[go: nahoru, domu]

e1000_82575.c revision c4917c6ffe31d7bd3baacb80a87107319df52979
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27/* e1000_82575
28 * e1000_82576
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/types.h>
34#include <linux/if_ether.h>
35#include <linux/i2c.h>
36
37#include "e1000_mac.h"
38#include "e1000_82575.h"
39#include "e1000_i210.h"
40
41static s32  igb_get_invariants_82575(struct e1000_hw *);
42static s32  igb_acquire_phy_82575(struct e1000_hw *);
43static void igb_release_phy_82575(struct e1000_hw *);
44static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45static void igb_release_nvm_82575(struct e1000_hw *);
46static s32  igb_check_for_link_82575(struct e1000_hw *);
47static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48static s32  igb_init_hw_82575(struct e1000_hw *);
49static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53static s32  igb_reset_hw_82575(struct e1000_hw *);
54static s32  igb_reset_hw_82580(struct e1000_hw *);
55static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64						 u16 *);
65static s32  igb_get_phy_id_82575(struct e1000_hw *);
66static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67static bool igb_sgmii_active_82575(struct e1000_hw *);
68static s32  igb_reset_init_script_82575(struct e1000_hw *);
69static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76static const u16 e1000_82580_rxpbs_table[] = {
77	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
78
79/**
80 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
81 *  @hw: pointer to the HW structure
82 *
83 *  Called to determine if the I2C pins are being used for I2C or as an
84 *  external MDIO interface since the two options are mutually exclusive.
85 **/
86static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
87{
88	u32 reg = 0;
89	bool ext_mdio = false;
90
91	switch (hw->mac.type) {
92	case e1000_82575:
93	case e1000_82576:
94		reg = rd32(E1000_MDIC);
95		ext_mdio = !!(reg & E1000_MDIC_DEST);
96		break;
97	case e1000_82580:
98	case e1000_i350:
99	case e1000_i354:
100	case e1000_i210:
101	case e1000_i211:
102		reg = rd32(E1000_MDICNFG);
103		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
104		break;
105	default:
106		break;
107	}
108	return ext_mdio;
109}
110
111/**
112 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
113 *  @hw: pointer to the HW structure
114 *
115 *  Poll the M88E1112 interfaces to see which interface achieved link.
116 */
117static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
118{
119	struct e1000_phy_info *phy = &hw->phy;
120	s32 ret_val;
121	u16 data;
122	u8 port = 0;
123
124	/* Check the copper medium. */
125	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
126	if (ret_val)
127		return ret_val;
128
129	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
130	if (ret_val)
131		return ret_val;
132
133	if (data & E1000_M88E1112_STATUS_LINK)
134		port = E1000_MEDIA_PORT_COPPER;
135
136	/* Check the other medium. */
137	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
138	if (ret_val)
139		return ret_val;
140
141	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
142	if (ret_val)
143		return ret_val;
144
145	/* reset page to 0 */
146	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
147	if (ret_val)
148		return ret_val;
149
150	if (data & E1000_M88E1112_STATUS_LINK)
151		port = E1000_MEDIA_PORT_OTHER;
152
153	/* Determine if a swap needs to happen. */
154	if (port && (hw->dev_spec._82575.media_port != port)) {
155		hw->dev_spec._82575.media_port = port;
156		hw->dev_spec._82575.media_changed = true;
157	} else {
158		ret_val = igb_check_for_link_82575(hw);
159	}
160
161	return E1000_SUCCESS;
162}
163
164/**
165 *  igb_init_phy_params_82575 - Init PHY func ptrs.
166 *  @hw: pointer to the HW structure
167 **/
168static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
169{
170	struct e1000_phy_info *phy = &hw->phy;
171	s32 ret_val = 0;
172	u32 ctrl_ext;
173
174	if (hw->phy.media_type != e1000_media_type_copper) {
175		phy->type = e1000_phy_none;
176		goto out;
177	}
178
179	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
180	phy->reset_delay_us	= 100;
181
182	ctrl_ext = rd32(E1000_CTRL_EXT);
183
184	if (igb_sgmii_active_82575(hw)) {
185		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
186		ctrl_ext |= E1000_CTRL_I2C_ENA;
187	} else {
188		phy->ops.reset = igb_phy_hw_reset;
189		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
190	}
191
192	wr32(E1000_CTRL_EXT, ctrl_ext);
193	igb_reset_mdicnfg_82580(hw);
194
195	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
196		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
197		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
198	} else {
199		switch (hw->mac.type) {
200		case e1000_82580:
201		case e1000_i350:
202		case e1000_i354:
203			phy->ops.read_reg = igb_read_phy_reg_82580;
204			phy->ops.write_reg = igb_write_phy_reg_82580;
205			break;
206		case e1000_i210:
207		case e1000_i211:
208			phy->ops.read_reg = igb_read_phy_reg_gs40g;
209			phy->ops.write_reg = igb_write_phy_reg_gs40g;
210			break;
211		default:
212			phy->ops.read_reg = igb_read_phy_reg_igp;
213			phy->ops.write_reg = igb_write_phy_reg_igp;
214		}
215	}
216
217	/* set lan id */
218	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
219			E1000_STATUS_FUNC_SHIFT;
220
221	/* Set phy->phy_addr and phy->id. */
222	ret_val = igb_get_phy_id_82575(hw);
223	if (ret_val)
224		return ret_val;
225
226	/* Verify phy id and set remaining function pointers */
227	switch (phy->id) {
228	case M88E1543_E_PHY_ID:
229	case I347AT4_E_PHY_ID:
230	case M88E1112_E_PHY_ID:
231	case M88E1111_I_PHY_ID:
232		phy->type		= e1000_phy_m88;
233		phy->ops.check_polarity	= igb_check_polarity_m88;
234		phy->ops.get_phy_info	= igb_get_phy_info_m88;
235		if (phy->id != M88E1111_I_PHY_ID)
236			phy->ops.get_cable_length =
237					 igb_get_cable_length_m88_gen2;
238		else
239			phy->ops.get_cable_length = igb_get_cable_length_m88;
240		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
241		/* Check if this PHY is confgured for media swap. */
242		if (phy->id == M88E1112_E_PHY_ID) {
243			u16 data;
244
245			ret_val = phy->ops.write_reg(hw,
246						     E1000_M88E1112_PAGE_ADDR,
247						     2);
248			if (ret_val)
249				goto out;
250
251			ret_val = phy->ops.read_reg(hw,
252						    E1000_M88E1112_MAC_CTRL_1,
253						    &data);
254			if (ret_val)
255				goto out;
256
257			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
258			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
259			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
260			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
261				hw->mac.ops.check_for_link =
262						igb_check_for_link_media_swap;
263		}
264		break;
265	case IGP03E1000_E_PHY_ID:
266		phy->type = e1000_phy_igp_3;
267		phy->ops.get_phy_info = igb_get_phy_info_igp;
268		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
269		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
270		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
271		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
272		break;
273	case I82580_I_PHY_ID:
274	case I350_I_PHY_ID:
275		phy->type = e1000_phy_82580;
276		phy->ops.force_speed_duplex =
277					 igb_phy_force_speed_duplex_82580;
278		phy->ops.get_cable_length = igb_get_cable_length_82580;
279		phy->ops.get_phy_info = igb_get_phy_info_82580;
280		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
281		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
282		break;
283	case I210_I_PHY_ID:
284		phy->type		= e1000_phy_i210;
285		phy->ops.check_polarity	= igb_check_polarity_m88;
286		phy->ops.get_phy_info	= igb_get_phy_info_m88;
287		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
288		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
289		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
290		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
291		break;
292	default:
293		ret_val = -E1000_ERR_PHY;
294		goto out;
295	}
296
297out:
298	return ret_val;
299}
300
301/**
302 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
303 *  @hw: pointer to the HW structure
304 **/
305static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
306{
307	struct e1000_nvm_info *nvm = &hw->nvm;
308	u32 eecd = rd32(E1000_EECD);
309	u16 size;
310
311	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
312		     E1000_EECD_SIZE_EX_SHIFT);
313
314	/* Added to a constant, "size" becomes the left-shift value
315	 * for setting word_size.
316	 */
317	size += NVM_WORD_SIZE_BASE_SHIFT;
318
319	/* Just in case size is out of range, cap it to the largest
320	 * EEPROM size supported
321	 */
322	if (size > 15)
323		size = 15;
324
325	nvm->word_size = 1 << size;
326	nvm->opcode_bits = 8;
327	nvm->delay_usec = 1;
328
329	switch (nvm->override) {
330	case e1000_nvm_override_spi_large:
331		nvm->page_size = 32;
332		nvm->address_bits = 16;
333		break;
334	case e1000_nvm_override_spi_small:
335		nvm->page_size = 8;
336		nvm->address_bits = 8;
337		break;
338	default:
339		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
340		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
341				    16 : 8;
342		break;
343	}
344	if (nvm->word_size == (1 << 15))
345		nvm->page_size = 128;
346
347	nvm->type = e1000_nvm_eeprom_spi;
348
349	/* NVM Function Pointers */
350	nvm->ops.acquire = igb_acquire_nvm_82575;
351	nvm->ops.release = igb_release_nvm_82575;
352	nvm->ops.write = igb_write_nvm_spi;
353	nvm->ops.validate = igb_validate_nvm_checksum;
354	nvm->ops.update = igb_update_nvm_checksum;
355	if (nvm->word_size < (1 << 15))
356		nvm->ops.read = igb_read_nvm_eerd;
357	else
358		nvm->ops.read = igb_read_nvm_spi;
359
360	/* override generic family function pointers for specific descendants */
361	switch (hw->mac.type) {
362	case e1000_82580:
363		nvm->ops.validate = igb_validate_nvm_checksum_82580;
364		nvm->ops.update = igb_update_nvm_checksum_82580;
365		break;
366	case e1000_i354:
367	case e1000_i350:
368		nvm->ops.validate = igb_validate_nvm_checksum_i350;
369		nvm->ops.update = igb_update_nvm_checksum_i350;
370		break;
371	default:
372		break;
373	}
374
375	return 0;
376}
377
378/**
379 *  igb_init_mac_params_82575 - Init MAC func ptrs.
