[go: nahoru, domu]

1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#include <linux/if_ether.h>
25#include <linux/delay.h>
26#include <linux/pci.h>
27#include <linux/netdevice.h>
28#include <linux/etherdevice.h>
29
30#include "e1000_mac.h"
31
32#include "igb.h"
33
34static s32 igb_set_default_fc(struct e1000_hw *hw);
35static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
36
37/**
38 *  igb_get_bus_info_pcie - Get PCIe bus information
39 *  @hw: pointer to the HW structure
40 *
41 *  Determines and stores the system bus information for a particular
42 *  network interface.  The following bus information is determined and stored:
43 *  bus speed, bus width, type (PCIe), and PCIe function.
44 **/
45s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
46{
47	struct e1000_bus_info *bus = &hw->bus;
48	s32 ret_val;
49	u32 reg;
50	u16 pcie_link_status;
51
52	bus->type = e1000_bus_type_pci_express;
53
54	ret_val = igb_read_pcie_cap_reg(hw,
55					PCI_EXP_LNKSTA,
56					&pcie_link_status);
57	if (ret_val) {
58		bus->width = e1000_bus_width_unknown;
59		bus->speed = e1000_bus_speed_unknown;
60	} else {
61		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
62		case PCI_EXP_LNKSTA_CLS_2_5GB:
63			bus->speed = e1000_bus_speed_2500;
64			break;
65		case PCI_EXP_LNKSTA_CLS_5_0GB:
66			bus->speed = e1000_bus_speed_5000;
67			break;
68		default:
69			bus->speed = e1000_bus_speed_unknown;
70			break;
71		}
72
73		bus->width = (enum e1000_bus_width)((pcie_link_status &
74						     PCI_EXP_LNKSTA_NLW) >>
75						     PCI_EXP_LNKSTA_NLW_SHIFT);
76	}
77
78	reg = rd32(E1000_STATUS);
79	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
80
81	return 0;
82}
83
84/**
85 *  igb_clear_vfta - Clear VLAN filter table
86 *  @hw: pointer to the HW structure
87 *
88 *  Clears the register array which contains the VLAN filter table by
89 *  setting all the values to 0.
90 **/
91void igb_clear_vfta(struct e1000_hw *hw)
92{
93	u32 offset;
94
95	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
96		array_wr32(E1000_VFTA, offset, 0);
97		wrfl();
98	}
99}
100
101/**
102 *  igb_write_vfta - Write value to VLAN filter table
103 *  @hw: pointer to the HW structure
104 *  @offset: register offset in VLAN filter table
105 *  @value: register value written to VLAN filter table
106 *
107 *  Writes value at the given offset in the register array which stores
108 *  the VLAN filter table.
109 **/
110static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
111{
112	array_wr32(E1000_VFTA, offset, value);
113	wrfl();
114}
115
116/* Due to a hw errata, if the host tries to  configure the VFTA register
117 * while performing queries from the BMC or DMA, then the VFTA in some
118 * cases won't be written.
119 */
120
121/**
122 *  igb_clear_vfta_i350 - Clear VLAN filter table
123 *  @hw: pointer to the HW structure
124 *
125 *  Clears the register array which contains the VLAN filter table by
126 *  setting all the values to 0.
127 **/
128void igb_clear_vfta_i350(struct e1000_hw *hw)
129{
130	u32 offset;
131	int i;
132
133	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
134		for (i = 0; i < 10; i++)
135			array_wr32(E1000_VFTA, offset, 0);
136
137		wrfl();
138	}
139}
140
141/**
142 *  igb_write_vfta_i350 - Write value to VLAN filter table
143 *  @hw: pointer to the HW structure
144 *  @offset: register offset in VLAN filter table
145 *  @value: register value written to VLAN filter table
146 *
147 *  Writes value at the given offset in the register array which stores
148 *  the VLAN filter table.
149 **/
150static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
151{
152	int i;
153
154	for (i = 0; i < 10; i++)
155		array_wr32(E1000_VFTA, offset, value);
156
157	wrfl();
158}
159
160/**
161 *  igb_init_rx_addrs - Initialize receive address's
162 *  @hw: pointer to the HW structure
163 *  @rar_count: receive address registers
164 *
165 *  Setups the receive address registers by setting the base receive address
166 *  register to the devices MAC address and clearing all the other receive
167 *  address registers to 0.
168 **/
169void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
170{
171	u32 i;
172	u8 mac_addr[ETH_ALEN] = {0};
173
174	/* Setup the receive address */
175	hw_dbg("Programming MAC Address into RAR[0]\n");
176
177	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
178
179	/* Zero out the other (rar_entry_count - 1) receive addresses */
180	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
181	for (i = 1; i < rar_count; i++)
182		hw->mac.ops.rar_set(hw, mac_addr, i);
183}
184
185/**
186 *  igb_vfta_set - enable or disable vlan in VLAN filter table
187 *  @hw: pointer to the HW structure
188 *  @vid: VLAN id to add or remove
189 *  @add: if true add filter, if false remove
190 *
191 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
192 *  and if we are adding or removing the filter
193 **/
194s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
195{
196	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
197	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
198	u32 vfta;
199	struct igb_adapter *adapter = hw->back;
200	s32 ret_val = 0;
201
202	vfta = adapter->shadow_vfta[index];
203
204	/* bit was set/cleared before we started */
205	if ((!!(vfta & mask)) == add) {
206		ret_val = -E1000_ERR_CONFIG;
207	} else {
208		if (add)
209			vfta |= mask;
210		else
211			vfta &= ~mask;
212	}
213	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
214		igb_write_vfta_i350(hw, index, vfta);
215	else
216		igb_write_vfta(hw, index, vfta);
217	adapter->shadow_vfta[index] = vfta;
218
219	return ret_val;
220}
221
222/**
223 *  igb_check_alt_mac_addr - Check for alternate MAC addr
224 *  @hw: pointer to the HW structure
225 *
226 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
227 *  can be setup by pre-boot software and must be treated like a permanent
228 *  address and must override the actual permanent MAC address.  If an
229 *  alternate MAC address is found it is saved in the hw struct and
230 *  programmed into RAR0 and the function returns success, otherwise the
231 *  function returns an error.
