[go: nahoru, domu]

e1000_82575.c revision ed65bdd8c0086d69948e6380dba0cc279a6906de
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/types.h>
35#include <linux/if_ether.h>
36#include <linux/i2c.h>
37
38#include "e1000_mac.h"
39#include "e1000_82575.h"
40#include "e1000_i210.h"
41
42static s32  igb_get_invariants_82575(struct e1000_hw *);
43static s32  igb_acquire_phy_82575(struct e1000_hw *);
44static void igb_release_phy_82575(struct e1000_hw *);
45static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46static void igb_release_nvm_82575(struct e1000_hw *);
47static s32  igb_check_for_link_82575(struct e1000_hw *);
48static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49static s32  igb_init_hw_82575(struct e1000_hw *);
50static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54static s32  igb_reset_hw_82575(struct e1000_hw *);
55static s32  igb_reset_hw_82580(struct e1000_hw *);
56static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65						 u16 *);
66static s32  igb_get_phy_id_82575(struct e1000_hw *);
67static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68static bool igb_sgmii_active_82575(struct e1000_hw *);
69static s32  igb_reset_init_script_82575(struct e1000_hw *);
70static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77static const u16 e1000_82580_rxpbs_table[] =
78	{ 36, 72, 144, 1, 2, 4, 8, 16,
79	  35, 70, 140 };
80#define E1000_82580_RXPBS_TABLE_SIZE \
81	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83/**
84 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 *  @hw: pointer to the HW structure
86 *
87 *  Called to determine if the I2C pins are being used for I2C or as an
88 *  external MDIO interface since the two options are mutually exclusive.
89 **/
90static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91{
92	u32 reg = 0;
93	bool ext_mdio = false;
94
95	switch (hw->mac.type) {
96	case e1000_82575:
97	case e1000_82576:
98		reg = rd32(E1000_MDIC);
99		ext_mdio = !!(reg & E1000_MDIC_DEST);
100		break;
101	case e1000_82580:
102	case e1000_i350:
103	case e1000_i210:
104	case e1000_i211:
105		reg = rd32(E1000_MDICNFG);
106		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
107		break;
108	default:
109		break;
110	}
111	return ext_mdio;
112}
113
114/**
115 *  igb_init_phy_params_82575 - Init PHY func ptrs.
116 *  @hw: pointer to the HW structure
117 **/
118static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
119{
120	struct e1000_phy_info *phy = &hw->phy;
121	s32 ret_val = 0;
122	u32 ctrl_ext;
123
124	if (hw->phy.media_type != e1000_media_type_copper) {
125		phy->type = e1000_phy_none;
126		goto out;
127	}
128
129	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
130	phy->reset_delay_us	= 100;
131
132	ctrl_ext = rd32(E1000_CTRL_EXT);
133
134	if (igb_sgmii_active_82575(hw)) {
135		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
136		ctrl_ext |= E1000_CTRL_I2C_ENA;
137	} else {
138		phy->ops.reset = igb_phy_hw_reset;
139		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
140	}
141
142	wr32(E1000_CTRL_EXT, ctrl_ext);
143	igb_reset_mdicnfg_82580(hw);
144
145	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
146		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
147		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
148	} else {
149		switch (hw->mac.type) {
150		case e1000_82580:
151		case e1000_i350:
152			phy->ops.read_reg = igb_read_phy_reg_82580;
153			phy->ops.write_reg = igb_write_phy_reg_82580;
154			break;
155		case e1000_i210:
156		case e1000_i211:
157			phy->ops.read_reg = igb_read_phy_reg_gs40g;
158			phy->ops.write_reg = igb_write_phy_reg_gs40g;
159			break;
160		default:
161			phy->ops.read_reg = igb_read_phy_reg_igp;
162			phy->ops.write_reg = igb_write_phy_reg_igp;
163		}
164	}
165
166	/* set lan id */
167	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
168			E1000_STATUS_FUNC_SHIFT;
169
170	/* Set phy->phy_addr and phy->id. */
171	ret_val = igb_get_phy_id_82575(hw);
172	if (ret_val)
173		return ret_val;
174
175	/* Verify phy id and set remaining function pointers */
176	switch (phy->id) {
177	case I347AT4_E_PHY_ID:
178	case M88E1112_E_PHY_ID:
179	case M88E1111_I_PHY_ID:
180		phy->type		= e1000_phy_m88;
181		phy->ops.get_phy_info	= igb_get_phy_info_m88;
182		if (phy->id == I347AT4_E_PHY_ID ||
183		    phy->id == M88E1112_E_PHY_ID)
184			phy->ops.get_cable_length =
185					 igb_get_cable_length_m88_gen2;
186		else
187			phy->ops.get_cable_length = igb_get_cable_length_m88;
188		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
189		break;
190	case IGP03E1000_E_PHY_ID:
191		phy->type = e1000_phy_igp_3;
192		phy->ops.get_phy_info = igb_get_phy_info_igp;
193		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
194		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
195		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
196		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
197		break;
198	case I82580_I_PHY_ID:
199	case I350_I_PHY_ID:
200		phy->type = e1000_phy_82580;
201		phy->ops.force_speed_duplex =
202					 igb_phy_force_speed_duplex_82580;
203		phy->ops.get_cable_length = igb_get_cable_length_82580;
204		phy->ops.get_phy_info = igb_get_phy_info_82580;
205		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
206		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
207		break;
208	case I210_I_PHY_ID:
209		phy->type		= e1000_phy_i210;
210		phy->ops.check_polarity	= igb_check_polarity_m88;
211		phy->ops.get_phy_info	= igb_get_phy_info_m88;
212		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
213		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
214		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
215		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
216		break;
217	default:
218		ret_val = -E1000_ERR_PHY;
219		goto out;
220	}
221
222out:
223	return ret_val;
224}
225
226/**
227 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
228 *  @hw: pointer to the HW structure
229 **/
230s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
231{
232	struct e1000_nvm_info *nvm = &hw->nvm;
233	u32 eecd = rd32(E1000_EECD);
234	u16 size;
235
236	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237		     E1000_EECD_SIZE_EX_SHIFT);
238	/* Added to a constant, "size" becomes the left-shift value
239	 * for setting word_size.
240	 */
241	size += NVM_WORD_SIZE_BASE_SHIFT;
242
243	/* Just in case size is out of range, cap it to the largest
244	 * EEPROM size supported
245	 */
246	if (size > 15)
247		size = 15;
248
249	nvm->word_size = 1 << size;
250	if (hw->mac.type < e1000_i210) {
251		nvm->opcode_bits = 8;
252		nvm->delay_usec = 1;
253
254		switch (nvm->override) {
255		case e1000_nvm_override_spi_large:
256			nvm->page_size = 32;
257			nvm->address_bits = 16;
258			break;
259		case e1000_nvm_override_spi_small:
260			nvm->page_size = 8;
261			nvm->address_bits = 8;
262			break;
263		default:
264			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
265			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
266					    16 : 8;
267			break;
268		}
269		if (nvm->word_size == (1 << 15))
270			nvm->page_size = 128;
271
272		nvm->type = e1000_nvm_eeprom_spi;
273	} else {
274		nvm->type = e1000_nvm_flash_hw;
275	}
276
277	/* NVM Function Pointers */
278	switch (hw->mac.type) {
279	case e1000_82580:
280		nvm->ops.validate = igb_validate_nvm_checksum_82580;
281		nvm->ops.update = igb_update_nvm_checksum_82580;
282		nvm->ops.acquire = igb_acquire_nvm_82575;
283		nvm->ops.release = igb_release_nvm_82575;
284		if (nvm->word_size < (1 << 15))
285			nvm->ops.read = igb_read_nvm_eerd;
286		else
287			nvm->ops.read = igb_read_nvm_spi;
288		nvm->ops.write = igb_write_nvm_spi;
289		break;
290	case e1000_i350:
291		nvm->ops.validate = igb_validate_nvm_checksum_i350;
292		nvm->ops.update = igb_update_nvm_checksum_i350;
293		nvm->ops.acquire = igb_acquire_nvm_82575;
294		nvm->ops.release = igb_release_nvm_82575;
295		if (nvm->word_size < (1 << 15))
296			nvm->ops.read = igb_read_nvm_eerd;
297		else
298			nvm->ops.read = igb_read_nvm_spi;
299		nvm->ops.write = igb_write_nvm_spi;
300		break;
301	case e1000_i210:
302		nvm->ops.validate = igb_validate_nvm_checksum_i210;
303		nvm->ops.update   = igb_update_nvm_checksum_i210;
304		nvm->ops.acquire = igb_acquire_nvm_i210;
305		nvm->ops.release = igb_release_nvm_i210;
306		nvm->ops.read    = igb_read_nvm_srrd_i210;
307		nvm->ops.write   = igb_write_nvm_srwr_i210;
308		nvm->ops.valid_led_default = igb_valid_led_default_i210;
309		break;
310	case e1000_i211:
311		nvm->ops.acquire  = igb_acquire_nvm_i210;
312		nvm->ops.release  = igb_release_nvm_i210;
313		nvm->ops.read     = igb_read_nvm_i211;
314		nvm->ops.valid_led_default = igb_valid_led_default_i210;
315		nvm->ops.validate = NULL;
316		nvm->ops.update   = NULL;
317		nvm->ops.write    = NULL;
318		break;
319	default:
320		nvm->ops.validate = igb_validate_nvm_checksum;
321		nvm->ops.update = igb_update_nvm_checksum;
322		nvm->ops.acquire = igb_acquire_nvm_82575;
323		nvm->ops.release = igb_release_nvm_82575;
324		if (nvm->word_size < (1 << 15))
325			nvm->ops.read = igb_read_nvm_eerd;
326		else
327			nvm->ops.read = igb_read_nvm_spi;
328		nvm->ops.write = igb_write_nvm_spi;
329		break;
330	}
331
332	return 0;
333}
334
335/**
336 *  igb_init_mac_params_82575 - Init MAC func ptrs.