380 *  @hw: pointer to the HW structure
381 **/
382static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
383{
384	struct e1000_mac_info *mac = &hw->mac;
385	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
386
387	/* Set mta register count */
388	mac->mta_reg_count = 128;
389	/* Set rar entry count */
390	switch (mac->type) {
391	case e1000_82576:
392		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
393		break;
394	case e1000_82580:
395		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
396		break;
397	case e1000_i350:
398	case e1000_i354:
399		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
400		break;
401	default:
402		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
403		break;
404	}
405	/* reset */
406	if (mac->type >= e1000_82580)
407		mac->ops.reset_hw = igb_reset_hw_82580;
408	else
409		mac->ops.reset_hw = igb_reset_hw_82575;
410
411	if (mac->type >= e1000_i210) {
412		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
413		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
414
415	} else {
416		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
417		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
418	}
419
420	/* Set if part includes ASF firmware */
421	mac->asf_firmware_present = true;
422	/* Set if manageability features are enabled. */
423	mac->arc_subsystem_valid =
424		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
425			? true : false;
426	/* enable EEE on i350 parts and later parts */
427	if (mac->type >= e1000_i350)
428		dev_spec->eee_disable = false;
429	else
430		dev_spec->eee_disable = true;
431	/* Allow a single clear of the SW semaphore on I210 and newer */
432	if (mac->type >= e1000_i210)
433		dev_spec->clear_semaphore_once = true;
434	/* physical interface link setup */
435	mac->ops.setup_physical_interface =
436		(hw->phy.media_type == e1000_media_type_copper)
437			? igb_setup_copper_link_82575
438			: igb_setup_serdes_link_82575;
439
440	if (mac->type == e1000_82580) {
441		switch (hw->device_id) {
442		/* feature not supported on these id's */
443		case E1000_DEV_ID_DH89XXCC_SGMII:
444		case E1000_DEV_ID_DH89XXCC_SERDES:
445		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
446		case E1000_DEV_ID_DH89XXCC_SFP:
447			break;
448		default:
449			hw->dev_spec._82575.mas_capable = true;
450			break;
451		}
452	}
453	return 0;
454}
455
456/**
457 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
458 *  @hw: pointer to the HW structure
459 *
460 *  The media type is chosen based on SFP module.
461 *  compatibility flags retrieved from SFP ID EEPROM.
462 **/
463static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
464{
465	s32 ret_val = E1000_ERR_CONFIG;
466	u32 ctrl_ext = 0;
467	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
468	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
469	u8 tranceiver_type = 0;
470	s32 timeout = 3;
471
472	/* Turn I2C interface ON and power on sfp cage */
473	ctrl_ext = rd32(E1000_CTRL_EXT);
474	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
475	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
476
477	wrfl();
478
479	/* Read SFP module data */
480	while (timeout) {
481		ret_val = igb_read_sfp_data_byte(hw,
482			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
483			&tranceiver_type);
484		if (ret_val == 0)
485			break;
486		msleep(100);
487		timeout--;
488	}
489	if (ret_val != 0)
490		goto out;
491
492	ret_val = igb_read_sfp_data_byte(hw,
493			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
494			(u8 *)eth_flags);
495	if (ret_val != 0)
496		goto out;
497
498	/* Check if there is some SFP module plugged and powered */
499	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
500	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
501		dev_spec->module_plugged = true;
502		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
503			hw->phy.media_type = e1000_media_type_internal_serdes;
504		} else if (eth_flags->e100_base_fx) {
505			dev_spec->sgmii_active = true;
506			hw->phy.media_type = e1000_media_type_internal_serdes;
507		} else if (eth_flags->e1000_base_t) {
508			dev_spec->sgmii_active = true;
509			hw->phy.media_type = e1000_media_type_copper;
510		} else {
511			hw->phy.media_type = e1000_media_type_unknown;
512			hw_dbg("PHY module has not been recognized\n");
513			goto out;
514		}
515	} else {
516		hw->phy.media_type = e1000_media_type_unknown;
517	}
518	ret_val = 0;
519out:
520	/* Restore I2C interface setting */
521	wr32(E1000_CTRL_EXT, ctrl_ext);
522	return ret_val;
523}
524
525static s32 igb_get_invariants_82575(struct e1000_hw *hw)
526{
527	struct e1000_mac_info *mac = &hw->mac;
528	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
529	s32 ret_val;
530	u32 ctrl_ext = 0;
531	u32 link_mode = 0;
532
533	switch (hw->device_id) {
534	case E1000_DEV_ID_82575EB_COPPER:
535	case E1000_DEV_ID_82575EB_FIBER_SERDES:
536	case E1000_DEV_ID_82575GB_QUAD_COPPER:
537		mac->type = e1000_82575;
538		break;
539	case E1000_DEV_ID_82576:
540	case E1000_DEV_ID_82576_NS:
541	case E1000_DEV_ID_82576_NS_SERDES:
542	case E1000_DEV_ID_82576_FIBER:
543	case E1000_DEV_ID_82576_SERDES:
544	case E1000_DEV_ID_82576_QUAD_COPPER:
545	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
546	case E1000_DEV_ID_82576_SERDES_QUAD:
547		mac->type = e1000_82576;
548		break;
549	case E1000_DEV_ID_82580_COPPER:
550	case E1000_DEV_ID_82580_FIBER:
551	case E1000_DEV_ID_82580_QUAD_FIBER:
552	case E1000_DEV_ID_82580_SERDES:
553	case E1000_DEV_ID_82580_SGMII:
554	case E1000_DEV_ID_82580_COPPER_DUAL:
555	case E1000_DEV_ID_DH89XXCC_SGMII:
556	case E1000_DEV_ID_DH89XXCC_SERDES:
557	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
558	case E1000_DEV_ID_DH89XXCC_SFP:
559		mac->type = e1000_82580;
560		break;
561	case E1000_DEV_ID_I350_COPPER:
562	case E1000_DEV_ID_I350_FIBER:
563	case E1000_DEV_ID_I350_SERDES:
564	case E1000_DEV_ID_I350_SGMII:
565		mac->type = e1000_i350;
566		break;
567	case E1000_DEV_ID_I210_COPPER:
568	case E1000_DEV_ID_I210_FIBER:
569	case E1000_DEV_ID_I210_SERDES:
570	case E1000_DEV_ID_I210_SGMII:
571	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
572	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
573		mac->type = e1000_i210;
574		break;
575	case E1000_DEV_ID_I211_COPPER:
576		mac->type = e1000_i211;
577		break;
578	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
579	case E1000_DEV_ID_I354_SGMII:
580	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
581		mac->type = e1000_i354;
582		break;
583	default:
584		return -E1000_ERR_MAC_INIT;
585		break;
586	}
587
588	/* Set media type */
589	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
590	 * based on the EEPROM. We cannot rely upon device ID. There
591	 * is no distinguishable difference between fiber and internal
592	 * SerDes mode on the 82575. There can be an external PHY attached
593	 * on the SGMII interface. For this, we'll set sgmii_active to true.
594	 */
595	hw->phy.media_type = e1000_media_type_copper;
596	dev_spec->sgmii_active = false;
597	dev_spec->module_plugged = false;
598
599	ctrl_ext = rd32(E1000_CTRL_EXT);
600
601	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
602	switch (link_mode) {
603	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
604		hw->phy.media_type = e1000_media_type_internal_serdes;
605		break;
606	case E1000_CTRL_EXT_LINK_MODE_SGMII:
607		/* Get phy control interface type set (MDIO vs. I2C)*/
608		if (igb_sgmii_uses_mdio_82575(hw)) {
609			hw->phy.media_type = e1000_media_type_copper;
610			dev_spec->sgmii_active = true;
611			break;
612		}
613		/* fall through for I2C based SGMII */
614	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
615		/* read media type from SFP EEPROM */
616		ret_val = igb_set_sfp_media_type_82575(hw);
617		if ((ret_val != 0) ||
618		    (hw->phy.media_type == e1000_media_type_unknown)) {
619			/* If media type was not identified then return media
620			 * type defined by the CTRL_EXT settings.
621			 */
622			hw->phy.media_type = e1000_media_type_internal_serdes;
623
624			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
625				hw->phy.media_type = e1000_media_type_copper;
626				dev_spec->sgmii_active = true;
627			}
628
629			break;
630		}
631
632		/* do not change link mode for 100BaseFX */
633		if (dev_spec->eth_flags.e100_base_fx)
634			break;
635
636		/* change current link mode setting */
637		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
638
639		if (hw->phy.media_type == e1000_media_type_copper)
640			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
641		else
642			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
643
644		wr32(E1000_CTRL_EXT, ctrl_ext);
645
646		break;
647	default:
648		break;
649	}
650
651	/* mac initialization and operations */
652	ret_val = igb_init_mac_params_82575(hw);
653	if (ret_val)
654		goto out;
655
656	/* NVM initialization */
657	ret_val = igb_init_nvm_params_82575(hw);
658	switch (hw->mac.type) {
659	case e1000_i210:
660	case e1000_i211:
661		ret_val = igb_init_nvm_params_i210(hw);
662		break;
663	default:
664		break;
665	}
666
667	if (ret_val)
668		goto out;
669
670	/* if part supports SR-IOV then initialize mailbox parameters */
671	switch (mac->type) {
672	case e1000_82576:
673	case e1000_i350:
674		igb_init_mbx_params_pf(hw);
675		break;
676	default:
677		break;
678	}
679
680	/* setup PHY parameters */
681	ret_val = igb_init_phy_params_82575(hw);
682
683out:
684	return ret_val;
685}
686
687/**
688 *  igb_acquire_phy_82575 - Acquire rights to access PHY
689 *  @hw: pointer to the HW structure
690 *
691 *  Acquire access rights to the correct PHY.  This is a
692 *  function pointer entry point called by the api module.
693 **/
694static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
695{
696	u16 mask = E1000_SWFW_PHY0_SM;
697
698	if (hw->bus.func == E1000_FUNC_1)
699		mask = E1000_SWFW_PHY1_SM;
700	else if (hw->bus.func == E1000_FUNC_2)
701		mask = E1000_SWFW_PHY2_SM;
702	else if (hw->bus.func == E1000_FUNC_3)
703		mask = E1000_SWFW_PHY3_SM;
704
705	return hw->mac.ops.acquire_swfw_sync(hw, mask);
706}
707
708/**
709 *  igb_release_phy_82575 - Release rights to access PHY
710 *  @hw: pointer to the HW structure
711 *
712 *  A wrapper to release access rights to the correct PHY.  This is a
713 *  function pointer entry point called by the api module.