232 **/
233s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
234{
235	u32 i;
236	s32 ret_val = 0;
237	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
238	u8 alt_mac_addr[ETH_ALEN];
239
240	/* Alternate MAC address is handled by the option ROM for 82580
241	 * and newer. SW support not required.
242	 */
243	if (hw->mac.type >= e1000_82580)
244		goto out;
245
246	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
247				 &nvm_alt_mac_addr_offset);
248	if (ret_val) {
249		hw_dbg("NVM Read Error\n");
250		goto out;
251	}
252
253	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
254	    (nvm_alt_mac_addr_offset == 0x0000))
255		/* There is no Alternate MAC Address */
256		goto out;
257
258	if (hw->bus.func == E1000_FUNC_1)
259		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
260	if (hw->bus.func == E1000_FUNC_2)
261		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
262
263	if (hw->bus.func == E1000_FUNC_3)
264		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
265	for (i = 0; i < ETH_ALEN; i += 2) {
266		offset = nvm_alt_mac_addr_offset + (i >> 1);
267		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
268		if (ret_val) {
269			hw_dbg("NVM Read Error\n");
270			goto out;
271		}
272
273		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
274		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
275	}
276
277	/* if multicast bit is set, the alternate address will not be used */
278	if (is_multicast_ether_addr(alt_mac_addr)) {
279		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
280		goto out;
281	}
282
283	/* We have a valid alternate MAC address, and we want to treat it the
284	 * same as the normal permanent MAC address stored by the HW into the
285	 * RAR. Do this by mapping this address into RAR0.
286	 */
287	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
288
289out:
290	return ret_val;
291}
292
293/**
294 *  igb_rar_set - Set receive address register
295 *  @hw: pointer to the HW structure
296 *  @addr: pointer to the receive address
297 *  @index: receive address array register
298 *
299 *  Sets the receive address array register at index to the address passed
300 *  in by addr.
301 **/
302void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
303{
304	u32 rar_low, rar_high;
305
306	/* HW expects these in little endian so we reverse the byte order
307	 * from network order (big endian) to little endian
308	 */
309	rar_low = ((u32) addr[0] |
310		   ((u32) addr[1] << 8) |
311		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
312
313	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
314
315	/* If MAC address zero, no need to set the AV bit */
316	if (rar_low || rar_high)
317		rar_high |= E1000_RAH_AV;
318
319	/* Some bridges will combine consecutive 32-bit writes into
320	 * a single burst write, which will malfunction on some parts.
321	 * The flushes avoid this.
322	 */
323	wr32(E1000_RAL(index), rar_low);
324	wrfl();
325	wr32(E1000_RAH(index), rar_high);
326	wrfl();
327}
328
329/**
330 *  igb_mta_set - Set multicast filter table address
331 *  @hw: pointer to the HW structure
332 *  @hash_value: determines the MTA register and bit to set
333 *
334 *  The multicast table address is a register array of 32-bit registers.
335 *  The hash_value is used to determine what register the bit is in, the
336 *  current value is read, the new bit is OR'd in and the new value is
337 *  written back into the register.
338 **/
339void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
340{
341	u32 hash_bit, hash_reg, mta;
342
343	/* The MTA is a register array of 32-bit registers. It is
344	 * treated like an array of (32*mta_reg_count) bits.  We want to
345	 * set bit BitArray[hash_value]. So we figure out what register
346	 * the bit is in, read it, OR in the new bit, then write
347	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
348	 * mask to bits 31:5 of the hash value which gives us the
349	 * register we're modifying.  The hash bit within that register
350	 * is determined by the lower 5 bits of the hash value.
351	 */
352	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
353	hash_bit = hash_value & 0x1F;
354
355	mta = array_rd32(E1000_MTA, hash_reg);
356
357	mta |= (1 << hash_bit);
358
359	array_wr32(E1000_MTA, hash_reg, mta);
360	wrfl();
361}
362
363/**
364 *  igb_hash_mc_addr - Generate a multicast hash value
365 *  @hw: pointer to the HW structure
366 *  @mc_addr: pointer to a multicast address
367 *
368 *  Generates a multicast address hash value which is used to determine
369 *  the multicast filter table array address and new table value.  See
370 *  igb_mta_set()
371 **/
372static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
373{
374	u32 hash_value, hash_mask;
375	u8 bit_shift = 0;
376
377	/* Register count multiplied by bits per register */
378	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
379
380	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
381	 * where 0xFF would still fall within the hash mask.
382	 */
383	while (hash_mask >> bit_shift != 0xFF)
384		bit_shift++;
385
386	/* The portion of the address that is used for the hash table
387	 * is determined by the mc_filter_type setting.
388	 * The algorithm is such that there is a total of 8 bits of shifting.
389	 * The bit_shift for a mc_filter_type of 0 represents the number of
390	 * left-shifts where the MSB of mc_addr[5] would still fall within
391	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
392	 * of 8 bits of shifting, then mc_addr[4] will shift right the
393	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
394	 * cases are a variation of this algorithm...essentially raising the
395	 * number of bits to shift mc_addr[5] left, while still keeping the
396	 * 8-bit shifting total.
397	 *
398	 * For example, given the following Destination MAC Address and an
399	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
400	 * we can see that the bit_shift for case 0 is 4.  These are the hash
401	 * values resulting from each mc_filter_type...
402	 * [0] [1] [2] [3] [4] [5]
403	 * 01  AA  00  12  34  56
404	 * LSB                 MSB
405	 *
406	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
407	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
408	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
409	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
410	 */
411	switch (hw->mac.mc_filter_type) {
412	default:
413	case 0:
414		break;
415	case 1:
416		bit_shift += 1;
417		break;
418	case 2:
419		bit_shift += 2;
420		break;
421	case 3:
422		bit_shift += 4;
423		break;
424	}
425
426	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
427				  (((u16) mc_addr[5]) << bit_shift)));
428
429	return hash_value;
430}
431
432/**
433 *  igb_update_mc_addr_list - Update Multicast addresses
434 *  @hw: pointer to the HW structure
435 *  @mc_addr_list: array of multicast addresses to program
436 *  @mc_addr_count: number of multicast addresses to program
437 *
438 *  Updates entire Multicast Table Array.