337 *  @hw: pointer to the HW structure
338 **/
339static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
340{
341	struct e1000_mac_info *mac = &hw->mac;
342	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
343
344	/* Set mta register count */
345	mac->mta_reg_count = 128;
346	/* Set rar entry count */
347	switch (mac->type) {
348	case e1000_82576:
349		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
350		break;
351	case e1000_82580:
352		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
353		break;
354	case e1000_i350:
355		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
356		break;
357	default:
358		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
359		break;
360	}
361	/* reset */
362	if (mac->type >= e1000_82580)
363		mac->ops.reset_hw = igb_reset_hw_82580;
364	else
365		mac->ops.reset_hw = igb_reset_hw_82575;
366
367	if (mac->type >= e1000_i210) {
368		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
369		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
370
371	} else {
372		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
373		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
374	}
375
376	/* Set if part includes ASF firmware */
377	mac->asf_firmware_present = true;
378	/* Set if manageability features are enabled. */
379	mac->arc_subsystem_valid =
380		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
381			? true : false;
382	/* enable EEE on i350 parts and later parts */
383	if (mac->type >= e1000_i350)
384		dev_spec->eee_disable = false;
385	else
386		dev_spec->eee_disable = true;
387	/* physical interface link setup */
388	mac->ops.setup_physical_interface =
389		(hw->phy.media_type == e1000_media_type_copper)
390			? igb_setup_copper_link_82575
391			: igb_setup_serdes_link_82575;
392
393	return 0;
394}
395
396static s32 igb_get_invariants_82575(struct e1000_hw *hw)
397{
398	struct e1000_mac_info *mac = &hw->mac;
399	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
400	s32 ret_val;
401	u32 ctrl_ext = 0;
402
403	switch (hw->device_id) {
404	case E1000_DEV_ID_82575EB_COPPER:
405	case E1000_DEV_ID_82575EB_FIBER_SERDES:
406	case E1000_DEV_ID_82575GB_QUAD_COPPER:
407		mac->type = e1000_82575;
408		break;
409	case E1000_DEV_ID_82576:
410	case E1000_DEV_ID_82576_NS:
411	case E1000_DEV_ID_82576_NS_SERDES:
412	case E1000_DEV_ID_82576_FIBER:
413	case E1000_DEV_ID_82576_SERDES:
414	case E1000_DEV_ID_82576_QUAD_COPPER:
415	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
416	case E1000_DEV_ID_82576_SERDES_QUAD:
417		mac->type = e1000_82576;
418		break;
419	case E1000_DEV_ID_82580_COPPER:
420	case E1000_DEV_ID_82580_FIBER:
421	case E1000_DEV_ID_82580_QUAD_FIBER:
422	case E1000_DEV_ID_82580_SERDES:
423	case E1000_DEV_ID_82580_SGMII:
424	case E1000_DEV_ID_82580_COPPER_DUAL:
425	case E1000_DEV_ID_DH89XXCC_SGMII:
426	case E1000_DEV_ID_DH89XXCC_SERDES:
427	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
428	case E1000_DEV_ID_DH89XXCC_SFP:
429		mac->type = e1000_82580;
430		break;
431	case E1000_DEV_ID_I350_COPPER:
432	case E1000_DEV_ID_I350_FIBER:
433	case E1000_DEV_ID_I350_SERDES:
434	case E1000_DEV_ID_I350_SGMII:
435		mac->type = e1000_i350;
436		break;
437	case E1000_DEV_ID_I210_COPPER:
438	case E1000_DEV_ID_I210_COPPER_OEM1:
439	case E1000_DEV_ID_I210_COPPER_IT:
440	case E1000_DEV_ID_I210_FIBER:
441	case E1000_DEV_ID_I210_SERDES:
442	case E1000_DEV_ID_I210_SGMII:
443		mac->type = e1000_i210;
444		break;
445	case E1000_DEV_ID_I211_COPPER:
446		mac->type = e1000_i211;
447		break;
448	default:
449		return -E1000_ERR_MAC_INIT;
450		break;
451	}
452
453	/* Set media type */
454	/*
455	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
456	 * based on the EEPROM. We cannot rely upon device ID. There
457	 * is no distinguishable difference between fiber and internal
458	 * SerDes mode on the 82575. There can be an external PHY attached
459	 * on the SGMII interface. For this, we'll set sgmii_active to true.
460	 */
461	hw->phy.media_type = e1000_media_type_copper;
462	dev_spec->sgmii_active = false;
463
464	ctrl_ext = rd32(E1000_CTRL_EXT);
465	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
466	case E1000_CTRL_EXT_LINK_MODE_SGMII:
467		dev_spec->sgmii_active = true;
468		break;
469	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
470	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
471		hw->phy.media_type = e1000_media_type_internal_serdes;
472		break;
473	default:
474		break;
475	}
476
477	/* mac initialization and operations */
478	ret_val = igb_init_mac_params_82575(hw);
479	if (ret_val)
480		goto out;
481
482	/* NVM initialization */
483	ret_val = igb_init_nvm_params_82575(hw);
484	if (ret_val)
485		goto out;
486
487	/* if part supports SR-IOV then initialize mailbox parameters */
488	switch (mac->type) {
489	case e1000_82576:
490	case e1000_i350:
491		igb_init_mbx_params_pf(hw);
492		break;
493	default:
494		break;
495	}
496
497	/* setup PHY parameters */
498	ret_val = igb_init_phy_params_82575(hw);
499
500out:
501	return ret_val;
502}
503
504/**
505 *  igb_acquire_phy_82575 - Acquire rights to access PHY
506 *  @hw: pointer to the HW structure
507 *
508 *  Acquire access rights to the correct PHY.  This is a
509 *  function pointer entry point called by the api module.
510 **/
511static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
512{
513	u16 mask = E1000_SWFW_PHY0_SM;
514
515	if (hw->bus.func == E1000_FUNC_1)
516		mask = E1000_SWFW_PHY1_SM;
517	else if (hw->bus.func == E1000_FUNC_2)
518		mask = E1000_SWFW_PHY2_SM;
519	else if (hw->bus.func == E1000_FUNC_3)
520		mask = E1000_SWFW_PHY3_SM;
521
522	return hw->mac.ops.acquire_swfw_sync(hw, mask);
523}
524
525/**
526 *  igb_release_phy_82575 - Release rights to access PHY
527 *  @hw: pointer to the HW structure
528 *
529 *  A wrapper to release access rights to the correct PHY.  This is a
530 *  function pointer entry point called by the api module.
531 **/
532static void igb_release_phy_82575(struct e1000_hw *hw)
533{
534	u16 mask = E1000_SWFW_PHY0_SM;
535
536	if (hw->bus.func == E1000_FUNC_1)
537		mask = E1000_SWFW_PHY1_SM;
538	else if (hw->bus.func == E1000_FUNC_2)
539		mask = E1000_SWFW_PHY2_SM;
540	else if (hw->bus.func == E1000_FUNC_3)
541		mask = E1000_SWFW_PHY3_SM;
542
543	hw->mac.ops.release_swfw_sync(hw, mask);
544}
545
546/**
547 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
548 *  @hw: pointer to the HW structure
549 *  @offset: register offset to be read
550 *  @data: pointer to the read data
551 *
552 *  Reads the PHY register at offset using the serial gigabit media independent
553 *  interface and stores the retrieved information in data.
554 **/
555static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
556					  u16 *data)
557{
558	s32 ret_val = -E1000_ERR_PARAM;
559
560	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
561		hw_dbg("PHY Address %u is out of range\n", offset);
562		goto out;
563	}
564
565	ret_val = hw->phy.ops.acquire(hw);
566	if (ret_val)
567		goto out;
568
569	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
570
571	hw->phy.ops.release(hw);
572
573out:
574	return ret_val;
575}
576
577/**
578 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
579 *  @hw: pointer to the HW structure
580 *  @offset: register offset to write to
581 *  @data: data to write at register offset
582 *
583 *  Writes the data to PHY register at the offset using the serial gigabit
584 *  media independent interface.
585 **/
586static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
587					   u16 data)
588{
589	s32 ret_val = -E1000_ERR_PARAM;
590
591
592	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
593		hw_dbg("PHY Address %d is out of range\n", offset);
594		goto out;
595	}
596
597	ret_val = hw->phy.ops.acquire(hw);
598	if (ret_val)
599		goto out;
600
601	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
602
603	hw->phy.ops.release(hw);
604
605out:
606	return ret_val;
607}
608
609/**
610 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
611 *  @hw: pointer to the HW structure
612 *
613 *  Retrieves the PHY address and ID for both PHY's which do and do not use
614 *  sgmi interface.