714 **/
715static void igb_release_phy_82575(struct e1000_hw *hw)
716{
717	u16 mask = E1000_SWFW_PHY0_SM;
718
719	if (hw->bus.func == E1000_FUNC_1)
720		mask = E1000_SWFW_PHY1_SM;
721	else if (hw->bus.func == E1000_FUNC_2)
722		mask = E1000_SWFW_PHY2_SM;
723	else if (hw->bus.func == E1000_FUNC_3)
724		mask = E1000_SWFW_PHY3_SM;
725
726	hw->mac.ops.release_swfw_sync(hw, mask);
727}
728
729/**
730 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
731 *  @hw: pointer to the HW structure
732 *  @offset: register offset to be read
733 *  @data: pointer to the read data
734 *
735 *  Reads the PHY register at offset using the serial gigabit media independent
736 *  interface and stores the retrieved information in data.
737 **/
738static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
739					  u16 *data)
740{
741	s32 ret_val = -E1000_ERR_PARAM;
742
743	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
744		hw_dbg("PHY Address %u is out of range\n", offset);
745		goto out;
746	}
747
748	ret_val = hw->phy.ops.acquire(hw);
749	if (ret_val)
750		goto out;
751
752	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
753
754	hw->phy.ops.release(hw);
755
756out:
757	return ret_val;
758}
759
760/**
761 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
762 *  @hw: pointer to the HW structure
763 *  @offset: register offset to write to
764 *  @data: data to write at register offset
765 *
766 *  Writes the data to PHY register at the offset using the serial gigabit
767 *  media independent interface.
768 **/
769static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
770					   u16 data)
771{
772	s32 ret_val = -E1000_ERR_PARAM;
773
774
775	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
776		hw_dbg("PHY Address %d is out of range\n", offset);
777		goto out;
778	}
779
780	ret_val = hw->phy.ops.acquire(hw);
781	if (ret_val)
782		goto out;
783
784	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
785
786	hw->phy.ops.release(hw);
787
788out:
789	return ret_val;
790}
791
792/**
793 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
794 *  @hw: pointer to the HW structure
795 *
796 *  Retrieves the PHY address and ID for both PHY's which do and do not use
797 *  sgmi interface.
798 **/
799static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
800{
801	struct e1000_phy_info *phy = &hw->phy;
802	s32  ret_val = 0;
803	u16 phy_id;
804	u32 ctrl_ext;
805	u32 mdic;
806
807	/* Extra read required for some PHY's on i354 */
808	if (hw->mac.type == e1000_i354)
809		igb_get_phy_id(hw);
810
811	/* For SGMII PHYs, we try the list of possible addresses until
812	 * we find one that works.  For non-SGMII PHYs
813	 * (e.g. integrated copper PHYs), an address of 1 should
814	 * work.  The result of this function should mean phy->phy_addr
815	 * and phy->id are set correctly.
816	 */
817	if (!(igb_sgmii_active_82575(hw))) {
818		phy->addr = 1;
819		ret_val = igb_get_phy_id(hw);
820		goto out;
821	}
822
823	if (igb_sgmii_uses_mdio_82575(hw)) {
824		switch (hw->mac.type) {
825		case e1000_82575:
826		case e1000_82576:
827			mdic = rd32(E1000_MDIC);
828			mdic &= E1000_MDIC_PHY_MASK;
829			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
830			break;
831		case e1000_82580:
832		case e1000_i350:
833		case e1000_i354:
834		case e1000_i210:
835		case e1000_i211:
836			mdic = rd32(E1000_MDICNFG);
837			mdic &= E1000_MDICNFG_PHY_MASK;
838			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
839			break;
840		default:
841			ret_val = -E1000_ERR_PHY;
842			goto out;
843			break;
844		}
845		ret_val = igb_get_phy_id(hw);
846		goto out;
847	}
848
849	/* Power on sgmii phy if it is disabled */
850	ctrl_ext = rd32(E1000_CTRL_EXT);
851	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
852	wrfl();
853	msleep(300);
854
855	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
856	 * Therefore, we need to test 1-7
857	 */
858	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
859		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
860		if (ret_val == 0) {
861			hw_dbg("Vendor ID 0x%08X read at address %u\n",
862			       phy_id, phy->addr);
863			/* At the time of this writing, The M88 part is
864			 * the only supported SGMII PHY product.
865			 */
866			if (phy_id == M88_VENDOR)
867				break;
868		} else {
869			hw_dbg("PHY address %u was unreadable\n", phy->addr);
870		}
871	}
872
873	/* A valid PHY type couldn't be found. */
874	if (phy->addr == 8) {
875		phy->addr = 0;
876		ret_val = -E1000_ERR_PHY;
877		goto out;
878	} else {
879		ret_val = igb_get_phy_id(hw);
880	}
881
882	/* restore previous sfp cage power state */
883	wr32(E1000_CTRL_EXT, ctrl_ext);
884
885out:
886	return ret_val;
887}
888
889/**
890 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
891 *  @hw: pointer to the HW structure
892 *
893 *  Resets the PHY using the serial gigabit media independent interface.
894 **/
895static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
896{
897	s32 ret_val;
898
899	/* This isn't a true "hard" reset, but is the only reset
900	 * available to us at this time.
901	 */
902
903	hw_dbg("Soft resetting SGMII attached PHY...\n");
904
905	/* SFP documentation requires the following to configure the SPF module
906	 * to work on SGMII.  No further documentation is given.
907	 */
908	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
909	if (ret_val)
910		goto out;
911
912	ret_val = igb_phy_sw_reset(hw);
913
914out:
915	return ret_val;
916}
917
918/**
919 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
920 *  @hw: pointer to the HW structure
921 *  @active: true to enable LPLU, false to disable
922 *
923 *  Sets the LPLU D0 state according to the active flag.  When
924 *  activating LPLU this function also disables smart speed
925 *  and vice versa.  LPLU will not be activated unless the
926 *  device autonegotiation advertisement meets standards of
927 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
928 *  This is a function pointer entry point only called by
929 *  PHY setup routines.
930 **/
931static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
932{
933	struct e1000_phy_info *phy = &hw->phy;
934	s32 ret_val;
935	u16 data;
936
937	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
938	if (ret_val)
939		goto out;
940
941	if (active) {
942		data |= IGP02E1000_PM_D0_LPLU;
943		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
944						 data);
945		if (ret_val)
946			goto out;
947
948		/* When LPLU is enabled, we should disable SmartSpeed */
949		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
950						&data);
951		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
952		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
953						 data);
954		if (ret_val)
955			goto out;
956	} else {
957		data &= ~IGP02E1000_PM_D0_LPLU;
958		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
959						 data);
960		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
961		 * during Dx states where the power conservation is most
962		 * important.  During driver activity we should enable
963		 * SmartSpeed, so performance is maintained.
964		 */
965		if (phy->smart_speed == e1000_smart_speed_on) {
966			ret_val = phy->ops.read_reg(hw,
967					IGP01E1000_PHY_PORT_CONFIG, &data);
968			if (ret_val)
969				goto out;
970
971			data |= IGP01E1000_PSCFR_SMART_SPEED;
972			ret_val = phy->ops.write_reg(hw,
973					IGP01E1000_PHY_PORT_CONFIG, data);
974			if (ret_val)
975				goto out;
976		} else if (phy->smart_speed == e1000_smart_speed_off) {
977			ret_val = phy->ops.read_reg(hw,
978					IGP01E1000_PHY_PORT_CONFIG, &data);
979			if (ret_val)
980				goto out;
981
982			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
983			ret_val = phy->ops.write_reg(hw,
984					IGP01E1000_PHY_PORT_CONFIG, data);
985			if (ret_val)
986				goto out;
987		}
988	}
989
990out:
991	return ret_val;
992}
993
994/**
995 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
996 *  @hw: pointer to the HW structure
997 *  @active: true to enable LPLU, false to disable
998 *
999 *  Sets the LPLU D0 state according to the active flag.  When
1000 *  activating LPLU this function also disables smart speed
1001 *  and vice versa.  LPLU will not be activated unless the
1002 *  device autonegotiation advertisement meets standards of
1003 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1004 *  This is a function pointer entry point only called by
1005 *  PHY setup routines.
1006 **/
1007static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1008{
1009	struct e1000_phy_info *phy = &hw->phy;
1010	s32 ret_val = 0;
1011	u16 data;
1012
1013	data = rd32(E1000_82580_PHY_POWER_MGMT);
1014
1015	if (active) {
1016		data |= E1000_82580_PM_D0_LPLU;
1017
1018		/* When LPLU is enabled, we should disable SmartSpeed */
1019		data &= ~E1000_82580_PM_SPD;
1020	} else {
1021		data &= ~E1000_82580_PM_D0_LPLU;
1022
1023		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1024		 * during Dx states where the power conservation is most
1025		 * important.  During driver activity we should enable
1026		 * SmartSpeed, so performance is maintained.
1027		 */
1028		if (phy->smart_speed == e1000_smart_speed_on)
1029			data |= E1000_82580_PM_SPD;
1030		else if (phy->smart_speed == e1000_smart_speed_off)
1031			data &= ~E1000_82580_PM_SPD; }
1032
1033	wr32(E1000_82580_PHY_POWER_MGMT, data);
1034	return ret_val;
1035}
1036
1037/**
1038 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1039 *  @hw: pointer to the HW structure
1040 *  @active: boolean used to enable/disable lplu
1041 *
1042 *  Success returns 0, Failure returns 1
1043 *
1044 *  The low power link up (lplu) state is set to the power management level D3
1045 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1046 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1047 *  is used during Dx states where the power conservation is most important.
1048 *  During driver activity, SmartSpeed should be enabled so performance is
1049 *  maintained.
1050 **/
1051static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1052{
1053	struct e1000_phy_info *phy = &hw->phy;
1054	s32 ret_val = 0;
1055	u16 data;
1056
1057	data = rd32(E1000_82580_PHY_POWER_MGMT);
1058
1059	if (!active) {
1060		data &= ~E1000_82580_PM_D3_LPLU;
1061		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1062		 * during Dx states where the power conservation is most
1063		 * important.  During driver activity we should enable
1064		 * SmartSpeed, so performance is maintained.