439 *  The caller must have a packed mc_addr_list of multicast addresses.
440 **/
441void igb_update_mc_addr_list(struct e1000_hw *hw,
442			     u8 *mc_addr_list, u32 mc_addr_count)
443{
444	u32 hash_value, hash_bit, hash_reg;
445	int i;
446
447	/* clear mta_shadow */
448	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
449
450	/* update mta_shadow from mc_addr_list */
451	for (i = 0; (u32) i < mc_addr_count; i++) {
452		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
453
454		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
455		hash_bit = hash_value & 0x1F;
456
457		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
458		mc_addr_list += (ETH_ALEN);
459	}
460
461	/* replace the entire MTA table */
462	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
463		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
464	wrfl();
465}
466
467/**
468 *  igb_clear_hw_cntrs_base - Clear base hardware counters
469 *  @hw: pointer to the HW structure
470 *
471 *  Clears the base hardware counters by reading the counter registers.
472 **/
473void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
474{
475	rd32(E1000_CRCERRS);
476	rd32(E1000_SYMERRS);
477	rd32(E1000_MPC);
478	rd32(E1000_SCC);
479	rd32(E1000_ECOL);
480	rd32(E1000_MCC);
481	rd32(E1000_LATECOL);
482	rd32(E1000_COLC);
483	rd32(E1000_DC);
484	rd32(E1000_SEC);
485	rd32(E1000_RLEC);
486	rd32(E1000_XONRXC);
487	rd32(E1000_XONTXC);
488	rd32(E1000_XOFFRXC);
489	rd32(E1000_XOFFTXC);
490	rd32(E1000_FCRUC);
491	rd32(E1000_GPRC);
492	rd32(E1000_BPRC);
493	rd32(E1000_MPRC);
494	rd32(E1000_GPTC);
495	rd32(E1000_GORCL);
496	rd32(E1000_GORCH);
497	rd32(E1000_GOTCL);
498	rd32(E1000_GOTCH);
499	rd32(E1000_RNBC);
500	rd32(E1000_RUC);
501	rd32(E1000_RFC);
502	rd32(E1000_ROC);
503	rd32(E1000_RJC);
504	rd32(E1000_TORL);
505	rd32(E1000_TORH);
506	rd32(E1000_TOTL);
507	rd32(E1000_TOTH);
508	rd32(E1000_TPR);
509	rd32(E1000_TPT);
510	rd32(E1000_MPTC);
511	rd32(E1000_BPTC);
512}
513
514/**
515 *  igb_check_for_copper_link - Check for link (Copper)
516 *  @hw: pointer to the HW structure
517 *
518 *  Checks to see of the link status of the hardware has changed.  If a
519 *  change in link status has been detected, then we read the PHY registers
520 *  to get the current speed/duplex if link exists.
521 **/
522s32 igb_check_for_copper_link(struct e1000_hw *hw)
523{
524	struct e1000_mac_info *mac = &hw->mac;
525	s32 ret_val;
526	bool link;
527
528	/* We only want to go out to the PHY registers to see if Auto-Neg
529	 * has completed and/or if our link status has changed.  The
530	 * get_link_status flag is set upon receiving a Link Status
531	 * Change or Rx Sequence Error interrupt.
532	 */
533	if (!mac->get_link_status) {
534		ret_val = 0;
535		goto out;
536	}
537
538	/* First we want to see if the MII Status Register reports
539	 * link.  If so, then we want to get the current speed/duplex
540	 * of the PHY.
541	 */
542	ret_val = igb_phy_has_link(hw, 1, 0, &link);
543	if (ret_val)
544		goto out;
545
546	if (!link)
547		goto out; /* No link detected */
548
549	mac->get_link_status = false;
550
551	/* Check if there was DownShift, must be checked
552	 * immediately after link-up
553	 */
554	igb_check_downshift(hw);
555
556	/* If we are forcing speed/duplex, then we simply return since
557	 * we have already determined whether we have link or not.
558	 */
559	if (!mac->autoneg) {
560		ret_val = -E1000_ERR_CONFIG;
561		goto out;
562	}
563
564	/* Auto-Neg is enabled.  Auto Speed Detection takes care
565	 * of MAC speed/duplex configuration.  So we only need to
566	 * configure Collision Distance in the MAC.
567	 */
568	igb_config_collision_dist(hw);
569
570	/* Configure Flow Control now that Auto-Neg has completed.
571	 * First, we need to restore the desired flow control
572	 * settings because we may have had to re-autoneg with a
573	 * different link partner.
574	 */
575	ret_val = igb_config_fc_after_link_up(hw);
576	if (ret_val)
577		hw_dbg("Error configuring flow control\n");
578
579out:
580	return ret_val;
581}
582
583/**
584 *  igb_setup_link - Setup flow control and link settings
585 *  @hw: pointer to the HW structure
586 *
587 *  Determines which flow control settings to use, then configures flow
588 *  control.  Calls the appropriate media-specific link configuration
589 *  function.  Assuming the adapter has a valid link partner, a valid link
590 *  should be established.  Assumes the hardware has previously been reset
591 *  and the transmitter and receiver are not enabled.
592 **/
593s32 igb_setup_link(struct e1000_hw *hw)
594{
595	s32 ret_val = 0;
596
597	/* In the case of the phy reset being blocked, we already have a link.
598	 * We do not need to set it up again.
599	 */
600	if (igb_check_reset_block(hw))
601		goto out;
602
603	/* If requested flow control is set to default, set flow control
604	 * based on the EEPROM flow control settings.
605	 */
606	if (hw->fc.requested_mode == e1000_fc_default) {
607		ret_val = igb_set_default_fc(hw);
608		if (ret_val)
609			goto out;
610	}
611
612	/* We want to save off the original Flow Control configuration just
613	 * in case we get disconnected and then reconnected into a different
614	 * hub or switch with different Flow Control capabilities.
615	 */
616	hw->fc.current_mode = hw->fc.requested_mode;
617
618	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
619
620	/* Call the necessary media_type subroutine to configure the link. */
621	ret_val = hw->mac.ops.setup_physical_interface(hw);
622	if (ret_val)
623		goto out;
624
625	/* Initialize the flow control address, type, and PAUSE timer
626	 * registers to their default values.  This is done even if flow
627	 * control is disabled, because it does not hurt anything to
628	 * initialize these registers.