615 **/
616static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
617{
618	struct e1000_phy_info *phy = &hw->phy;
619	s32  ret_val = 0;
620	u16 phy_id;
621	u32 ctrl_ext;
622	u32 mdic;
623
624	/*
625	 * For SGMII PHYs, we try the list of possible addresses until
626	 * we find one that works.  For non-SGMII PHYs
627	 * (e.g. integrated copper PHYs), an address of 1 should
628	 * work.  The result of this function should mean phy->phy_addr
629	 * and phy->id are set correctly.
630	 */
631	if (!(igb_sgmii_active_82575(hw))) {
632		phy->addr = 1;
633		ret_val = igb_get_phy_id(hw);
634		goto out;
635	}
636
637	if (igb_sgmii_uses_mdio_82575(hw)) {
638		switch (hw->mac.type) {
639		case e1000_82575:
640		case e1000_82576:
641			mdic = rd32(E1000_MDIC);
642			mdic &= E1000_MDIC_PHY_MASK;
643			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
644			break;
645		case e1000_82580:
646		case e1000_i350:
647		case e1000_i210:
648		case e1000_i211:
649			mdic = rd32(E1000_MDICNFG);
650			mdic &= E1000_MDICNFG_PHY_MASK;
651			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
652			break;
653		default:
654			ret_val = -E1000_ERR_PHY;
655			goto out;
656			break;
657		}
658		ret_val = igb_get_phy_id(hw);
659		goto out;
660	}
661
662	/* Power on sgmii phy if it is disabled */
663	ctrl_ext = rd32(E1000_CTRL_EXT);
664	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
665	wrfl();
666	msleep(300);
667
668	/*
669	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
670	 * Therefore, we need to test 1-7
671	 */
672	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
673		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
674		if (ret_val == 0) {
675			hw_dbg("Vendor ID 0x%08X read at address %u\n",
676			       phy_id, phy->addr);
677			/*
678			 * At the time of this writing, The M88 part is
679			 * the only supported SGMII PHY product.
680			 */
681			if (phy_id == M88_VENDOR)
682				break;
683		} else {
684			hw_dbg("PHY address %u was unreadable\n", phy->addr);
685		}
686	}
687
688	/* A valid PHY type couldn't be found. */
689	if (phy->addr == 8) {
690		phy->addr = 0;
691		ret_val = -E1000_ERR_PHY;
692		goto out;
693	} else {
694		ret_val = igb_get_phy_id(hw);
695	}
696
697	/* restore previous sfp cage power state */
698	wr32(E1000_CTRL_EXT, ctrl_ext);
699
700out:
701	return ret_val;
702}
703
704/**
705 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
706 *  @hw: pointer to the HW structure
707 *
708 *  Resets the PHY using the serial gigabit media independent interface.
709 **/
710static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
711{
712	s32 ret_val;
713
714	/*
715	 * This isn't a true "hard" reset, but is the only reset
716	 * available to us at this time.
717	 */
718
719	hw_dbg("Soft resetting SGMII attached PHY...\n");
720
721	/*
722	 * SFP documentation requires the following to configure the SPF module
723	 * to work on SGMII.  No further documentation is given.
724	 */
725	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
726	if (ret_val)
727		goto out;
728
729	ret_val = igb_phy_sw_reset(hw);
730
731out:
732	return ret_val;
733}
734
735/**
736 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
737 *  @hw: pointer to the HW structure
738 *  @active: true to enable LPLU, false to disable
739 *
740 *  Sets the LPLU D0 state according to the active flag.  When
741 *  activating LPLU this function also disables smart speed
742 *  and vice versa.  LPLU will not be activated unless the
743 *  device autonegotiation advertisement meets standards of
744 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
745 *  This is a function pointer entry point only called by
746 *  PHY setup routines.
747 **/
748static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
749{
750	struct e1000_phy_info *phy = &hw->phy;
751	s32 ret_val;
752	u16 data;
753
754	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
755	if (ret_val)
756		goto out;
757
758	if (active) {
759		data |= IGP02E1000_PM_D0_LPLU;
760		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
761						 data);
762		if (ret_val)
763			goto out;
764
765		/* When LPLU is enabled, we should disable SmartSpeed */
766		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
767						&data);
768		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
769		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
770						 data);
771		if (ret_val)
772			goto out;
773	} else {
774		data &= ~IGP02E1000_PM_D0_LPLU;
775		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
776						 data);
777		/*
778		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
779		 * during Dx states where the power conservation is most
780		 * important.  During driver activity we should enable
781		 * SmartSpeed, so performance is maintained.
782		 */
783		if (phy->smart_speed == e1000_smart_speed_on) {
784			ret_val = phy->ops.read_reg(hw,
785					IGP01E1000_PHY_PORT_CONFIG, &data);
786			if (ret_val)
787				goto out;
788
789			data |= IGP01E1000_PSCFR_SMART_SPEED;
790			ret_val = phy->ops.write_reg(hw,
791					IGP01E1000_PHY_PORT_CONFIG, data);
792			if (ret_val)
793				goto out;
794		} else if (phy->smart_speed == e1000_smart_speed_off) {
795			ret_val = phy->ops.read_reg(hw,
796					IGP01E1000_PHY_PORT_CONFIG, &data);
797			if (ret_val)
798				goto out;
799
800			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801			ret_val = phy->ops.write_reg(hw,
802					IGP01E1000_PHY_PORT_CONFIG, data);
803			if (ret_val)
804				goto out;
805		}
806	}
807
808out:
809	return ret_val;
810}
811
812/**
813 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
814 *  @hw: pointer to the HW structure
815 *  @active: true to enable LPLU, false to disable
816 *
817 *  Sets the LPLU D0 state according to the active flag.  When
818 *  activating LPLU this function also disables smart speed
819 *  and vice versa.  LPLU will not be activated unless the
820 *  device autonegotiation advertisement meets standards of
821 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
822 *  This is a function pointer entry point only called by
823 *  PHY setup routines.
824 **/
825static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
826{
827	struct e1000_phy_info *phy = &hw->phy;
828	s32 ret_val = 0;
829	u16 data;
830
831	data = rd32(E1000_82580_PHY_POWER_MGMT);
832
833	if (active) {
834		data |= E1000_82580_PM_D0_LPLU;
835
836		/* When LPLU is enabled, we should disable SmartSpeed */
837		data &= ~E1000_82580_PM_SPD;
838	} else {
839		data &= ~E1000_82580_PM_D0_LPLU;
840
841		/*
842		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
843		 * during Dx states where the power conservation is most
844		 * important.  During driver activity we should enable
845		 * SmartSpeed, so performance is maintained.
846		 */
847		if (phy->smart_speed == e1000_smart_speed_on)
848			data |= E1000_82580_PM_SPD;
849		else if (phy->smart_speed == e1000_smart_speed_off)
850			data &= ~E1000_82580_PM_SPD; }
851
852	wr32(E1000_82580_PHY_POWER_MGMT, data);
853	return ret_val;
854}
855
856/**
857 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
858 *  @hw: pointer to the HW structure
859 *  @active: boolean used to enable/disable lplu
860 *
861 *  Success returns 0, Failure returns 1
862 *
863 *  The low power link up (lplu) state is set to the power management level D3
864 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
865 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
866 *  is used during Dx states where the power conservation is most important.
867 *  During driver activity, SmartSpeed should be enabled so performance is
868 *  maintained.
869 **/
870s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
871{
872	struct e1000_phy_info *phy = &hw->phy;
873	s32 ret_val = 0;
874	u16 data;
875
876	data = rd32(E1000_82580_PHY_POWER_MGMT);
877
878	if (!active) {
879		data &= ~E1000_82580_PM_D3_LPLU;
880		/*
881		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
882		 * during Dx states where the power conservation is most
883		 * important.  During driver activity we should enable
884		 * SmartSpeed, so performance is maintained.
885		 */
886		if (phy->smart_speed == e1000_smart_speed_on)
887			data |= E1000_82580_PM_SPD;
888		else if (phy->smart_speed == e1000_smart_speed_off)
889			data &= ~E1000_82580_PM_SPD;
890	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
891		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
892		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
893		data |= E1000_82580_PM_D3_LPLU;
894		/* When LPLU is enabled, we should disable SmartSpeed */
895		data &= ~E1000_82580_PM_SPD;
896	}
897
898	wr32(E1000_82580_PHY_POWER_MGMT, data);
899	return ret_val;
900}
901
902/**
903 *  igb_acquire_nvm_82575 - Request for access to EEPROM
904 *  @hw: pointer to the HW structure
905 *
906 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
907 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
908 *  Return successful if access grant bit set, else clear the request for
909 *  EEPROM access and return -E1000_ERR_NVM (-1).
910 **/
911static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
912{
913	s32 ret_val;
914
915	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
916	if (ret_val)
917		goto out;
918
919	ret_val = igb_acquire_nvm(hw);
920
921	if (ret_val)
922		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
923
924out:
925	return ret_val;
926}
927
928/**
929 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
930 *  @hw: pointer to the HW structure
931 *
932 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
933 *  then release the semaphores acquired.