1065		 */
1066		if (phy->smart_speed == e1000_smart_speed_on)
1067			data |= E1000_82580_PM_SPD;
1068		else if (phy->smart_speed == e1000_smart_speed_off)
1069			data &= ~E1000_82580_PM_SPD;
1070	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1071		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1072		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1073		data |= E1000_82580_PM_D3_LPLU;
1074		/* When LPLU is enabled, we should disable SmartSpeed */
1075		data &= ~E1000_82580_PM_SPD;
1076	}
1077
1078	wr32(E1000_82580_PHY_POWER_MGMT, data);
1079	return ret_val;
1080}
1081
1082/**
1083 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1084 *  @hw: pointer to the HW structure
1085 *
1086 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1087 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1088 *  Return successful if access grant bit set, else clear the request for
1089 *  EEPROM access and return -E1000_ERR_NVM (-1).
1090 **/
1091static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1092{
1093	s32 ret_val;
1094
1095	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1096	if (ret_val)
1097		goto out;
1098
1099	ret_val = igb_acquire_nvm(hw);
1100
1101	if (ret_val)
1102		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1103
1104out:
1105	return ret_val;
1106}
1107
1108/**
1109 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1113 *  then release the semaphores acquired.
1114 **/
1115static void igb_release_nvm_82575(struct e1000_hw *hw)
1116{
1117	igb_release_nvm(hw);
1118	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1119}
1120
1121/**
1122 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1123 *  @hw: pointer to the HW structure
1124 *  @mask: specifies which semaphore to acquire
1125 *
1126 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1127 *  will also specify which port we're acquiring the lock for.
1128 **/
1129static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1130{
1131	u32 swfw_sync;
1132	u32 swmask = mask;
1133	u32 fwmask = mask << 16;
1134	s32 ret_val = 0;
1135	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1136
1137	while (i < timeout) {
1138		if (igb_get_hw_semaphore(hw)) {
1139			ret_val = -E1000_ERR_SWFW_SYNC;
1140			goto out;
1141		}
1142
1143		swfw_sync = rd32(E1000_SW_FW_SYNC);
1144		if (!(swfw_sync & (fwmask | swmask)))
1145			break;
1146
1147		/* Firmware currently using resource (fwmask)
1148		 * or other software thread using resource (swmask)
1149		 */
1150		igb_put_hw_semaphore(hw);
1151		mdelay(5);
1152		i++;
1153	}
1154
1155	if (i == timeout) {
1156		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1157		ret_val = -E1000_ERR_SWFW_SYNC;
1158		goto out;
1159	}
1160
1161	swfw_sync |= swmask;
1162	wr32(E1000_SW_FW_SYNC, swfw_sync);
1163
1164	igb_put_hw_semaphore(hw);
1165
1166out:
1167	return ret_val;
1168}
1169
1170/**
1171 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1172 *  @hw: pointer to the HW structure
1173 *  @mask: specifies which semaphore to acquire
1174 *
1175 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1176 *  will also specify which port we're releasing the lock for.
1177 **/
1178static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1179{
1180	u32 swfw_sync;
1181
1182	while (igb_get_hw_semaphore(hw) != 0);
1183	/* Empty */
1184
1185	swfw_sync = rd32(E1000_SW_FW_SYNC);
1186	swfw_sync &= ~mask;
1187	wr32(E1000_SW_FW_SYNC, swfw_sync);
1188
1189	igb_put_hw_semaphore(hw);
1190}
1191
1192/**
1193 *  igb_get_cfg_done_82575 - Read config done bit
1194 *  @hw: pointer to the HW structure
1195 *
1196 *  Read the management control register for the config done bit for
1197 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1198 *  to read the config done bit, so an error is *ONLY* logged and returns
1199 *  0.  If we were to return with error, EEPROM-less silicon
1200 *  would not be able to be reset or change link.
1201 **/
1202static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1203{
1204	s32 timeout = PHY_CFG_TIMEOUT;
1205	s32 ret_val = 0;
1206	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1207
1208	if (hw->bus.func == 1)
1209		mask = E1000_NVM_CFG_DONE_PORT_1;
1210	else if (hw->bus.func == E1000_FUNC_2)
1211		mask = E1000_NVM_CFG_DONE_PORT_2;
1212	else if (hw->bus.func == E1000_FUNC_3)
1213		mask = E1000_NVM_CFG_DONE_PORT_3;
1214
1215	while (timeout) {
1216		if (rd32(E1000_EEMNGCTL) & mask)
1217			break;
1218		msleep(1);
1219		timeout--;
1220	}
1221	if (!timeout)
1222		hw_dbg("MNG configuration cycle has not completed.\n");
1223
1224	/* If EEPROM is not marked present, init the PHY manually */
1225	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1226	    (hw->phy.type == e1000_phy_igp_3))
1227		igb_phy_init_script_igp3(hw);
1228
1229	return ret_val;
1230}
1231
1232/**
1233 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1234 *  @hw: pointer to the HW structure
1235 *  @speed: stores the current speed
1236 *  @duplex: stores the current duplex
1237 *
1238 *  This is a wrapper function, if using the serial gigabit media independent
1239 *  interface, use PCS to retrieve the link speed and duplex information.
1240 *  Otherwise, use the generic function to get the link speed and duplex info.
1241 **/
1242static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1243					u16 *duplex)
1244{
1245	s32 ret_val;
1246
1247	if (hw->phy.media_type != e1000_media_type_copper)
1248		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1249							       duplex);
1250	else
1251		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1252								    duplex);
1253
1254	return ret_val;
1255}
1256
1257/**
1258 *  igb_check_for_link_82575 - Check for link
1259 *  @hw: pointer to the HW structure
1260 *
1261 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1262 *  use the generic interface for determining link.
1263 **/
1264static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1265{
1266	s32 ret_val;
1267	u16 speed, duplex;
1268
1269	if (hw->phy.media_type != e1000_media_type_copper) {
1270		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1271							     &duplex);
1272		/* Use this flag to determine if link needs to be checked or
1273		 * not.  If  we have link clear the flag so that we do not
1274		 * continue to check for link.
1275		 */
1276		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1277
1278		/* Configure Flow Control now that Auto-Neg has completed.
1279		 * First, we need to restore the desired flow control
1280		 * settings because we may have had to re-autoneg with a
1281		 * different link partner.
1282		 */
1283		ret_val = igb_config_fc_after_link_up(hw);
1284		if (ret_val)
1285			hw_dbg("Error configuring flow control\n");
1286	} else {
1287		ret_val = igb_check_for_copper_link(hw);
1288	}
1289
1290	return ret_val;
1291}
1292
1293/**
1294 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1295 *  @hw: pointer to the HW structure
1296 **/
1297void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1298{
1299	u32 reg;
1300
1301
1302	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1303	    !igb_sgmii_active_82575(hw))
1304		return;
1305
1306	/* Enable PCS to turn on link */
1307	reg = rd32(E1000_PCS_CFG0);
1308	reg |= E1000_PCS_CFG_PCS_EN;
1309	wr32(E1000_PCS_CFG0, reg);
1310
1311	/* Power up the laser */
1312	reg = rd32(E1000_CTRL_EXT);
1313	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1314	wr32(E1000_CTRL_EXT, reg);
1315
1316	/* flush the write to verify completion */
1317	wrfl();
1318	msleep(1);
1319}
1320
1321/**
1322 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1323 *  @hw: pointer to the HW structure
1324 *  @speed: stores the current speed
1325 *  @duplex: stores the current duplex
1326 *
1327 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1328 *  duplex, then store the values in the pointers provided.
1329 **/
1330static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1331						u16 *duplex)
1332{
1333	struct e1000_mac_info *mac = &hw->mac;
1334	u32 pcs, status;
1335
1336	/* Set up defaults for the return values of this function */
1337	mac->serdes_has_link = false;
1338	*speed = 0;
1339	*duplex = 0;
1340
1341	/* Read the PCS Status register for link state. For non-copper mode,
1342	 * the status register is not accurate. The PCS status register is
1343	 * used instead.
1344	 */
1345	pcs = rd32(E1000_PCS_LSTAT);
1346
1347	/* The link up bit determines when link is up on autoneg. The sync ok
1348	 * gets set once both sides sync up and agree upon link. Stable link
1349	 * can be determined by checking for both link up and link sync ok
1350	 */
1351	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1352		mac->serdes_has_link = true;
1353
1354		/* Detect and store PCS speed */
1355		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1356			*speed = SPEED_1000;
1357		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1358			*speed = SPEED_100;
1359		else
1360			*speed = SPEED_10;
1361
1362		/* Detect and store PCS duplex */
1363		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1364			*duplex = FULL_DUPLEX;
1365		else
1366			*duplex = HALF_DUPLEX;
1367
1368	/* Check if it is an I354 2.5Gb backplane connection. */
1369		if (mac->type == e1000_i354) {
1370			status = rd32(E1000_STATUS);
1371			if ((status & E1000_STATUS_2P5_SKU) &&
1372			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1373				*speed = SPEED_2500;
1374				*duplex = FULL_DUPLEX;
1375				hw_dbg("2500 Mbs, ");
1376				hw_dbg("Full Duplex\n");
1377			}
1378		}
1379
1380	}
1381
1382	return 0;
1383}
1384
1385/**
1386 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1387 *  @hw: pointer to the HW structure
1388 *
1389 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1390 *  when management pass thru is not enabled.
1391 **/
1392void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1393{
1394	u32 reg;
1395
1396	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1397	    igb_sgmii_active_82575(hw))
1398		return;
1399
1400	if (!igb_enable_mng_pass_thru(hw)) {
1401		/* Disable PCS to turn off link */
1402		reg = rd32(E1000_PCS_CFG0);
1403		reg &= ~E1000_PCS_CFG_PCS_EN;
1404		wr32(E1000_PCS_CFG0, reg);
1405
1406		/* shutdown the laser */
1407		reg = rd32(E1000_CTRL_EXT);
1408		reg |= E1000_CTRL_EXT_SDP3_DATA;
1409		wr32(E1000_CTRL_EXT, reg);
1410
1411		/* flush the write to verify completion */
1412		wrfl();
1413		msleep(1);
1414	}
1415}
1416
1417/**
1418 *  igb_reset_hw_82575 - Reset hardware
1419 *  @hw: pointer to the HW structure
1420 *
1421 *  This resets the hardware into a known state.  This is a
1422 *  function pointer entry point called by the api module.