629	 */
630	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
631	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
632	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
633	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
634
635	wr32(E1000_FCTTV, hw->fc.pause_time);
636
637	ret_val = igb_set_fc_watermarks(hw);
638
639out:
640
641	return ret_val;
642}
643
644/**
645 *  igb_config_collision_dist - Configure collision distance
646 *  @hw: pointer to the HW structure
647 *
648 *  Configures the collision distance to the default value and is used
649 *  during link setup. Currently no func pointer exists and all
650 *  implementations are handled in the generic version of this function.
651 **/
652void igb_config_collision_dist(struct e1000_hw *hw)
653{
654	u32 tctl;
655
656	tctl = rd32(E1000_TCTL);
657
658	tctl &= ~E1000_TCTL_COLD;
659	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
660
661	wr32(E1000_TCTL, tctl);
662	wrfl();
663}
664
665/**
666 *  igb_set_fc_watermarks - Set flow control high/low watermarks
667 *  @hw: pointer to the HW structure
668 *
669 *  Sets the flow control high/low threshold (watermark) registers.  If
670 *  flow control XON frame transmission is enabled, then set XON frame
671 *  tansmission as well.
672 **/
673static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
674{
675	s32 ret_val = 0;
676	u32 fcrtl = 0, fcrth = 0;
677
678	/* Set the flow control receive threshold registers.  Normally,
679	 * these registers will be set to a default threshold that may be
680	 * adjusted later by the driver's runtime code.  However, if the
681	 * ability to transmit pause frames is not enabled, then these
682	 * registers will be set to 0.
683	 */
684	if (hw->fc.current_mode & e1000_fc_tx_pause) {
685		/* We need to set up the Receive Threshold high and low water
686		 * marks as well as (optionally) enabling the transmission of
687		 * XON frames.
688		 */
689		fcrtl = hw->fc.low_water;
690		if (hw->fc.send_xon)
691			fcrtl |= E1000_FCRTL_XONE;
692
693		fcrth = hw->fc.high_water;
694	}
695	wr32(E1000_FCRTL, fcrtl);
696	wr32(E1000_FCRTH, fcrth);
697
698	return ret_val;
699}
700
701/**
702 *  igb_set_default_fc - Set flow control default values
703 *  @hw: pointer to the HW structure
704 *
705 *  Read the EEPROM for the default values for flow control and store the
706 *  values.
707 **/
708static s32 igb_set_default_fc(struct e1000_hw *hw)
709{
710	s32 ret_val = 0;
711	u16 lan_offset;
712	u16 nvm_data;
713
714	/* Read and store word 0x0F of the EEPROM. This word contains bits
715	 * that determine the hardware's default PAUSE (flow control) mode,
716	 * a bit that determines whether the HW defaults to enabling or
717	 * disabling auto-negotiation, and the direction of the
718	 * SW defined pins. If there is no SW over-ride of the flow
719	 * control setting, then the variable hw->fc will
720	 * be initialized based on a value in the EEPROM.
721	 */
722	if (hw->mac.type == e1000_i350) {
723		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
724		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
725					   + lan_offset, 1, &nvm_data);
726	 } else {
727		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
728					   1, &nvm_data);
729	 }
730
731	if (ret_val) {
732		hw_dbg("NVM Read Error\n");
733		goto out;
734	}
735
736	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
737		hw->fc.requested_mode = e1000_fc_none;
738	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
739		 NVM_WORD0F_ASM_DIR)
740		hw->fc.requested_mode = e1000_fc_tx_pause;
741	else
742		hw->fc.requested_mode = e1000_fc_full;
743
744out:
745	return ret_val;
746}
747
748/**
749 *  igb_force_mac_fc - Force the MAC's flow control settings
750 *  @hw: pointer to the HW structure
751 *
752 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
753 *  device control register to reflect the adapter settings.  TFCE and RFCE
754 *  need to be explicitly set by software when a copper PHY is used because
755 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
756 *  also configure these bits when link is forced on a fiber connection.
757 **/
758s32 igb_force_mac_fc(struct e1000_hw *hw)
759{
760	u32 ctrl;
761	s32 ret_val = 0;
762
763	ctrl = rd32(E1000_CTRL);
764
765	/* Because we didn't get link via the internal auto-negotiation
766	 * mechanism (we either forced link or we got link via PHY
767	 * auto-neg), we have to manually enable/disable transmit an
768	 * receive flow control.
769	 *
770	 * The "Case" statement below enables/disable flow control
771	 * according to the "hw->fc.current_mode" parameter.
772	 *
773	 * The possible values of the "fc" parameter are:
774	 *      0:  Flow control is completely disabled
775	 *      1:  Rx flow control is enabled (we can receive pause
776	 *          frames but not send pause frames).
777	 *      2:  Tx flow control is enabled (we can send pause frames
778	 *          frames but we do not receive pause frames).
779	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
780	 *  other:  No other values should be possible at this point.
781	 */
782	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
783
784	switch (hw->fc.current_mode) {
785	case e1000_fc_none:
786		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
787		break;
788	case e1000_fc_rx_pause:
789		ctrl &= (~E1000_CTRL_TFCE);
790		ctrl |= E1000_CTRL_RFCE;
791		break;
792	case e1000_fc_tx_pause:
793		ctrl &= (~E1000_CTRL_RFCE);
794		ctrl |= E1000_CTRL_TFCE;
795		break;
796	case e1000_fc_full:
797		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
798		break;
799	default:
800		hw_dbg("Flow control param set incorrectly\n");
801		ret_val = -E1000_ERR_CONFIG;
802		goto out;
803	}
804
805	wr32(E1000_CTRL, ctrl);
806
807out:
808	return ret_val;
809}
810
811/**
812 *  igb_config_fc_after_link_up - Configures flow control after link
813 *  @hw: pointer to the HW structure
814 *
815 *  Checks the status of auto-negotiation after link up to ensure that the
816 *  speed and duplex were not forced.  If the link needed to be forced, then
817 *  flow control needs to be forced also.  If auto-negotiation is enabled
818 *  and did not fail, then we configure flow control based on our link
819 *  partner.