934 **/
935static void igb_release_nvm_82575(struct e1000_hw *hw)
936{
937	igb_release_nvm(hw);
938	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
939}
940
941/**
942 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
943 *  @hw: pointer to the HW structure
944 *  @mask: specifies which semaphore to acquire
945 *
946 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
947 *  will also specify which port we're acquiring the lock for.
948 **/
949static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
950{
951	u32 swfw_sync;
952	u32 swmask = mask;
953	u32 fwmask = mask << 16;
954	s32 ret_val = 0;
955	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
956
957	while (i < timeout) {
958		if (igb_get_hw_semaphore(hw)) {
959			ret_val = -E1000_ERR_SWFW_SYNC;
960			goto out;
961		}
962
963		swfw_sync = rd32(E1000_SW_FW_SYNC);
964		if (!(swfw_sync & (fwmask | swmask)))
965			break;
966
967		/*
968		 * Firmware currently using resource (fwmask)
969		 * or other software thread using resource (swmask)
970		 */
971		igb_put_hw_semaphore(hw);
972		mdelay(5);
973		i++;
974	}
975
976	if (i == timeout) {
977		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
978		ret_val = -E1000_ERR_SWFW_SYNC;
979		goto out;
980	}
981
982	swfw_sync |= swmask;
983	wr32(E1000_SW_FW_SYNC, swfw_sync);
984
985	igb_put_hw_semaphore(hw);
986
987out:
988	return ret_val;
989}
990
991/**
992 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
993 *  @hw: pointer to the HW structure
994 *  @mask: specifies which semaphore to acquire
995 *
996 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
997 *  will also specify which port we're releasing the lock for.
998 **/
999static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1000{
1001	u32 swfw_sync;
1002
1003	while (igb_get_hw_semaphore(hw) != 0);
1004	/* Empty */
1005
1006	swfw_sync = rd32(E1000_SW_FW_SYNC);
1007	swfw_sync &= ~mask;
1008	wr32(E1000_SW_FW_SYNC, swfw_sync);
1009
1010	igb_put_hw_semaphore(hw);
1011}
1012
1013/**
1014 *  igb_get_cfg_done_82575 - Read config done bit
1015 *  @hw: pointer to the HW structure
1016 *
1017 *  Read the management control register for the config done bit for
1018 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1019 *  to read the config done bit, so an error is *ONLY* logged and returns
1020 *  0.  If we were to return with error, EEPROM-less silicon
1021 *  would not be able to be reset or change link.
1022 **/
1023static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1024{
1025	s32 timeout = PHY_CFG_TIMEOUT;
1026	s32 ret_val = 0;
1027	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1028
1029	if (hw->bus.func == 1)
1030		mask = E1000_NVM_CFG_DONE_PORT_1;
1031	else if (hw->bus.func == E1000_FUNC_2)
1032		mask = E1000_NVM_CFG_DONE_PORT_2;
1033	else if (hw->bus.func == E1000_FUNC_3)
1034		mask = E1000_NVM_CFG_DONE_PORT_3;
1035
1036	while (timeout) {
1037		if (rd32(E1000_EEMNGCTL) & mask)
1038			break;
1039		msleep(1);
1040		timeout--;
1041	}
1042	if (!timeout)
1043		hw_dbg("MNG configuration cycle has not completed.\n");
1044
1045	/* If EEPROM is not marked present, init the PHY manually */
1046	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1047	    (hw->phy.type == e1000_phy_igp_3))
1048		igb_phy_init_script_igp3(hw);
1049
1050	return ret_val;
1051}
1052
1053/**
1054 *  igb_check_for_link_82575 - Check for link
1055 *  @hw: pointer to the HW structure
1056 *
1057 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1058 *  use the generic interface for determining link.
1059 **/
1060static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1061{
1062	s32 ret_val;
1063	u16 speed, duplex;
1064
1065	if (hw->phy.media_type != e1000_media_type_copper) {
1066		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1067		                                             &duplex);
1068		/*
1069		 * Use this flag to determine if link needs to be checked or
1070		 * not.  If  we have link clear the flag so that we do not
1071		 * continue to check for link.
1072		 */
1073		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1074
1075		/* Configure Flow Control now that Auto-Neg has completed.
1076		 * First, we need to restore the desired flow control
1077		 * settings because we may have had to re-autoneg with a
1078		 * different link partner.
1079		 */
1080		ret_val = igb_config_fc_after_link_up(hw);
1081		if (ret_val)
1082			hw_dbg("Error configuring flow control\n");
1083	} else {
1084		ret_val = igb_check_for_copper_link(hw);
1085	}
1086
1087	return ret_val;
1088}
1089
1090/**
1091 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1092 *  @hw: pointer to the HW structure
1093 **/
1094void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1095{
1096	u32 reg;
1097
1098
1099	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1100	    !igb_sgmii_active_82575(hw))
1101		return;
1102
1103	/* Enable PCS to turn on link */
1104	reg = rd32(E1000_PCS_CFG0);
1105	reg |= E1000_PCS_CFG_PCS_EN;
1106	wr32(E1000_PCS_CFG0, reg);
1107
1108	/* Power up the laser */
1109	reg = rd32(E1000_CTRL_EXT);
1110	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1111	wr32(E1000_CTRL_EXT, reg);
1112
1113	/* flush the write to verify completion */
1114	wrfl();
1115	msleep(1);
1116}
1117
1118/**
1119 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1120 *  @hw: pointer to the HW structure
1121 *  @speed: stores the current speed
1122 *  @duplex: stores the current duplex
1123 *
1124 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1125 *  duplex, then store the values in the pointers provided.
1126 **/
1127static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1128						u16 *duplex)
1129{
1130	struct e1000_mac_info *mac = &hw->mac;
1131	u32 pcs;
1132
1133	/* Set up defaults for the return values of this function */
1134	mac->serdes_has_link = false;
1135	*speed = 0;
1136	*duplex = 0;
1137
1138	/*
1139	 * Read the PCS Status register for link state. For non-copper mode,
1140	 * the status register is not accurate. The PCS status register is
1141	 * used instead.
1142	 */
1143	pcs = rd32(E1000_PCS_LSTAT);
1144
1145	/*
1146	 * The link up bit determines when link is up on autoneg. The sync ok
1147	 * gets set once both sides sync up and agree upon link. Stable link
1148	 * can be determined by checking for both link up and link sync ok
1149	 */
1150	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1151		mac->serdes_has_link = true;
1152
1153		/* Detect and store PCS speed */
1154		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1155			*speed = SPEED_1000;
1156		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1157			*speed = SPEED_100;
1158		} else {
1159			*speed = SPEED_10;
1160		}
1161
1162		/* Detect and store PCS duplex */
1163		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1164			*duplex = FULL_DUPLEX;
1165		} else {
1166			*duplex = HALF_DUPLEX;
1167		}
1168	}
1169
1170	return 0;
1171}
1172
1173/**
1174 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1178 *  when management pass thru is not enabled.
1179 **/
1180void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1181{
1182	u32 reg;
1183
1184	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1185	    igb_sgmii_active_82575(hw))
1186		return;
1187
1188	if (!igb_enable_mng_pass_thru(hw)) {
1189		/* Disable PCS to turn off link */
1190		reg = rd32(E1000_PCS_CFG0);
1191		reg &= ~E1000_PCS_CFG_PCS_EN;
1192		wr32(E1000_PCS_CFG0, reg);
1193
1194		/* shutdown the laser */
1195		reg = rd32(E1000_CTRL_EXT);
1196		reg |= E1000_CTRL_EXT_SDP3_DATA;
1197		wr32(E1000_CTRL_EXT, reg);
1198
1199		/* flush the write to verify completion */
1200		wrfl();
1201		msleep(1);
1202	}
1203}
1204
1205/**
1206 *  igb_reset_hw_82575 - Reset hardware
1207 *  @hw: pointer to the HW structure
1208 *
1209 *  This resets the hardware into a known state.  This is a
1210 *  function pointer entry point called by the api module.
1211 **/
1212static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1213{
1214	u32 ctrl, icr;
1215	s32 ret_val;
1216
1217	/*
1218	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1219	 * on the last TLP read/write transaction when MAC is reset.
1220	 */
1221	ret_val = igb_disable_pcie_master(hw);
1222	if (ret_val)
1223		hw_dbg("PCI-E Master disable polling has failed.\n");
1224
1225	/* set the completion timeout for interface */
1226	ret_val = igb_set_pcie_completion_timeout(hw);
1227	if (ret_val) {
1228		hw_dbg("PCI-E Set completion timeout has failed.\n");
1229	}
1230
1231	hw_dbg("Masking off all interrupts\n");
1232	wr32(E1000_IMC, 0xffffffff);
1233
1234	wr32(E1000_RCTL, 0);
1235	wr32(E1000_TCTL, E1000_TCTL_PSP);
1236	wrfl();
1237
1238	msleep(10);
1239
1240	ctrl = rd32(E1000_CTRL);
1241
1242	hw_dbg("Issuing a global reset to MAC\n");
1243	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1244
1245	ret_val = igb_get_auto_rd_done(hw);
1246	if (ret_val) {
1247		/*
1248		 * When auto config read does not complete, do not
1249		 * return with an error. This can happen in situations
1250		 * where there is no eeprom and prevents getting link.