1423 **/
1424static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1425{
1426	u32 ctrl;
1427	s32 ret_val;
1428
1429	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1430	 * on the last TLP read/write transaction when MAC is reset.
1431	 */
1432	ret_val = igb_disable_pcie_master(hw);
1433	if (ret_val)
1434		hw_dbg("PCI-E Master disable polling has failed.\n");
1435
1436	/* set the completion timeout for interface */
1437	ret_val = igb_set_pcie_completion_timeout(hw);
1438	if (ret_val)
1439		hw_dbg("PCI-E Set completion timeout has failed.\n");
1440
1441	hw_dbg("Masking off all interrupts\n");
1442	wr32(E1000_IMC, 0xffffffff);
1443
1444	wr32(E1000_RCTL, 0);
1445	wr32(E1000_TCTL, E1000_TCTL_PSP);
1446	wrfl();
1447
1448	msleep(10);
1449
1450	ctrl = rd32(E1000_CTRL);
1451
1452	hw_dbg("Issuing a global reset to MAC\n");
1453	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1454
1455	ret_val = igb_get_auto_rd_done(hw);
1456	if (ret_val) {
1457		/* When auto config read does not complete, do not
1458		 * return with an error. This can happen in situations
1459		 * where there is no eeprom and prevents getting link.
1460		 */
1461		hw_dbg("Auto Read Done did not complete\n");
1462	}
1463
1464	/* If EEPROM is not present, run manual init scripts */
1465	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1466		igb_reset_init_script_82575(hw);
1467
1468	/* Clear any pending interrupt events. */
1469	wr32(E1000_IMC, 0xffffffff);
1470	rd32(E1000_ICR);
1471
1472	/* Install any alternate MAC address into RAR0 */
1473	ret_val = igb_check_alt_mac_addr(hw);
1474
1475	return ret_val;
1476}
1477
1478/**
1479 *  igb_init_hw_82575 - Initialize hardware
1480 *  @hw: pointer to the HW structure
1481 *
1482 *  This inits the hardware readying it for operation.
1483 **/
1484static s32 igb_init_hw_82575(struct e1000_hw *hw)
1485{
1486	struct e1000_mac_info *mac = &hw->mac;
1487	s32 ret_val;
1488	u16 i, rar_count = mac->rar_entry_count;
1489
1490	/* Initialize identification LED */
1491	ret_val = igb_id_led_init(hw);
1492	if (ret_val) {
1493		hw_dbg("Error initializing identification LED\n");
1494		/* This is not fatal and we should not stop init due to this */
1495	}
1496
1497	/* Disabling VLAN filtering */
1498	hw_dbg("Initializing the IEEE VLAN\n");
1499	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1500		igb_clear_vfta_i350(hw);
1501	else
1502		igb_clear_vfta(hw);
1503
1504	/* Setup the receive address */
1505	igb_init_rx_addrs(hw, rar_count);
1506
1507	/* Zero out the Multicast HASH table */
1508	hw_dbg("Zeroing the MTA\n");
1509	for (i = 0; i < mac->mta_reg_count; i++)
1510		array_wr32(E1000_MTA, i, 0);
1511
1512	/* Zero out the Unicast HASH table */
1513	hw_dbg("Zeroing the UTA\n");
1514	for (i = 0; i < mac->uta_reg_count; i++)
1515		array_wr32(E1000_UTA, i, 0);
1516
1517	/* Setup link and flow control */
1518	ret_val = igb_setup_link(hw);
1519
1520	/* Clear all of the statistics registers (clear on read).  It is
1521	 * important that we do this after we have tried to establish link
1522	 * because the symbol error count will increment wildly if there
1523	 * is no link.
1524	 */
1525	igb_clear_hw_cntrs_82575(hw);
1526	return ret_val;
1527}
1528
1529/**
1530 *  igb_setup_copper_link_82575 - Configure copper link settings
1531 *  @hw: pointer to the HW structure
1532 *
1533 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1534 *  for link, once link is established calls to configure collision distance
1535 *  and flow control are called.
1536 **/
1537static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1538{
1539	u32 ctrl;
1540	s32  ret_val;
1541	u32 phpm_reg;
1542
1543	ctrl = rd32(E1000_CTRL);
1544	ctrl |= E1000_CTRL_SLU;
1545	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1546	wr32(E1000_CTRL, ctrl);
1547
1548	/* Clear Go Link Disconnect bit on supported devices */
1549	switch (hw->mac.type) {
1550	case e1000_82580:
1551	case e1000_i350:
1552	case e1000_i210:
1553	case e1000_i211:
1554		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1555		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1556		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1557		break;
1558	default:
1559		break;
1560	}
1561
1562	ret_val = igb_setup_serdes_link_82575(hw);
1563	if (ret_val)
1564		goto out;
1565
1566	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1567		/* allow time for SFP cage time to power up phy */
1568		msleep(300);
1569
1570		ret_val = hw->phy.ops.reset(hw);
1571		if (ret_val) {
1572			hw_dbg("Error resetting the PHY.\n");
1573			goto out;
1574		}
1575	}
1576	switch (hw->phy.type) {
1577	case e1000_phy_i210:
1578	case e1000_phy_m88:
1579		switch (hw->phy.id) {
1580		case I347AT4_E_PHY_ID:
1581		case M88E1112_E_PHY_ID:
1582		case M88E1543_E_PHY_ID:
1583		case I210_I_PHY_ID:
1584			ret_val = igb_copper_link_setup_m88_gen2(hw);
1585			break;
1586		default:
1587			ret_val = igb_copper_link_setup_m88(hw);
1588			break;
1589		}
1590		break;
1591	case e1000_phy_igp_3:
1592		ret_val = igb_copper_link_setup_igp(hw);
1593		break;
1594	case e1000_phy_82580:
1595		ret_val = igb_copper_link_setup_82580(hw);
1596		break;
1597	default:
1598		ret_val = -E1000_ERR_PHY;
1599		break;
1600	}
1601
1602	if (ret_val)
1603		goto out;
1604
1605	ret_val = igb_setup_copper_link(hw);
1606out:
1607	return ret_val;
1608}
1609
1610/**
1611 *  igb_setup_serdes_link_82575 - Setup link for serdes
1612 *  @hw: pointer to the HW structure
1613 *
1614 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1615 *  used on copper connections where the serialized gigabit media independent
1616 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1617 *  for auto-negotiation or forces speed/duplex.
1618 **/
1619static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1620{
1621	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1622	bool pcs_autoneg;
1623	s32 ret_val = E1000_SUCCESS;
1624	u16 data;
1625
1626	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1627	    !igb_sgmii_active_82575(hw))
1628		return ret_val;
1629
1630
1631	/* On the 82575, SerDes loopback mode persists until it is
1632	 * explicitly turned off or a power cycle is performed.  A read to
1633	 * the register does not indicate its status.  Therefore, we ensure
1634	 * loopback mode is disabled during initialization.
1635	 */
1636	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1637
1638	/* power on the sfp cage if present and turn on I2C */
1639	ctrl_ext = rd32(E1000_CTRL_EXT);
1640	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1641	ctrl_ext |= E1000_CTRL_I2C_ENA;
1642	wr32(E1000_CTRL_EXT, ctrl_ext);
1643
1644	ctrl_reg = rd32(E1000_CTRL);
1645	ctrl_reg |= E1000_CTRL_SLU;
1646
1647	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1648		/* set both sw defined pins */
1649		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1650
1651		/* Set switch control to serdes energy detect */
1652		reg = rd32(E1000_CONNSW);
1653		reg |= E1000_CONNSW_ENRGSRC;
1654		wr32(E1000_CONNSW, reg);
1655	}
1656
1657	reg = rd32(E1000_PCS_LCTL);
1658
1659	/* default pcs_autoneg to the same setting as mac autoneg */
1660	pcs_autoneg = hw->mac.autoneg;
1661
1662	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1663	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1664		/* sgmii mode lets the phy handle forcing speed/duplex */
1665		pcs_autoneg = true;
1666		/* autoneg time out should be disabled for SGMII mode */
1667		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1668		break;
1669	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1670		/* disable PCS autoneg and support parallel detect only */
1671		pcs_autoneg = false;
1672	default:
1673		if (hw->mac.type == e1000_82575 ||
1674		    hw->mac.type == e1000_82576) {
1675			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1676			if (ret_val) {
1677				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1678				return ret_val;
1679			}
1680
1681			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1682				pcs_autoneg = false;
1683		}
1684
1685		/* non-SGMII modes only supports a speed of 1000/Full for the
1686		 * link so it is best to just force the MAC and let the pcs
1687		 * link either autoneg or be forced to 1000/Full
1688		 */
1689		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1690				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1691
1692		/* set speed of 1000/Full if speed/duplex is forced */
1693		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1694		break;
1695	}
1696
1697	wr32(E1000_CTRL, ctrl_reg);
1698
1699	/* New SerDes mode allows for forcing speed or autonegotiating speed
1700	 * at 1gb. Autoneg should be default set by most drivers. This is the
1701	 * mode that will be compatible with older link partners and switches.
1702	 * However, both are supported by the hardware and some drivers/tools.
1703	 */
1704	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1705		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1706
1707	if (pcs_autoneg) {
1708		/* Set PCS register for autoneg */
1709		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1710		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1711
1712		/* Disable force flow control for autoneg */
1713		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1714
1715		/* Configure flow control advertisement for autoneg */
1716		anadv_reg = rd32(E1000_PCS_ANADV);
1717		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1718		switch (hw->fc.requested_mode) {
1719		case e1000_fc_full:
1720		case e1000_fc_rx_pause:
1721			anadv_reg |= E1000_TXCW_ASM_DIR;
1722			anadv_reg |= E1000_TXCW_PAUSE;
1723			break;
1724		case e1000_fc_tx_pause:
1725			anadv_reg |= E1000_TXCW_ASM_DIR;
1726			break;
1727		default:
1728			break;
1729		}
1730		wr32(E1000_PCS_ANADV, anadv_reg);
1731
1732		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1733	} else {
1734		/* Set PCS register for forced link */
1735		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1736
1737		/* Force flow control for forced link */
1738		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1739
1740		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1741	}
1742
1743	wr32(E1000_PCS_LCTL, reg);
1744
1745	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1746		igb_force_mac_fc(hw);
1747
1748	return ret_val;
1749}
1750
1751/**
1752 *  igb_sgmii_active_82575 - Return sgmii state
1753 *  @hw: pointer to the HW structure
1754 *
1755 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1756 *  which can be enabled for use in the embedded applications.  Simply
1757 *  return the current state of the sgmii interface.