820 **/
821s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
822{
823	struct e1000_mac_info *mac = &hw->mac;
824	s32 ret_val = 0;
825	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
826	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
827	u16 speed, duplex;
828
829	/* Check for the case where we have fiber media and auto-neg failed
830	 * so we had to force link.  In this case, we need to force the
831	 * configuration of the MAC to match the "fc" parameter.
832	 */
833	if (mac->autoneg_failed) {
834		if (hw->phy.media_type == e1000_media_type_internal_serdes)
835			ret_val = igb_force_mac_fc(hw);
836	} else {
837		if (hw->phy.media_type == e1000_media_type_copper)
838			ret_val = igb_force_mac_fc(hw);
839	}
840
841	if (ret_val) {
842		hw_dbg("Error forcing flow control settings\n");
843		goto out;
844	}
845
846	/* Check for the case where we have copper media and auto-neg is
847	 * enabled.  In this case, we need to check and see if Auto-Neg
848	 * has completed, and if so, how the PHY and link partner has
849	 * flow control configured.
850	 */
851	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
852		/* Read the MII Status Register and check to see if AutoNeg
853		 * has completed.  We read this twice because this reg has
854		 * some "sticky" (latched) bits.
855		 */
856		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
857						   &mii_status_reg);
858		if (ret_val)
859			goto out;
860		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
861						   &mii_status_reg);
862		if (ret_val)
863			goto out;
864
865		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
866			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
867			goto out;
868		}
869
870		/* The AutoNeg process has completed, so we now need to
871		 * read both the Auto Negotiation Advertisement
872		 * Register (Address 4) and the Auto_Negotiation Base
873		 * Page Ability Register (Address 5) to determine how
874		 * flow control was negotiated.
875		 */
876		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
877					    &mii_nway_adv_reg);
878		if (ret_val)
879			goto out;
880		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
881					    &mii_nway_lp_ability_reg);
882		if (ret_val)
883			goto out;
884
885		/* Two bits in the Auto Negotiation Advertisement Register
886		 * (Address 4) and two bits in the Auto Negotiation Base
887		 * Page Ability Register (Address 5) determine flow control
888		 * for both the PHY and the link partner.  The following
889		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
890		 * 1999, describes these PAUSE resolution bits and how flow
891		 * control is determined based upon these settings.
892		 * NOTE:  DC = Don't Care
893		 *
894		 *   LOCAL DEVICE  |   LINK PARTNER
895		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
896		 *-------|---------|-------|---------|--------------------
897		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
898		 *   0   |    1    |   0   |   DC    | e1000_fc_none
899		 *   0   |    1    |   1   |    0    | e1000_fc_none
900		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
901		 *   1   |    0    |   0   |   DC    | e1000_fc_none
902		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
903		 *   1   |    1    |   0   |    0    | e1000_fc_none
904		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
905		 *
906		 * Are both PAUSE bits set to 1?  If so, this implies
907		 * Symmetric Flow Control is enabled at both ends.  The
908		 * ASM_DIR bits are irrelevant per the spec.
909		 *
910		 * For Symmetric Flow Control:
911		 *
912		 *   LOCAL DEVICE  |   LINK PARTNER
913		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
914		 *-------|---------|-------|---------|--------------------
915		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
916		 *
917		 */
918		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
919		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
920			/* Now we need to check if the user selected RX ONLY
921			 * of pause frames.  In this case, we had to advertise
922			 * FULL flow control because we could not advertise RX
923			 * ONLY. Hence, we must now check to see if we need to
924			 * turn OFF  the TRANSMISSION of PAUSE frames.
925			 */
926			if (hw->fc.requested_mode == e1000_fc_full) {
927				hw->fc.current_mode = e1000_fc_full;
928				hw_dbg("Flow Control = FULL.\n");
929			} else {
930				hw->fc.current_mode = e1000_fc_rx_pause;
931				hw_dbg("Flow Control = RX PAUSE frames only.\n");
932			}
933		}
934		/* For receiving PAUSE frames ONLY.
935		 *
936		 *   LOCAL DEVICE  |   LINK PARTNER
937		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
938		 *-------|---------|-------|---------|--------------------
939		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
940		 */
941		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
942			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
943			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
944			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
945			hw->fc.current_mode = e1000_fc_tx_pause;
946			hw_dbg("Flow Control = TX PAUSE frames only.\n");
947		}
948		/* For transmitting PAUSE frames ONLY.
949		 *
950		 *   LOCAL DEVICE  |   LINK PARTNER
951		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
952		 *-------|---------|-------|---------|--------------------
953		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
954		 */
955		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
956			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
957			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
958			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
959			hw->fc.current_mode = e1000_fc_rx_pause;
960			hw_dbg("Flow Control = RX PAUSE frames only.\n");
961		}
962		/* Per the IEEE spec, at this point flow control should be
963		 * disabled.  However, we want to consider that we could
964		 * be connected to a legacy switch that doesn't advertise
965		 * desired flow control, but can be forced on the link
966		 * partner.  So if we advertised no flow control, that is
967		 * what we will resolve to.  If we advertised some kind of
968		 * receive capability (Rx Pause Only or Full Flow Control)
969		 * and the link partner advertised none, we will configure
970		 * ourselves to enable Rx Flow Control only.  We can do
971		 * this safely for two reasons:  If the link partner really
972		 * didn't want flow control enabled, and we enable Rx, no
973		 * harm done since we won't be receiving any PAUSE frames
974		 * anyway.  If the intent on the link partner was to have
975		 * flow control enabled, then by us enabling RX only, we
976		 * can at least receive pause frames and process them.
977		 * This is a good idea because in most cases, since we are
978		 * predominantly a server NIC, more times than not we will
979		 * be asked to delay transmission of packets than asking
980		 * our link partner to pause transmission of frames.