1251		 */
1252		hw_dbg("Auto Read Done did not complete\n");
1253	}
1254
1255	/* If EEPROM is not present, run manual init scripts */
1256	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1257		igb_reset_init_script_82575(hw);
1258
1259	/* Clear any pending interrupt events. */
1260	wr32(E1000_IMC, 0xffffffff);
1261	icr = rd32(E1000_ICR);
1262
1263	/* Install any alternate MAC address into RAR0 */
1264	ret_val = igb_check_alt_mac_addr(hw);
1265
1266	return ret_val;
1267}
1268
1269/**
1270 *  igb_init_hw_82575 - Initialize hardware
1271 *  @hw: pointer to the HW structure
1272 *
1273 *  This inits the hardware readying it for operation.
1274 **/
1275static s32 igb_init_hw_82575(struct e1000_hw *hw)
1276{
1277	struct e1000_mac_info *mac = &hw->mac;
1278	s32 ret_val;
1279	u16 i, rar_count = mac->rar_entry_count;
1280
1281	/* Initialize identification LED */
1282	ret_val = igb_id_led_init(hw);
1283	if (ret_val) {
1284		hw_dbg("Error initializing identification LED\n");
1285		/* This is not fatal and we should not stop init due to this */
1286	}
1287
1288	/* Disabling VLAN filtering */
1289	hw_dbg("Initializing the IEEE VLAN\n");
1290	if (hw->mac.type == e1000_i350)
1291		igb_clear_vfta_i350(hw);
1292	else
1293		igb_clear_vfta(hw);
1294
1295	/* Setup the receive address */
1296	igb_init_rx_addrs(hw, rar_count);
1297
1298	/* Zero out the Multicast HASH table */
1299	hw_dbg("Zeroing the MTA\n");
1300	for (i = 0; i < mac->mta_reg_count; i++)
1301		array_wr32(E1000_MTA, i, 0);
1302
1303	/* Zero out the Unicast HASH table */
1304	hw_dbg("Zeroing the UTA\n");
1305	for (i = 0; i < mac->uta_reg_count; i++)
1306		array_wr32(E1000_UTA, i, 0);
1307
1308	/* Setup link and flow control */
1309	ret_val = igb_setup_link(hw);
1310
1311	/*
1312	 * Clear all of the statistics registers (clear on read).  It is
1313	 * important that we do this after we have tried to establish link
1314	 * because the symbol error count will increment wildly if there
1315	 * is no link.
1316	 */
1317	igb_clear_hw_cntrs_82575(hw);
1318	return ret_val;
1319}
1320
1321/**
1322 *  igb_setup_copper_link_82575 - Configure copper link settings
1323 *  @hw: pointer to the HW structure
1324 *
1325 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1326 *  for link, once link is established calls to configure collision distance
1327 *  and flow control are called.
1328 **/
1329static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1330{
1331	u32 ctrl;
1332	s32  ret_val;
1333	u32 phpm_reg;
1334
1335	ctrl = rd32(E1000_CTRL);
1336	ctrl |= E1000_CTRL_SLU;
1337	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1338	wr32(E1000_CTRL, ctrl);
1339
1340	/* Clear Go Link Disconnect bit */
1341	if (hw->mac.type >= e1000_82580) {
1342		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1343		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1344		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1345	}
1346
1347	ret_val = igb_setup_serdes_link_82575(hw);
1348	if (ret_val)
1349		goto out;
1350
1351	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1352		/* allow time for SFP cage time to power up phy */
1353		msleep(300);
1354
1355		ret_val = hw->phy.ops.reset(hw);
1356		if (ret_val) {
1357			hw_dbg("Error resetting the PHY.\n");
1358			goto out;
1359		}
1360	}
1361	switch (hw->phy.type) {
1362	case e1000_phy_i210:
1363	case e1000_phy_m88:
1364		switch (hw->phy.id) {
1365		case I347AT4_E_PHY_ID:
1366		case M88E1112_E_PHY_ID:
1367		case I210_I_PHY_ID:
1368			ret_val = igb_copper_link_setup_m88_gen2(hw);
1369			break;
1370		default:
1371			ret_val = igb_copper_link_setup_m88(hw);
1372			break;
1373		}
1374		break;
1375	case e1000_phy_igp_3:
1376		ret_val = igb_copper_link_setup_igp(hw);
1377		break;
1378	case e1000_phy_82580:
1379		ret_val = igb_copper_link_setup_82580(hw);
1380		break;
1381	default:
1382		ret_val = -E1000_ERR_PHY;
1383		break;
1384	}
1385
1386	if (ret_val)
1387		goto out;
1388
1389	ret_val = igb_setup_copper_link(hw);
1390out:
1391	return ret_val;
1392}
1393
1394/**
1395 *  igb_setup_serdes_link_82575 - Setup link for serdes
1396 *  @hw: pointer to the HW structure
1397 *
1398 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1399 *  used on copper connections where the serialized gigabit media independent
1400 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1401 *  for auto-negotiation or forces speed/duplex.
1402 **/
1403static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1404{
1405	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1406	bool pcs_autoneg;
1407	s32 ret_val = E1000_SUCCESS;
1408	u16 data;
1409
1410	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1411	    !igb_sgmii_active_82575(hw))
1412		return ret_val;
1413
1414
1415	/*
1416	 * On the 82575, SerDes loopback mode persists until it is
1417	 * explicitly turned off or a power cycle is performed.  A read to
1418	 * the register does not indicate its status.  Therefore, we ensure
1419	 * loopback mode is disabled during initialization.
1420	 */
1421	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1422
1423	/* power on the sfp cage if present */
1424	ctrl_ext = rd32(E1000_CTRL_EXT);
1425	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1426	wr32(E1000_CTRL_EXT, ctrl_ext);
1427
1428	ctrl_reg = rd32(E1000_CTRL);
1429	ctrl_reg |= E1000_CTRL_SLU;
1430
1431	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1432		/* set both sw defined pins */
1433		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1434
1435		/* Set switch control to serdes energy detect */
1436		reg = rd32(E1000_CONNSW);
1437		reg |= E1000_CONNSW_ENRGSRC;
1438		wr32(E1000_CONNSW, reg);
1439	}
1440
1441	reg = rd32(E1000_PCS_LCTL);
1442
1443	/* default pcs_autoneg to the same setting as mac autoneg */
1444	pcs_autoneg = hw->mac.autoneg;
1445
1446	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1447	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1448		/* sgmii mode lets the phy handle forcing speed/duplex */
1449		pcs_autoneg = true;
1450		/* autoneg time out should be disabled for SGMII mode */
1451		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1452		break;
1453	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1454		/* disable PCS autoneg and support parallel detect only */
1455		pcs_autoneg = false;
1456	default:
1457		if (hw->mac.type == e1000_82575 ||
1458		    hw->mac.type == e1000_82576) {
1459			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1460			if (ret_val) {
1461				printk(KERN_DEBUG "NVM Read Error\n\n");
1462				return ret_val;
1463			}
1464
1465			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1466				pcs_autoneg = false;
1467		}
1468
1469		/*
1470		 * non-SGMII modes only supports a speed of 1000/Full for the
1471		 * link so it is best to just force the MAC and let the pcs
1472		 * link either autoneg or be forced to 1000/Full
1473		 */
1474		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1475		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1476
1477		/* set speed of 1000/Full if speed/duplex is forced */
1478		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1479		break;
1480	}
1481
1482	wr32(E1000_CTRL, ctrl_reg);
1483
1484	/*
1485	 * New SerDes mode allows for forcing speed or autonegotiating speed
1486	 * at 1gb. Autoneg should be default set by most drivers. This is the
1487	 * mode that will be compatible with older link partners and switches.
1488	 * However, both are supported by the hardware and some drivers/tools.
1489	 */
1490	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1491		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1492
1493	if (pcs_autoneg) {
1494		/* Set PCS register for autoneg */
1495		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1496		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1497
1498		/* Disable force flow control for autoneg */
1499		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1500
1501		/* Configure flow control advertisement for autoneg */
1502		anadv_reg = rd32(E1000_PCS_ANADV);
1503		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1504		switch (hw->fc.requested_mode) {
1505		case e1000_fc_full:
1506		case e1000_fc_rx_pause:
1507			anadv_reg |= E1000_TXCW_ASM_DIR;
1508			anadv_reg |= E1000_TXCW_PAUSE;
1509			break;
1510		case e1000_fc_tx_pause:
1511			anadv_reg |= E1000_TXCW_ASM_DIR;
1512			break;
1513		default:
1514			break;
1515		}
1516		wr32(E1000_PCS_ANADV, anadv_reg);
1517
1518		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1519	} else {
1520		/* Set PCS register for forced link */
1521		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1522
1523		/* Force flow control for forced link */
1524		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1525
1526		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1527	}
1528
1529	wr32(E1000_PCS_LCTL, reg);
1530
1531	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1532		igb_force_mac_fc(hw);
1533
1534	return ret_val;
1535}
1536
1537/**
1538 *  igb_sgmii_active_82575 - Return sgmii state
1539 *  @hw: pointer to the HW structure
1540 *
1541 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1542 *  which can be enabled for use in the embedded applications.  Simply
1543 *  return the current state of the sgmii interface.