1758 **/
1759static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1760{
1761	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1762	return dev_spec->sgmii_active;
1763}
1764
1765/**
1766 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1767 *  @hw: pointer to the HW structure
1768 *
1769 *  Inits recommended HW defaults after a reset when there is no EEPROM
1770 *  detected. This is only for the 82575.
1771 **/
1772static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1773{
1774	if (hw->mac.type == e1000_82575) {
1775		hw_dbg("Running reset init script for 82575\n");
1776		/* SerDes configuration via SERDESCTRL */
1777		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1778		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1779		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1780		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1781
1782		/* CCM configuration via CCMCTL register */
1783		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1784		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1785
1786		/* PCIe lanes configuration */
1787		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1788		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1789		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1790		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1791
1792		/* PCIe PLL Configuration */
1793		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1794		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1795		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1796	}
1797
1798	return 0;
1799}
1800
1801/**
1802 *  igb_read_mac_addr_82575 - Read device MAC address
1803 *  @hw: pointer to the HW structure
1804 **/
1805static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1806{
1807	s32 ret_val = 0;
1808
1809	/* If there's an alternate MAC address place it in RAR0
1810	 * so that it will override the Si installed default perm
1811	 * address.
1812	 */
1813	ret_val = igb_check_alt_mac_addr(hw);
1814	if (ret_val)
1815		goto out;
1816
1817	ret_val = igb_read_mac_addr(hw);
1818
1819out:
1820	return ret_val;
1821}
1822
1823/**
1824 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1825 * @hw: pointer to the HW structure
1826 *
1827 * In the case of a PHY power down to save power, or to turn off link during a
1828 * driver unload, or wake on lan is not enabled, remove the link.
1829 **/
1830void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1831{
1832	/* If the management interface is not enabled, then power down */
1833	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1834		igb_power_down_phy_copper(hw);
1835}
1836
1837/**
1838 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1839 *  @hw: pointer to the HW structure
1840 *
1841 *  Clears the hardware counters by reading the counter registers.
1842 **/
1843static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1844{
1845	igb_clear_hw_cntrs_base(hw);
1846
1847	rd32(E1000_PRC64);
1848	rd32(E1000_PRC127);
1849	rd32(E1000_PRC255);
1850	rd32(E1000_PRC511);
1851	rd32(E1000_PRC1023);
1852	rd32(E1000_PRC1522);
1853	rd32(E1000_PTC64);
1854	rd32(E1000_PTC127);
1855	rd32(E1000_PTC255);
1856	rd32(E1000_PTC511);
1857	rd32(E1000_PTC1023);
1858	rd32(E1000_PTC1522);
1859
1860	rd32(E1000_ALGNERRC);
1861	rd32(E1000_RXERRC);
1862	rd32(E1000_TNCRS);
1863	rd32(E1000_CEXTERR);
1864	rd32(E1000_TSCTC);
1865	rd32(E1000_TSCTFC);
1866
1867	rd32(E1000_MGTPRC);
1868	rd32(E1000_MGTPDC);
1869	rd32(E1000_MGTPTC);
1870
1871	rd32(E1000_IAC);
1872	rd32(E1000_ICRXOC);
1873
1874	rd32(E1000_ICRXPTC);
1875	rd32(E1000_ICRXATC);
1876	rd32(E1000_ICTXPTC);
1877	rd32(E1000_ICTXATC);
1878	rd32(E1000_ICTXQEC);
1879	rd32(E1000_ICTXQMTC);
1880	rd32(E1000_ICRXDMTC);
1881
1882	rd32(E1000_CBTMPC);
1883	rd32(E1000_HTDPMC);
1884	rd32(E1000_CBRMPC);
1885	rd32(E1000_RPTHC);
1886	rd32(E1000_HGPTC);
1887	rd32(E1000_HTCBDPC);
1888	rd32(E1000_HGORCL);
1889	rd32(E1000_HGORCH);
1890	rd32(E1000_HGOTCL);
1891	rd32(E1000_HGOTCH);
1892	rd32(E1000_LENERRS);
1893
1894	/* This register should not be read in copper configurations */
1895	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1896	    igb_sgmii_active_82575(hw))
1897		rd32(E1000_SCVPC);
1898}
1899
1900/**
1901 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1902 *  @hw: pointer to the HW structure
1903 *
1904 *  After rx enable if managability is enabled then there is likely some
1905 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1906 *  function clears the fifos and flushes any packets that came in as rx was
1907 *  being enabled.
1908 **/
1909void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1910{
1911	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1912	int i, ms_wait;
1913
1914	if (hw->mac.type != e1000_82575 ||
1915	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1916		return;
1917
1918	/* Disable all RX queues */
1919	for (i = 0; i < 4; i++) {
1920		rxdctl[i] = rd32(E1000_RXDCTL(i));
1921		wr32(E1000_RXDCTL(i),
1922		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1923	}
1924	/* Poll all queues to verify they have shut down */
1925	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1926		msleep(1);
1927		rx_enabled = 0;
1928		for (i = 0; i < 4; i++)
1929			rx_enabled |= rd32(E1000_RXDCTL(i));
1930		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1931			break;
1932	}
1933
1934	if (ms_wait == 10)
1935		hw_dbg("Queue disable timed out after 10ms\n");
1936
1937	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1938	 * incoming packets are rejected.  Set enable and wait 2ms so that
1939	 * any packet that was coming in as RCTL.EN was set is flushed
1940	 */
1941	rfctl = rd32(E1000_RFCTL);
1942	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1943
1944	rlpml = rd32(E1000_RLPML);
1945	wr32(E1000_RLPML, 0);
1946
1947	rctl = rd32(E1000_RCTL);
1948	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1949	temp_rctl |= E1000_RCTL_LPE;
1950
1951	wr32(E1000_RCTL, temp_rctl);
1952	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1953	wrfl();
1954	msleep(2);
1955
1956	/* Enable RX queues that were previously enabled and restore our
1957	 * previous state
1958	 */
1959	for (i = 0; i < 4; i++)
1960		wr32(E1000_RXDCTL(i), rxdctl[i]);
1961	wr32(E1000_RCTL, rctl);
1962	wrfl();
1963
1964	wr32(E1000_RLPML, rlpml);
1965	wr32(E1000_RFCTL, rfctl);
1966
1967	/* Flush receive errors generated by workaround */
1968	rd32(E1000_ROC);
1969	rd32(E1000_RNBC);
1970	rd32(E1000_MPC);
1971}
1972
1973/**
1974 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1975 *  @hw: pointer to the HW structure
1976 *
1977 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1978 *  however the hardware default for these parts is 500us to 1ms which is less
1979 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1980 *  increase the value to either 10ms to 200ms for capability version 1 config,
1981 *  or 16ms to 55ms for version 2.
1982 **/
1983static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1984{
1985	u32 gcr = rd32(E1000_GCR);
1986	s32 ret_val = 0;
1987	u16 pcie_devctl2;
1988
1989	/* only take action if timeout value is defaulted to 0 */
1990	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1991		goto out;
1992
1993	/* if capabilities version is type 1 we can write the
1994	 * timeout of 10ms to 200ms through the GCR register
1995	 */
1996	if (!(gcr & E1000_GCR_CAP_VER2)) {
1997		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1998		goto out;
1999	}
2000
2001	/* for version 2 capabilities we need to write the config space
2002	 * directly in order to set the completion timeout value for
2003	 * 16ms to 55ms
2004	 */
2005	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2006					&pcie_devctl2);
2007	if (ret_val)
2008		goto out;
2009
2010	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2011
2012	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2013					 &pcie_devctl2);
2014out:
2015	/* disable completion timeout resend */
2016	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2017
2018	wr32(E1000_GCR, gcr);
2019	return ret_val;
2020}
2021
2022/**
2023 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2024 *  @hw: pointer to the hardware struct
2025 *  @enable: state to enter, either enabled or disabled
2026 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2027 *
2028 *  enables/disables L2 switch anti-spoofing functionality.
2029 **/
2030void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2031{
2032	u32 reg_val, reg_offset;
2033
2034	switch (hw->mac.type) {
2035	case e1000_82576:
2036		reg_offset = E1000_DTXSWC;
2037		break;
2038	case e1000_i350:
2039	case e1000_i354:
2040		reg_offset = E1000_TXSWC;
2041		break;
2042	default:
2043		return;
2044	}
2045
2046	reg_val = rd32(reg_offset);
2047	if (enable) {
2048		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2049			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2050		/* The PF can spoof - it has to in order to
2051		 * support emulation mode NICs
2052		 */
2053		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2054	} else {
2055		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2056			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2057	}
2058	wr32(reg_offset, reg_val);
2059}
2060
2061/**
2062 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2063 *  @hw: pointer to the hardware struct
2064 *  @enable: state to enter, either enabled or disabled
2065 *
2066 *  enables/disables L2 switch loopback functionality.
2067 **/
2068void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2069{
2070	u32 dtxswc;
2071
2072	switch (hw->mac.type) {
2073	case e1000_82576:
2074		dtxswc = rd32(E1000_DTXSWC);
2075		if (enable)
2076			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2077		else
2078			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2079		wr32(E1000_DTXSWC, dtxswc);
2080		break;
2081	case e1000_i354:
2082	case e1000_i350:
2083		dtxswc = rd32(E1000_TXSWC);
2084		if (enable)
2085			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2086		else
2087			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2088		wr32(E1000_TXSWC, dtxswc);
2089		break;
2090	default:
2091		/* Currently no other hardware supports loopback */
2092		break;
2093	}
2094
2095}
2096
2097/**
2098 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2099 *  @hw: pointer to the hardware struct
2100 *  @enable: state to enter, either enabled or disabled
2101 *
2102 *  enables/disables replication of packets across multiple pools.
2103 **/
2104void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2105{
2106	u32 vt_ctl = rd32(E1000_VT_CTL);
2107
2108	if (enable)
2109		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2110	else
2111		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2112
2113	wr32(E1000_VT_CTL, vt_ctl);
2114}
2115
2116/**
2117 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2118 *  @hw: pointer to the HW structure
2119 *  @offset: register offset to be read
2120 *  @data: pointer to the read data
2121 *
2122 *  Reads the MDI control register in the PHY at offset and stores the
2123 *  information read to data.