981		 */
982		else if ((hw->fc.requested_mode == e1000_fc_none) ||
983			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
984			 (hw->fc.strict_ieee)) {
985			hw->fc.current_mode = e1000_fc_none;
986			hw_dbg("Flow Control = NONE.\n");
987		} else {
988			hw->fc.current_mode = e1000_fc_rx_pause;
989			hw_dbg("Flow Control = RX PAUSE frames only.\n");
990		}
991
992		/* Now we need to do one last check...  If we auto-
993		 * negotiated to HALF DUPLEX, flow control should not be
994		 * enabled per IEEE 802.3 spec.
995		 */
996		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
997		if (ret_val) {
998			hw_dbg("Error getting link speed and duplex\n");
999			goto out;
1000		}
1001
1002		if (duplex == HALF_DUPLEX)
1003			hw->fc.current_mode = e1000_fc_none;
1004
1005		/* Now we call a subroutine to actually force the MAC
1006		 * controller to use the correct flow control settings.
1007		 */
1008		ret_val = igb_force_mac_fc(hw);
1009		if (ret_val) {
1010			hw_dbg("Error forcing flow control settings\n");
1011			goto out;
1012		}
1013	}
1014	/* Check for the case where we have SerDes media and auto-neg is
1015	 * enabled.  In this case, we need to check and see if Auto-Neg
1016	 * has completed, and if so, how the PHY and link partner has
1017	 * flow control configured.
1018	 */
1019	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1020		&& mac->autoneg) {
1021		/* Read the PCS_LSTS and check to see if AutoNeg
1022		 * has completed.
1023		 */
1024		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1025
1026		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1027			hw_dbg("PCS Auto Neg has not completed.\n");
1028			return ret_val;
1029		}
1030
1031		/* The AutoNeg process has completed, so we now need to
1032		 * read both the Auto Negotiation Advertisement
1033		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1034		 * Page Ability Register (PCS_LPAB) to determine how
1035		 * flow control was negotiated.
1036		 */
1037		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1038		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1039
1040		/* Two bits in the Auto Negotiation Advertisement Register
1041		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1042		 * Page Ability Register (PCS_LPAB) determine flow control
1043		 * for both the PHY and the link partner.  The following
1044		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1045		 * 1999, describes these PAUSE resolution bits and how flow
1046		 * control is determined based upon these settings.
1047		 * NOTE:  DC = Don't Care
1048		 *
1049		 *   LOCAL DEVICE  |   LINK PARTNER
1050		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1051		 *-------|---------|-------|---------|--------------------
1052		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1053		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1054		 *   0   |    1    |   1   |    0    | e1000_fc_none
1055		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1056		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1057		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1058		 *   1   |    1    |   0   |    0    | e1000_fc_none
1059		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1060		 *
1061		 * Are both PAUSE bits set to 1?  If so, this implies
1062		 * Symmetric Flow Control is enabled at both ends.  The
1063		 * ASM_DIR bits are irrelevant per the spec.
1064		 *
1065		 * For Symmetric Flow Control:
1066		 *
1067		 *   LOCAL DEVICE  |   LINK PARTNER
1068		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1069		 *-------|---------|-------|---------|--------------------
1070		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1071		 *
1072		 */
1073		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1074		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1075			/* Now we need to check if the user selected Rx ONLY
1076			 * of pause frames.  In this case, we had to advertise
1077			 * FULL flow control because we could not advertise Rx
1078			 * ONLY. Hence, we must now check to see if we need to
1079			 * turn OFF the TRANSMISSION of PAUSE frames.
1080			 */
1081			if (hw->fc.requested_mode == e1000_fc_full) {
1082				hw->fc.current_mode = e1000_fc_full;
1083				hw_dbg("Flow Control = FULL.\n");
1084			} else {
1085				hw->fc.current_mode = e1000_fc_rx_pause;
1086				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1087			}
1088		}
1089		/* For receiving PAUSE frames ONLY.
1090		 *
1091		 *   LOCAL DEVICE  |   LINK PARTNER
1092		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1093		 *-------|---------|-------|---------|--------------------
1094		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1095		 */
1096		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1097			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1098			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1099			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1100			hw->fc.current_mode = e1000_fc_tx_pause;
1101			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1102		}
1103		/* For transmitting PAUSE frames ONLY.
1104		 *
1105		 *   LOCAL DEVICE  |   LINK PARTNER
1106		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1107		 *-------|---------|-------|---------|--------------------
1108		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1109		 */
1110		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1111			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1112			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1113			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1114			hw->fc.current_mode = e1000_fc_rx_pause;
1115			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1116		} else {
1117			/* Per the IEEE spec, at this point flow control
1118			 * should be disabled.
1119			 */
1120			hw->fc.current_mode = e1000_fc_none;
1121			hw_dbg("Flow Control = NONE.\n");
1122		}
1123
1124		/* Now we call a subroutine to actually force the MAC
1125		 * controller to use the correct flow control settings.
1126		 */
1127		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1128		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1129		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1130
1131		ret_val = igb_force_mac_fc(hw);
1132		if (ret_val) {
1133			hw_dbg("Error forcing flow control settings\n");
1134			return ret_val;
1135		}
1136	}
1137
1138out:
1139	return ret_val;
1140}
1141
1142/**
1143 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1144 *  @hw: pointer to the HW structure
1145 *  @speed: stores the current speed
1146 *  @duplex: stores the current duplex
1147 *
1148 *  Read the status register for the current speed/duplex and store the current
1149 *  speed and duplex for copper connections.