1544 **/
1545static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1546{
1547	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1548	return dev_spec->sgmii_active;
1549}
1550
1551/**
1552 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1553 *  @hw: pointer to the HW structure
1554 *
1555 *  Inits recommended HW defaults after a reset when there is no EEPROM
1556 *  detected. This is only for the 82575.
1557 **/
1558static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1559{
1560	if (hw->mac.type == e1000_82575) {
1561		hw_dbg("Running reset init script for 82575\n");
1562		/* SerDes configuration via SERDESCTRL */
1563		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1564		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1565		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1566		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1567
1568		/* CCM configuration via CCMCTL register */
1569		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1570		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1571
1572		/* PCIe lanes configuration */
1573		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1574		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1575		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1576		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1577
1578		/* PCIe PLL Configuration */
1579		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1580		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1581		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1582	}
1583
1584	return 0;
1585}
1586
1587/**
1588 *  igb_read_mac_addr_82575 - Read device MAC address
1589 *  @hw: pointer to the HW structure
1590 **/
1591static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1592{
1593	s32 ret_val = 0;
1594
1595	/*
1596	 * If there's an alternate MAC address place it in RAR0
1597	 * so that it will override the Si installed default perm
1598	 * address.
1599	 */
1600	ret_val = igb_check_alt_mac_addr(hw);
1601	if (ret_val)
1602		goto out;
1603
1604	ret_val = igb_read_mac_addr(hw);
1605
1606out:
1607	return ret_val;
1608}
1609
1610/**
1611 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1612 * @hw: pointer to the HW structure
1613 *
1614 * In the case of a PHY power down to save power, or to turn off link during a
1615 * driver unload, or wake on lan is not enabled, remove the link.
1616 **/
1617void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1618{
1619	/* If the management interface is not enabled, then power down */
1620	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1621		igb_power_down_phy_copper(hw);
1622}
1623
1624/**
1625 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1626 *  @hw: pointer to the HW structure
1627 *
1628 *  Clears the hardware counters by reading the counter registers.
1629 **/
1630static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1631{
1632	igb_clear_hw_cntrs_base(hw);
1633
1634	rd32(E1000_PRC64);
1635	rd32(E1000_PRC127);
1636	rd32(E1000_PRC255);
1637	rd32(E1000_PRC511);
1638	rd32(E1000_PRC1023);
1639	rd32(E1000_PRC1522);
1640	rd32(E1000_PTC64);
1641	rd32(E1000_PTC127);
1642	rd32(E1000_PTC255);
1643	rd32(E1000_PTC511);
1644	rd32(E1000_PTC1023);
1645	rd32(E1000_PTC1522);
1646
1647	rd32(E1000_ALGNERRC);
1648	rd32(E1000_RXERRC);
1649	rd32(E1000_TNCRS);
1650	rd32(E1000_CEXTERR);
1651	rd32(E1000_TSCTC);
1652	rd32(E1000_TSCTFC);
1653
1654	rd32(E1000_MGTPRC);
1655	rd32(E1000_MGTPDC);
1656	rd32(E1000_MGTPTC);
1657
1658	rd32(E1000_IAC);
1659	rd32(E1000_ICRXOC);
1660
1661	rd32(E1000_ICRXPTC);
1662	rd32(E1000_ICRXATC);
1663	rd32(E1000_ICTXPTC);
1664	rd32(E1000_ICTXATC);
1665	rd32(E1000_ICTXQEC);
1666	rd32(E1000_ICTXQMTC);
1667	rd32(E1000_ICRXDMTC);
1668
1669	rd32(E1000_CBTMPC);
1670	rd32(E1000_HTDPMC);
1671	rd32(E1000_CBRMPC);
1672	rd32(E1000_RPTHC);
1673	rd32(E1000_HGPTC);
1674	rd32(E1000_HTCBDPC);
1675	rd32(E1000_HGORCL);
1676	rd32(E1000_HGORCH);
1677	rd32(E1000_HGOTCL);
1678	rd32(E1000_HGOTCH);
1679	rd32(E1000_LENERRS);
1680
1681	/* This register should not be read in copper configurations */
1682	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1683	    igb_sgmii_active_82575(hw))
1684		rd32(E1000_SCVPC);
1685}
1686
1687/**
1688 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1689 *  @hw: pointer to the HW structure
1690 *
1691 *  After rx enable if managability is enabled then there is likely some
1692 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1693 *  function clears the fifos and flushes any packets that came in as rx was
1694 *  being enabled.
1695 **/
1696void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1697{
1698	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1699	int i, ms_wait;
1700
1701	if (hw->mac.type != e1000_82575 ||
1702	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1703		return;
1704
1705	/* Disable all RX queues */
1706	for (i = 0; i < 4; i++) {
1707		rxdctl[i] = rd32(E1000_RXDCTL(i));
1708		wr32(E1000_RXDCTL(i),
1709		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1710	}
1711	/* Poll all queues to verify they have shut down */
1712	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1713		msleep(1);
1714		rx_enabled = 0;
1715		for (i = 0; i < 4; i++)
1716			rx_enabled |= rd32(E1000_RXDCTL(i));
1717		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1718			break;
1719	}
1720
1721	if (ms_wait == 10)
1722		hw_dbg("Queue disable timed out after 10ms\n");
1723
1724	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1725	 * incoming packets are rejected.  Set enable and wait 2ms so that
1726	 * any packet that was coming in as RCTL.EN was set is flushed
1727	 */
1728	rfctl = rd32(E1000_RFCTL);
1729	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1730
1731	rlpml = rd32(E1000_RLPML);
1732	wr32(E1000_RLPML, 0);
1733
1734	rctl = rd32(E1000_RCTL);
1735	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1736	temp_rctl |= E1000_RCTL_LPE;
1737
1738	wr32(E1000_RCTL, temp_rctl);
1739	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1740	wrfl();
1741	msleep(2);
1742
1743	/* Enable RX queues that were previously enabled and restore our
1744	 * previous state
1745	 */
1746	for (i = 0; i < 4; i++)
1747		wr32(E1000_RXDCTL(i), rxdctl[i]);
1748	wr32(E1000_RCTL, rctl);
1749	wrfl();
1750
1751	wr32(E1000_RLPML, rlpml);
1752	wr32(E1000_RFCTL, rfctl);
1753
1754	/* Flush receive errors generated by workaround */
1755	rd32(E1000_ROC);
1756	rd32(E1000_RNBC);
1757	rd32(E1000_MPC);
1758}
1759
1760/**
1761 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1762 *  @hw: pointer to the HW structure
1763 *
1764 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1765 *  however the hardware default for these parts is 500us to 1ms which is less
1766 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1767 *  increase the value to either 10ms to 200ms for capability version 1 config,
1768 *  or 16ms to 55ms for version 2.
1769 **/
1770static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1771{
1772	u32 gcr = rd32(E1000_GCR);
1773	s32 ret_val = 0;
1774	u16 pcie_devctl2;
1775
1776	/* only take action if timeout value is defaulted to 0 */
1777	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1778		goto out;
1779
1780	/*
1781	 * if capababilities version is type 1 we can write the
1782	 * timeout of 10ms to 200ms through the GCR register
1783	 */
1784	if (!(gcr & E1000_GCR_CAP_VER2)) {
1785		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1786		goto out;
1787	}
1788
1789	/*
1790	 * for version 2 capabilities we need to write the config space
1791	 * directly in order to set the completion timeout value for
1792	 * 16ms to 55ms
1793	 */
1794	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1795	                                &pcie_devctl2);
1796	if (ret_val)
1797		goto out;
1798
1799	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1800
1801	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1802	                                 &pcie_devctl2);
1803out:
1804	/* disable completion timeout resend */
1805	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1806
1807	wr32(E1000_GCR, gcr);
1808	return ret_val;
1809}
1810
1811/**
1812 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1813 *  @hw: pointer to the hardware struct
1814 *  @enable: state to enter, either enabled or disabled
1815 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1816 *
1817 *  enables/disables L2 switch anti-spoofing functionality.
1818 **/
1819void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1820{
1821	u32 dtxswc;
1822
1823	switch (hw->mac.type) {
1824	case e1000_82576:
1825	case e1000_i350:
1826		dtxswc = rd32(E1000_DTXSWC);
1827		if (enable) {
1828			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1829				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1830			/* The PF can spoof - it has to in order to
1831			 * support emulation mode NICs */
1832			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1833		} else {
1834			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1835				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1836		}
1837		wr32(E1000_DTXSWC, dtxswc);
1838		break;
1839	default:
1840		break;
1841	}
1842}
1843
1844/**
1845 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1846 *  @hw: pointer to the hardware struct
1847 *  @enable: state to enter, either enabled or disabled
1848 *
1849 *  enables/disables L2 switch loopback functionality.