2124 **/
2125static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2126{
2127	s32 ret_val;
2128
2129	ret_val = hw->phy.ops.acquire(hw);
2130	if (ret_val)
2131		goto out;
2132
2133	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2134
2135	hw->phy.ops.release(hw);
2136
2137out:
2138	return ret_val;
2139}
2140
2141/**
2142 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2143 *  @hw: pointer to the HW structure
2144 *  @offset: register offset to write to
2145 *  @data: data to write to register at offset
2146 *
2147 *  Writes data to MDI control register in the PHY at offset.
2148 **/
2149static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2150{
2151	s32 ret_val;
2152
2153
2154	ret_val = hw->phy.ops.acquire(hw);
2155	if (ret_val)
2156		goto out;
2157
2158	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2159
2160	hw->phy.ops.release(hw);
2161
2162out:
2163	return ret_val;
2164}
2165
2166/**
2167 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2168 *  @hw: pointer to the HW structure
2169 *
2170 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2171 *  the values found in the EEPROM.  This addresses an issue in which these
2172 *  bits are not restored from EEPROM after reset.
2173 **/
2174static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2175{
2176	s32 ret_val = 0;
2177	u32 mdicnfg;
2178	u16 nvm_data = 0;
2179
2180	if (hw->mac.type != e1000_82580)
2181		goto out;
2182	if (!igb_sgmii_active_82575(hw))
2183		goto out;
2184
2185	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2186				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2187				   &nvm_data);
2188	if (ret_val) {
2189		hw_dbg("NVM Read Error\n");
2190		goto out;
2191	}
2192
2193	mdicnfg = rd32(E1000_MDICNFG);
2194	if (nvm_data & NVM_WORD24_EXT_MDIO)
2195		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2196	if (nvm_data & NVM_WORD24_COM_MDIO)
2197		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2198	wr32(E1000_MDICNFG, mdicnfg);
2199out:
2200	return ret_val;
2201}
2202
2203/**
2204 *  igb_reset_hw_82580 - Reset hardware
2205 *  @hw: pointer to the HW structure
2206 *
2207 *  This resets function or entire device (all ports, etc.)
2208 *  to a known state.
2209 **/
2210static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2211{
2212	s32 ret_val = 0;
2213	/* BH SW mailbox bit in SW_FW_SYNC */
2214	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2215	u32 ctrl;
2216	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2217
2218	hw->dev_spec._82575.global_device_reset = false;
2219
2220	/* due to hw errata, global device reset doesn't always
2221	 * work on 82580
2222	 */
2223	if (hw->mac.type == e1000_82580)
2224		global_device_reset = false;
2225
2226	/* Get current control state. */
2227	ctrl = rd32(E1000_CTRL);
2228
2229	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2230	 * on the last TLP read/write transaction when MAC is reset.
2231	 */
2232	ret_val = igb_disable_pcie_master(hw);
2233	if (ret_val)
2234		hw_dbg("PCI-E Master disable polling has failed.\n");
2235
2236	hw_dbg("Masking off all interrupts\n");
2237	wr32(E1000_IMC, 0xffffffff);
2238	wr32(E1000_RCTL, 0);
2239	wr32(E1000_TCTL, E1000_TCTL_PSP);
2240	wrfl();
2241
2242	msleep(10);
2243
2244	/* Determine whether or not a global dev reset is requested */
2245	if (global_device_reset &&
2246		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2247			global_device_reset = false;
2248
2249	if (global_device_reset &&
2250		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2251		ctrl |= E1000_CTRL_DEV_RST;
2252	else
2253		ctrl |= E1000_CTRL_RST;
2254
2255	wr32(E1000_CTRL, ctrl);
2256	wrfl();
2257
2258	/* Add delay to insure DEV_RST has time to complete */
2259	if (global_device_reset)
2260		msleep(5);
2261
2262	ret_val = igb_get_auto_rd_done(hw);
2263	if (ret_val) {
2264		/* When auto config read does not complete, do not
2265		 * return with an error. This can happen in situations
2266		 * where there is no eeprom and prevents getting link.
2267		 */
2268		hw_dbg("Auto Read Done did not complete\n");
2269	}
2270
2271	/* clear global device reset status bit */
2272	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2273
2274	/* Clear any pending interrupt events. */
2275	wr32(E1000_IMC, 0xffffffff);
2276	rd32(E1000_ICR);
2277
2278	ret_val = igb_reset_mdicnfg_82580(hw);
2279	if (ret_val)
2280		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2281
2282	/* Install any alternate MAC address into RAR0 */
2283	ret_val = igb_check_alt_mac_addr(hw);
2284
2285	/* Release semaphore */
2286	if (global_device_reset)
2287		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2288
2289	return ret_val;
2290}
2291
2292/**
2293 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2294 *  @data: data received by reading RXPBS register
2295 *
2296 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2297 *  This function converts the retrieved value into the correct table value
2298 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2299 *  0x0 36  72 144   1   2   4   8  16
2300 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2301 */
2302u16 igb_rxpbs_adjust_82580(u32 data)
2303{
2304	u16 ret_val = 0;
2305
2306	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2307		ret_val = e1000_82580_rxpbs_table[data];
2308
2309	return ret_val;
2310}
2311
2312/**
2313 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2314 *  checksum
2315 *  @hw: pointer to the HW structure
2316 *  @offset: offset in words of the checksum protected region
2317 *
2318 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2319 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2320 **/
2321static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2322						 u16 offset)
2323{
2324	s32 ret_val = 0;
2325	u16 checksum = 0;
2326	u16 i, nvm_data;
2327
2328	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2329		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2330		if (ret_val) {
2331			hw_dbg("NVM Read Error\n");
2332			goto out;
2333		}
2334		checksum += nvm_data;
2335	}
2336
2337	if (checksum != (u16) NVM_SUM) {
2338		hw_dbg("NVM Checksum Invalid\n");
2339		ret_val = -E1000_ERR_NVM;
2340		goto out;
2341	}
2342
2343out:
2344	return ret_val;
2345}
2346
2347/**
2348 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2349 *  checksum
2350 *  @hw: pointer to the HW structure
2351 *  @offset: offset in words of the checksum protected region
2352 *
2353 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2354 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2355 *  value to the EEPROM.
2356 **/
2357static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2358{
2359	s32 ret_val;
2360	u16 checksum = 0;
2361	u16 i, nvm_data;
2362
2363	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2364		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2365		if (ret_val) {
2366			hw_dbg("NVM Read Error while updating checksum.\n");
2367			goto out;
2368		}
2369		checksum += nvm_data;
2370	}
2371	checksum = (u16) NVM_SUM - checksum;
2372	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2373				&checksum);
2374	if (ret_val)
2375		hw_dbg("NVM Write Error while updating checksum.\n");
2376
2377out:
2378	return ret_val;
2379}
2380
2381/**
2382 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2383 *  @hw: pointer to the HW structure
2384 *
2385 *  Calculates the EEPROM section checksum by reading/adding each word of
2386 *  the EEPROM and then verifies that the sum of the EEPROM is
2387 *  equal to 0xBABA.
2388 **/
2389static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2390{
2391	s32 ret_val = 0;
2392	u16 eeprom_regions_count = 1;
2393	u16 j, nvm_data;
2394	u16 nvm_offset;
2395
2396	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2397	if (ret_val) {
2398		hw_dbg("NVM Read Error\n");
2399		goto out;
2400	}
2401
2402	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2403		/* if checksums compatibility bit is set validate checksums
2404		 * for all 4 ports.
2405		 */
2406		eeprom_regions_count = 4;
2407	}
2408
2409	for (j = 0; j < eeprom_regions_count; j++) {
2410		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2411		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2412								nvm_offset);
2413		if (ret_val != 0)
2414			goto out;
2415	}
2416
2417out:
2418	return ret_val;
2419}
2420
2421/**
2422 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2423 *  @hw: pointer to the HW structure
2424 *
2425 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2426 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2427 *  checksum and writes the value to the EEPROM.
2428 **/
2429static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2430{
2431	s32 ret_val;
2432	u16 j, nvm_data;
2433	u16 nvm_offset;
2434
2435	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2436	if (ret_val) {
2437		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2438		goto out;
2439	}
2440
2441	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2442		/* set compatibility bit to validate checksums appropriately */
2443		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2444		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2445					&nvm_data);
2446		if (ret_val) {
2447			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2448			goto out;
2449		}
2450	}
2451
2452	for (j = 0; j < 4; j++) {
2453		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2454		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2455		if (ret_val)
2456			goto out;
2457	}
2458
2459out:
2460	return ret_val;
2461}
2462
2463/**
2464 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2465 *  @hw: pointer to the HW structure
2466 *
2467 *  Calculates the EEPROM section checksum by reading/adding each word of
2468 *  the EEPROM and then verifies that the sum of the EEPROM is
2469 *  equal to 0xBABA.
2470 **/
2471static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2472{
2473	s32 ret_val = 0;
2474	u16 j;
2475	u16 nvm_offset;
2476
2477	for (j = 0; j < 4; j++) {
2478		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2479		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2480								nvm_offset);
2481		if (ret_val != 0)
2482			goto out;
2483	}
2484
2485out:
2486	return ret_val;
2487}
2488
2489/**
2490 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2491 *  @hw: pointer to the HW structure
2492 *
2493 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2494 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2495 *  checksum and writes the value to the EEPROM.
2496 **/
2497static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2498{
2499	s32 ret_val = 0;
2500	u16 j;
2501	u16 nvm_offset;
2502
2503	for (j = 0; j < 4; j++) {
2504		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2505		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2506		if (ret_val != 0)
2507			goto out;
2508	}
2509
2510out:
2511	return ret_val;
2512}
2513
2514/**
2515 *  __igb_access_emi_reg - Read/write EMI register
2516 *  @hw: pointer to the HW structure
2517 *  @addr: EMI address to program
2518 *  @data: pointer to value to read/write from/to the EMI address
2519 *  @read: boolean flag to indicate read or write
2520 **/
2521static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2522				  u16 *data, bool read)
2523{
2524	s32 ret_val = E1000_SUCCESS;
2525
2526	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2527	if (ret_val)
2528		return ret_val;
2529
2530	if (read)
2531		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2532	else
2533		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2534
2535	return ret_val;
2536}
2537
2538/**
2539 *  igb_read_emi_reg - Read Extended Management Interface register
2540 *  @hw: pointer to the HW structure
2541 *  @addr: EMI address to program
2542 *  @data: value to be read from the EMI address
2543 **/
2544s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2545{
2546	return __igb_access_emi_reg(hw, addr, data, true);
2547}
2548
2549/**
2550 *  igb_set_eee_i350 - Enable/disable EEE support
2551 *  @hw: pointer to the HW structure
2552 *
2553 *  Enable/disable EEE based on setting in dev_spec structure.
