        = igb_read_i2c_byte,
2854};
2855
2856static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2857	.acquire              = igb_acquire_nvm_82575,
2858	.read                 = igb_read_nvm_eerd,
2859	.release              = igb_release_nvm_82575,
2860	.write                = igb_write_nvm_spi,
2861};
2862
2863const struct e1000_info e1000_82575_info = {
2864	.get_invariants = igb_get_invariants_82575,
2865	.mac_ops = &e1000_mac_ops_82575,
2866	.phy_ops = &e1000_phy_ops_82575,
2867	.nvm_ops = &e1000_nvm_ops_82575,
2868};
2869
2870