1850 **/
1851void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1852{
1853	u32 dtxswc;
1854
1855	switch (hw->mac.type) {
1856	case e1000_82576:
1857		dtxswc = rd32(E1000_DTXSWC);
1858		if (enable)
1859			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1860		else
1861			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1862		wr32(E1000_DTXSWC, dtxswc);
1863		break;
1864	case e1000_i350:
1865		dtxswc = rd32(E1000_TXSWC);
1866		if (enable)
1867			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1868		else
1869			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1870		wr32(E1000_TXSWC, dtxswc);
1871		break;
1872	default:
1873		/* Currently no other hardware supports loopback */
1874		break;
1875	}
1876
1877
1878}
1879
1880/**
1881 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1882 *  @hw: pointer to the hardware struct
1883 *  @enable: state to enter, either enabled or disabled
1884 *
1885 *  enables/disables replication of packets across multiple pools.
1886 **/
1887void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1888{
1889	u32 vt_ctl = rd32(E1000_VT_CTL);
1890
1891	if (enable)
1892		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1893	else
1894		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1895
1896	wr32(E1000_VT_CTL, vt_ctl);
1897}
1898
1899/**
1900 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1901 *  @hw: pointer to the HW structure
1902 *  @offset: register offset to be read
1903 *  @data: pointer to the read data
1904 *
1905 *  Reads the MDI control register in the PHY at offset and stores the
1906 *  information read to data.
1907 **/
1908static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1909{
1910	s32 ret_val;
1911
1912
1913	ret_val = hw->phy.ops.acquire(hw);
1914	if (ret_val)
1915		goto out;
1916
1917	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1918
1919	hw->phy.ops.release(hw);
1920
1921out:
1922	return ret_val;
1923}
1924
1925/**
1926 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1927 *  @hw: pointer to the HW structure
1928 *  @offset: register offset to write to
1929 *  @data: data to write to register at offset
1930 *
1931 *  Writes data to MDI control register in the PHY at offset.
1932 **/
1933static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1934{
1935	s32 ret_val;
1936
1937
1938	ret_val = hw->phy.ops.acquire(hw);
1939	if (ret_val)
1940		goto out;
1941
1942	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1943
1944	hw->phy.ops.release(hw);
1945
1946out:
1947	return ret_val;
1948}
1949
1950/**
1951 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1952 *  @hw: pointer to the HW structure
1953 *
1954 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1955 *  the values found in the EEPROM.  This addresses an issue in which these
1956 *  bits are not restored from EEPROM after reset.
1957 **/
1958static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1959{
1960	s32 ret_val = 0;
1961	u32 mdicnfg;
1962	u16 nvm_data = 0;
1963
1964	if (hw->mac.type != e1000_82580)
1965		goto out;
1966	if (!igb_sgmii_active_82575(hw))
1967		goto out;
1968
1969	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1970				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1971				   &nvm_data);
1972	if (ret_val) {
1973		hw_dbg("NVM Read Error\n");
1974		goto out;
1975	}
1976
1977	mdicnfg = rd32(E1000_MDICNFG);
1978	if (nvm_data & NVM_WORD24_EXT_MDIO)
1979		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1980	if (nvm_data & NVM_WORD24_COM_MDIO)
1981		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1982	wr32(E1000_MDICNFG, mdicnfg);
1983out:
1984	return ret_val;
1985}
1986
1987/**
1988 *  igb_reset_hw_82580 - Reset hardware
1989 *  @hw: pointer to the HW structure
1990 *
1991 *  This resets function or entire device (all ports, etc.)
1992 *  to a known state.
1993 **/
1994static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1995{
1996	s32 ret_val = 0;
1997	/* BH SW mailbox bit in SW_FW_SYNC */
1998	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1999	u32 ctrl, icr;
2000	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2001
2002
2003	hw->dev_spec._82575.global_device_reset = false;
2004
2005	/* due to hw errata, global device reset doesn't always
2006	 * work on 82580
2007	 */
2008	if (hw->mac.type == e1000_82580)
2009		global_device_reset = false;
2010
2011	/* Get current control state. */
2012	ctrl = rd32(E1000_CTRL);
2013
2014	/*
2015	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2016	 * on the last TLP read/write transaction when MAC is reset.
2017	 */
2018	ret_val = igb_disable_pcie_master(hw);
2019	if (ret_val)
2020		hw_dbg("PCI-E Master disable polling has failed.\n");
2021
2022	hw_dbg("Masking off all interrupts\n");
2023	wr32(E1000_IMC, 0xffffffff);
2024	wr32(E1000_RCTL, 0);
2025	wr32(E1000_TCTL, E1000_TCTL_PSP);
2026	wrfl();
2027
2028	msleep(10);
2029
2030	/* Determine whether or not a global dev reset is requested */
2031	if (global_device_reset &&
2032		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2033			global_device_reset = false;
2034
2035	if (global_device_reset &&
2036		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2037		ctrl |= E1000_CTRL_DEV_RST;
2038	else
2039		ctrl |= E1000_CTRL_RST;
2040
2041	wr32(E1000_CTRL, ctrl);
2042	wrfl();
2043
2044	/* Add delay to insure DEV_RST has time to complete */
2045	if (global_device_reset)
2046		msleep(5);
2047
2048	ret_val = igb_get_auto_rd_done(hw);
2049	if (ret_val) {
2050		/*
2051		 * When auto config read does not complete, do not
2052		 * return with an error. This can happen in situations
2053		 * where there is no eeprom and prevents getting link.
2054		 */
2055		hw_dbg("Auto Read Done did not complete\n");
2056	}
2057
2058	/* If EEPROM is not present, run manual init scripts */
2059	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
2060		igb_reset_init_script_82575(hw);
2061
2062	/* clear global device reset status bit */
2063	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2064
2065	/* Clear any pending interrupt events. */
2066	wr32(E1000_IMC, 0xffffffff);
2067	icr = rd32(E1000_ICR);
2068
2069	ret_val = igb_reset_mdicnfg_82580(hw);
2070	if (ret_val)
2071		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2072
2073	/* Install any alternate MAC address into RAR0 */
2074	ret_val = igb_check_alt_mac_addr(hw);
2075
2076	/* Release semaphore */
2077	if (global_device_reset)
2078		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2079
2080	return ret_val;
2081}
2082
2083/**
2084 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2085 *  @data: data received by reading RXPBS register
2086 *
2087 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2088 *  This function converts the retrieved value into the correct table value
2089 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2090 *  0x0 36  72 144   1   2   4   8  16
2091 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2092 */
2093u16 igb_rxpbs_adjust_82580(u32 data)
2094{
2095	u16 ret_val = 0;
2096
2097	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2098		ret_val = e1000_82580_rxpbs_table[data];
2099
2100	return ret_val;
2101}
2102
2103/**
2104 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2105 *  checksum
2106 *  @hw: pointer to the HW structure
2107 *  @offset: offset in words of the checksum protected region
2108 *
2109 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2110 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2111 **/
2112static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2113						 u16 offset)
2114{
2115	s32 ret_val = 0;
2116	u16 checksum = 0;
2117	u16 i, nvm_data;
2118
2119	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2120		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2121		if (ret_val) {
2122			hw_dbg("NVM Read Error\n");
2123			goto out;
2124		}
2125		checksum += nvm_data;
2126	}
2127
2128	if (checksum != (u16) NVM_SUM) {
2129		hw_dbg("NVM Checksum Invalid\n");
2130		ret_val = -E1000_ERR_NVM;
2131		goto out;
2132	}
2133
2134out:
2135	return ret_val;
2136}
2137
2138/**
2139 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2140 *  checksum
2141 *  @hw: pointer to the HW structure
2142 *  @offset: offset in words of the checksum protected region
2143 *
2144 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2145 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2146 *  value to the EEPROM.
2147 **/
2148static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2149{
2150	s32 ret_val;
2151	u16 checksum = 0;
2152	u16 i, nvm_data;
2153
2154	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2155		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2156		if (ret_val) {
2157			hw_dbg("NVM Read Error while updating checksum.\n");
2158			goto out;
2159		}
2160		checksum += nvm_data;
2161	}
2162	checksum = (u16) NVM_SUM - checksum;
2163	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2164				&checksum);
2165	if (ret_val)
2166		hw_dbg("NVM Write Error while updating checksum.\n");
2167
2168out:
2169	return ret_val;
2170}
2171
2172/**
2173 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2174 *  @hw: pointer to the HW structure
2175 *
2176 *  Calculates the EEPROM section checksum by reading/adding each word of
2177 *  the EEPROM and then verifies that the sum of the EEPROM is
2178 *  equal to 0xBABA.
2179 **/
2180static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2181{
2182	s32 ret_val = 0;
2183	u16 eeprom_regions_count = 1;
2184	u16 j, nvm_data;
2185	u16 nvm_offset;
2186
2187	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2188	if (ret_val) {
2189		hw_dbg("NVM Read Error\n");
2190		goto out;
2191	}
2192
2193	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2194		/* if checksums compatibility bit is set validate checksums
2195		 * for all 4 ports. */
2196		eeprom_regions_count = 4;
2197	}
2198
2199	for (j = 0; j < eeprom_regions_count; j++) {
2200		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2201		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2202								nvm_offset);
2203		if (ret_val != 0)
2204			goto out;
2205	}
2206
2207out:
2208	return ret_val;
2209}
2210
2211/**
2212 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2213 *  @hw: pointer to the HW structure
2214 *
2215 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2216 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2217 *  checksum and writes the value to the EEPROM.