2554 *
2555 **/
2556s32 igb_set_eee_i350(struct e1000_hw *hw)
2557{
2558	s32 ret_val = 0;
2559	u32 ipcnfg, eeer;
2560
2561	if ((hw->mac.type < e1000_i350) ||
2562	    (hw->phy.media_type != e1000_media_type_copper))
2563		goto out;
2564	ipcnfg = rd32(E1000_IPCNFG);
2565	eeer = rd32(E1000_EEER);
2566
2567	/* enable or disable per user setting */
2568	if (!(hw->dev_spec._82575.eee_disable)) {
2569		u32 eee_su = rd32(E1000_EEE_SU);
2570
2571		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2572		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2573			E1000_EEER_LPI_FC);
2574
2575		/* This bit should not be set in normal operation. */
2576		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2577			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2578
2579	} else {
2580		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2581			E1000_IPCNFG_EEE_100M_AN);
2582		eeer &= ~(E1000_EEER_TX_LPI_EN |
2583			E1000_EEER_RX_LPI_EN |
2584			E1000_EEER_LPI_FC);
2585	}
2586	wr32(E1000_IPCNFG, ipcnfg);
2587	wr32(E1000_EEER, eeer);
2588	rd32(E1000_IPCNFG);
2589	rd32(E1000_EEER);
2590out:
2591
2592	return ret_val;
2593}
2594
2595/**
2596 *  igb_set_eee_i354 - Enable/disable EEE support
2597 *  @hw: pointer to the HW structure
2598 *
2599 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2600 *
2601 **/
2602s32 igb_set_eee_i354(struct e1000_hw *hw)
2603{
2604	struct e1000_phy_info *phy = &hw->phy;
2605	s32 ret_val = 0;
2606	u16 phy_data;
2607
2608	if ((hw->phy.media_type != e1000_media_type_copper) ||
2609	    (phy->id != M88E1543_E_PHY_ID))
2610		goto out;
2611
2612	if (!hw->dev_spec._82575.eee_disable) {
2613		/* Switch to PHY page 18. */
2614		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2615		if (ret_val)
2616			goto out;
2617
2618		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2619					    &phy_data);
2620		if (ret_val)
2621			goto out;
2622
2623		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2624		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2625					     phy_data);
2626		if (ret_val)
2627			goto out;
2628
2629		/* Return the PHY to page 0. */
2630		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2631		if (ret_val)
2632			goto out;
2633
2634		/* Turn on EEE advertisement. */
2635		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2636					     E1000_EEE_ADV_DEV_I354,
2637					     &phy_data);
2638		if (ret_val)
2639			goto out;
2640
2641		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2642			    E1000_EEE_ADV_1000_SUPPORTED;
2643		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2644						E1000_EEE_ADV_DEV_I354,
2645						phy_data);
2646	} else {
2647		/* Turn off EEE advertisement. */
2648		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2649					     E1000_EEE_ADV_DEV_I354,
2650					     &phy_data);
2651		if (ret_val)
2652			goto out;
2653
2654		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2655			      E1000_EEE_ADV_1000_SUPPORTED);
2656		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2657					      E1000_EEE_ADV_DEV_I354,
2658					      phy_data);
2659	}
2660
2661out:
2662	return ret_val;
2663}
2664
2665/**
2666 *  igb_get_eee_status_i354 - Get EEE status
2667 *  @hw: pointer to the HW structure
2668 *  @status: EEE status
2669 *
2670 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2671 *  been received.
2672 **/
2673s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2674{
2675	struct e1000_phy_info *phy = &hw->phy;
2676	s32 ret_val = 0;
2677	u16 phy_data;
2678
2679	/* Check if EEE is supported on this device. */
2680	if ((hw->phy.media_type != e1000_media_type_copper) ||
2681	    (phy->id != M88E1543_E_PHY_ID))
2682		goto out;
2683
2684	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2685				     E1000_PCS_STATUS_DEV_I354,
2686				     &phy_data);
2687	if (ret_val)
2688		goto out;
2689
2690	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2691			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2692
2693out:
2694	return ret_val;
2695}
2696
2697static const u8 e1000_emc_temp_data[4] = {
2698	E1000_EMC_INTERNAL_DATA,
2699	E1000_EMC_DIODE1_DATA,
2700	E1000_EMC_DIODE2_DATA,
2701	E1000_EMC_DIODE3_DATA
2702};
2703static const u8 e1000_emc_therm_limit[4] = {
2704	E1000_EMC_INTERNAL_THERM_LIMIT,
2705	E1000_EMC_DIODE1_THERM_LIMIT,
2706	E1000_EMC_DIODE2_THERM_LIMIT,
2707	E1000_EMC_DIODE3_THERM_LIMIT
2708};
2709
2710#ifdef CONFIG_IGB_HWMON
2711/**
2712 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2713 *  @hw: pointer to hardware structure
2714 *
2715 *  Updates the temperatures in mac.thermal_sensor_data
2716 **/
2717static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2718{
2719	s32 status = E1000_SUCCESS;
2720	u16 ets_offset;
2721	u16 ets_cfg;
2722	u16 ets_sensor;
2723	u8  num_sensors;
2724	u8  sensor_index;
2725	u8  sensor_location;
2726	u8  i;
2727	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2728
2729	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2730		return E1000_NOT_IMPLEMENTED;
2731
2732	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2733
2734	/* Return the internal sensor only if ETS is unsupported */
2735	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2736	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2737		return status;
2738
2739	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2740	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2741	    != NVM_ETS_TYPE_EMC)
2742		return E1000_NOT_IMPLEMENTED;
2743
2744	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2745	if (num_sensors > E1000_MAX_SENSORS)
2746		num_sensors = E1000_MAX_SENSORS;
2747
2748	for (i = 1; i < num_sensors; i++) {
2749		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2750		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2751				NVM_ETS_DATA_INDEX_SHIFT);
2752		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2753				   NVM_ETS_DATA_LOC_SHIFT);
2754
2755		if (sensor_location != 0)
2756			hw->phy.ops.read_i2c_byte(hw,
2757					e1000_emc_temp_data[sensor_index],
2758					E1000_I2C_THERMAL_SENSOR_ADDR,
2759					&data->sensor[i].temp);
2760	}
2761	return status;
2762}
2763
2764/**
2765 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2766 *  @hw: pointer to hardware structure
2767 *
2768 *  Sets the thermal sensor thresholds according to the NVM map
2769 *  and save off the threshold and location values into mac.thermal_sensor_data
2770 **/
2771static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2772{
2773	s32 status = E1000_SUCCESS;
2774	u16 ets_offset;
2775	u16 ets_cfg;
2776	u16 ets_sensor;
2777	u8  low_thresh_delta;
2778	u8  num_sensors;
2779	u8  sensor_index;
2780	u8  sensor_location;
2781	u8  therm_limit;
2782	u8  i;
2783	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2784
2785	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2786		return E1000_NOT_IMPLEMENTED;
2787
2788	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2789
2790	data->sensor[0].location = 0x1;
2791	data->sensor[0].caution_thresh =
2792		(rd32(E1000_THHIGHTC) & 0xFF);
2793	data->sensor[0].max_op_thresh =
2794		(rd32(E1000_THLOWTC) & 0xFF);
2795
2796	/* Return the internal sensor only if ETS is unsupported */
2797	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2798	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2799		return status;
2800
2801	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2802	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2803	    != NVM_ETS_TYPE_EMC)
2804		return E1000_NOT_IMPLEMENTED;
2805
2806	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2807			    NVM_ETS_LTHRES_DELTA_SHIFT);
2808	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2809
2810	for (i = 1; i <= num_sensors; i++) {
2811		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2812		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2813				NVM_ETS_DATA_INDEX_SHIFT);
2814		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2815				   NVM_ETS_DATA_LOC_SHIFT);
2816		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2817
2818		hw->phy.ops.write_i2c_byte(hw,
2819			e1000_emc_therm_limit[sensor_index],
2820			E1000_I2C_THERMAL_SENSOR_ADDR,
2821			therm_limit);
2822
2823		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2824			data->sensor[i].location = sensor_location;
2825			data->sensor[i].caution_thresh = therm_limit;
2826			data->sensor[i].max_op_thresh = therm_limit -
2827							low_thresh_delta;
2828		}
2829	}
2830	return status;
2831}
2832
2833#endif
2834static struct e1000_mac_operations e1000_mac_ops_82575 = {
2835	.init_hw              = igb_init_hw_82575,
2836	.check_for_link       = igb_check_for_link_82575,
2837	.rar_set              = igb_rar_set,
2838	.read_mac_addr        = igb_read_mac_addr_82575,
2839	.get_speed_and_duplex = igb_get_link_up_info_82575,
2840#ifdef CONFIG_IGB_HWMON
2841	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2842	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2843#endif
2844};
2845
2846static struct e1000_phy_operations e1000_phy_ops_82575 = {
2847	.acquire              = igb_acquire_phy_82575,
2848	.get_cfg_done         = igb_get_cfg_done_82575,
2849	.release              = igb_release_phy_82575,
2850	.write_i2c_byte       = igb_write_i2c_byte,
2851	.read_i2c_byte        = igb_read_i2c_byte,
2852};
2853
2854static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2855	.acquire              = igb_acquire_nvm_82575,
2856	.read                 = igb_read_nvm_eerd,
2857	.release              = igb_release_nvm_82575,
2858	.write                = igb_write_nvm_spi,
2859};
2860
2861const struct e1000_info e1000_82575_info = {
2862	.get_invariants = igb_get_invariants_82575,
2863	.mac_ops = &e1000_mac_ops_82575,
2864	.phy_ops = &e1000_phy_ops_82575,
2865	.nvm_ops = &e1000_nvm_ops_82575,
2866};
2867
2868