1150 **/
1151s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1152				      u16 *duplex)
1153{
1154	u32 status;
1155
1156	status = rd32(E1000_STATUS);
1157	if (status & E1000_STATUS_SPEED_1000) {
1158		*speed = SPEED_1000;
1159		hw_dbg("1000 Mbs, ");
1160	} else if (status & E1000_STATUS_SPEED_100) {
1161		*speed = SPEED_100;
1162		hw_dbg("100 Mbs, ");
1163	} else {
1164		*speed = SPEED_10;
1165		hw_dbg("10 Mbs, ");
1166	}
1167
1168	if (status & E1000_STATUS_FD) {
1169		*duplex = FULL_DUPLEX;
1170		hw_dbg("Full Duplex\n");
1171	} else {
1172		*duplex = HALF_DUPLEX;
1173		hw_dbg("Half Duplex\n");
1174	}
1175
1176	return 0;
1177}
1178
1179/**
1180 *  igb_get_hw_semaphore - Acquire hardware semaphore
1181 *  @hw: pointer to the HW structure
1182 *
1183 *  Acquire the HW semaphore to access the PHY or NVM
1184 **/
1185s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1186{
1187	u32 swsm;
1188	s32 ret_val = 0;
1189	s32 timeout = hw->nvm.word_size + 1;
1190	s32 i = 0;
1191
1192	/* Get the SW semaphore */
1193	while (i < timeout) {
1194		swsm = rd32(E1000_SWSM);
1195		if (!(swsm & E1000_SWSM_SMBI))
1196			break;
1197
1198		udelay(50);
1199		i++;
1200	}
1201
1202	if (i == timeout) {
1203		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1204		ret_val = -E1000_ERR_NVM;
1205		goto out;
1206	}
1207
1208	/* Get the FW semaphore. */
1209	for (i = 0; i < timeout; i++) {
1210		swsm = rd32(E1000_SWSM);
1211		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1212
1213		/* Semaphore acquired if bit latched */
1214		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1215			break;
1216
1217		udelay(50);
1218	}
1219
1220	if (i == timeout) {
1221		/* Release semaphores */
1222		igb_put_hw_semaphore(hw);
1223		hw_dbg("Driver can't access the NVM\n");
1224		ret_val = -E1000_ERR_NVM;
1225		goto out;
1226	}
1227
1228out:
1229	return ret_val;
1230}
1231
1232/**
1233 *  igb_put_hw_semaphore - Release hardware semaphore
1234 *  @hw: pointer to the HW structure
1235 *
1236 *  Release hardware semaphore used to access the PHY or NVM
1237 **/
1238void igb_put_hw_semaphore(struct e1000_hw *hw)
1239{
1240	u32 swsm;
1241
1242	swsm = rd32(E1000_SWSM);
1243
1244	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1245
1246	wr32(E1000_SWSM, swsm);
1247}
1248
1249/**
1250 *  igb_get_auto_rd_done - Check for auto read completion
1251 *  @hw: pointer to the HW structure
1252 *
1253 *  Check EEPROM for Auto Read done bit.
1254 **/
1255s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1256{
1257	s32 i = 0;
1258	s32 ret_val = 0;
1259
1260
1261	while (i < AUTO_READ_DONE_TIMEOUT) {
1262		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1263			break;
1264		usleep_range(1000, 2000);
1265		i++;
1266	}
1267
1268	if (i == AUTO_READ_DONE_TIMEOUT) {
1269		hw_dbg("Auto read by HW from NVM has not completed.\n");
1270		ret_val = -E1000_ERR_RESET;
1271		goto out;
1272	}
1273
1274out:
1275	return ret_val;
1276}
1277
1278/**
1279 *  igb_valid_led_default - Verify a valid default LED config
1280 *  @hw: pointer to the HW structure
1281 *  @data: pointer to the NVM (EEPROM)
1282 *
1283 *  Read the EEPROM for the current default LED configuration.  If the
1284 *  LED configuration is not valid, set to a valid LED configuration.
1285 **/
1286static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1287{
1288	s32 ret_val;
1289
1290	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1291	if (ret_val) {
1292		hw_dbg("NVM Read Error\n");
1293		goto out;
1294	}
1295
1296	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1297		switch (hw->phy.media_type) {
1298		case e1000_media_type_internal_serdes:
1299			*data = ID_LED_DEFAULT_82575_SERDES;
1300			break;
1301		case e1000_media_type_copper:
1302		default:
1303			*data = ID_LED_DEFAULT;
1304			break;
1305		}
1306	}
1307out:
1308	return ret_val;
1309}
1310
1311/**
1312 *  igb_id_led_init -
1313 *  @hw: pointer to the HW structure
1314 *
1315 **/
1316s32 igb_id_led_init(struct e1000_hw *hw)
1317{
1318	struct e1000_mac_info *mac = &hw->mac;
1319	s32 ret_val;
1320	const u32 ledctl_mask = 0x000000FF;
1321	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1322	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1323	u16 data, i, temp;
1324	const u16 led_mask = 0x0F;
1325
1326	/* i210 and i211 devices have different LED mechanism */
1327	if ((hw->mac.type == e1000_i210) ||
1328	    (hw->mac.type == e1000_i211))
1329		ret_val = igb_valid_led_default_i210(hw, &data);
1330	else
1331		ret_val = igb_valid_led_default(hw, &data);
1332
1333	if (ret_val)
1334		goto out;
1335
1336	mac->ledctl_default = rd32(E1000_LEDCTL);
1337	mac->ledctl_mode1 = mac->ledctl_default;
1338	mac->ledctl_mode2 = mac->ledctl_default;
1339
1340	for (i = 0; i < 4; i++) {
1341		temp = (data >> (i << 2)) & led_mask;
1342		switch (temp) {
1343		case ID_LED_ON1_DEF2:
1344		case ID_LED_ON1_ON2:
1345		case ID_LED_ON1_OFF2:
1346			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1347			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1348			break;
1349		case ID_LED_OFF1_DEF2:
1350		case ID_LED_OFF1_ON2:
1351		case ID_LED_OFF1_OFF2:
1352			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1353			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1354			break;
1355		default:
1356			/* Do nothing */
1357			break;
1358		}
1359		switch (temp) {
1360		case ID_LED_DEF1_ON2:
1361		case ID_LED_ON1_ON2:
1362		case ID_LED_OFF1_ON2:
1363			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1364			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1365			break;
1366		case ID_LED_DEF1_OFF2:
1367		case ID_LED_ON1_OFF2:
1368		case ID_LED_OFF1_OFF2:
1369			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1370			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1371			break;
1372		default:
1373			/* Do nothing */
1374			break;
1375		}
1376	}
1377
1378out:
1379	return ret_val;
1380}
1381
1382/**
1383 *  igb_cleanup_led - Set LED config to default operation
1384 *  @hw: pointer to the HW structure
1385 *
1386 *  Remove the current LED configuration and set the LED configuration
1387 *  to the default value, saved from the EEPROM.