2218 **/
2219static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2220{
2221	s32 ret_val;
2222	u16 j, nvm_data;
2223	u16 nvm_offset;
2224
2225	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2226	if (ret_val) {
2227		hw_dbg("NVM Read Error while updating checksum"
2228			" compatibility bit.\n");
2229		goto out;
2230	}
2231
2232	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2233		/* set compatibility bit to validate checksums appropriately */
2234		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2235		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2236					&nvm_data);
2237		if (ret_val) {
2238			hw_dbg("NVM Write Error while updating checksum"
2239				" compatibility bit.\n");
2240			goto out;
2241		}
2242	}
2243
2244	for (j = 0; j < 4; j++) {
2245		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2246		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2247		if (ret_val)
2248			goto out;
2249	}
2250
2251out:
2252	return ret_val;
2253}
2254
2255/**
2256 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2257 *  @hw: pointer to the HW structure
2258 *
2259 *  Calculates the EEPROM section checksum by reading/adding each word of
2260 *  the EEPROM and then verifies that the sum of the EEPROM is
2261 *  equal to 0xBABA.
2262 **/
2263static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2264{
2265	s32 ret_val = 0;
2266	u16 j;
2267	u16 nvm_offset;
2268
2269	for (j = 0; j < 4; j++) {
2270		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2271		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2272								nvm_offset);
2273		if (ret_val != 0)
2274			goto out;
2275	}
2276
2277out:
2278	return ret_val;
2279}
2280
2281/**
2282 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2283 *  @hw: pointer to the HW structure
2284 *
2285 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2286 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2287 *  checksum and writes the value to the EEPROM.
2288 **/
2289static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2290{
2291	s32 ret_val = 0;
2292	u16 j;
2293	u16 nvm_offset;
2294
2295	for (j = 0; j < 4; j++) {
2296		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2297		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2298		if (ret_val != 0)
2299			goto out;
2300	}
2301
2302out:
2303	return ret_val;
2304}
2305
2306/**
2307 *  igb_set_eee_i350 - Enable/disable EEE support
2308 *  @hw: pointer to the HW structure
2309 *
2310 *  Enable/disable EEE based on setting in dev_spec structure.
2311 *
2312 **/
2313s32 igb_set_eee_i350(struct e1000_hw *hw)
2314{
2315	s32 ret_val = 0;
2316	u32 ipcnfg, eeer;
2317
2318	if ((hw->mac.type < e1000_i350) ||
2319	    (hw->phy.media_type != e1000_media_type_copper))
2320		goto out;
2321	ipcnfg = rd32(E1000_IPCNFG);
2322	eeer = rd32(E1000_EEER);
2323
2324	/* enable or disable per user setting */
2325	if (!(hw->dev_spec._82575.eee_disable)) {
2326		u32 eee_su = rd32(E1000_EEE_SU);
2327
2328		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2329		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2330			E1000_EEER_LPI_FC);
2331
2332		/* This bit should not be set in normal operation. */
2333		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2334			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2335
2336
2337	} else {
2338		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2339			E1000_IPCNFG_EEE_100M_AN);
2340		eeer &= ~(E1000_EEER_TX_LPI_EN |
2341			E1000_EEER_RX_LPI_EN |
2342			E1000_EEER_LPI_FC);
2343	}
2344	wr32(E1000_IPCNFG, ipcnfg);
2345	wr32(E1000_EEER, eeer);
2346	rd32(E1000_IPCNFG);
2347	rd32(E1000_EEER);
2348out:
2349
2350	return ret_val;
2351}
2352
2353static const u8 e1000_emc_temp_data[4] = {
2354	E1000_EMC_INTERNAL_DATA,
2355	E1000_EMC_DIODE1_DATA,
2356	E1000_EMC_DIODE2_DATA,
2357	E1000_EMC_DIODE3_DATA
2358};
2359static const u8 e1000_emc_therm_limit[4] = {
2360	E1000_EMC_INTERNAL_THERM_LIMIT,
2361	E1000_EMC_DIODE1_THERM_LIMIT,
2362	E1000_EMC_DIODE2_THERM_LIMIT,
2363	E1000_EMC_DIODE3_THERM_LIMIT
2364};
2365
2366/* igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2367 *  @hw: pointer to hardware structure
2368 *
2369 *  Updates the temperatures in mac.thermal_sensor_data
2370 */
2371s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2372{
2373	s32 status = E1000_SUCCESS;
2374	u16 ets_offset;
2375	u16 ets_cfg;
2376	u16 ets_sensor;
2377	u8  num_sensors;
2378	u8  sensor_index;
2379	u8  sensor_location;
2380	u8  i;
2381	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2382
2383	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2384		return E1000_NOT_IMPLEMENTED;
2385
2386	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2387
2388	/* Return the internal sensor only if ETS is unsupported */
2389	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2390	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2391		return status;
2392
2393	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2394	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2395	    != NVM_ETS_TYPE_EMC)
2396		return E1000_NOT_IMPLEMENTED;
2397
2398	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2399	if (num_sensors > E1000_MAX_SENSORS)
2400		num_sensors = E1000_MAX_SENSORS;
2401
2402	for (i = 1; i < num_sensors; i++) {
2403		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2404		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2405				NVM_ETS_DATA_INDEX_SHIFT);
2406		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2407				   NVM_ETS_DATA_LOC_SHIFT);
2408
2409		if (sensor_location != 0)
2410			hw->phy.ops.read_i2c_byte(hw,
2411					e1000_emc_temp_data[sensor_index],
2412					E1000_I2C_THERMAL_SENSOR_ADDR,
2413					&data->sensor[i].temp);
2414	}
2415	return status;
2416}
2417
2418/* igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2419 *  @hw: pointer to hardware structure
2420 *
2421 *  Sets the thermal sensor thresholds according to the NVM map
2422 *  and save off the threshold and location values into mac.thermal_sensor_data
2423 */
2424s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2425{
2426	s32 status = E1000_SUCCESS;
2427	u16 ets_offset;
2428	u16 ets_cfg;
2429	u16 ets_sensor;
2430	u8  low_thresh_delta;
2431	u8  num_sensors;
2432	u8  sensor_index;
2433	u8  sensor_location;
2434	u8  therm_limit;
2435	u8  i;
2436	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2437
2438	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2439		return E1000_NOT_IMPLEMENTED;
2440
2441	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2442
2443	data->sensor[0].location = 0x1;
2444	data->sensor[0].caution_thresh =
2445		(rd32(E1000_THHIGHTC) & 0xFF);
2446	data->sensor[0].max_op_thresh =
2447		(rd32(E1000_THLOWTC) & 0xFF);
2448
2449	/* Return the internal sensor only if ETS is unsupported */
2450	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2451	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2452		return status;
2453
2454	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2455	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2456	    != NVM_ETS_TYPE_EMC)
2457		return E1000_NOT_IMPLEMENTED;
2458
2459	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2460			    NVM_ETS_LTHRES_DELTA_SHIFT);
2461	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2462
2463	for (i = 1; i <= num_sensors; i++) {
2464		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2465		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2466				NVM_ETS_DATA_INDEX_SHIFT);
2467		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2468				   NVM_ETS_DATA_LOC_SHIFT);
2469		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2470
2471		hw->phy.ops.write_i2c_byte(hw,
2472			e1000_emc_therm_limit[sensor_index],
2473			E1000_I2C_THERMAL_SENSOR_ADDR,
2474			therm_limit);
2475
2476		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2477			data->sensor[i].location = sensor_location;
2478			data->sensor[i].caution_thresh = therm_limit;
2479			data->sensor[i].max_op_thresh = therm_limit -
2480							low_thresh_delta;
2481		}
2482	}
2483	return status;
2484}
2485
2486static struct e1000_mac_operations e1000_mac_ops_82575 = {
2487	.init_hw              = igb_init_hw_82575,
2488	.check_for_link       = igb_check_for_link_82575,
2489	.rar_set              = igb_rar_set,
2490	.read_mac_addr        = igb_read_mac_addr_82575,
2491	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2492#ifdef CONFIG_IGB_HWMON
2493	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2494	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2495#endif
2496};
2497
2498static struct e1000_phy_operations e1000_phy_ops_82575 = {
2499	.acquire              = igb_acquire_phy_82575,
2500	.get_cfg_done         = igb_get_cfg_done_82575,
2501	.release              = igb_release_phy_82575,
2502	.write_i2c_byte       = igb_write_i2c_byte,
2503	.read_i2c_byte        = igb_read_i2c_byte,
2504};
2505
2506static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2507	.acquire              = igb_acquire_nvm_82575,
2508	.read                 = igb_read_nvm_eerd,
2509	.release              = igb_release_nvm_82575,
2510	.write                = igb_write_nvm_spi,
2511};
2512
2513const struct e1000_info e1000_82575_info = {
2514	.get_invariants = igb_get_invariants_82575,
2515	.mac_ops = &e1000_mac_ops_82575,
2516	.phy_ops = &e1000_phy_ops_82575,
2517	.nvm_ops = &e1000_nvm_ops_82575,
2518};
2519
2520