1388 **/
1389s32 igb_cleanup_led(struct e1000_hw *hw)
1390{
1391	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1392	return 0;
1393}
1394
1395/**
1396 *  igb_blink_led - Blink LED
1397 *  @hw: pointer to the HW structure
1398 *
1399 *  Blink the led's which are set to be on.
1400 **/
1401s32 igb_blink_led(struct e1000_hw *hw)
1402{
1403	u32 ledctl_blink = 0;
1404	u32 i;
1405
1406	if (hw->phy.media_type == e1000_media_type_fiber) {
1407		/* always blink LED0 for PCI-E fiber */
1408		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1409		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1410	} else {
1411		/* Set the blink bit for each LED that's "on" (0x0E)
1412		 * (or "off" if inverted) in ledctl_mode2.  The blink
1413		 * logic in hardware only works when mode is set to "on"
1414		 * so it must be changed accordingly when the mode is
1415		 * "off" and inverted.
1416		 */
1417		ledctl_blink = hw->mac.ledctl_mode2;
1418		for (i = 0; i < 32; i += 8) {
1419			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1420			    E1000_LEDCTL_LED0_MODE_MASK;
1421			u32 led_default = hw->mac.ledctl_default >> i;
1422
1423			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1424			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1425			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1426			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1427				ledctl_blink &=
1428				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1429				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1430						 E1000_LEDCTL_MODE_LED_ON) << i;
1431			}
1432		}
1433	}
1434
1435	wr32(E1000_LEDCTL, ledctl_blink);
1436
1437	return 0;
1438}
1439
1440/**
1441 *  igb_led_off - Turn LED off
1442 *  @hw: pointer to the HW structure
1443 *
1444 *  Turn LED off.
1445 **/
1446s32 igb_led_off(struct e1000_hw *hw)
1447{
1448	switch (hw->phy.media_type) {
1449	case e1000_media_type_copper:
1450		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1451		break;
1452	default:
1453		break;
1454	}
1455
1456	return 0;
1457}
1458
1459/**
1460 *  igb_disable_pcie_master - Disables PCI-express master access
1461 *  @hw: pointer to the HW structure
1462 *
1463 *  Returns 0 (0) if successful, else returns -10
1464 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1465 *  the master requests to be disabled.
1466 *
1467 *  Disables PCI-Express master access and verifies there are no pending
1468 *  requests.
1469 **/
1470s32 igb_disable_pcie_master(struct e1000_hw *hw)
1471{
1472	u32 ctrl;
1473	s32 timeout = MASTER_DISABLE_TIMEOUT;
1474	s32 ret_val = 0;
1475
1476	if (hw->bus.type != e1000_bus_type_pci_express)
1477		goto out;
1478
1479	ctrl = rd32(E1000_CTRL);
1480	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1481	wr32(E1000_CTRL, ctrl);
1482
1483	while (timeout) {
1484		if (!(rd32(E1000_STATUS) &
1485		      E1000_STATUS_GIO_MASTER_ENABLE))
1486			break;
1487		udelay(100);
1488		timeout--;
1489	}
1490
1491	if (!timeout) {
1492		hw_dbg("Master requests are pending.\n");
1493		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1494		goto out;
1495	}
1496
1497out:
1498	return ret_val;
1499}
1500
1501/**
1502 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1503 *  @hw: pointer to the HW structure
1504 *
1505 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1506 *  set, which is forced to MDI mode only.
1507 **/
1508s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1509{
1510	s32 ret_val = 0;
1511
1512	/* All MDI settings are supported on 82580 and newer. */
1513	if (hw->mac.type >= e1000_82580)
1514		goto out;
1515
1516	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1517		hw_dbg("Invalid MDI setting detected\n");
1518		hw->phy.mdix = 1;
1519		ret_val = -E1000_ERR_CONFIG;
1520		goto out;
1521	}
1522
1523out:
1524	return ret_val;
1525}
1526
1527/**
1528 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1529 *  @hw: pointer to the HW structure
1530 *  @reg: 32bit register offset such as E1000_SCTL
1531 *  @offset: register offset to write to
1532 *  @data: data to write at register offset
1533 *
1534 *  Writes an address/data control type register.  There are several of these
1535 *  and they all have the format address << 8 | data and bit 31 is polled for
1536 *  completion.
1537 **/
1538s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1539			      u32 offset, u8 data)
1540{
1541	u32 i, regvalue = 0;
1542	s32 ret_val = 0;
1543
1544	/* Set up the address and data */
1545	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1546	wr32(reg, regvalue);
1547
1548	/* Poll the ready bit to see if the MDI read completed */
1549	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1550		udelay(5);
1551		regvalue = rd32(reg);
1552		if (regvalue & E1000_GEN_CTL_READY)
1553			break;
1554	}
1555	if (!(regvalue & E1000_GEN_CTL_READY)) {
1556		hw_dbg("Reg %08x did not indicate ready\n", reg);
1557		ret_val = -E1000_ERR_PHY;
1558		goto out;
1559	}
1560
1561out:
1562	return ret_val;
1563}
1564
1565/**
1566 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1567 *  @hw: pointer to the HW structure
1568 *
1569 *  Verifies the hardware needs to leave interface enabled so that frames can
1570 *  be directed to and from the management interface.
1571 **/
1572bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1573{
1574	u32 manc;
1575	u32 fwsm, factps;
1576	bool ret_val = false;
1577
1578	if (!hw->mac.asf_firmware_present)
1579		goto out;
1580
1581	manc = rd32(E1000_MANC);
1582
1583	if (!(manc & E1000_MANC_RCV_TCO_EN))
1584		goto out;
1585
1586	if (hw->mac.arc_subsystem_valid) {
1587		fwsm = rd32(E1000_FWSM);
1588		factps = rd32(E1000_FACTPS);
1589
1590		if (!(factps & E1000_FACTPS_MNGCG) &&
1591		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1592		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1593			ret_val = true;
1594			goto out;
1595		}
1596	} else {
1597		if ((manc & E1000_MANC_SMBUS_EN) &&
1598		    !(manc & E1000_MANC_ASF_EN)) {
1599			ret_val = true;
1600			goto out;
1601		}
1602	}
1603
1604out:
1605	return ret_val;
1606}
1607